Flask-Cors Documentation
Release 1.7.4

Cory Dolphin

August 22, 2014

Contents

Contact 3
Flask-CORS 5
2.1 Installation e e e e e 5
22 USAZE . . v v e e e 5

Flask-Cors Documentation, Release 1.7.4

A Flask extension for handling Cross Origin Resource Sharing (CORS), making cross-origin AJAX possible.

Contents 1

Flask-Cors Documentation, Release 1.7.4

2 Contents

CHAPTER 1

Contact

Questions, comments or improvements? Please create an issue on Github, tweet at @wcdolphin or send me an email.

https://github.com/wcdolphin/flask-cors
https://twitter.com/wcdolphin

Flask-Cors Documentation, Release 1.7.4

4 Chapter 1. Contact

CHAPTER 2

Flask-CORS

A Flask extension for handling Cross Origin Resource Sharing (CORS), making cross-origin AJAX possible.

2.1 Installation

Install the extension with using pip, or easy_install.

$ pip install flask-cors

2.2 Usage

This extension enables CORS support either via a decorator, or a Flask extension. This extension enables CORS
support either via a decorator, or a Flask extension. There are three examples shown in the examples directory,
showing the major use cases.

2.2.1 Simple Usage

In the simplest case, initialize the Flask-Cors extension with default arguments in order to allow CORS on all routes.

app = Flask(__name__)
cors = CORS (app)

Qapp.route("/")
def helloWorld() :
return "Hello, cross-origin-world!"

Resource specific CORS

Alternatively, a list of resources and associated settings for CORS can be supplied, selectively enables CORS support
on a set of paths on your app.

Note: this resources parameter can also be set in your application’s config.

app = Flask(__name__)
cors = CORS (app, resources={r"/api/+": {"origins": "«"}})

Qapp.route ("/api/vl/users")

Flask-Cors Documentation, Release 1.7.4

def list_users():
return "user example"

Route specific CORS via decorator

This extension also exposes a simple decorator to decorate flask routes with. Simply add @cross_origin () below
a call to Flask’s @Qapp . route (. .) incanation to accept the default options and allow CORS on a given route.

Qapp.route ("/")
@Qcross_origin() # allow all origins all methods.
def helloWorld() :

return "Hello, cross-origin-world!"

2.2.2 Using JSON with CORS

When using JSON cross origin, browsers will issue a pre-flight OPTIONS request for POST requests. In order for
browsers to allow POST requests with a JSON content type, you must allow the Content-Type header. The simplest
way to do this is to simply set the CORS_HEADERS configuration value on your application: e.g.

app.config[’CORS_HEADERS’] = ’'Content-Type’

2.2.3 Full description of options

flask_cors.cross_origin (*args, **kwargs)
This function is the decorator which is used to wrap a Flask route with. In the simplest case, simply use the
default parameters to allow all origins in what is the most permissive configuration. If this method modifies
state or performs authentication which may be brute-forced, you should add some degree of protection, such as
Cross Site Forgery Request protection.

Parameters
* origins (list or string) — The origin, or list of origins to allow requests from.

* methods (/isf) — The method or list of methods which the allowed origins are allowed to
access.

* headers (list or string) — The header or list of header field names which can be used when
this resource is accessed by allowed origins.

* expose_headers — The header or list of headers which are are safe to expose to browsers.

* supports_credentials (bool) — Allows users to make authenticated requests. If true, injects
the Access-Control-Allow-Credentials header in responses. Note: According to the W3
spec, this option cannot be used in conjuction with a ‘*’ origin

* max_age (timedelta, integer, string or None) — The maximum time for which this CORS
request maybe cached. This value is set as the Access-Control-Max-Age header.

* send_wildcard (bool) — If True, and the origins parameter is *, a wildcard Access-Control-
Allow-Origin header is sent, rather than the request’s Origin header.

 always_send (bool) — If True, CORS headers are sent even if there is no Origin in the
request’s headers.

* automatic_options (bool) — If True, CORS headers will be returned for OPTIONS requests.
For use with cross domain POST requests which preflight OPTIONS requests, you will need
to specifically allow the Content-Type header.

6 Chapter 2. Flask-CORS

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool

Flask-Cors Documentation, Release 1.7.4

* vary_header (bool) — If True, the header Vary: Origin will be returned as per suggestion
by the W3 implementation guidelines. Setting this header when the Access-Control-Allow-
Origin is dynamically generated e.g. when there is more than one allowed origin, and any
Origin other than “*’ is returned, informing CDN’s and other caches that the CORS headers
are dynamic, and cannot be re-used. If False, the Vary header will never be injected or
altered.

2.2.4 More examples

2.2.5 A simple, and suggested example

This is the suggested approach to enabling CORS. The default configuration will work well for most use cases.

Flask—Cors example

This is a tiny Flask Application demonstrating Flask-Cors, making it simple
to add cross origin support to your flask app!

:copyright: (C) 2013 by Cory Dolphin.
:license: MIT/X11, see LICENSE for more details.
mmn
from flask import Flask, Jjsonify
try:
from flask.ext.cors import CORS # The typical way to import flask-cors
except ImportError:
Path hack allows examples to be run without installation.
import os
parentdir = os.path.dirname (os.path.dirname (os.path.abspath(__file_)))
os.sys.path.insert (0, parentdir)

from flask.ext.cors import CORS

app = Flask(__name_)

One of the simplest configurations. Exposes all resources matching /api/#* to
CORS and allows the Content-Type header, which is necessary to POST JSON

cross origin.

CORS (app, resources=r’/api/+’, headers='Content-Type’)

Qapp.route("/")
def helloWorld() :
Since the path 7/’ does not match the regular expression r’/api/*’,
this route does not have CORS headers set.
return '’’<hl>Hello CORS!</hl> Read about my spec at the
W3 Or, checkout my documentation
on Github"""'

Qapp.route ("/api/vl/users/")
def list_users():
rr7s
Since the path matches the regular expression r’/api/+’, this resource
automatically has CORS headers set. The expected result is as follows:

2.2. Usage 7

http://docs.python.org/library/functions.html#bool

Flask-Cors Documentation, Release 1.7.4

$ http get http://127.0.0.1:5000/api/vi/users/
HTTP/1.0 200 OK

Access—Control-Allow—Headers: Content-Type
Access—-Control—-Allow-Origin: #*

Content-Length: 21

Content-Type: application/json

Date: Sat, 09 Aug 2014 00:26:41 GMT

Server: Werkzeug/0.9.4 Python/2.7.8

"success": true

rrs

return jsonify (success=True)

Qapp.route (" /api/vl/users/create", methods=[’'POST’])
def create_user():
rr s
Since the path matches the regular expression r’/api/+’, this resource
automatically has CORS headers set. The expected result is as follows:

S http POST http://127.0.0.1:5000/api/v1/users/create
HTTP/1.0 200 OK

Access—Control—-Allow—Headers: Content-Type
Access—-Control-Allow-Origin: =

Content-Length: 21

Content-Type: application/json

Date: Sat, 09 Aug 2014 00:28:26 GMT

Server: Werkzeug/0.9.4 Python/2.7.8

"success": true

rrs

return jsonify (success=True)

if _ name_ == "__main_ ":
app.run (debug=True)

2.2.6 A more complicated example

If you require advanced configuration and more specific configuration of CORS support for your application, this
example provides a useful example of multiple regular expressions and options.

mmwn

Flask—Cors example

This is a tiny Flask Application demonstrating Flask-Cors, making it simple
to add cross origin support to your flask app!

:copyright: (C) 2013 by Cory Dolphin.
:license: MIT/X11, see LICENSE for more details.

8 Chapter 2. Flask-CORS

Flask-Cors Documentation, Release 1.7.4

mwn

from flask import Flask, Jjsonify
try:
The typical way to import flask-cors
from flask.ext.cors import CORS, cross_origin
except ImportError:
Path hack allows examples to be run without installation.
import os
parentdir = os.path.dirname (os.path.dirname (os.path.abspath(__file_)))
os.sys.path.insert (0, parentdir)

from flask.ext.cors import CORS, cross_origin

app = Flask(__name_)

Set CORS options on app configuration
app.config[’ CORS_HEADERS’] = "Content-Type"
app.config[’CORS_RESOURCES’] = {r"/api/+": {"origins": "«"}}

cors = CORS (app)

Equivalent to (but using both is not advised)
cors = CORS (app, resources={r"/api/+": {"origins": "«"}},
headers="Content-Type")

Qapp.route("/")
def helloWorld() :

rr7
Since the path '/’ does not match the regular expression r’/api/*’,
this route does not have CORS headers set.

rrs

return ’'’’'This view is not exposed over CORS.’'’

Qapp.route (" /api/vl/users/")
def list_users():

rrs

Since the path matches the regular expression r’/api/+’, this resource
automatically has CORS headers set. The expected result is as follows:

S http get http://127.0.0.1:5000/api/v1/users/
HTTP/1.0 200 OK

Access—Control—-Allow—Headers: Content-Type
Access-Control-Allow-Origin: *

Content-Length: 21

Content-Type: application/json

Date: Sat, 09 Aug 2014 00:26:41 GMT

Server: Werkzeug/0.9.4 Python/2.7.8

"success": true

rrs

return jsonify (success=True)

2.2. Usage 9

Flask-Cors Documentation, Release 1.7.4

Qapp.route (" /api/vl/users/create", methods=['POST’])

Qcross_origin (origins="http://foo.com")

def create_user():
This resource both matches the regular expression r’/api/*’, and 1is
also decorated with the cross_origin decorator. Since The decorator

actually modifies the view function, and will run before the response

is touched by the CORS object, the settings for CORS defined in the

decorator will be used e.g. the allowed origin is only ’http://foo.com’,

rather than the more permissive ’x’ default.
Thus, the expected headers are as follows:

HTTP/1.0 200 OK
Access—-Control—-Allow—-Headers: Content-Type
Access—Control-Allow-Origin: http://foo.com
Content-Length: 21

Content-Type: application/json

Date: Sat, 09 Aug 2014 00:32:02 GMT

Server: Werkzeug/0.9.4 Python/2.7.8

Vary: Origin

"success": true

return jsonify (success=True)

if _ name_ == "_ _main_ ":
app.run (debug=True)

2.2.7 A view-based example

Alternatively, using the decorator on a per view basis enables CORS for only a particular view.

Flask—-Cors example

This is a tiny Flask Application demonstrating Flask—-Cors, making it simple
to add cross origin support to your flask app!

:copyright: (C) 2013 by Cory Dolphin.

:license: MIT/X11, see LICENSE for more details.

from flask import Flask, jsonify

try:
The typical way to import flask-cors
from flask.ext.cors import cross_origin

except ImportError:
Path hack allows examples to be run without installation.
import os
parentdir = os.path.dirname (os.path.dirname (os.path.abspath(__file_)))
os.sys.path.insert (0, parentdir)

from flask.ext.cors import cross_origin

10 Chapter 2.

Flask-CORS

Flask-Cors Documentation, Release 1.7.4

app = Flask(__name_)

Qapp.route ("/", methods=['GET’'])
@Qcross_origin()
def helloWorld() :
e
This view has CORS enabled for all domains, representing the simplest
configuration of view-based decoration. The expected result 1is as
follows:

S http get http://127.0.0.1:5000/
HTTP/1.0 200 OK
Access-Control-Allow-Origin: #*
Content-Length: 184

Content-Type: text/html; charset=utf-8
Date: Sat, 09 Aug 2014 00:35:39 GMT
Server: Werkzeug/0.9.4 Python/2.7.8

<hl>Hello CORS!</hl> Read about my spec at the

W3 Or, checkout my
documentation on
Github

rrvs

return ’’’<hl>Hello CORS!</hl> Read about my spec at the
W3 Or, checkout my documentation
on Github"""'

Qapp.route (" /user/create", methods=[’GET’, ’'POST’])
@Qcross_origin (headers=[’Content-Type’])
def cross_origin_json_post () :
rr7s
This view has CORS enabled for all domains, and allows browsers
to send the Content-Type header, allowing cross domain AJAX POST
requests.

S http post http://127.0.0.1:5000/user/create
HTTP/1.0 200 OK

Access—Control-Allow—Headers: Content-Type
Access—-Control-Allow-Origin: =
Content-Length: 21

Content-Type: application/json

Date: Sat, 09 Aug 2014 00:38:47 GMT

Server: Werkzeug/0.9.4 Python/2.7.8

"success": true

rrs

return jsonify (success=True)

if _ name_ == "__main_ ":
app.run (debug=True)

2.2. Usage 11

	Contact
	Flask-CORS
	Installation
	Usage

