

 Navigation

 	
 index

 	
 next |

 	fiware-rss develop documentation

Overview

RSS-RI is the reference implementation of the Revenue Settlement and Sharing System GE. RSS-RI is in charge of distributing the revenues originated by the usage of a given service among the involved stakeholders. In particular, it focuses on distributing part of the revenue generated by a service between the Store Provider and the Service Provider(s) responsible for the service. With the term “service” we refer to both final applications and backend application services (typically exposed through an API). Note that, in the case of composite services, more than one service provider may have to receive a share of the revenues.

This project is part of FIWARE [http://www.fiware.org].

Index

	Installation and Administration Guide

	The guide for RSS maintainers that explains how to install and configure it.

	User and Programmer Guide

	The guide for user and programmers where it is explained how to use RSS-RI and how to integrate the exposed API with third party applications.

Documentation

	Installation and Administration Guide
	Introduction

	System Requirements

	Software Installation

	Configuration

	Sanity check procedures

	Diagnosis Procedures

	User and Programmer Guide
	Introduction

	User Guide

	Programmer Guide

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fiware-rss develop documentation

Installation and Administration Guide

Introduction

This Installation and Administration Guide covers RSS-RI version 4.4.3. Any feedback on this document is highly welcomed, including bugs, typos or things you think should be included but aren’t. Please send it to the “Contact Person” email that appears in the Catalogue page for this GEi [http://catalogue.fiware.org/enablers/revenue-settlement-and-sharing-system-rss-ri].

System Requirements

Hardware Requirements

The following table contains the minimum resource requirements for running the RSS:

	CPU: 1-2 cores with at least 2.0 GHZ

	Physical RAM: 2GB

	Disk Space: 10GB The actual disk space depends on the amount of transactions strored in the database.

Operating System Support

The RSS has been tested in the following Operating Systems:

	Ubuntu 12.04, 14.04

	CentOS 7.0

Software Requirements

In order to have the RSS running, the following software is needed. However, these dependencies are not meant to be installed manually in this step, as they will be installed throughout the documentation:

	Java JDK 7

	Apache Tomcat 7

	MySQL >= 5.5

Software Installation

Getting the RSS Software

The packaged version of the RSS software can be downloaded from:

	The FIWARE catalgue [http://catalogue.fiware.org/enablers/revenue-settlement-and-sharing-system-rss-ri/downloads].

This package contains the war files of the RSS as well as the installation scripts used in this document.

Alternatively, it is possible to install the RSS from the sources published in GitHub. To clone the repository, the git package is needed:

Ubuntu/Debian
$ apt-get install git

CentOS
$ yum -y install git

To download the source code usig git, execute the following command:

$ git clone https://github.com/conwetlab/fiware-rss.git

Installing the RSS Using Scripts

In order to facilitate the installation of the RSS, the script install.sh has been provided. This script installs all needed dependencies, configures the RSS and deploys it.

Note

The script install.sh installs java and tomcat. If you have those systems already installed, you may want to install the RSS manually as explained in the next section.

To use the installation script execute the following command:

$./install.sh

The installation script, installs MySQL and creates the root user. During this process you will be asked to provide a password for this user:

	Ubuntu

[image: _images/rss_inst.png]

	CentOS

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MySQL
SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

In order to log into MySQL to secure it, we'll need the current
password for the root user. If you've just installed MySQL, and
you haven't set the root password yet, the password will be blank,
so you should just press enter here.

Enter current password for root (enter for none):

OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into the MySQL
root user without the proper authorisation.

Set root password? [Y/n] y
New password:
Re-enter new password:
Password updated successfully!
Reloading privilege tables..
 ... Success!

By default, a MySQL installation has an anonymous user, allowing anyone
to log into MySQL without having to have a user account created for
them. This is intended only for testing, and to make the installation
go a bit smoother. You should remove them before moving into a
production environment.

Remove anonymous users? [Y/n]

Normally, root should only be allowed to connect from 'localhost'. This
ensures that someone cannot guess at the root password from the network.

Disallow root login remotely? [Y/n]

... skipping.

By default, MySQL comes with a database named 'test' that anyone can
access. This is also intended only for testing, and should be removed
before moving into a production environment.

Remove test database and access to it? [Y/n]

Reloading the privilege tables will ensure that all changes made so far
will take effect immediately.

Reload privilege tables now? [Y/n]

Then, the installation script creates the RSS database. In order to be able to do that, you are asked to provide root MySQL credentials.

'RSS' database is going to be created, Please introduce your mysql user and password with administration permissions (i.e root user).
> user:
root
> Password:

The RSS uses the FIWARE Identity Manager [https://account.lab.fiware.org/] for authenticating users. In this regard, the installation script asks you to provide valid OAuth2 credentials for your application. Additionally, it is also required to include the URL where the service is going to run (only host and port). You can find more details on how register your RSS instance in the IdM in section OAuth2 Configuration

--
The RSS requires a FIWARE IdM to authenticate users. Please provide valid FIWARE credentials for this application
> FIWARE Client ID:
{FIWARE CLIENT ID}
> FIWARE Client Secret:
{FIWARE CLIENT SECRET}
> Include the URL (including port) where the RSS is going to run:
http://[HOST]:[PORT]

During this installation process, the properties files are created in /etc/default/rss using the provided information.

Manually Installing the RSS

Installing Basic Dependencies

The basic dependencies of the RSS can be easily installed using apt-get or yum, depending on the system.

	Ubuntu

apt-get install -y openjdk-7-jdk tomcat7 mysql-client mysql-server

	CentOS

yum install -y java-1.7.0-openjdk-devel tomcat
rpm -Uvh http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
yum -y install mysql-community-server
/usr/bin/systemctl enable mysqld

Compiling Source Code

If you have downloaded the source code of the RSS from its GIT repository, you will need to compile the sources. To do that it is needed to have maven installed.

	Ubuntu

apt-get install maven

	CentOS

yum install maven

Once maven is installed, you can compile the source code executing the following command:

mvn install

Note

In this case war files will be available at fiware-rss/target/fiware-rss.war and rss-expendLimit/el-server/target/expenditureLimit.war

Deploying the Software

The RSS reads its properties from database.properties and oauth.properties files, located at /etc/default/rss, so the first step for deploying the RSS is creating this directory.

mkdir /etc/default/rss

Once this directory has been created, the next step is copying the properties files (located in the properties folder) to this location.

cp properties/database.properties /etc/default/rss/database.properties
cp properties/oauth.properties /etc/default/rss/oauth.properties

The concrete values contained in the properties files are described in Configuration section.

Finally, the last step is deploying the war files in Tomcat.

	Ubuntu

cp fiware-rss.war /var/lib/tomcat7/fiware-rss.war
cp expenditureLimit.war /var/lib/tomcat7/expenditureLimit.war

	CentOS

cp fiware-rss.war /var/lib/tomcat/fiware-rss.war
cp expenditureLimit.war /var/lib/tomcat/expenditureLimit.war

Configuration

This section explains how to configure the RSS. If you have used the provided script, you can skip this step as your properties files are already created. However, it is highly recomended to read this section in order to understand the existing preferences.

Database Configuration

Database connection in configured in /etc/default/rss/database.properties, which has the following structure:

Filter usage
database.url=jdbc:mysql://localhost:3306/RSS
database.username=root
database.password=root
database.driverClassName=com.mysql.jdbc.Driver

This file contains the following properties:

	database.url: URL where the MySQL database is located. it includes the host, the port, and the database name.

	database.username: User name used to access the database.

	database.password: Password of the user used to access the database.

	database.dirverClassName: Name of the driver class used to connect to the database

OAuth2 Configuration

TThe RSS uses the FIWARE Identity Manager [https://account.lab.fiware.org/]. In this regard, it is needed to register the application in this system in order to retrieve valid credentials. For registering the application is required to provide the following information:

	A name.

	A description.

	The URL of the RSS. Must be something like http://[HOST]:[PORT]/fiware-rss/

	The callback URL of the RSS. Must be something like http://[HOST]:[PORT]/fiware-rss/callback?client_name=FIWAREClient

OAuth2 information is configured in /etc/default/rss/oauth.properties, which has the following structure:

############## IDM configuration ################
config.baseUrl=https://account.lab.fiware.org
config.logoutPath=/auth/logout
config.client_id=
config.client_secret=
config.callbackURL=http://localhost:8080/fiware-rss/callback
config.callbackPath=/callback
config.authorizeUrl=/oauth2/authorize
config.accessTokenUrl=/oauth2/token
config.userInfoUrl=/user?access_token=
config.grantedRole=Provider

This file contains the following properties:

	config.baseUrl: URL of the FIWARE Identity Manager used to authenticate users.

	config.logoutPath: URL path used for logging out users from the RSS.

	config.client_id: ID of the application in the identity manager.

	config.client_secret: Secret of the application in the identity manager.

	config.callbackURL: URL of the RSS used to receive authorization callbacks.

	config.callbackPath: URL path of the RSS used to receive authorization callbacks.

	config.authorizeUrl: URL path of the identity manager used for making authorization requests.

	config.accessTokenUrl: URL path of the identity manager used for making access token requests.

	config.userInfoUrl: URL path of the identity manager used for retrieving user information.

	config.grantedRole: Role defined in the application in the identity manager for identifying admins of the RSS.

Sanity check procedures

The Sanity Check Procedures are those activities that a System Administrator has to perform to verify that an installation is ready to be tested.
Therefore there is a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before proceeding to unit tests, integration tests and user validation.

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show here a quick testing to check that everything is up and running.
The following process can be performed by a system administration in order to verify the installation.

	Access the URL of the RSS (http://HOST:PORT/fiware-rss). You should be redirected to the IdM in order to login.

[image: _images/rss_sanity_1.png]

	Register a new Store, providing the admin email and a display name.

[image: _images/rss_sanity_2.png]

	Register a new provider, including an id and a display name, and selecting the previously registered store.

[image: _images/rss_sanity_3.png]

	Verify that the provider has been created by clicking on View Providers in database.

[image: _images/rss_sanity_4.png]
[image: _images/rss_sanity_5.png]

	Go back to the home page and click Create RS model.

[image: _images/rss_sanity_6.png]

	Include a percentage value for the store and for the provider (The total must be equal to 100). Provide a product class for identifying the model and click on Create.

[image: _images/rss_sanity_7.png]

	Go back to the home page, and verify that the model has been created clicking on View RS models in database.

[image: _images/rss_sanity_8.png]
[image: _images/rss_sanity_9.png]

List of Running Processes

You can execute the command ps -ax | grep 'tomcat\|mysql' to check that the Tomcat web server and the MySQL database. It should show a message text similar to the following:

23397 ? Ssl 0:00 /usr/sbin/mysqld
24459 ? Sl 1:15 /usr/lib/jvm/java-7-openjdk-amd64/bin/java -Djava.util.logging.config.file=/var/lib/tomcat7/conf/logging.properties -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Djava.awt.headless=true -Xmx128m -XX:+UseConcMarkSweepGC -Djava.endorsed.dirs=/usr/share/tomcat7/endorsed -classpath /usr/share/tomcat7/bin/bootstrap.jar:/usr/share/tomcat7/bin/tomcat-juli.jar -Dcatalina.base=/var/lib/tomcat7 -Dcatalina.home=/usr/share/tomcat7 -Djava.io.tmpdir=/tmp/tomcat7-tomcat7-tmp org.apache.catalina.startup.Bootstrap start
24921 pts/0 S+ 0:00 grep --color=auto tomcat\|mysql

Network interfaces Up & Open

To check whether the ports in use are listening, execute the command netstat -ntpl. The expected results must be somehow similar to the following:

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN -
tcp6 0 0 :::22 :::* LISTEN -
tcp6 0 0 127.0.0.1:8005 :::* LISTEN -
tcp6 0 0 :::8080 :::* LISTEN -

Databases

In order to check that MySQL is running and that the RSS database has been set up, MySQL client can be used.

	Open MySQL Client and enter RSS database:

$ mysql -u root -proot RSS
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 143
Server version: 5.5.41-0ubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

	Check that tables has been created:

mysql> show tables;
+-----------------------------+
| Tables_in_RSS |
+-----------------------------+
| bm_country |
| bm_currency |
| bm_customer_type |
| bm_language |
| bm_methods_of_payment |
| bm_ob |
| bm_ob_country |
| bm_ob_mop |
| bm_paymentbroker |
| bm_pb_mop |
| bm_price_point |
| bm_product |
| bm_product_vs_ob |
| bm_servdeploy_mop |
| bm_service |
| bm_service_deployment |
| bm_service_product_type |
| dbe_aggregator |
| dbe_aggregator_appprovider |
| dbe_appprovider |
| dbe_appprovider_application |
| dbe_expend_control |
| dbe_expend_limit |
| dbe_system_properties |
| dbe_transaction |
| set_revenue_share_conf |
| share_conf_provider |
+-----------------------------+
27 rows in set (0.00 sec)

Note

This Test is asumming that you are using the user root with password root and a database called RSS.

Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will perform to locate the source of an error in the Application. It is to be considered a first line of support diagnosis; once identified, it can be passed onto a higher level for specific analysis. This however, is out of the scope of this section.

The first step that can be follow in order to locate a problem is running the tests of the software:

$ mvn test -fae

Apart from the tests specified in the standard sections that follow, the logs can provide relevant diagnosis information:

	The logs of the RSS and RSModels API are stored in {Apache Tomcat Installation}/logs/fiware-rss/main.logs

	The logs of the Balance Accumulate and Limit Management API are stored in {Apache Tomcat Installation}/logs/expendLimit/expendLimit.log

Resource availability

The resource load of the RSS strongly depends on the number of concurrent requests received as well as on the free main memory and disk space. In this regard, the application will run correctly if the system adheres to the minimal requirements.

Resource consumption

There are two main processes consuming resources:

	MySQL Server

	2 Apache Tomcat Server

Resource consumption strongly depends on the load, especially on the number of concurrent transactions and in the number of concurrent requests by administrators. So, the expected resource consumption for these processes is quite low.

I/O flows

The only expected I/O flow is of type HTTP or HTTPS, on ports defined in Apache Tomcat configuration files, inbound and outbound. Requests interactivity should be low.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	fiware-rss develop documentation

User and Programmer Guide

Introduction

This page contains the User and Programmer guide of the reference implementation of the Revenue Settlement and Sharing Sytem GE.

User Guide

The RSS is a software which provides pure backend functionality to other applications (e.g. Generic Enablers or end user facing applications). However, a web interface is offered in order to allow RSS and store administrators interact with the back-end functionality. This section covers the functionality of the administration interface.

The administration interface only can be accesed by those users that have been regsitered as administrators of the RSS in the FIWARE Identity Manager (Using roles). Aditionally, administrators of the stores already registered can also access this interface. In this case, they will be only allowed to view and use it limited to the scope of the assets that belongs to their store.

Register Store

The administration interface allows to register new stores, which are charging information sources. To do that, it is required to include the email of the user of the FIWARE identity manager who admins the concrete store instance, and a display name for the store.

Once a Store is registered, it is possible to send charging information to the RSS in order to perform the revenue sharing of its providers.

[image: _images/rss_sanity_2.png]

Note

Store administrators cannot perform this action

Register Provider

Additionally, it is possible to use the administration interface to register providers of a given store. To do that, it is necessary to provide an id, a display name, and select a store.

[image: _images/rss_sanity_3.png]

Note

Store administrators only can register providers of the store they are owning

View Providers

It is possible to view the providers already registered in the RSS using the administration interface. To view existing providers click on View Providers in database.

[image: _images/rss_sanity_4.png]
[image: _images/view_prov.png]

Note

Store administrators only can view providers of the store they are owning

Create Revenue Sharing Model

Revenue Sharing Models in the RSS specify how the revenues generated by a set of offerings must be distributed. In this regard, the administration interface allows to create revenue sharing models by clicking on Create RS Model.

[image: _images/rss_sanity_6.png]
The first step for creating a RS model is selecting the Store where the charging information is being generated, and specify the percentage of the revenue that belongs to their owners (Store Value). Then, it is necessary to specify the provider, who owns the offering or group of offerings whose revenues are going to be distrubuted using the current model, and provide the percentage of the revenue that belongs to her (Provider Value).

Next, it is required to fill the Product Class. This value is used as the identifier of the RS model and identifies an offering or group of offerings.

[image: _images/create_model_1.png]
There are some offerings, that are composed of services belonging to different providers. To deal with that, it is possible to specify additional stakeholders to the revenue sharing model including their percentage of the revenues.

[image: _images/create_model_2.png]
Finally, the model is created by clicking on Create Model

[image: _images/create_model_3.png]

Note

Store administrators only can create RS models for the providers of the store they are owning

View Revenue Sharing Models

The administration interface allows to view existing RS models by clicking on View RS models in database.

[image: _images/rss_sanity_8.png]
[image: _images/view_models.png]

Note

Store administrators only can view RS models of the store they are owning

View Transactions

As stated, the RSS provides pure backend functionality. In this respect, the different transactions with charging information generated in the stores are fed to the RSS via API. Nevertheless, the administration interface allows to view the existing (not aggregated) transactions. To do that, click on View transactions in database.

[image: _images/view_trans_1.png]
[image: _images/view_trans_2.png]

Launch Settlement

Transactions stored in the RSS contain charging information that is used to calculate the revenue sharing using the corresponding RS model. In this regard, the administration interface allows to launch the process that aggregates charging info and calculates the revenue sharing (The Settlement process).

The interface allows to launch the settlement for all the pending transactions, for the all the pending transactions generated in a store, or for all the pending transactions belonging to a concrete provider.

This can be done in the settlement section by selecting the store, the provider, and clicking Launch

[image: _images/launch_sett.png]

Note

Store administrators only can launch the process for their store or its providers.

View Revenue Sharing Reports

The settlement process generates a set of reports that specify how revenues must be distributed. This reports can be viewed in the admin interface by clicking on View reports.

[image: _images/view_rep_1.png]
[image: _images/view_rep_2.png]

Programmer Guide

The RSS offers its functionality as a REST API that can be used by developers to integrate revenue sharing functionality with their own solutions. This section covers the main aspects of the RSS API and the actions that can be performed with it.

This section is not a detailed reference of the RSS API. You can find this documentation in:

	Apiary [http://docs.fiwarerss.apiary.io]

	GitHub pages [http://conwetlab.github.io/fiware-rss/]

It is important to remark that the RSS is integrated with the FIWARE Identity Manager for authenticating and authorizing users. In this regard, all the requests made to the RSS API must include an Authorization header containing a valid OAuth2 token.

Stores and Providers Management

The first step for a developer to integrate the RSS APIs is integrating the aggregator (Store admin) and provider APIs. These APIs are available at:

	Aggregator: /fiware-rss/rss/aggregators

	Provider: /fiware-rss/rss/providers

Both resources support POST and GET operations for creating an retrieving entities using JSON.

Following you can find the JSON serialization of an aggregator.

{
 "aggregatorName": "WStore",
 "aggregatorId": "fdelavega@conwet.com"
}

The aggregator model contains the following fields:

	aggregatorName - Display name of the given aggregator

	aggragtorId - Email used to identify the user that is authorized to send changing information (typically an admin of a Store instance)

Following you can find the JSON serialization of a provider.

{
 "aggregatorId": "fdelavega@conwet.com",
 "providerId": "conwet",
 "providerName": "CoNWeT"
}

The provider model contain the following fields:

	aggregatorId - Aggregator email that identifies the charging information source (Store instance)

	providerId - Id of the given provider. Note that this id only needs to be unique in the context of an aggregator, so the same providerId can be used for different providers if the aggregator is different

	providerName - Display name of the given provider

Revenue Sharing Models Management

To be able to calculate the revenue sharing, it is required to have revenue sharing models. RS models are managed in the RSS API using the resource:

	/fiware-rss/rss/models

These models can be created using a POST request, and retrieved with a GET request with JSON content type. Following you can find the JSON serialization of a revenue sharing model.

{
 "ownerProviderId": "fdelavega",
 "ownerValue": 60,
 "productClass": "orionServices",
 "algorithmType": "FIXED_PERCENTAGE",
 "aggregatorId": "fdelavega@conwet.com",
 "aggregatorValue": 20,
 "stakeholders": [
 {
 "stakeholderId": "aarranz",
 "modelValue": 20
 }
]
}

These models manage the following fields:

	ownerProviderId - Provider Id of the owner of the model. This provider is the owner of the application and services whose revenues will be distributed using the Revenue Sharing Model

	ownerValue - Value of the owner provider in the Revenue Sharing Model. The semantics of this field depends on the algorithm specified, for example if the algorithm is a fixed precentage, this field will contain the percetage of the revenue that belongs to the owner provider.

	productClass - Id of the Revenue Sharing Model. This field represents a group of services or applications whose revenues are distributed in the same way

	algorithmType - ID of the algorithm that is used in this model

	aggregatorId - Id of the aggregator that represents the Store instance where the applications and services are offered, and thus, must receive part of the revenues

	aggregatorValue - Value of the aggregator in the Revenue Sharing Model

	
	stakeholders - List of providers that are stakeholders of the applications and services included in a given product class, and thus, must receive part of the revenues. For each stakeholder the following fields are included:

	
	stakeholderId - provider Id of the Stakeholder

	modelValue - Value of the stakeholder in the Revenue Sharing Model

Transactions Management

Once the RSS has RS models, it is needed to receive charging information. The different transactions that contain the charging information are managed in the RSS using CDR (Charging Detailed Records) documents. CDRs are managed in the RSS using the resource:

	/fiware-rss/rss/cdrs

These CDRs are created using a POST request and retrieved using a GET request with JSON content type. Following, you can find the JSON serialization of a CDR.

{
 "cdrSource": "fdelavega@conwet.com",
 "productClass": "orionServices",
 "correlationNumber": 112,
 "timestamp": "2015-07-15T19:00:01.000Z",
 "application": "OrionStarterKit",
 "transactionType": "C",
 "event": "use",
 "referenceCode": "555b079d8e05ac213ff15827",
 "description": "Usage of OrionStarterKit Offering",
 "chargedAmount": 10,
 "chargedTaxAmount": 3,
 "currency": "EUR",
 "customerId": "amagan",
 "appProvider": "fdelavega"
}

CDRs contain the following fields:

	cdrSource - Id of the aggregator that represent the Store instance that is generating the charging information

	productClass - Product Class used to identify the revenue sharing model that will be used to distribute the revenues generated in the current transaction

	correlationNumber - Correlation number of the transaction

	timestamp - Timestamp of the transaction

	application - Textual field with the id of the application or service that generates the transaction

	transactionType - Type of transaction. This field can contain “C” for charges and “R” for refunds

	event - Textual field that describes the event that generated the transaction (e.g pay-per-use)

	referenceCode - Reference code that identifies the purchase in the Store instance that generates the transaction

	description - Textual description of the transaction

	chargedAmount - Part of the total charged amount to be distributed. The total amount charged to the customer includes also the field chargedTaxAmount

	chargedTaxAmount - Part of the total charged amount that are taxes. The total amount charged to the customer includes also the field chargedAmount

	currency - Currency of the transaction

	customerId - Id of the customer that acquires the given service or application

	appProvider - provider Id of the owner of the charged applications or services

Settlement Management

If some transactions have been received and there are RS models able to manage them, then, it is possible to launch the settlement process. The settlement process is launched using the resource:

	/fiware-rss/rss/settlement

To launch the process is needed to make a GET request using query strings to filter the scope:

	None: if no query string is provided the settlement process is launched for all the pending transactions.

	aggregatorId: Id of a given aggregator. If this query string is provided the settlement process is launched only for those pending transactions generated in the given store.

	providerId: Id of a given provider. If this query string is provided the settlement process is launched only for those pending transactions generated in the given store, and belonging to the given provider.

	productClass: Product class of the RS models. If this query string is provided the settlement process is launched only for those pending transactions generated in the given store, belonging to the given provider, and with the given product class.

The result of the settlement process are a couple of reports that specify the concrete amount that has to paid to the concrete stakeholders involved. The reports can be accesed using the resource:

	/fiware-rss/rss/settlement/reports

RS Reports can be retrieved using a GET request. Following you can find a report serialized in JSON format.

{
 "ownerProviderId": "fdelavega",
 "ownerValue": 4578,
 "productClass": "orionServices",
 "algorithmType": "FIXED_PERCENTAGE",
 "aggregatorId": "fdelavega@conwet.com",
 "aggregatorValue": 3000,
 "currency": EUR,
 "timestamp": "2015-07-15T19:00:01",
 "stakeholders": [
 {
 "stakeholderId": "aarranz",
 "modelValue": 2500
 }
]
}

These reports contain the following fields:

	ownerProviderId - Provider Id of the owner of the model. This provider is the owner of the application and services whose revenues has been aggregated.

	ownerValue - Amount that has to be paid to the provider.

	productClass - Id of the Revenue Sharing Model that have been applied. This field represents a group of services or applications whose revenues are distributed in the same way

	algorithmType - ID of the algorithm that have been used.

	aggregatorId - Id of the aggregator that represents the Store instance where the applications and services are offered, and thus, must receive part of the revenues

	aggregatorValue - Amount that has to be paid to the store owners.

	currency: Currency of the different amounts.

	timestamp: Timestamp of the reports.

	
	stakeholders - List of providers that are stakeholders of the applications and services included in a given product class, and thus, must receive part of the revenues. For each stakeholder the following fields are included:

	
	stakeholderId - provider Id of the Stakeholder

	modelValue - Amount that has to be paid to the concrete stakeholder

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	fiware-rss develop documentation

Index

 Copyright .
 Created using Sphinx 1.3.5.

 _images/view_rep_1.png
RSS API
Settlement

Launch Settlement: \siore v | conwer || Launch

Vieweports

View transactions in database

Revenue Sharing models
View RS models in database

Create RS Model

Providers Management

Register Provider: Provider Id Provider Name Store \sore v | create

Register Store: Store Admin email Store Name Create

View Providers in database

View Reports

Log out

_images/rss_sanity_5.png
Store Provider ID Provider Name

fdelavega@conwet.com conwet CoNweT

_images/create_model_2.png
Create Revenue Sharing model

Algorithm Type

Store

©Owner provider

Product Class

Stakeholders

FIXED_PERCENTAGE

Wstore

15

CoNweT

60
Services Class

Francisco de la Vega
15

+ Add thqystakeholder

2 Aftor Magan

Create model

10

_images/rss_sanity_9.png
Algorithm Product Class Store Store Value Provider Provider Value
FIXED_PERCENTAGE Sanity Class fdelavega@conwet.com 50 conwet 50

_static/comment.png

_images/view_trans_1.png
RSS API
Settlement

Launch Settlement: | __ .
View reports

View transacti&ns in database

Revenue Sharing models
View RS models in database

Create RS Model

Providers Management

Register Provider: Provider Id
Register Store: Store Admin email
View Providers in database

View Reports

Log out

Launch

Provider Name

Store Name

Store | \ystore

Create

Create

_static/plus.png

_images/rss_sanity_1.png
RSS

Testing instance of the Revenue sharing system

Log In

Email

Password

O remember me

Signup | Forgot password | Didn't receive
confirmation instructions?

_static/up-pressed.png

_images/rss_sanity_3.png
RSS API
Settlement

Launch Settlement: v v

Launch

View reports

View transactions in database

Revenue Sharing models
View RS models in database

Create RS Model

Providers Management

Register Provider: Provider Id conwet Provider Name [ConweT Store

Wstore v || Creyte

Create

Register Store: Store Admin email Store Name
View Providers in database

View Reports
Log out

_static/comment-bright.png

_static/file.png

_images/rss_sanity_4.png
RSS API
Settlement

Launch Settlement: v v

Launch

View reports

View transactions in database

Revenue Sharing models
View RS models in database

Create RS Model

Providers Management

Register Provider: Provider Id conwet Provider Name conweT Store \sore v | create

Register Store: Store Admin email Store Name Create

View Proviqsrs in database

View Reports
Log out

_static/minus.png

_images/view_prov.png
Store
fdelavega@conwet.com
fdelavega@conwet.com
fdelavega@conwet.com

fdelavega@conwet.com

Provider ID
amagan
conwet
fdelavega

upm

Provider Name
Aitor Magan
CoNWeT

Francisco de la Vega

UPM

_images/rss_sanity_8.png
RSS API
Settlement

Launch Settlement: | __ .
View reports

View transactions in database

Revenue Sharing models
View RS [godels in database
Create RS Model

Providers Management

Register Provider: Provider Id
Register Store: Store Admin email
View Providers in database

View Reports

Log out

Launch

Provider Name

Store Name

Store | \ystore

Create

Create

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		fiware-rss develop documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.5.

_images/rss_inst.png
Package configuration

while not mandatory, it is highly recommended that you set a password for the MysQL administrative "root" user
If this field is left blank, the password will not be changed.

New password for the MysQL "root” user

_images/rss_sanity_7.png
Create Revenue Sharing model

Algorithm Type

Store

©Owner provider

Product Class

Stakeholders

FIXED_PERCENTAGE

Wstore

50

CoNweT

50

Sanity Class

Stakeholder value

+ Add the Stakeholder

Crealﬁ}mndel

_images/create_model_1.png
Create Revenue Sharing model

Algorithm Type

Store

©Owner provider

Product Class

Stakeholders

FIXED_PERCENTAGE

Wstore

15

CoNweT

60

Services Class

Aitor Magan

Stakeholder value

+ Add the Stakeholder

Create model

_images/rss_sanity_6.png
RSS API
Settlement

Launch Settlement: v

View reports

View transactions in database

Revenue Sharing models
View RS models in database

Create §§ Model

Providers Management

Register Provider: Provider Id
Register Store: Store Admin email
View Providers in database

View Reports
Log out

Launch

Provider Name

Store Name

Store | \ystore

Create

Create

_images/view_models.png
Algorithm
FIXED_PERCENTAGE

Algorithm
FIXED_PERCENTAGE
Stakeholder
fdelavega

amagan

Product Class
Sanity Class

Product Class

Services Class

Store

fdelavega@conwet.com

Store

fdelavega@conwet.com

Store Value Provider
50 conwet
Store Value Provider
15 conwet

Stakeholder Value
15
10

Provider Value

50

Provider Value

60

_images/view_rep_2.png
Algorithm Product Store Store
Class Value

FIXED_PERCENTAGE Services Class fdelavega@conwet.com 90

Stakeholder
amagan

fdelavega

Provider Provider
Value

conwet 360

Stakeholder Value
60
90

Currency Timestamp

EUR

2015-10-
01T14:00:26.000Z

_images/view_trans_2.png
Product
Class

Services
Class

Services
Class

Services
Class

Services
Class

Services
Class

Services
Class

Services
Class

Services
Class

Provider

conwet

conwet

conwet

conwet

conwet

conwet

conwet

conwet

aarranz

aarranz

aarranz

aarranz

aarranz

aarranz

aarranz

aarranz

T
Type

Request Time

2015-10-
09T19:00:01.000Z

2015-10-
09T19:00:01.000Z

2015-10-
09T19:

:01.000Z

2015-10-
09T19:00:01.000Z

2015-10-
09T19:00:01.000Z

2015-10-
09T19:

:01.000Z

2015-10-
09T19:00:01.000Z

2015-10-
09T19:00:01.000Z

Ref Code

2015/10/01001

2015/10/01001

2015/10/01001

2015/10/01001

2015/10/01001

2015/10/01001

2015/10/01001

2015/10/01001

Amount Tax
Amount
100 10
100 10
100 10
100 10
100 10
60 10
80 10
40 10

Currency Descri

EUR

EUR

EUR

EUR

EUR

EUR

EUR

EUR

Usage
charge

Usage
charge

Usage
charge

Usage
charge

Usage
charge

Usage
charge

Usage
charge

Usage
charge

_images/launch_sett.png
RSS API
Settlement

Launch Settlement: \siore v | conwer v [Laygen

View reports

View transactions in database

Revenue Sharing models
View RS models in database

Create RS Model

Providers Management

Register Provider: Provider Id Provider Name Store \sore v | create

Register Store: Store Admin email Store Name Create

View Providers in database

View Reports
Log out

_images/rss_sanity_2.png
RSS API
Settlement

Launch Settlement: v v

Launch

View reports

View transactions in database

Revenue Sharing models
View RS models in database

Create RS Model

Providers Management

Register Provider: Provider Id

Register Store: Store Admin email fdelavega@conwet.com

View Providers in database

View Reports
Log out

Provider Name

Store Name wstore

Store

cregte

Create

_images/create_model_3.png
Create Revenue Sharing model

Algorithm Type

Store

©Owner provider

Product Class

Stakeholders

FIXED_PERCENTAGE

Wstore

15

CoNweT

60
Services Class

uPM
Stakeholder value

+ Add the Stakeholder

2 Aftor Magan

2 Francisco de la Vega

S model

10

15

