

 Navigation

 	
 index

 	
 next |

 	FIWARE Monitoring

Welcome to FIWARE Monitoring

Introduction

FIWARE Monitoring GEri is the key component to allow incorporating monitoring
and metering mechanisms in order be able to constantly check the performance
of the system, but the architecture should be easily extended to collect data
for other required needs. Monitoring involves gathering operational data in a
running system. Collected information can be used for several purposes:

	Cloud users to track the performance of their own instances.

	SLA management, in order to check adherence to agreement terms.

	Optimization of virtual machines.

The monitoring system is used by different Cloud GEs in order to track the
status of the resources. They use gathered data to take decisions about
elasticity or for SLA management. Whenever a new resource is deployed in the
cloud, the proper monitoring probe is set up and configured to start providing
monitoring data.

FIWARE Monitoring source code can be found here [https://github.com/telefonicaid/fiware-monitoring.git].

Documentation

GitHub’s README [https://github.com/telefonicaid/fiware-monitoring/blob/master/README.rst] provides a good documentation summary, and the following
cover more advanced topics:

	User & Programmers Guide

	Installation & Administration Guide

See also

	Monitoring Federation OpenStack Infrastructure [http://www.slideshare.net/flopezaguilar/monitoring-federation-open-stack-infrastructure] presentation summarises
the development of this component as a joint task between FIWARE and XIFI
projects.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE Monitoring

User & Programmers Guide

Introduction

Welcome the User and Programmers Guide for the Monitoring Generic Enabler.
This GE is built up from different distributed components, as depicted in the
following figure:

[image: Monitoring GE architecture overview.]

Background and Detail

This User and Programmers Guide relates to the Scalability Manager GE which is
part of the Cloud Hosting Chapter [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Cloud_Hosting_Architecture]. Please find more information about this
Generic Enabler in the following Open Specification [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Cloud.Monitoring].

User Guide

This GE does not provide an interactive user interface, hence there is no
User Guide. The following section elaborates on programmatic usage.

Programmer Guide

According to the architecture aforementioned, there are several APIs involved
in the monitoring process:

	NGSI Adapter API (HTTP)

	NGSI Adapter API (UDP)

	Context Broker API

	Monitoring (Query Manager) API

NGSI Adapter API (HTTP)

Probe raw data should be sent as body of a POST request to the adapter,
identifying the source entity being monitored in the query parameters.
For example, given the following scenario:

	Monitored host:	178.23.5.23

	Monitoring tool:

		Nagios

	Monitoring probe name:

		check_load

	NGSI Adapter endpoint:

		http://adapterhost:1337

then requests would look like:

HTTP POST http://adapterhost:1337/check_load?id=178.23.5.23&type=host
Content-Type: text/plain
OK - load average: 0.36, 0.25, 0.24|load1=0.360;1.000;1.000;0;
load5=0.250;5.000;5.000;0; load15=0.240;15.000;15.000;0;

Please take into account that NGSI standard identify entities (in this case,
the resources being monitored) using a pair <entityId,entityType>. This
identification of the monitored resource has to be provided as the query
parameters id and type, respectively. The probe name included in
the URL lets NGSI Adapter know the originating monitoring probe, therefore
selecting the proper parser for it. This API is fully described in Apiary [https://jsapi.apiary.io/apis/fiwaremonitoring/reference.html].

Monitoring framework is expected to schedule the execution of probes and send
the raw data been gathered to the NGSI Adapter. Depending on the tool that has
been chosen, this would require the development of a custom component (a kind
of monitoring collector) to automatically forward such data to the
adaptation layer.

NGSI Adapter API (UDP)

In case UDP endpoints are defined (specifying the target parser to be loaded),
probe raw data should be sent as UDP request to the adapter. Such message is
expected to include both the id and the type of the NGSI Entity whose data is
about to be parsed.

NGSI Adapter parsers

NGSI Adapter processes requests asynchronously, trying to load a valid parser
named after the originating probe, located at any of the directories specified
(see Installation and Administration Guide). If probe is unknown (parser not
found), HTTP response status will be 404; otherwise, response status will
be 200, parser will be dynamically loaded, and then its parseRequest()
and getContextAttrs() methods will be called. The attribute list returned
by the latter will be used to invoke Context Broker.

Custom parsers for new probes may be easily added to NGSI Adapter, just
extending a base abstract object and implementing the aforementioned methods.
For example, suppose we want to support a new “myProbe” whose data is a
comma-separated list of values of two attributes myAttr0 and myAttr1:

[image: Probe parser class hierarchy.]

/**
 * module "myProbe" at any directory included in ADAPTER_PARSERS_PATH
 */

// @augments base parser (must redefine parseRequest and getContextAttrs)
var myParser = Object.create(null);

// @param Domain object including context, timestamp, id, type & body
myParser.parseRequest = function (reqDomain) {
 var reqDataContent = this.doSomeParsing(reqDomain.body);
 return { data: reqDataContent };
};

// @param EntityData object including data attribute
myParser.getContextAttrs = function (entityData) {
 var items = this.doMoreParsing(entityData.data);
 return { myAttr0: items[0], myAttr1: items[1] };
};

exports.parser = myParser;

Custom parsers for UDP request must also set the attributes entityId and
entityType of the input object reqDomain on return, given that such
information is part of the UDP message itself being parsed:

// @param Domain object
myParser.parseRequest = function (reqDomain) {
 var identification = this.doSomeParsing(reqDomain.body),
 reqDataContent = this.doMoreParsing(reqDomain.body);
 reqDomain.entityId = identification['id'];
 reqDomain.entityType = identification['type'];
 return { data: reqDataContent };
};

Context Broker API

Please refer to Context Broker documentation [http://fiware-orion.readthedocs.org]. This will give us access
to the last updates of monitoring data available, but not to historical data.

Monitoring API

Retrieval of historical data stored at a distributed filesystem (e.g. Hadoop)
is handled by the Query Manager component, whose API is described in this
preliminary specification [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Monitoring_Open_RESTful_API_Specification_(PRELIMINARY)].

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	FIWARE Monitoring

Installation & Administration Guide

Introduction

This guide defines the procedure to install the different components that build
up the Monitoring GE, including its requirements and possible troubleshooting.

For general information, please refer to GitHub’s README [https://github.com/telefonicaid/fiware-monitoring/blob/master/README.rst].

Installation

Monitoring infrastructure comprises several elements distributed across
different hosts, as depicted in the following figure:

[image: Monitoring components.]

	Probes gather raw monitoring data, which a Collector (for Nagios,
this is NGSI Event Broker) forwards to NGSI Adapter.

	NGSI Adapter, responsible for translating probe raw data into a
common format (NGSI).

	Parsers at NGSI Adapter, specific for the different probes that
generate monitoring data.

	Context Broker, where monitoring data (transformed into NGSI context
updates) will be published.

	Hadoop, for storing historical context data.

	Connector between Context Broker and data storage (for example, this
could be Cygnus).

Installation of probes

Monitoring GE is agnostic to the framework used to gather monitoring data. It
just assumes there are several probes collecting such data, which somehow will
be forwarded to the adaptation layer (NGSI Adapter).

It is up to the infrastructure owner which tool (like Nagios [http://www.nagios.org/], Zabbix [http://www.zabbix.com/],
openNMS [http://www.opennms.org/], perfSONAR [http://www.perfsonar.net/], etc.) is installed for this purpose.

Installation of collector

Probes must “publish” their data to NGSI Adapter. Depending on the exact
monitoring tool installed, a kind of collector has to be deployed in
order to send data to the adapter:

	NGSI Event Broker is an example specific for Nagios, implemented as
a loadable module. Description and installation details can be found here [https://github.com/telefonicaid/fiware-monitoring/blob/master/ngsi_event_broker/README.rst].

Installation of NGSI Adapter

Requirements

NGSI Adapter should work on a variety of operating systems, particularly on the
majority of GNU/Linux distributions (e.g. Debian, Ubuntu, CentOS), as it only
requires a V8 JavaScript Engine to run a Node.js server.

Hardware Requirements

The minimal requirements are:

	RAM: 2 GB

Software Requirements

NGSI Adapter is a standalone Node.js process, so node and its package
manager npm should be installed previously. These requirements are
automatically checked when installing the fiware-monitoring-ngsi-adapter
package. However, for manual installation please visit NodeSource [https://github.com/nodesource/distributions/].

Downloads

Please refer to this document [https://github.com/telefonicaid/fiware-monitoring/blob/master/README.rst#installation] for details.

Additional parsers

NGSI Adapter currently includes a predefined set of parsers for Nagios probes
at lib/parsers/nagios directory, each named after its corresponding probe.

This can be extended with additional parsers found at additional directories.
To do so, please configure --parsersPath command line option (or set the
variable ADAPTER_PARSERS_PATH) with a colon-separated list of absolute (or
relative to Adapter root) directories where parsers are located.

Installation of Context Broker

Please refer to Orion [http://fiware-orion.readthedocs.org] documentation.

Installation of the connector

This component subscribes to changes at Context Broker and writes data into a
distributed filesystem storage (usually HDFS from Hadoop [http://hadoop.apache.org/]). Historically the
ngsi2cosmos connector implementation has been used (installation details
here [https://github.com/telefonicaid/fiware-livedemoapp#ngsi2cosmos]), although from March 2014 this component is deprecated and a brand new
Cygnus implementation (installation details here [http://fiware-cygnus.readthedocs.org]) is available.

Running the monitoring components

As stated before, there are a number of distributed components involved in the
monitoring. Please refer to their respective installation manuals for execution
details (this applies to probes & monitoring software, Context Broker, Hadoop,
etc.). This section focuses on NGSI Adapter specific instructions.

Running NGSI Adapter

Once installed, there are two ways of running NGSI Adapter: manually from the
command line or as a system service. It is not recommended to mix both ways
(e.g. start it manually but using the service scripts to stop it).

As system service

When installed from its package distribution, a Linux service ngsi_adapter
is configured (but not started). Please refer to this document [https://github.com/telefonicaid/fiware-monitoring/blob/master/README.rst#running] for details.

From the command line

You can run the adapter just typing the following command at the installation
directory (usually /opt/fiware/ngsi_adapter/):

$ adapter

You can use these command line options (available typing adapter --help):

	
-l, --logLevel=LEVEL

		Verbosity of log messages

	
-H, --listenHost=NAME

		The hostname or address at which NGSI Adapter listens

	
-p, --listenPort=PORT

		The port number at which NGSI Adapter listens

	
-u, --udpEndpoints=LIST

		Optional list of UDP endpoints (host:port:parser)

	
-P, --parsersPath=PATH

		Colon-separated path with directories to look for parsers

	
-b, --brokerUrl=URL

		The URL of the Context Broker instance to publish data to

	
-m, --maxRequests=VALUE

		Maximum number of simultaneous outgoing requests to Context Broker

	
-r, --retries=VALUE

		Number of times a request to Context Broker is retried, in case of error

Sanity check procedures

These are the steps that a System Administrator will take to verify that an
installation is ready to be tested. This is therefore a preliminary set of
tests to ensure that obvious or basic malfunctioning is fixed before proceeding
to unit tests, integration tests and user validation.

End to end testing

Use the commands of the monitoring framework being used (for example, Nagios)
to reschedule some probe execution and force the generation of new monitoring
data:

	Check the logs of the framework (i.e. /var/log/nagios/nagios.log) for
a new probe execution detected by the collector:

$ cat /var/log/nagios/nagios.log
[1439283831] lvl=INFO | corr=rdPmJ/uHE62a | comp=ngsi-event-broker-fiware |
... op=NGSIAdapter |
... msg=Request sent to http://host:1337/check_xxx?id=xxx&type=host

	Check NGSI Adapter logs for incoming requests with raw data, and for the
corresponding updateContext() request to Context Broker:

$ cat /var/log/ngsi_adapter/ngsi_adapter.log
time=xxx | lvl=INFO | corr=rdPmJ/uHE62a | trans=ciw4p8cc6ar6dt5iz3c8qurf5 |
... op=POST |
... msg=Request on resource /check_xxx with params id=xxx&type=xxx
time=xxx | lvl=INFO | corr=rdPmJ/uHE62a | trans=ciw4p8cc6ar6dt5iz3c8qurf5 |
... op=POST |
... msg=Response status 200 OK
time=xxx | lvl=INFO | corr=rdPmJ/uHE62a | trans=ciw4p8cc6ar6dt5iz3c8qurf5 |
... op=UpdateContext |
... msg=Request to ContextBroker at http://host:1026/...

	Finally, query Context Broker API to check whether entity attributes have
been updated according to the new monitoring data (see details here [http://fiware-orion.readthedocs.org])

List of Running Processes

A node process running the “adapter” server should be up and running, e.g.:

$ ps -C node -f | grep adapter
fiware 21930 1 0 Mar28 ? 00:06:06 node /opt/fiware/ngsi_adapter/adapter

Alternatively, we can check if service is running, e.g.:

$ service ngsi_adapter status
* ngsi_adapter is running

Network interfaces Up & Open

NGSI Adapter uses TCP 1337 as default port, although it can be changed using
the --listenPort command line option.

Additionally, a list of UDP listen ports may be specified by --udpEndpoints
command line option.

Databases

This component does not persist any data, and no database engine is needed.

Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will
take to locate the source of an error in a GE. Once the nature of the error is
identified with these tests, the system admin will very often have to resort to
more concrete and specific testing to pinpoint the exact point of error and a
possible solution. Such specific testing is out of the scope of this section.

Resource availability

Although we haven’t done yet a precise profiling on NGSI Adapter, tests done in
our development and testing environment show that a host with 2 CPU cores and
4 GB RAM is fine to run server.

Remote service access

	Probes at monitored hosts should have access to NGSI Adapter listen
port (TCP 1337, by default)

	NGSI Adapter should have access to Context Broker listen port (TCP 1026,
by default)

	Connector should have access to Context Broker listen port in order
to subscribe to context changes

	Context Broker should have access to Connector callback port to notify
changes

Resource consumption

No issues related to resources consumption have been detected neither with
the NGSI Adapter server nor with the NGSI Event Broker loaded as a “pluggable”
module on Nagios startup.

I/O flows

Figure at installation section shows the I/O flows among the different
monitoring components:

	Probes send requests to NGSI Adapter with raw monitoring data, by means
of a custom collector component (for example, NGSI Event Broker)

	NGSI Adapter sends request to Context Broker in terms of context
updates of the monitored resources

	Context Broker notifies Connector with every context change

	Connector writes changes to storage

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	FIWARE Monitoring

Index

 Created using Sphinx 1.3.5.

 _static/comment-close.png

manuals/user/README.html

 Navigation

 		
 index

 		FIWARE Monitoring »

User & Programmers Guide

Table of Contents

		Introduction

		User Guide

		Programmer Guide

 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

manuals/admin/README.html

 Navigation

 		
 index

 		FIWARE Monitoring »

Installation & Administration Guide

Table of Contents

		Introduction

		Installation

		Running the monitoring components

		Sanity check procedures

		Diagnosis Procedures

 Created using Sphinx 1.3.5.

manuals/admin/logs.html

 Navigation

 		
 index

 		FIWARE Monitoring »

Logs

The log system has been re-worked in release 4.1.1 [https://github.com/telefonicaid/fiware-monitoring/releases/tag/v4.1.1]. This section describes
its main characteristics.

Log file

The NGSI Adapter component of Monitoring GE writes logs, when running as a
service, to the file /var/log/ngsi_adapter/ngsi_adapter.log (if started
manually from command line, logs are written to standard output).

The NGSI Event Broker component is a module integrated into the Nagios
framework and its logs are written to the file /var/log/nagios/nagios.log
(or any other defined by Nagios configuration).

Log format

The log format is designed to be processed by tools like Splunk [http://www.splunk.com/] or Fluentd [http://www.fluentd.org/].

Each line in the log file is composed by several key-value fields, separated
by the pipe character (|). Example:

time=2015-08-01T08:00:00.511Z | lvl=INFO | corr=7af94c40-8f9b-11e6-ae0c-97fdb974345e | trans=ci2627bx00000b42g8m2pxw3z | op=POST | msg=Request on resource /check_xxx with params id=xxx&type=xxx
time=2015-08-01T08:00:00.675Z | lvl=INFO | corr=7af94c40-8f9b-11e6-ae0c-97fdb974345e | trans=ci2627bx00000b42g8m2pxw3z | op=POST | msg=Response status 200 OK
time=2015-08-01T08:00:00.922Z | lvl=INFO | corr=7af94c40-8f9b-11e6-ae0c-97fdb974345e | trans=ci2627bx00000b42g8m2pxw3z | op=UpdateContext | msg=Request to ContextBroker at http://host:1026/...

These are the different fields found in each line:

		time. A timestamp corresponding to the moment in which the log line was
generated.

		lvl (level). One of the following:
		INFO: This level designates informational messages that highlight the
progress of the component.

		WARNING: This level designates potentially harmful situations. There is
a minor problem that should be fixed.

		ERROR: This level designates error events. There is a severe problem that
should be fixed.

		FATAL: This level designates very severe error events that will presumably
lead the application to abort. The process can no longer work.

		DEBUG: This level designates fine-grained informational events that are
most useful to debug an application.

		corr (correlator). Can be either “N/A” (in startup messages, for instance)
or a global unique identifier of each processed request within the whole
end-to-end environment. In services scenario, when a request is done, it
will normally go through several elements in which will be necessary to
trace the request without losing sight of the end-to-end process.

		trans (transaction id). Can be either “N/A” or a unique identifier of each
request processed within a specific element.

		op (operation). The function in the source code that generated the log
message. This information is useful for developers only.

		msg (message). The actual log message.

Log rotation

The system administrator must configure some log rotation mechanism, or
otherwise the log file size will increase indefinitely. We recommend using
logrotate [http://linux.die.net/man/8/logrotate].

Depending on your expected work load, you would need to adjust the rotation
parameters.

 Created using Sphinx 1.3.5.

_images/Monitoring_GE_probe_parser_class_hierarchy.png
lib.parsers.common.base

parser

Iib parsers myProbe

parser

[iparserequestl)
leetcontentnttsy

manuals/admin/build_source.html

 Navigation

 		
 index

 		FIWARE Monitoring »

Building from sources

Monitoring GE reference distributions are CentOS 6.x and Ubuntu 12.04. This
doesn’t mean that it cannot be built for other Linux distributions (actually,
it can). This section includes indications about the build process for almost
any distribution.

CentOS 6.x

NGSI Adapter

This component needs no compilation, as it is a server written in Node.js, so
the basic procedure consists basically on installing the node interpreter,
getting the sources and installing the required dependencies (assuming you
don’t run commands as root, we use sudo for those commands that require
some special privileges):

		Install an updated node interpreter:

$ curl -sL https://rpm.nodesource.com/setup_4.x | sudo bash -
$ sudo yum install -y nodejs

		Install development tools:

$ sudo yum install -y gcc-c++ make rpm-build redhat-rpm-config
$ sudo npm install -g grunt-cli

		Get the source code from GitHub:

$ sudo yum install -y git
$ git clone https://github.com/telefonicaid/fiware-monitoring

		Install dependencies:

$ cd fiware-monitoring/ngsi_adapter
$ npm install

		(Optional but highly recommended) check coding style, run unit tests and
get coverage:

$ grunt lint test coverage

		At this point, we are ready to run the server manually:

$./adapter

		Alternatively, we could create a package for this component, install it and
then run the ngsi_adapter service:

$ cd fiware-monitoring/ngsi_adapter
$ tools/devops/package.sh
$ sudo rpm -i fiware-monitoring-ngsi-adapter-X.Y.Z-1.noarch.rpm
$ sudo service ngsi_adapter start

NGSI Event Broker

This component is written in C language and requires autotools to generate
a valid Makefile to drive the build and install process.

		Install development tools:

$ sudo yum install -y gcc-c++ make autoconf automake libtool
$ sudo yum install -y cppunit-devel cppcheck lcov libxslt libcurl-devel wget
$ sudo yum install -y rpm-build redhat-rpm-config
$ sudo pip install -q gcovr

		Get Nagios 3.x sources (only some headers are actually needed):

$ cd fiware-monitoring/ngsi_event_broker
$ NAGIOS_VERSION=$(awk -F= '/nagios_reqver=/ { print $2 }' configure.ac)
$ NAGIOS_FILES=http://sourceforge.net/projects/nagios/files
$ NAGIOS_URL=$NAGIOS_FILES/nagios-${NAGIOS_VERSION%%.*}.x/nagios-$NAGIOS_VERSION/nagios-$NAGIOS_VERSION.tar.gz/download
$ NAGIOS_SRC_DIR=nagios
$ wget $NAGIOS_URL -q -O nagios-${NAGIOS_VERSION}.tar.gz
$ tar xzf nagios-${NAGIOS_VERSION}.tar.gz
$ (cd $NAGIOS_SRC_DIR && ./configure && make nagios)

		Configure for debug build with coverage support:

$ mkdir -p m4 && autoreconf -i
$./configure --enable-gcov --with-nagios-srcdir=$NAGIOS_SRC_DIR

Default installation directory is /opt/fiware/ngsi_event_broker/lib but
this may be changed by adding the --libdir=target_libdir option when
running the configure script.

		Compile and check coding style, run unit tests and get coverage (optional but
highly recommended):

$ make clean lint test coverage

		Install the generated module (a dynamic library):

$ make install

		Alternatively, we could create a package for this component (which implies
building and running the unit tests), and install it:

$ cd fiware-monitoring/ngsi_event_broker
$ tools/devops/package.sh
$ sudo rpm -i fiware-monitoring-ngsi-event-broker-X.Y.Z-1.noarch.rpm

Ubuntu

The steps are the same as in CentOS, with only a few changes:

NGSI Adapter

		Install an updated node interpreter:

$ curl -sL https://deb.nodesource.com/setup_4.x | sudo bash -
$ sudo apt-get install -y nodejs

		Install development tools:

$ sudo apt-get install -y g++ make dpkg-dev debhelper devscripts
$ sudo npm install -g grunt-cli

NGSI Event Broker

		Install development tools:

$ sudo apt-get install -y g++ build-essential make autoconf automake autotools-dev libtool
$ sudo apt-get install -y libcppunit-dev cppcheck lcov xsltproc libcurl4-openssl-dev wget
$ sudo apt-get install -y dpkg-dev debhelper devscripts
$ sudo pip install -q gcovr

Other distributions

Again, the steps are the same as in CentOS. We only have to pay attention to
the way to install node (see NodeSource [https://github.com/nodesource/distributions] for details) and to the possible
different package names of the development tools.

 Created using Sphinx 1.3.5.

_static/plus.png

_images/Monitoring_IO_Flows.png
Pub/Sub Context Broker GE @

POST

Parser

Probe.

Physical host

Notification
v

Connector

P

NGSI Adapter

_static/down.png

_images/Monitoring_Architecture.png
Visualization Portal

Cloud Portal

Apps & Senvices.

I Monitoring GE

SEEERRRERRDDDa

AuthZ & AuthN

Security Proxy.

Access Control GE

owmer [H-O—]
pr——
o
Srsm tfam)
™
o
™
™
Vi e
Vi e

Context Broker GE

——

Monitoring Collector

Monioring Probe

NGSI Adapter

Host

——

Monitaring Probe

search.html

 Navigation

 		
 index

 		FIWARE Monitoring »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/up.png

_static/up-pressed.png

