Python Fix Imports Documentation
Release 1.0

Gaetan Semet

April 02, 2016






Contents

Introduction

Rationale
2.1 Rulel
2.2 Rule2

Example
Usage

License







CHAPTER 1

Introduction

Python Fix Imports is a Python module that can automatically reorganize the import statements of your Python
script. Please read the “Rationale” section for more information.

This module originally from a script that has been written for the Buildbot project, in order to help developers ensuring
they properly organize their import statements in their Python files.




Python Fix Imports Documentation, Release 1.0

2 Chapter 1. Introduction



CHAPTER 2

Rationale

The beginning of each Python script is the part of the code that is likely to evolve the most over the lifetime of the file.
Imports statements gets added, removed, reorganized all over the time.

Thanks to distributed versioning systems such as Git, several persons can easily work on the same time on the same file.
And the management of the import statements is likely to cause conflict when each developer adds his modifications.

We really started having the need for an automatic reorganization script when we have set up an automatic merge of
several branches alltogether. Most of the time, the conflicts were found to be on the import lines.

Here are the rules this fiximports script enforces:

2.1 Rule 1

Each import statement only imports one method, class or module.

Yes:

from abc import dce
from abc import fgh

No:

from abc import dce, fgh

from abc import (dce,
fgh)

from abc import dce, \
fgh

fiximports automatically splits import statements that use a comma. \ and parenthesis are not supported.

Bonus: let’s say you want where and how an object “object_name” is imported. This rules ensures you will always
find the import occurences of the following search pattern: import object_name. No need to do regex, only
‘““import ‘“ + what you are looking for.

2.2 Rule 2

Import statements are organized in blocks, separated by an empty line. Each block is alphabetically sorted.

This removes any ambiguity in the placement of an import line in a given block. When two developers on two different
branches want to add the same import in the same file, the location of this line will be the same and so the merge if
any will be obvious.




Python Fix Imports Documentation, Release 1.0

Yes:

from abc import aaaa
from abc import bbbb
from abc import cccc

No:

from abc import bbbb
from abc import aaaa
from abc import cccc

Sorting only occurs on a given block, if for any reason an import statement needs to be placed after another one, just
add an empty line.

fiximports can sort all import statements at once (preserving the ‘group’ splitting).
In some project, I tend to enforce the ordering of the groups themself:

* first the standard library imports:

import json
import login
import os

e Standart libraries in the form from ... import:

from textwrap import dedent
from twisted.internet import defer

e Project modules with their complete name (always wuses from __ future__ import
absolute_import)

from myproject.the.module.name import ClassName
from myproject.the.other.module.name import TheOtherClassName

4 Chapter 2. Rationale




CHAPTER 3

Example

Let’s look at the following code:

import datetime
import collections

from
from
from

from
from
from
from
from
from
from
from
from
from

io import BytesIO, UnsupportedOperation
.hooks import default_hooks
.structures import CaselInsensitiveDict

.auth import HTTPBasicAuth

.cookies import cookiejar_from_dict, get_cookie_header

.packages.urllib3.fields import RequestField

.packages.urllib3.filepost import encode_multipart_formdata
.packages.urllib3.util import parse_url

.packages.urllib3.exceptions import DecodeError, ReadTimeoutError, ProtocolError,
.exceptions import HTTPError, MissingSchema, InvalidURL, ChunkedEncodingError, ContentDecodingkE:
.utils import guess_filename, get_auth_from_url, requote_uri, stream_decode_responsge_unicode, t«

.compat

.status__

import cookielib, urlunparse, urlsplit, urlencode, str, bytes, StringIO,
codes import codes

locationParsel

is_py2, chardet

This automatically becomes with this plugin:

import collections
import datetime

from
from
from
from

from
from
from
from
from
from
from
from
from
from
from
from
from

.hooks import default_hooks
.structures import CaselInsensitiveDict
io import BytesIO

io import UnsupportedOperation

.auth import HTTPBasicAuth

.compat
.compat
.compat
.compat
.compat
.compat
.compat
.compat
.compat
.compat
.compat
.compat

import StringIO
import basestring
import builtin_str
import bytes
import chardet
import cookielib
import is_py?2
import json
import str

import urlencode
import urlsplit
import urlunparse




Python Fix Imports Documentation, Release 1.0

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

import
import
import
import
import
import
import

.cookies import cookiejar_from_dict
.cookies import get_cookie_header

.exceptions
.exceptions
.exceptions
.exceptions
.exceptions
.exceptions
.exceptions
.packages.urllib3
.packages.urllib3
.packages.urllib3
.packages.urllib3
.packages.urllib3.
.packages.urllib3.
.packages.urllib3
.status_codes
.utils import
.utils import gues
.utils import gues
.utils import iter
.utils import pars
.utils import requ
.utils import stre
.utils import supe
.utils import to_k
.utils import to_n

ChunkedEncodingError
ConnectionError
ContentDecodingError
HTTPError

InvalidURL
MissingSchema
StreamConsumedError

.exceptions import DecodeError
.exceptions import LocationParseError
.exceptions import ProtocolError
.exceptions import ReadTimeoutError

fields import RequestField
filepost import encode_multipart_formdata

.util import parse_url
import codes
get_auth_from_url

s_filename
s_Jjson_utf

_slices

e_header_links

ote_uri
am_decode_response_unicode
r_len

ey_val_list
ative_string

Indeed, the beginning of the file is much more verbose, but merges will be easier (since when we switched to this
paradigm, we almost have not conflict on these lines).

Chapter 3. Example




CHAPTER 4

Usage

$ fiximports —--help
usage: fiximports [-h] FILENAME

Fix Python Import Statements

positional arguments:
FILENAME Path or glob of Python files to fix

optional arguments:
-h, —--help show this help message and exit




Python Fix Imports Documentation, Release 1.0

8 Chapter 4. Usage



CHAPTER 5

License

Copyright 2015 Semet Gaetan <gaetan @xeberon.net>

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.



mailto:gaetan@xeberon.net
http://www.apache.org/licenses/LICENSE-2.0

	Introduction
	Rationale
	Rule 1
	Rule 2

	Example
	Usage
	License

