Fiware-Cloto
Release

August 03, 2016

Contents

1 Introduction 1

CHAPTER 1

Introduction

The Policy Manager GE provides the basic management of cloud resources based on rules, as well as management
of the corresponding resources within the FIWARE Cloud Instance like actions based on physical monitoring or
infrastructure, security monitoring of resources and services or whatever that could be defined by facts, actions and
rules. Policy Manager is a easy rule engine designed to be used in the OpenStack ecosystem and of course inside the
FIWARE Cloud.

IMPORTANT NOTE: This GE reference implementation product is only of interest to potential FIWARE instance
providers and therefore has been used to build the basic FIWARE platform core infrastructure of the FIWARE Lab. If
you are an application developer, you don’t need to create a complete FIWARE instance locally in order to start build-
ing applications based on FIWARE. You may rely on instances of FIWARE GeEris linked to the Data/Media Context
Management chapter, the IoT Services Enablement chapter, the Advanced Web-based User Interface chapter or some
GEtris of the Applications/Services Ecosystem and Delivery Framework chapter (WireCloud) as well as the Security
chapter (Access Control). Those instances are either global instances or instances you can create on the FIWARE
Lab but can also be instance you can create by means of downloading, installing and configuring the corresponding
software in your own premises.

The Policy Manager source code can be found here
This documentation offers deeper information on Policy Manager.

Documentation

1.1 FIWARE Policy Manager GE: Cloto

https://github.com/telefonicaid/fiware-cloto.git

Fiware-Cloto, Release

* [ntroduction
* GEi overall description

— Components
* Build and Install

— Requirements

— Installation

— Configuration file - Cloto
* Running

— Running with supervisor
* API Overview

— API Reference Documentation
» Testing

— Unit tests

— End-to-end tests

— Acceptance tests
* Advanced topics
* Support
* License

1.1.1 Introduction

This is the code repository for FIWARE Policy Manager GE - Cloto, a server that provides an API-REST to create
rules associated to servers, subscribe servers to Context Broker to get information about resources consumption of that
servers and launch actions described in rules when conditions are given.

This project is part of FIWARE. Check also the FIWARE Catalogue entry for Policy Manager

Any feedback on this documentation is highly welcome, including bugs, typos or things you think should be included
but aren’t. You can use github issues to provide feedback.

Top.

1.1.2 GEi overall description

Bosun GEri is the reference implementation of Policy Manager GE.

Bosun GEri offers decision-making ability, independently of the type of resource (physical/virtual resources, network,
service, etc.) being able to solve complex problems within the Cloud field by reasoning about the knowledge base,
represented by facts and rules. Bosun GEri provides the basic management of cloud resources based on rules, as
well as management of the corresponding resources within FIWARE Cloud instances based on infrastructure physical
monitoring, resources and services security monitoring or whatever that could be defined by facts, actions and rules.

The baseline for the Bosun GEri is PyCLIPS, which is a module to interact with CLIPS expert system implemented in
python language. The reason to take PyCLIPS is to extend the OpenStack ecosystem with an expert system, written in
the same language as the rest of the OpenStack services. Besides, It provides notification service to your own HTTP
server where you can define your own actions based on the notifications launched by Policy Manager. Last but not
least, Bosun is integrated with the Monitoring GEri in order to recover the information of the (virtual) system and
calculate any possible change on it based on the knowledge database defined for it.

Top.

2 Chapter 1. Introduction

https://www.fiware.org/
http://catalogue.fiware.org/enablers/policy-manager-bosun
https://github.com/telefonicaid/fiware-cloto/issues/new

Fiware-Cloto, Release

Components

Fiware-Cloto Fiware-cloto is part of FIWARE Policy Manager. It provides an API-REST to create rules associated
to servers, subscribe servers to Context Broker to get information about resources consumption of that servers
and launch actions described in rules when conditions are given.

Fiware-Facts Server to process the incoming facts from the Orion Context Broker and publish the result into a Rab-
bitMQ queue to be analysed by Fiware-Cloto. The facts are the result of the server resources consumption.

For more information, please refer to the documentation.

Top.

1.1.3 Build and Install

Requirements

* Operating systems: CentOS (RedHat) and Ubuntu (Debian), being CentOS 6.3 the reference operating system.
To install this module you have to install some components:

e Python 2.7

PyClips 1.0 (http://sourceforge.net/projects/pyclips/files/)

RabbitMQ Server 3.3.0 or above (http://www.rabbitmg.com/download.html)
* pip installed (http://docs.python-guide.org/en/latest/starting/install/linux/)
e MySQL 5.6.14 or above (http://dev.mysql.com/downloads/mysql/)
* gce-c++ and gec libraries
This module also needs the installation of these other components:
 Fiware-facts module installed (https://github.com/telefonicaid/fiware-facts)
* A running instance of Orion Context Broker (https://github.com/telefonicaid/fiware-orion)

e fiware-monitoring connected to the Orion instance to provide information about servers
(https://github.com/telefonicaid/fiware-monitoring).

Top.
Installation

Once you have all prerequisites installed, you must create a DB named cloto in your MySQL server. Ensure your
mysql path is in your path. If not, you can add executing (change /usr/local/ with your mysql folder):

$ export PATH=$PATH:/usr/local/mysqgl/bin

In addition, be sure you have installed mysql-devel package for development of MySQL applications. You should be
able to install it from yum or apt-get package managers.

Examples:

centos$ sudo yum install mysgl-devel
ubuntu$ sudo apt-get install mysgl-devel

After all you must install fiware-cloto from pypi repository executing:

1.1. FIWARE Policy Manager GE: Cloto 3

https://github.com/telefonicaid/fiware-orion
http://sourceforge.net/projects/pyclips/files/
http://www.rabbitmq.com/download.html
http://docs.python-guide.org/en/latest/starting/install/linux/
http://dev.mysql.com/downloads/mysql/
https://github.com/telefonicaid/fiware-facts
https://github.com/telefonicaid/fiware-orion
https://github.com/telefonicaid/fiware-monitoring

Fiware-Cloto, Release

‘$ sudo pip install fiware-cloto

After finishing you must configure cloto configuration and ensure your database is created with mysql.

Top.

Configuration file - Cloto

The configuration used by the fiware-cloto component is read from the configuration file. This file is located here:
/etc/fiware.d/fiware-cloto.cfg

MYSQL cloto configuration must be filled before starting fiware-facts component, user and password are empty by
default. You can copy the default configuration file to the folder defined for your OS, and complete data about cloto
MYSQL configuration (user and password) and all openstack configuration.

In addition, user could have a copy of this file in other location and pass its location to the server in running execution
defining an environment variable called CLOTO_SETTINGS_FILE.

Options that user could define:

[openstack]

OPENSTACK information about KEYSTONE to validate tokens received
OPENSTACK_URL: http://cloud.lab.fi-ware.org:4731/v2.0

ADM_USER:

ADM_PASS:

ADM_TENANT_ID:

ADM_TENANT_NAME :

USER_DOMAIN_NAME: Default

AUTH_API: v2.0

[policy_manager]

SETTINGS_TYPE: production
DEFAULT_WINDOW_SIZE: 5
MAX_WINDOW_SIZE: 10

LOGGING_PATH: /var/log/fiware-cloto

[context_broker]

CONTEXT_BROKER_URL: http://130.206.81.44:1026/NGSI10
Public IP of fiware-facts module

NOTIFICATION_URL: http://127.0.0.1:5000/v1.0
NOTIFICATION_TYPE: ONTIMEINTERVAL

NOTIFICATION_TIME: PT5S

[rabbitmg]
URL Where RabbitMQ is listening (no port needed, it uses default port)
RABBITMQ_URL: localhost

[mysql]
DB_CHARSET: utf8
DB_HOST: localhost
DB_NAME: cloto
DB_USER:
DB_PASSWD:

[django]

DEBUG: False

DATABASE_ENGINE: django.db.backends.mysqgl
ALLOWED_HOSTS: ['127.0.0.1', 'localhost']

4 Chapter 1. Introduction

Fiware-Cloto, Release

Must be a unique generated value. keep that key safe.
SECRET_KEY: TestingKey+faeogfijksrjgpjaspigjiopsjgvopjsopgv]

[logging]
level: INFO

Top.

1.1.4 Running

To run fiware-cloto, just execute:

‘$ gunicorn fiware_cloto.cloto.wsgi -b $IP

To stop fiware-cloto, you can stop gunicorn server, or kill it

NOTE: if you want to see gunicorn log if something is going wrong, you could execute the command before adding
-—log-file=- at the end of the command. This option will show the logs in your prompt.

Finally, ensure that you create a folder for logs /var/log/fiware-cloto/ (by default), with the right permis-
sions to write in that folder.

’mkdir -m /var/log/fiware-cloto

Running with supervisor

Optionally you can add a new layer to manage gunicorn proccess with a supervisor. Just install supervisor on your
system:

‘sudo apt—-get install supervisor

Copy the file utils/cloto_start to /etc/fiware.d. Make this script executable:

‘sudo chmod a+x /etc/fiware.d/cloto_start

Copy the file utils/fiware-cloto.conf to /etc/supervisor/conf.d.

Start fiware-cloto using supervisor:

sudo supervisorctl reread
sudo supervisorctl update
sudo supervisorctl start fiware-cloto

To stop fiware-cloto just execute:

sudo supervisorctl stop fiware-cloto

NOTE: Supervisor provides an “event listener” to subscribe to “event notifications”. The purpose of the event notifi-
cation/subscription system is to provide a mechanism for arbitrary code to be run (e.g. send an email, make an HTTP
request, etc) when some condition is met. That condition usually has to do with subprocess state. For instance, you
may want to notify someone via email when a process crashes and is restarted by Supervisor. For more information
check also the Supervisor Documentation

Top.

1.1. FIWARE Policy Manager GE: Cloto 5

http://supervisord.org/events.html

Fiware-Cloto, Release

1.1.5 API Overview

To create a new rule for a server, user should send the rule as body of a POST request to the cloto server, with the
condition and action that should be performed.

For example, this operation allows to create a specific rule associate to a server:

curl -v —-H '"X-Auth-Token: 86e096cd4de5490296fd647e21b7£f0b4"' —-X POST
http://130.206.81.71:8000/v1.0/6571e3422ad84f7d828ce2f30373b3d4/servers
/32c23ac4-230d-42b6-81f2-db9%bd7e5b790/rules/

-d '{"action": {"actionName": "notify-scale", "operation": "scaleUp"},
"name": "ScaleUpRule", "condition": { "cpu": { "value": 98, "operand": "greater" },
"mem": { "value": 95, "operand": "greater equal"}}}'

The result of this operation is a JSON with the Id of the server affected and the ruleld of the created rule:

{
"serverId": "32c23ac4-230d-42b6-81£f2-db%bd7e5b790",
"ruleId": "68edb4l6-bfc6-11e3-a8b9-fal63e202949"

}

Then user could perform a subscription to that rule with a new operation.

Please have a look at the API Reference Documentation section below and at the user and programmer guide for more
description of the possibilities and operations.

Top.
API Reference Documentation
* FIWARE Policy Manager vl (Apiary)
Top.
1.1.6 Testing
Unit tests

Download source code from github

‘$ git clone https://github.com/telefonicaid/fiware-cloto.git

To execute the unit tests, you must set the environment variable pointing to the settings_test file. Then you can use
coverage to execute the tests and obtain the percentage of lines coveved by the tests. You must execute the tests from
project folder fiware—cloto. Once you were inside the right location, execute the required commands:

$ export DJANGO_SETTINGS_MODULE=fiware_cloto.cloto_settings.settings_tests
$ export CLOTO_SETTINGS_FILE=S (pwd)/fiware_cloto/cloto_settings/fiware-cloto.cfg
$ python fiware_cloto/manage.py test

Top.

End-to-end tests

In order to check that fiware-cloto is up and running, you can execute a GET request similar to:

6 Chapter 1. Introduction

https://jsapi.apiary.io/apis/policymanager/reference.html

Fiware-Cloto, Release

‘curl -v —-H 'X-Auth-Token: S$SAUTH_TOKEN' http://$HOST:8000/v1.0/STENANT_ID/

Where:
* $AUTH_TOKEN: is a valid token owned by the user. You can request this token from keystone.

* $HOST: is the url/IP of the machine where fiware facts is installed, for example: (policymanager-host.org,
127.0.0.1, etc)

« STENANT_ID: is a tenantld of the user, for example: 6571e3422ad8417d828ce2f30373b3d4

the response should be similar to:

{
"owner": "Telefonica I+D",
"doc": "https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/
Policy_Manager_Open_RESTful_ API_Specifi
"runningfrom": "15/08/14 10:12:45",
"version": "1.7.0",
"windowsize": 2
}

Please refer to the Installation and administration guide for details.

Top.

Acceptance tests

Requirements
* Python 2.7 or newer
* pip installed (http://docs.python-guide.org/en/latest/starting/install/linux/)
* virtualenv installed (pip install virtalenv)
* Git installed (yum install git-core / apt-get install git)
Environment preparation:
¢ Create a virtual environment somewhere, e.g. in ENV (virtualenv ENV)
e Activate the virtual environment (source ENV/bin/activate)
» Change to the test/acceptance folder of the project

¢ Install the requirements for the acceptance tests in the virtual environment (pip install -r requirements.txt —allow-
all-external).

» Configure file in fiware-cloto/tests/acceptance_tests/commons/configuration.py adding the keystone url, and a
valid, user, password and tenant ID.

Tests execution

Change to the fiware-cloto/tests/acceptance_tests folder of the project if not already on it and execute:

$ lettuce_tools

In the following document you will find the steps to execute automated tests for the Policy Manager GE:
 Policy Manager acceptance tests

Top.

1.1. FIWARE Policy Manager GE: Cloto 7

ation",

http://docs.python-guide.org/en/latest/starting/install/linux/

Fiware-Cloto, Release

1.1.7 Advanced topics

* Installation and administration
 User and programmers guide

Open RESTful API Specification

* Architecture Description

Top.

1.1.8 Support

Ask your thorough programming questions using stackoverflow and your general questions on FIWARE Q&A. In both
cases please use the tag fiware-bosun.

Top.
1.1.9 License

(c) 2013-2014 Telefénica I+D, Apache License 2.0

1.2 FIWARE Policy Manager - User and Programmers Guide

1.2.1 Introduction
Welcome the User and Programmer Guide for the Policy Manager Generic Enabler. The online documents are being

continuously updated and improved, and so will be the most appropriate place to get the most up to date information
on using this interface.

Background and Detail

This User and Programmers Guide relates to the Policy Manager GE which is part of the Cloud Hosting Chapter.
Please find more information about this Generic Enabler in the following Open Specification.

1.2.2 User Guide

The Policy Manager GE is a backend component, without user interface. Therefore there is no need to provide a user
guide. The Cloud Portal can be used for Web-based interaction (but it is not part of this GE).

1.2.3 Programmer Guide

Policy Manager API is based upon HTTP and therefore all devices, which can handle HTTP traffic, are possible
clients.

8 Chapter 1. Introduction

http://stackoverflow.com/questions/ask
https://ask.fiware.org

Fiware-Cloto, Release

Accessing Policy Manager from the CLI

To invoke the REST API use the curl program. Curl 1 is a client to get documents/files from or send documents to a
server, using any of the supported protocols (HTTP, HTTPS, FTP, GOPHER, DICT, TELNET, LDAP or FILE) and
therefore is also usable for Policy Manager API. Use the curl command line tool or use libcurl from within your own
programs in C. Curl is free and open software that compiles and runs under a wide variety of operating systems.

In order to make a probe of the different functionalities related to the Policy Manager, we make a list of several
operations to make a probe of the execution of these GEis.

1. Get a valid token for the tenant that we have (It is not a Policy Manager operation but a IdM operation).

Due to all operations of the Policy Manager are using the security mechanism which is used in the rest of the cloud
component, it is needed to provide a security token in order to continue with the rest of operations.

curl —-d '{"auth": {"tenantName": S$TENANT, "passwordCredentials":{"username": SUSERNAME,
"password": $PASSWORD}}}' —-H "Content-type: application/json"
-H "Accept: application/xml" http://130.206.80.100:35357/v2.0/tokens

Both $TENANT (Project), SUSERNAME and $PASSWORD must be values previously created in the OpenStack
Keystone. The IP address 10.95.171.115 and the Port 35357 are the data of our internal installation of IdM, if you
planned to execute it you must changed it by the corresponding IP and Port of the FIWARE Keystone or IdM IP and
Port addresses.

We obtained two data from the previous sentence:

¢ X-Auth-Token

’<token expires="2012-10-25T16:35:42Z" 1id="a9%a861db6276414094bcl567£664084d"> ‘

e Tenant-Id

’<tenant enabled="true" id="c907498615b7456a9513500fe24101e0" name=$TENANT> ‘

2. Get tenant information

This is the first real operation about our GEi, by which we can obtain the information about the Policy Manager,
together with the information about the window size fixed for the execution of the GEi. For more information about
the window size and its meaning.

curl -v -H 'X-Auth-Token: a9%a861db6276414094bcl567£6640844d"
-X GET http://130.206.81.71:8000/v1.0/c907498615b7456a9513500£e24101e0

This operation will return the information regarding the tenant details of the execution of the Policy Manager

< HTTP/1.0 200 OK

< Date: Wed, 09 Apr 2014 08:25:17 GMT

< Server: WSGIServer/0.l1 Python/2.6.6

< Content-Type: text/html; charset=utf-8
{

"owner": "Telefonica I+D",

"doc": "https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/
FIWARE.OpenSpecification.Details.Cloud.H

"runningfrom": "14/04/09 07:45:22",

"version": 1.0,

"windowsize": 5

}

3. Create a rule for a server

This operation allows to create a specific rule associate to a server:

1.2. FIWARE Policy Manager - User and Programmers Guide 9

olicyManager

http://curl.haxx.se/

Fiware-Cloto, Release

curl -v -H 'X-Auth-Token: 86e096cd4de5490296£fd647e21b7£f0b4"
-X POST http://130.206.81.71:8000/v1.0/6571e3422ad84£7d828ce2£30373b3d4/servers
/32c23ac4-230d-42b6-81£2-db9bd7e5b790/rules/

-d '"{"action": {"actionName": "notify-scale", "operation": "scaleUp"}, "name": "ScaleUp§
"condition": { "cpu": { "value": 98, "operand": "greater" },
"mem": { "value": 95, "operand": "greater equal"}}}'

The result of this operation is the following content:

HTTP/1.0 200 OK

Date: Wed, 09 Apr 2014 10:14:11 GMT
Server: WSGIServer/0.1 Python/2.6.6
Content-Type: text/html; charset=utf-8

~ A A A A

"serverId": "32c23ac4-230d-42b6-81f2-db9%bd7e5b790",
"ruleId": "68edb4l16-bfc6-11e3-a8b9-fal63e202949"

4. Subscribe the server to the rule

Through this operation we can subscribe a rule to be monitored in order to evaluate the rule to be processed.

curl -v -H 'X-Auth-Token: a9%9a861db6276414094bcl567f664084d"

-X POST http://130.206.81.71:8000/v1.0/6571e3422ad84£7d828ce2£30373b3d4/servers
/32c23ac4-230d-42b6-81f2-db9%bd7e5b790/subscription

-d '"{ "ruleId": "ruleid", "url": "URL to notify any action" }'

An the expected result is the following.

HTTP/1.0 200 OK

Date: Wed, 09 Apr 2014 10:16:11 GMT
Server: WSGIServer/0.1 Python/2.6.6
Content-Type: text/html; charset=utf-8

~ A A AN A

"serverId": "32c23ac4-230d-42b6-81f2-db9%bd7e5b790",
"subscriptionId": "6£231936-bfce-11e3-9al3-fal63e202949"

5. Manual simulation of data transmission to the server

This operation simulate the operation that the context broker used to send data to the Policy Manager, the normal
execution of this process will be automatically once that the Policy Manager subscribes a rule to a specific server. The
operation is related to fiware-facts component and it has the following appearance:

curl -v -H "Content-Type: application/json"

-X POST http://127.0.0.1:5000/v1.0/6571e3422ad84f7d828ce2f30373b3d4/servers/serverIl
-d '{

"contextResponses": [

{

"contextElement": {
"attributes": [
{
"value": "0.12",
"name": "usedMemPct",
"type": "string"
s
{
"value": "0.14",
"name": "cpuLoadPct",
"type": "string"

10 Chapter 1. Introduction

ule",

Fiware-Cloto, Release

"value": "0.856240",
"name": "freeSpacePct",
"type": "string"
}I
{
"value": "0.8122",
"name": "netLoadPct",
"type": "string"
}
]I
"id": "Trento:193.205.211.69",
"isPattern": "false",
"type": "host"

b

"statusCode": {
"code": "200",
"reasonPhrase": "OK"

H
}'

Which produces the following result after the execution:

About to connect() to 127.0.0.1 port 5000 (#0)
Trying 127.0.0.1...

Adding handle: conn: 0x7fa2e2804000

Adding handle: send: 0

Adding handle: recv: 0

Curl_addHandleToPipeline: length: 1

- Conn 0 (0x7fa2e2804000) send_pipe: 1, recv_pipe: 0

Connected to 127.0.0.1 (127.0.0.1) port 5000 (#0)

POST /v1.0/33/servers/44 HTTP/1.1

User—-Agent: curl/7.30.0

Host: 127.0.0.1:5000

Accept: */x

Content-Type: application/json

Content-Length: 1110

Expect: 100-continue

HTTP/1.1 100 Continue

HITP/1.1 200 OK

Content-Type: text/html; charset=utf-8
Content-Length: 0

Date: Wed, 09 Apr 2014 00:11:49 GMT

* AA A A A AV V V V V V V V X % % % % % % *

Connection #0 to host 127.0.0.1 left intact

6. Unsubscribe the previous rule

In order to stop the process to evaluate rules, it is needed to unsubscribe the activated rule. We can do it with the
following operation:

curl -v -H 'X-Auth-Token: a9%9a861db6276414094bcl567£664084d"
-X DELETE http://130.206.81.71:8000/v1.0/6571e3422ad84£7d828¢ce2£30373b3d4/servers
/serverIl/subscription/SubscriptionId

1.2. FIWARE Policy Manager - User and Programmers Guide 11

Fiware-Cloto, Release

HTTP/1.0 200 OK

Date: Wed, 09 Apr 2014 10:16:59 GMT
Server: WSGIServer/0.1 Python/2.6.6
Content-Type: text/html; charset=utf-8

AN AN A A

Accessing Policy Manager from a Browser

To send http commands to Policy Manager using browser, use:
* Chrome browser 2 with the Simple REST Client plugin 3
* Firefox RESTClient add-ons 4.

1.3 FIWARE Policy Manager - Installation and Administration Guide

1.3.1 Policy Manager Installation

This guide tries to define the procedure to install the Policy Manager in a machine, including its requirements and
possible troubleshooting that we could find during the installation. We have to talk about two applications deployed in
a Django server.

Requirements
In order to execute the Policy Manager, it is needed to have previously installed the following software of framework
in the machine:
* Rule engine dependencies:
Python 2.7.6 1.
PyClips 1.0 2
RabbitMQ 3.3.0 3
MySQL 5.6.14 or above 4

* Facts engine dependencies:
— Python 2.7.6 5.
— Redis 2.8.86

Rule engine installation
There is no need to configure any special options in django server. Run as default mode.
Step 1: Install python

If you do not have python installed by default, please, follow instructions for your Operating System in the official
page: https://www.python.org/download/releases/2.7.6/

12 Chapter 1. Introduction

http://www.google.es/chrome?platform=linux&hl=en-GB
https://chrome.google.com/webstore/detail/fhjcajmcbmldlhcimfajhfbgofnpcjmb
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://www.python.org/download/releases/2.7.6/
http://sourceforge.net/projects/pyclips/files/
http://www.rabbitmq.com/download.html
http://dev.mysql.com/downloads/mysql/
http://www.python.org/download/releases/2.7.6/
http://redis.io/download
https://www.python.org/download/releases/2.7.6/

Fiware-Cloto, Release

Step 2: Install pyclips

Download pyclips from http://sourceforge.net/projects/pyclips/files/pyclips/pyclips-1.0

To install pyClips execute this following commands:

tar —-xvf pyclips-1.0.X.Y.tar.gz
cd pyclips

python setup.py build

su —-c "python setup.py install"

v W

Maybe you need to execute these commands using sudo.

If everything was OK, you should not receive any error.

Step 3: Install RabbitMQ

To install RabbitMQ Server, it is better to refer official installation page and follow instructions for the Operating
System you use: http://www.rabbitmq.com/download.html

After installation, you should start RabbitMQ. Note that you only need one instance of RabbitMQ and It could be
installed in a different server than fiware-facts or Rule Engine.

Step 4: Install MySQL

To install MySQL Server, it is better to refer official installation page and follow instructions for the Operating System
you use: http://dev.mysql.com/downloads/mysql/

You will need four packages:

mysgl-server
mysqgl-client
mysgl-shared
mysgl-devel

After installation, you should create a user, create database called ‘cloto’ and give all privileges to the user for this
database. The name of that database could be different but should be configured in the config file of fiware-facts and
fiware-cloto.

To add a user to the server, please follow official documentation: http://dev.mysql.com/doc/refman/5.5/en/adding-
users.html

Step 5: Download and execute the Rule Engine server

1. Installing fiware-cloto

Install the component by executing the following instruction:

sudo pip install fiware-cloto

It should show something like the following:

Installing collected packages: fiware-cloto
Running setup.py install for fiware-cloto

Successfully installed fiware-cloto

Cleaning up...

1.3. FIWARE Policy Manager - Installation and Administration Guide 13

http://sourceforge.net/projects/pyclips/files/pyclips/pyclips-1.0
http://www.rabbitmq.com/download.html
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/doc/refman/5.5/en/adding-users.html
http://dev.mysql.com/doc/refman/5.5/en/adding-users.html

Fiware-Cloto, Release

2. Configuring Rule engine

Before starting the rule engine, you should edit settings file and add it to the default folder located in
/etc/fiware.d/fiware-cloto.cfg

In addition, user could have a copy of this file in other location and pass its location to the server in running execution
defining an environment variable called CLOTO_SETTINGS_FILE.

You can find the reference file inside cloto_settings. You should copy this file into default folder and complete all
empty keys.

[openstack]

OPENSTACK information about KEYSTONE to validate tokens received
OPENSTACK_URL: http://cloud.lab.fi-ware.org:4731/v2.0

ADM_USER:

ADM_PASS:

ADM_TENANT_ID:

ADM_TENANT_NAME :

USER_DOMAIN_NAME: Default

AUTH_API: v2.0

[policy_manager]

SETTINGS_TYPE: production
DEFAULT_WINDOW_SIZE: 5
MAX_WINDOW_SIZE: 10

LOGGING_PATH: /var/log/fiware-cloto

[context_broker]

CONTEXT_BROKER_URL: http://130.206.81.44:1026/NGSI10
Public IP of fiware-facts module

NOTIFICATION_URL: http://127.0.0.1:5000/v1.0
NOTIFICATION_TYPE: ONTIMEINTERVAL

NOTIFICATION_TIME: PT5S

[rabbitmg]
URL Where RabbitMQ is listening (no port needed, it uses default port)
RABBITMQ_ URL: localhost

[mysql]
DB_CHARSET: utfs8
DB_HOST: localhost
DB_NAME: cloto
DB_USER:
DB_PASSWD:

[django]

DEBUG: False

DATABASE_ENGINE: django.db.backends.mysqgl

ALLOWED_HOSTS: ['127.0.0.1', 'localhost']

Must be a unique generated value. keep that key safe.
SECRET_KEY: TestingKey+faeogfijksrjgpjaspigjiopsjgvopisopgv]

[logging]
level: INFO

You should also modify ALLOWED_HOSTS parameter adding the hosts you want to be accesible from outside, your
IP address, the domain name, etc. An example could be like this:

ALLOWED_HOSTS: ['127.0.0.1', 'localhost', 'policymanager.host.com',6 '80.71.123.2"]

14 Chapter 1. Introduction

Fiware-Cloto, Release

Finally, ensure that you create a folder for logs /var/log/fiware—cloto/ (by default), with the right permis-
sions to write in that folder.

mkdir -m /var/log/fiware-cloto

3. Starting the server

To run fiware-cloto, just execute:

‘$ gunicorn fiware_cloto.cloto.wsgi -b $IP

Where $IP is a valid network interface assigned with a public address. If you execute the command with 127.0.0.1
fiware-cloto won’t be accessible from outside.

To stop fiware-cloto, you can stop gunicorn server, or kill it

NOTE: if you want to see gunicorn log if something is going wrong, you could execute the command before adding
——log-file=- at the end of the command. This option will show the logs in your prompt.

Facts installation

Step 1: Install python

The process will be the same that be see in the previous section.
Step 2: Install Redis

Download, extract and compile Redis with:

wget http://download.redis.io/releases/redis-2.8.8.tar.gz
tar xzf redis-2.8.8.tar.gz

cd redis-2.8.8

make

v v A

The binaries that are now compiled are available in the src directory. Run Redis with:

$ src/redis-server

It execute the redis server on port 6379.

You can interact with Redis using the built-in client:

$ src/redis-cli
redis> set foo bar
OK

redis> get foo
"bar"

Step 3: Install MySQL

The process is the same as process seen in the previous section. If fiware-facts is being installed in the same system as
fiware-cloto, you could omit this step.

1.3. FIWARE Policy Manager - Installation and Administration Guide 15

Fiware-Cloto, Release

Step 4: Download and execute the facts engine server

1. Installing fiware-facts

Using pip Install the component by executing the following instruction:

pip install fiware-facts

This operation will install the component in your python site-packages folder.

It should shown the following information when it is executed:

Installing collected packages: fiware-facts
Running setup.py install for fiware-facts

Successfully installed fiware-facts
Cleaning up...

2. Configuring fiware-facts
The configuration used by the fiware-facts component is read from the configuration file. This file is located here:
/etc/fiware.d/fiware-facts.cfg

MYSQL cloto configuration must be filled before starting fiware-facts component, user and password are empty by
default. You can copy the default configuration file to the folder defined for your OS, and complete data about cloto
MYSQL configuration (user and password).

In addition, user could have a copy of this file in other location and pass its location to the server in running execution
defining an environment variable called FACTS_SETTINGS_FILE.

Options that user could define:

[common]

brokerPort: 5000 # Port listening fiware-facts

clotoPort: 8000 # Port listening fiware-cloto

redisPort: 6379 # Port listening redis-server

redisHost: localhost # Address of redis-server

rabbitMQ: localhost # Address of RabbitMQ server

cloto: 127.0.0.1 # Address of fiware-cloto

[mysql]

host: localhost # address of mysgl that fiware-cloto is using
user: # mysgl user

password: # mysqgl password

[logger_root]
level: INFO # Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)

Finally, ensure that you create a folder for logs /var/log/fiware-facts/ (by default), with the right permis-
sions to write in that folder.

mkdir -m /var/log/fiware—facts

3. Starting the server

Execute command:

’gunicorn facts.server:app -b $IP:5000

Where $IP should be the IP assigned to the network interface that should be listening (ej. 192.168.1.33)

16 Chapter 1. Introduction

Fiware-Cloto, Release

You can also execute the server with a different settings file providing an environment variable with the location of the
file:

gunicorn facts.server:app -b $IP:5000
——env FACTS_SETTINGS_FILE=/home/user/fiware-facts.cfg

NOTE: if you want to see gunicorn log if something is going wrong, you could execute the command before adding
—-—log—-file=- at the end of the command. This option will show the logs in your prompt.

When you execute the server you can see some information about the server:

2015-09-24 16:30:10,845 INFO policymanager.facts policymanager.facts 1.7.0
2015-09-24 16:30:10,846 INFO policymanager.facts Running in stand alone mode
2015-09-24 16:30:10,846 INFO policymanager.facts Port: 5000

2015-09-24 16:30:10,846 INFO policymanager.facts PID: 19472

2015-09-24 16:30:10,846 INFO policymanager.facts
https://github.com/telefonicaid/fiware-facts

2015-09-24 16:30:10,896 INFO policymanager.facts Waiting for windowsizes

1.3.2 Sanity check procedures

The Sanity Check Procedures are the steps that a System Administrator will take to verify that an installation is ready
to be tested. This is therefore a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before
proceeding to unit tests, integration tests and user validation.

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show here a quick testing to check
that everything is up and running. For this purpose we send a request to our API in order to test the credentials that we
have from then and obtain a valid token to work with.

In order to make a probe of the different functionalities related to the Policy Manager, we start with the obtention of a
valid token for a registered user. Due to all operations of the Policy Manager are using the security mechanism which
is used in the rest of the cloud component, it is needed to provide a security token in order to continue with the rest of
operations. For this operation we need to execute the following curl sentence.

curl —-d '{"auth": {"tenantName": STENANT,
"passwordCredentials":{"username": S$SUSERNAME, "password": S$PASSWORD}}}'
-H "Content-type: application/json" -H "Accept: application/xml"
http://130.206.80.100:35357/v2.0/tokens

Both $TENANT (Project), SUSERNAME and $PASSWORD must be values previously created in the OpenStack
Keystone. The IP address 10.95.171.115 and the Port 35357 are the data of our internal installation of I1dM, if you
planned to execute it you must changed it by the corresponding IP and Port of the FIWARE Keystone or IdM IP and
Port addresses.

We obtained two data from the previous sentence:

¢ X-Auth-Token

<token expires="2012-10-25T16:35:422" id="a9%9a861db6276414094bcl567£664084d">

e Tenant-Id

1.3. FIWARE Policy Manager - Installation and Administration Guide 17

Fiware-Cloto, Release

’<tenant enabled="true" 1id="c907498615b7456a9513500fe24101e0" name=S$TENANT>

After it, we can check if the Policy Manager is up and running with a single instruction which is used to return the
information of the status of the processes together with the queue size.

curl -v -H 'X-Auth-Token: a9%a861db6276414094bcl567£664084d"
-X GET http://130.206.81.71:8000/v1.0/c907498615b7456a9513500£24101e0

This operation will return the information regarding the tenant details of the execution of the Policy Manager

< HTTP/1.0 200 OK

< Date: Wed, 09 Apr 2014 08:25:17 GMT

< Server: WSGIServer/0.l Python/2.6.6

< Content-Type: text/html; charset=utf-8
{

"owner": "Telefonica I+D",

"doc": "https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/
FIWARE.OpenSpecification.Details.Cloud.PolicyManager",

"runningfrom": "14/04/09 07:45:22",

"version": 1.0,

"windowsize": 5

}

For more details to use this GE, please refer to the Policy Manager - User and Programmers Guide.

List of Running Processes

Due to the Policy Manager basically is running over the python process, the list of processes must be only the python
and redis in case of the facts engine. If we execute the following command:

ps —ewf | grep 'redis\|Python' | grep -v grep

It should show something similar to the following:

UID PID PPID C STIME TTY TIME CMD
501 5287 343 0 9:42PM ttys001 0:02.49 ./redis—-server *:6379
501 5604 353 0 9:40AM ttys002 0:00.20 /Library/Frameworks/Python.framework/

Versions/2.7/Resources/Python.app/Contents/MacOS/Python facts.py

Where you can see the Redis server, and the run process to launch the Python program.

In case of the rule engine node, if we execute the following command:

ps —ewf | grep 'rabbitmg-server\|python' | grep -v grep

It should show something similar to the following:

UID PID PPID C SZ RSS PSR STIME TTY TIME CMD

root 1584 1 0 15:31 2 00:00:00 /bin/sh /etc/rc3.d/
S80rabbitmg-server start

root 1587 1584 0 15:31 2 00:00:00 /bin/bash -c ulimit -S -c O
>/dev/null 2>&1 ; /usr/sbin/rabbitmg-server

root 1589 1587 0 15:31 2 00:00:00 /bin/sh /usr/sbin/rabbitmg-server
root 1603 1589 0 15:31 2 00:00:00 su rabbitmg -s /bin/sh -c
/usr/lib/rabbitmg/bin/rabbitmg-server

root 2038 2011 0 15:32 2 00:00:01 python cloto/environmentManager.py
root 2039 2011 1 15:32 2 00:00:38 /usr/bin/python manage.py

runserver 172.30.1.119:8000

where we can see the rabbitmq process, the run process to launch the Python program and the clips program.

18 Chapter 1. Introduction

Fiware-Cloto, Release

Network interfaces Up & Open

Taking into account the results of the ps commands in the previous section, we take the PID in order to know the
information about the network interfaces up & open. To check the ports in use and listening, execute the command:

lsof -1 | grep "$PID1\|S$SPID2"

Where $PID1 and $PID2 are the PIDs of Python and Redis server obtained at the ps command described before, in the
previous case 5287 (redis-server) and 5604 (Python). The expected results must be something similar to the following:

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

redis—-ser 5287 fla 4u IPv6 0x8ab557b63682bblef 0t0 TCP x:6379 (LISTEN)
redis-ser 5287 fla 5u IPv4 0x8a557b636a696637 0t0 TCP %:6379 (LISTEN)
redis-ser 5287 fla 6u IPv6 0x8a557b63682b9%fef 0t0 TCP localhost:6379->
localhost:56046 (ESTABLISHED)

Python 5604 fla 7u IPv6 0x8a557b63682bacaf 0t0 TCP localhost:56046-—>
localhost:6379 (ESTABLISHED)

Python 5604 fla 9u IPv4 0x8a557b6369c90637 0t0 TCP #*:commplex-main
(LISTEN)

In case of rule engine, the result will we the following:

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

python 2039 root 3u IPv4 13290 0t0 UDP %x:12027

python 2039 root 4u IbPv4 13347 0t0 TCP policymanager.novalocal
:irdmi (LISTEN)

python 2044 root 3u IPve 13354 0t0 TCP localhost:38391->localhost
camgp (ESTABLISHED)

Databases

The last step in the sanity check, once that we have identified the processes and ports is to check the database that have
to be up and accept queries. For the first one, if we execute the following commands inside the code of the rule engine
server:

$ mysgl -u user -p

Where user is the administration user defined for cloto database. The previous command should ask you for the
password and after that show you:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 155286
Server version: 5.6.14 MySQL Community Server (GPL)

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysqgl>

In order to show the different tables contained in this database, we should execute the following commands with the
result that we show here:

mysgl> SHOW TABLES FROM cloto;

1.3. FIWARE Policy Manager - Installation and Administration Guide 19

Fiware-Cloto, Release

| Tables_in_cloto |

| auth_group |
| auth_group_permissions |
| auth_permission |
| auth_user |
| auth_user_groups |
| auth_user_user_permissions |
| cloto_entity |
| cloto_entity_specificrules |
| cloto_entity_subscription |
| cloto_rule |
| cloto_serverinfo |
| cloto_specificrule |
| cloto_subscription |
| cloto_tenantinfo |
| django_content_type |
| django_session |
| django_site |

Now, we can execute a simple test query in order to check the content of the table:

mysgl> select » from cloto.cloto_serverinfo;

It should return with the following information:

— —— —————"—"—ea>Ya i fom e ———— kiPB5HBb . +
| 1d | owner | version | runningfrom | doc |
fom e fom o o +
| 1 | Telefonica I+D | 1 | 2014-10-02 14:04:41 | {file} |
Fom fommm Fom R +

Where ({file} is the path to the OpenSpecification file whose value is https://forge.fi-
ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/FIWARE.OpenSpecification.Details.Cloud.PolicyManager

1.3.3 Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will take to locate the source of an error in a
GE. Once the nature of the error is identified with these tests, the system admin will very often have to resort to more
concrete and specific testing to pinpoint the exact point of error and a possible solution. Such specific testing is out of
the scope of this section.

Resource availability

The resource availability in the node should be at least 2Gb of RAM and 8GB of Hard disk in order to prevent enabler’s
bad performance in both nodes. This means that bellow these thresholds the enabler is likely to experience problems
or bad performance.

Remote Service Access

We have internally two components to connect, the Rule engine component and the facts engine component. After
that two internals component, we should connect with the the IIM GE. An administrator to verify that such links are
available will use this information.

20 Chapter 1. Introduction

https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/FIWARE.OpenSpecification.Details.Cloud.PolicyManager
https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/FIWARE.OpenSpecification.Details.Cloud.PolicyManager

Fiware-Cloto, Release

The first step is to check that the facts engine is up and running, for this purpose we can execute the following curl
command, which is a simple GET operation:

’root@fiware:~# curl http://$IP:S$PORT/v1.0

The variable will be the IP direction in which we have installed the facts engine. This request should return the status
of the server if it is working properly:

‘{"fiwareffacts":"Up and running..."}

In order to check the connectivity between the rule engine and the IdM GE, due to it must obtain a valid token and
tenant for a user and organization with the following curl commands:

root@fiware:~# curl

-d '"{"auth": {"tenantName": "<MY_ORG_NAME>",

"passwordCredentials":{"username": "<MY_USERNAME>", "password": "<MY_PASS>"}}}'
-H "Content-type: application/json" -H "Accept: application/xml"
http://<KEYSTONE_HOST>:<KEYSTONE_PORT>/v2.0/tokens

The will be the name of my Organization/Tenant/Project predefined in the IdM GE (aka Keystone). The and variables
will be the user name and password predefined in the IdM GE and finally the and variables will be the IP direction
and port in which we can find the IdM GE (aka Keystone). This request should return one valid token for the user
credentials together with more information in a xml format:

<?xml version="1.0" encoding="UTF-8"7?>
<access xmlns="http://docs.openstack.org/identity/api/v2.0">
<token expires="2012-06-30T15:12:16Z" id="9624f3e042a64b4f980a83afbbb95cd2">
<tenant enabled="true" id="30c60771b6d144d2861b21e442f0bef9" name="FIWARE">
<description>FIWARE Cloud Chapter demo project</description>
</tenant>
</token>
<serviceCatalog>

</serviceCatalog>
<user username="fla" id="b988ec50efecd4aadal8ac5089%adddbafo" name="fla">
<role id="32b6ele715fl4fldafde24b26cfca3l0" name="Member"/>
</user>
</access>

With this information (extracting the token id), we can perform a GET operation to the rule engine in order to get
the information related to the window size associated to a tenant. For this purpose we can execute the following curl
commands:

curl -v -H 'X-Auth-Token: a%9a861db6276414094bcl567£664084d"
-X GET "http://<Rule Engine HOST>:8000/v1.0/c8da25c7a373473£8e8945f5b0da8217"

The variable will be the IP direction in which we have installed the Rule engine API functionality. This request should
return the valid info for this tenant in the following json response structure:

{
"owner": "Telefonica I+D",
"doc": "https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php
/FIWARE.OpenSpecification.Details.Cloud.PolicyManager",
"runningfrom": "14/04/11 12:32:29",
"version": "1.0",
"windowsize": 5

1.3. FIWARE Policy Manager - Installation and Administration Guide 21

Fiware-Cloto, Release

Resource consumption
State the amount of resources that are abnormally high or low. This applies to RAM, CPU and I/O. For this purpose
we have differentiated between:

» Low usage, in which we check the resources that the JBoss or Tomcat requires in order to load the laaS SM.

* High usage, in which we send 100 concurrent accesses to the Claudia and OpenStack API.

The results were obtained with a top command execution over the following machine configuration:

Table 1.1: Machine Info

Machine Rule Engine Node | Facts Engine Node

Type Machine Virtual Machine Virtual Machine

CPU 1 core @ 2,4Ghz Intel(R) Xeon(R) CPU X5650 Dual Core @ 2.67GHz
RAM 2GB 2GB

HDD 20GB 20GB

Operating System | CentOS 6.3 CentOS 6.3

The results of requirements both RAM, CPU and I/O to HDD in case of Rule engine node is shown in the following
table:

Table 1.2: Resource Consumption (in JBoss node)

Characteristic | Low Usage High Usage

RAM 1,2GB ~ 70% 1,4GB ~ 83,5%
CPU 1,3% of a 2400MHz | 95% of a 2400MHZ
/0 HDD 6GB 6GB

And the results of requirements both RAM, CPU and I/O to HDD in case of Tomcat node is shown in the following
table:

Table 1.3: Resource Consumption (in Tomcat node)

Characteristic | Low Usage High Usage
RAM 1,2GB ~ 63% 1,5GB ~ 78%
CPU 0,8% of a 2400MHz | 90% of a 2400MHZ
/0 HDD 6GB 6GB
1/0 flows

The rule engine application is hearing from port 8000 and the Fact-Gen application (by default) is hearing in the port
5000. Please refer to the installation process in order to know exactly which was the port selected.

1.4 FIWARE Policy Manager - Architecture Description

1.4.1 Copyright

Copyright © 2012 by Telefénica I+D. All Rights Reserved.

1.4.2 Legal Notice

Please check the following Legal Notice to understand the rights to use these specifications.

22 Chapter 1. Introduction

Fiware-Cloto, Release

1.4.3 Overview

This specification describes the Policy Manager GE, which is a key enabler to scalability and to manage the cloud
resources based on defined policies or rules.

The Policy Manager GE provides the basic management of cloud resources based on rules, as well as management
of the corresponding resources within the FI-WARE Cloud Instance like actions based on physical monitoring or
infrastructure, security monitoring of resources and services or whatever that could be defined by a facts, actions and
rules.

The baseline for the Policy Manager GE is PyCLIPS, which is a module to interface CLIPS expert system and python
language. The reason to take PyCLIPS is to extend the OpenStack ecosystem with a expert system written in the
same language that the rest of the OpenStack services. Hence, Policy Manager offers the decision-making ability,
independently of the type of resource (physical/virtual resources, network, service or whatever), able to solve complex
problems within the Cloud field by reasoning about the knowledge base, represented by facts and rules.

The main functionality that the Policy Manager GE provides is:

* Management of scalability rules. It is possible to manage rules whose target is not to scale and this is also
included in the main functionality of component.

* Management of different facts related to virtual machines and other facts in order to launch actions from the
rules whose conditions are met.

The Policy Manager needs interaction with the user who provides the specification of the rules and actions that com-
pound the knowledge system following a CLIPS language format. The facts are received from any producer of in-
formation that monitors the different resources of the cloud system. Context Broker GE, like publish/subscribe/notify
system, interacts with the Policy Manager GE to suscribe to the information (facts) of Virtual Machines or whatever in
order to get updated usage status of resources (ej. cpu, memory, or disk) or resources that we want to monitor. These
facts are used by the inference engine to deduce new facts based on the rules or infer new actions to take by third
parties.

/ PMI v Policy Manager GE
| \
| |
-7 | AP Age nt Cﬂndlﬂ[g:ei:ltﬂﬂ ns I
e LA |
ser |
[Subscribe] |
| |
Context | |
Broker [Rules Engine ap |
GE —~ _ %
| 7 I
L | O+ |
L4 3 I
S |
S) |
[ContextData] I Fadt-Gen Fact Queue '
\]
N e o e e e e e e _ s

1.4. FIWARE Policy Manager - Architecture Description 23

http://pyclips.sourceforge.net/web/

Fiware-Cloto, Release

Policy Manager architecture specification

Target Usage

The Policy Manager GE is an expert system that provides independent server in the OpenStack ecosystem which evalu-
ates the current state of the knowledge-base, applied the pertinent rules and infers new knowledge into the knowledge-
base. Currently, the actions are designed to scale up and down Virtual Machines according to facts received from them
(memory, cpu, disk or whatever). There are more kind of usage for these rules and is the user who defines conditions
and actions he wants for. It is the user when specify the rule and actions who specify which is the use that we want to
give to this GE.

1.4.4 Main concepts

Following the above FMC diagram of the Policy Manager, in this section we introduce the main concepts related to
this GE through the definition of their interfaces and components and finally an example of their use.

Basic Concepts

The Policy Manager manages a set of rules which throws actions when certain conditions are activated when some
facts are received. These rules can be associated with a specific virtual machine or be a general rule that affects the
entire system. The key concepts, components and interfaces associated to the Policy Manager GE and visible to the
cloud user, are described in the following subsections.

Entities

The main entities managed by the Policy Manager are as follows:

* Rules. They represent the policy that will be used to infer new facts or actions based on the facts received from
the Context Broker GE. Usually, rules are some type of statement of the form: if then . The if part is the rule
premise or antecedent, and the then part is the consequent. The rule fires when the if part is determined to be
true or false. They are compound of 2 types of rules:

— General Rules. They represent a global policy to be considered regardless specific virtual machines. Each
rule is compound of a name to identify it and the condition and action which is fired. GeneralRules entities
are represented as RuleModel.

— Specific Rules. They represent a policy associated to a specific virtual machine. SpecificRules entities are
represented as SpecificRuleModel.

 Information. It represent the information about the Policy Manager API and tenant information. Tenant infor-
mation contains the window size, a modificable value for manage the minimal number of measures to consider
a real fact for Rules Engine.

* Facts. They represent the measurement of the cloud resources and will be used to infer new facts or actions. an
average of measures from a virtual machine trough the Context Broker GE. The are the base of the reasoning
process.

 Actions, They are the output of the knowledge system related to a sense input and the are the implementation
of the response rule or consequent.

24 Chapter 1. Introduction

Fiware-Cloto, Release

Interfaces

The Policy Manager GE is currently composed of two main interfaces:

The Policy Manager interface (PMI) is the exposed REST interface that implements all features of the Policy
Manager exposed to the users. The PMI allows to define new rules an actions together with the activation of
a specific rule asociated to a resource. Besides, this interface allow to get the information about this GE (url
documentation, windows size, owner and time of the last server start). Besides, the PMI implements the NGSI-
10 interface in order to receive the facts provided by Context Broker (notification of the context data) related to
a virtual server.

Context Broker Manager Interface (NGSI) is invoked in order to subscribe the Policy Manager to a specific
monitoring resource. See NGSI-10 Open RESTful Api Specification for more details.

Architecture Components

The Policy Manager includes a data repository which keeps the rules stored and information about the server, tenants.

API-Agent (PMI) is responsible of offering a RESTful interface to the Policy Manager GE users. It triggers
the appropriate manager to handle the request.

— InfoManager, is responsible for the management of general information about the server running and
specific tenant information like the window size.

— RuleManager, is responsible for the management of all related with general rules and rules for specified
virtual machines.

Rules Engine. Is responsible for handling when a condition is satisfied based on the facts received and launch
the associated actions.

— RuleEngineManager, provides management for access the rule engine based on CLIPS, adding the new
facts to the Rule Engine and check rule conditions.

— DbManager, provides connection to the Data Base.
Fact-Gen, provides the mechanisms to insert facts into the rule Engine from context data received.

— FactGenManager, is responsible for the management of all related with data context build facts from this
data.

Condition & Actions Queue, which contains all the rules and actions that can be managed by Policy Manager,
including the window size for each tenant.

Facts Queue, which represents the actual instantiation of resources for a specific resource. For each element in
the inventory (called *-Instance), there is an equivalent in the catalogue. This queue is implemented with a list
on a data structure server in order to obtain a rapid response of the system.

Example Scenario

The Policy Manager GE is involved in three different phases:

Management of the rules provided by users.
Populate rule engine with facts collected from the data context.

Management of rules status at runtime.

1.4. FIWARE Policy Manager - Architecture Description 25

https://forge.fi-ware.eu/plugins/mediawiki/wiki/data/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification_ES

Fiware-Cloto, Release

Rules Management

The management of rules involves several operations to prepare the scalability system working. First of all, the rules
have to be defined. The definition of a rule includes the specification of the actions to be launched, the conditions that
must be inferred and a descriptive name so user can easily recognize the rule. This rule can also be specified for a
single virtual machine.

Secondly, to get facts, it must subscribe the virtual machine to Context Broker GE in order to receive notifications
of the resources status. Context Broker GE updates the context of each virtual machined to which we are subscribed
and the Policy Manager stores this information in a Queue system in order to get a stable monitored value without
temporal oscillation of the signal.

Finally, the rules can be deleted or redefined. When a rule is deleted, Policy Manager unsubscribe the virtual machine
from Context Broker if rule is a Specific Rule.

Collecting data

The Context Broker has subscribed a number of virtual machines. Each virtual machine publishes the status of its
resources in the Context Broker GE and Policy Manager receives this notifications. After that, Policy Manager is in
charge of build facts and insert them into de Rule Engine. When we receive a number of Facts equal to the window
size, the Policy Manager calculates the arithmetic mean of the data and insert its value into the Rule Engine. Finally,
Policy Manager discards the oldest value in the queue.

Runtime Management

During the runtime of an application, the Policy Manager can detect if a rule condition is inferred and is in charge of
launch actions associated with, this action will be communicated to the users that was subscribed to this specific rule.

1.4.5 Main Interactions

The following pictures depicts some interactions between the Policy Manager, the Cloud Portal as main user in a typ-
ical scenario. For more details about the Open REST API of this GE, please refer to the Open Spec API specification.

First of all, every interaction need Authentication sequence before starting. Authentication sequence follows like this:

26 Chapter 1. Introduction

Fiware-Cloto, Release

Authentication Sequence

RestResource AutherizationManager
generate_adminToken() >
IdM connection
< AdminToken
checkToken{Token) >
|dM connection
alt [Valid Token]
< token Information
[Invalid Token]
< LinAuthorized
RestResource AutherizationManager

1. The Policy Manager requests a new administration Token from IdM in order to validate the future token received
from the Cloud Portal through generate_adminToken() interface.

2. The IdM returns a valid administration token that will be used to check the Token received from the Cloud Portal
requested message through the checkToken(Token) interface.

3. The IdM could return 2 options:
(a) If the Token is valid, the IdM returns the information related to this token.
(b) If the Token is invalid, the IdM returns the message of unauthorized token.
The next interactions gets information about the Policy Manager server:

1. The User through Cloud Portal or CLI sends a GET operation to request information about the Policy Manager
through getInformation().

2. The InfoManager returns the information related to the Policy Manager GE associated to this tenant.
(a) Owner of the GEi.
(b) Time and date of the last wake up of the Policy Manager GE.
(c) URL of the open specification specification.
(d) Window size of the facts stabilization queue.

Following, you can see request to update the window size.

1.4. FIWARE Policy Manager - Architecture Description 27

Fiware-Cloto, Release

Get information of the API
Sequence

RestResource GeneralView InfoMamager

GET(reqguest, tenantld) >

getinformationd)

>
< HitpResponse
< HitpResponse
RestResource GeneralView InfoManager

Fig. 1.1: Get Information sequence

Update windowsize Sequence

RestResource GeneralView InfoManager

PUT{request, tenantld) >

updateWindowSize(tenantld, windowsize)

-
< tenantinfo
< HitpResponse
RestResource GeneralView InfeManager

Fig. 1.2: Update Window Size sequence

28 Chapter 1. Introduction

Fiware-Cloto, Release

1. The User through Cloud Portal or CLI sends a PUT message to the Policy Manager GE to update the window
size of the tenantld through the updateWindowSize() message.

2. The Policy Manager returns a message with the information associated to this tenantld in order to confirm that
the change was made.

Next, you can see the interactions to create general or specific rule sequence

Create a general or specific rule Sequence

RestResource GeneralRulesView RuleManager
POST(request, tenantld) >
create_general_rule(tenantld, rule) >
alt [Correct]
rulehdodel
-
HttpR:
< pResponse
[Something went wrong]
Excepti
< ceptlion
< HitpResponseServerError
PO ST (request, tenantid) >
create_specific_rule(tenantld, serverld, rule) >
alt [Correct]
leModel
< ru =
HitpResponse
o P po
[Something went wrong]
Exception
o P
< HitpResponseServerError
RestResource GeneralRulesView RuleManager

Fig. 1.3: Create general or specific rule sequence

1. The User through Cloud Portal or CLI requests a POST operation to create a new general/specific rule to the
Policy Manager.

(a) In case of general one, the create_general_rule() interface is used, with params fenantld, the OpenStack
identification of the tenant, and the rule description.

1.4. FIWARE Policy Manager - Architecture Description 29

Fiware-Cloto, Release

(b) In case of specific one, the create_specific_rule() interface is used, with params tenantld, the OpenStack
identification of the tenant, the serverld, the OpenStack identification of the server, and the rule description.

2. The Rule Manager returns the new ruleModel associated to the new requested rule and the Policy Manager
returns the respense to the user.

(a) If something was wrong, due to incorrect representation of the rule, a HttpResponseServerError is returned
in order to inform to the user that something was wrong.

Afterward, you could see the interactions to get information about already created general rules:

Get all general rules Sequence

ResiResource GeneralRulesView RuleManager
et(request, tenantld) >
get_all_rules(tenantld) >
alt [Correct]
rules
-+
HitpR
< pResponse
[Something wrong getting rules]
Excepti
< ception
< HitpResponseServerError
ResiResource GeneralRulesView RuleManager

Fig. 1.4: Get all general rules sequence

1. The User through Cloud Portal or CLI requests a GET operation to the Policy Manager in order to receive all
the general rules associated to a tenant through get_all_rules() interface with parameter tenantld

2. The Rule Manager component of the Policy Manager responses with the list of general rules.
3. If the tenant identify is wrong or whatever the Rule Manager responses a HttpResponseServerError.
Following, the interactions to get detailed information about getting general or specific rule sequence.
1. The User through Cloud Portal or CLI requests a GET operation to recover the rules.
(a) If we decide to recover a general rule, the get_rule() interface should be used with ruleld parameter

(b) Otherwise, if you decir to recover a specific rule, the get_specific_rule() interface should be used with the
ruleld parameter.

30 Chapter 1. Introduction

Fiware-Cloto, Release

Get general or specific rule Sequence

RestResource GeneralRulesViewRule RuleManager ServerRulesViewRule
Get{request, tenantld, ruleld) >
1_rulefruleld
get_rule(ruleld) >
alt [Correct]
< rulehModel
HttpR:
< pResponse
[Something wrong getting the rule]
< Excepticn
< HttpResponseServerError

Get{request, tenantld, ruleld) >

< get_specific_rule{ruleld)

alt [Correct]
leModed

ru e >

< HitpResponse

[Something wrong getting the rule]
Excepti

ception >

< HttpResponseServerError

RestResource GeneralRulesViewRule RuleManager ServerRulesViewRule

Fig. 1.5: Get general or specific rule sequence

1.4. FIWARE Policy Manager - Architecture Description

31

Fiware-Cloto, Release

2. The Rule Manager of the Policy Manager will return the ruleModel that it is stored in the Rule & Action Queue.
If something was wrong, Policy Manager will return HttpResponseServerError to the user.

Next off, the interactions to delete general or specific rule.

Delete general or specific rule Sequence
RestResource GeneralRulesViewRule RuleManager ServerRulesViewRule

Delete(request, tenantld, ruleld) >

delete_rule(ruleld)

>
alt [Correct]
T
< rue
HttpResponse
< P P
[Something wrong deleting the rule]
Excepti
< ception
< HitpResponseServerError
Delete(request, tenantld, ruleld) >
< delete_specific_rule(ruleld)
alt [Correct]
T
rue >
HitpR:
< pResponse
[Something wrong deleting the rule]
Exception
= >
< HitpResponseServerError
RestResource GeneralRulesViewRule RuleManager ServerRulesViewRule

Fig. 1.6: Delete a general or specific rule sequence

1. The User through Cloud Portal or CLI requests the deletion of a general or specific rule to the Policy Manager
with the identity of the tenant and rule.

(a) The view sends the request to the RuleManager by calling the delete_rule() interface with identity of the
rule as parameter of this interface to delete it.

(b) Otherwise, if the rule is specific for a server, the views sends the request to the RuleManager by calling
the delete_specific_rule() interface, with identity of the rule as parameter of this interface to delete it.

2. If the operation was ok, the RuleManager responses a HttpResponse with the ok message, by contrast, if some-
thing was wrong, it returns a HttpResponseServerError with the details of the problem.

Finally, the interactions to update a specific or general rule

1. The User through Cloud Portal or CLI requests the update of a general or specific rule to the Policy Manager
with the identity of the tenant and rule.

32 Chapter 1. Introduction

Fiware-Cloto, Release

Update a general or specific rule Sequence

RestResource GeneralRulesView RuleManager ServerRulesView

PUT{request, tenantld, ruleld) _

update_general_rule(tenantid, ruleld)

alt [Correct]

ruleModel

F 3

HitpResponse

+&
[Something went wrong]

Exception

'Y

< HitpResponseServerError

PUT{request, tenantld, ruleld)

[

Ll
, update_specific_rule(tenantld, ruleld)
|

alt [Correct]

ruleModel o
Ll

< HitpResponse

[Something went wrang]

Exception N
Ll

< HitpResponseServerError

RestResource GeneralRulesView RuleManager ServerRulesView

Fig. 1.7: Update a general or specific rule sequence

1.4. FIWARE Policy Manager - Architecture Description

33

Fiware-Cloto, Release

(a) The view sends the request to the RuleManager by calling the update_general_rule() interface with iden-
tity of the tenant and rule as parameters of this interface to delete it.

(b) Otherwise, if the rule is specific for a server, the views sends the request to the RuleManager by calling
the update_specific_rule() interface, with identity of the tenant and rule as parameters of this interface to
delete it.

2. If the operation was ok, the RuleManager responses with a new ruleModel class created and the API returns a
HttpResponse with the ok message, by contrast, if something was wrong, it returns a HttpResponseServerError
with the details of the problem.

1.4.6 Basic Design Principles
Design Principles

The Policy Manager GE has to support the following technical requirements:
* The condition to fire the rule could be formulated on several facts.

¢ The condition to fire the rule could be formulated on several interrelated facts (the values of certain variables in
those facts match).

 User could add facts “in runtime” via API (without stop server).
* User could add rules “in runtime” via API (without stop server).
* That part of the implementation of the rule would:
— Update facts.
— Delete facts.
— Create new facts.
* Actions can use variables used in the condition.
¢ Actions implementation can invoke REST APIs.
* Actions can send an email.
* The Policy Manager should be integrated into the OpenStack without any problem.
* The Policy Manager should interact with the IdM GE in order to offer authentication functionality to this GE.

* The Policy Manager should interact with the Context Broker GE in order to receive monitoring information
from resources.

Resolution of Technical Issues

When applied to Policy Manager GE, the general design principles outlined at Cloud Hosting Architecture can be
translated into the following key design goals:

» Rapid Elasticity, capabilities can be quickly elastically provisioned and released, in some cases automatically,
to scale rapidly outward and inward commensurate with demand. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be appropriated in any quantity at any time.

¢ Availability, Policy Manager should be running all the time without interruption of the service due to the nature
of itself.

* Reliability, Policy Manager should assure that the activations of rule was produce by correct inference based on
facts received from a Context Broker GE.

34 Chapter 1. Introduction

http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Cloud_Hosting_Architecture

Fiware-Cloto, Release

* Safety, is the Policy Manager has any problem, it should continue working without any catastrophic conse-
quences on the user(s) and the environment.

* Integrity, Policy Manager does not allow the alteration of the facts queue and/or rules and actions queue.

 Confidentiality, Policy Manager does not allow the access to facts, rules and actions associated to a specitic
tenant.

Regarding the general design principles not covered at Cloud Hosting Architecture, they can be translated into the
following key design goals:

¢ REST based interfaces, for rules and facts.
* The Policy Manager GE keeps stored all rules provisioned for each user.

* The Policy Manager GE manage all facts and checks when actions should be fired.

1.5 FIWARE Policy Manager - Open RESTful API Specification

1.5.1 Introduction to the PMI Policy API

Please check the FI-WARE Open Specifications Legal Notice to understand the rights to use FI-WARE Open Specifi-
cations.

PMI Policy API

The PMI Policy API is a RESTful, resource-oriented API accessed via HTTP/HTTPS that uses JSON-based represen-
tations for information interchange that provide functionalities to the Policy Manager GE. This document describes
the FI-WARE-specific features extension, which allows cloud user to extend the basic functionalities offered by Policy
Manager GE in order to cope with elasticity management.

Intended Audience

This specification is intended for both software developers and Cloud Providers. For the former, this document pro-
vides a full specification of how to interoperate with Cloud Platforms that implements PMI API. For the latter, this
specification indicates the interface to be provided in order to create policies and actions associated the facts received
from cloud resources (currently associated to servers but not only oriented to them). To use this information, the reader
should first have a general understanding of the Policy Manager Generic Enabler and also be familiar with:

e RESTful web services
« HTTP/1.1 (RFC2616)

¢ JSON data serialization formats.

API Change History

This version of the PMI Policy API Guide replaces and obsoletes all previous versions. The most recent changes are
described in the table below:

1.5. FIWARE Policy Manager - Open RESTful API Specification 35

http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Cloud_Hosting_Architecture
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Open_Specifications_Legal_Notice
https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/FIWARE.ArchitectureDescription.Cloud.PolicyManager
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc4627.txt?number=4627

Fiware-Cloto, Release

Revision Date Changes Summary

Oct 17,2012 . . .
¢ * First version of the PMI Policy API.

How to Read This Document

In the whole document the assumption is taken that the reader is familiarized with REST architecture style. Along
the document, some special notations are applied to differentiate some special words or concepts. The following list
summarizes these special notations.

* A bold, mono-spaced font is used to represent code or logical entities, e.g., HTTP method (GET, PUT, POST,
DELETE).

* An italic font is used to represent document titles or some other kind of special text, e.g., URI.

» The variables are represented between brackets, e.g. {id} and in italic font. When the reader find it, can change
it by any value.

For a description of some terms used along this document, see 1.

Additional Resources
You can download the most current version of this document from the FI-WARE API specification selecting PDF

Version from the Toolbox menu (left side), which will generate the file to download it. For more details about the
Policy Manager that this API is based upon, please refer to FI-WARE Cloud Hosting.

1.5.2 General PMI Policy API Information

Resources Summary

A graphical diagram, including the different Uniform Resource Names (URNs) that can be used in the API, is shown
here. The URL is http://{serverRoot}:{serverPort}.

Policy Manager Open RESTful API resource summary

Authentication

Each HTTP request against the PMI requires the inclusion of specific authentication credentials. The specific imple-
mentation of this API supports OAuth v2.0 authentication schemes and will be determined by the specific provider
that implements this GE and Interface. Please contact with it to determine the best way to authenticate against this
API. Remember that some authentication schemes may require that the API operate using SSL over HTTP (HTTPS).

36 Chapter 1. Introduction

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Cloud.SM#Main_conceptsFIWARE.ArchitectureDescription.Cloud.SM
https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/Cloud_Hosting
http:/

Fiware-Cloto, Release

—— [{domain_id}/{tenantld}

[servers

I—' [{serverld}

— frules

— [{ruleld}

—— [subscription

— /{subscriptionid}

Fig. 1.8: Policy_Manager_open_specification_diagram_v1.png

Representation Format

The PMI Policy API resources are represented by hypertext that allows each resource to reference other related re-
sources. More concisely, JSON format are used for resource representation and URLs are used for referencing other
resources by default. The request format is specified using the Content-Type header and is required for operations
that have a request body. The response format can be specified in requests using either the Accept header with values
application/json or adding a .json extension to the request URL. In the following examples we can see the different
options in order to represent format.

POST /v1.0/d3fdddc6324c439780a6fd963a9fa148/servers/15520fa6dc914f97bd1e54f8e1444d41 HTTP/1.1
Host: servers.api.openstack.org

Content-Type: application/json

Accept: application/json

X-Auth-Token: eaaafd18-0Ofed-4b3a-81b4-663c99eclcbb

POST /v1.0/d3fdddc6324c439780a6fd963a9fal148/servers/15520fa6dc914f97bd 1e54f8e1444d41.json HTTP/1.1
Host: servers.api.openstack.org

Content-Type: application/json

X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb

Representation Transport

Resource representation is transmitted between client and server by using HTTP 1.1 protocol, as defined by IETF
RFC-2616. Each time an HTTP request contains payload, a Content-Type header shall be used to specify the MIME
type of wrapped representation. In addition, both client and server may use as many HTTP headers as they consider
necessary.

Resource ldentification

API consumer must indicate the resource identifier while invoking a GET, PUT, POST or DELETE operation. PMI
Policy API combines both identification and location by terms of URL. Each invocation provides the URL of the target
resource along the verb and any required input data. That URL is used to identify unambiguously the resource. For
HTTP transport, this is made using the mechanisms described by HTTP protocol specification as defined by IETF
RFC-2616.

1.5. FIWARE Policy Manager - Open RESTful API Specification 37

Fiware-Cloto, Release

PMI Policy API does not enforce any determined URL pattern to identify its resources. Anyway the SM Policy
API follows the HATEOAS principle (Hypermedia As The Engine Of Application State). This means that resource
representation contains the URLs of the related resources (e.g., book representation contains hyperlinks to its chap-
ters; chapter representation contains hyperlinks to its pages...). API consumer obtains the server representation as its
following point, which in turn provides hyperlinks that directly or indirectly take to other resources like scalability
rules.

Some PMI Policy API entities provide an instance identifier property (instance ID). This property is used to identify
unambiguously the entity but not the REST resource used to manage it, which is identified by its URL as described
above. It is common that most implementations make use of instance ID to compose the URL (e.g., the book with
instance ID 1492 could be represented by resource http://.../book/1492), but such an assumption should not be taken
by API consumer to obtain the resource URL from its instance ID.

Links and References

Resources often lead to refer to other resources. In those cases, we have to provide an ID or an URL to a remote
resource. see OpenStack Compute Developer Guide on their application to infrastructural resources.

Limits

Rate Limits

Absolute Limits

Determining Limits Programmatically

n.a.

Versions

This section shows the version of this API. You can see the historical change of the API at the beginning of this
document. Currently, the version of this API is the 1.0.

Extensions

Faults

n.a.

38 Chapter 1. Introduction

http://.../book/1492
http://docs.openstack.org/api/openstack-compute/2/content/LinksReferences.html

Fiware-Cloto, Release

1.5.3 API Operations

In this section we go in depth for each operation. These operations were described in the Policy Manager Architec-
tural description. The FI-WARE programmer guide will also provide examples of how to use this API. The specify
operations of this extensions are related to the management of scalability rules.

General Operations

This section has the general operations related to this service.

Get the information of the API

Verb | URI Description
GET /{tenantld}/ | Get information about this current API.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation does not require a request body and lists the information of the current version of the API. The following
examples show a JSON response for the API operation:

Response:

{
"owner": "TELEFONICA I+D",
"windowsize": <windows_size>,
"version": "<API_version>",
"runningfrom": "<last_launch_date>
"doc": "<URL_DOCUMENTATION>"

}

The descriptions of the returned values are the following:
* owner is the key whose value is the company name that develops this API. Its value is fixed to “Telefonica I+D”.

» windowsize is the key that represents the window size () to stabilize the values of the measures probes to
checking rules and taking actions. This value is very important due to allow resolving false positives that could
launch the action to scaling up and down a server.

* version is the key whose value is the version () of the API currently in execution.

* runningfrom is the key whose value is the date of the last launch () of the service. This value takes the ISO
8601 an example of this value 2013-10-04 20:32:17.

* doc is the key whose value is the link to this API specification.

Update the window size

Verb | URI Description
PUT /{tenantld}/ | Update the window size of the service.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

1.5. FIWARE Policy Manager - Open RESTful API Specification 39

https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/FIWARE.ArchitectureDescription.Cloud.PolicyManager
https://forge.fi-ware.org/plugins/mediawiki/wiki/fi-ware-private/index.php/FIWARE.ArchitectureDescription.Cloud.PolicyManager

Fiware-Cloto, Release

This call updates the window size of the service in order to change the stabilization window size to be applied to the
monitoring data received from the Monitoring GE. The request is in JSON format and the response has no body.

Request:

{
"windowsize": <windows_size>

}

Where windowsize is the key whose value is the size of the windows to stabilized the values of the measures probes
to checking rules and taking actions. This value is very important due to allow resolving false values that could launch
the action to scaling up and down a server.

Response:

{

"windowsize": <windows_size>

Servers

This section has the operations related to the subscription to the platform together with the rules associated to the
servers to be analyzed by the rules engine.

Get the list of all servers’ rules

Verb | URI Description
GET | /{tenantld}/servers | Get the list of all servers registered in the platform.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

Returns a list of servers with their rules. There is no body in the request and the response is the following one:

Response:

{
"servers": [
{
"serverId": "<serverId>",
"rules": [
{
"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>,
"ruleId": "<RULE_ID>"

"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>,
"ruleId": "<RULE_ID>"

"serverId": "<serverId>",
"rules": [

40 Chapter 1. Introduction

Fiware-Cloto, Release

"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>,
"ruleId": "<RULE_ID>"

"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>,
"ruleId": "<RULE_ID>"

}

The values that you receive are the following:

« serverld is the key whose value specifies the server ID in the URI, following the OpenStack ID format. An
example of it is the id 52415800-8b69-11e0-9b19-734{6af67565.

* condition is the key whose value is the description of the scalability rule associated to this server. It could be
one or more than one. You can find an example condition at the end of this document.

« action is the key whose value represents the action to take over the server. Its values are up and down.

* ruleld is the key that represents the id of the rule, following the OpenStack Id format (e.g. 52415800-8b69-
11e0-9b19-734£6£006e54).

Get the list of all rules of a server

Verb | URI Description
GET | /{tenantld}/servers/{serverld} | Get all rules related to specified server.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation returns the list of elasticity rules associated with a server identified with its {serverld}. This operation
does not require a body and the response is in JSON format.

Response:

{
"serverId": "<serverId>",
"rules": [

"name": <NAME>,

"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>,
"ruleId": "<RULE_ID>"

"name": <NAME>,

"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>,
"ruleId": "<RULE_ID>"

1.5. FIWARE Policy Manager - Open RESTful API Specification 41

Fiware-Cloto, Release

}

The values that you receive are the following:

« serverld is the key whose value specifies the server ID in the URI, following the OpenStack ID format. An
example of it is the id 52415800-8b69-11e0-9b19-734{6af67565.

* condition is the key whose value is the description of the scalability rule associated to this server. It could be
one or more than one and the format of this rule is the following:

* action is the key whose value represents the action to take over the server. Its values are up and down.

* ruleld is the key that represents the id of the rule, following the OpenStack Id format (e.g. 52415800-8b69-
11e0-9b19-734£6£006e54).

Update the context of a server

Verb | URI Description
POST | /{tenantld}/servers/{serverld} | Update Context of a specific server.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation updates the context related to a specific server, identified with its serverld. The context information
contains the description of the CPU, Memory, Disk and/or Network usages. This message follows the NGSI-10
information model but using JSON format and the response has no body.

Request:
{
"subscriptionId": "<SubscriptionId>",
"originator": "http://localhost/test",
"contextResponses": [
{
"contextElement": {
"type": "Server",
"isPattern": "false",
"id": "<ServerId>",
"attributes": [
{
"name": "CPU",
"type": "Probe",
"value": "0.75",
} 14
{
"name": "Memory",
"type": "Probe",
"value": "0.83",
} 14
{
"name": "Disk",
"type": "Probe",
"value": "0.83",
br
{
"name": "Network",

42 Chapter 1. Introduction

http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/NGSI-9/NGSI-10_information_model
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/NGSI-9/NGSI-10_information_model

Fiware-Cloto, Release

"type": "Probe",
"value": "0.83",

1,
s

"statusCode": {

"COde": "200",
"reasonPhrase": "Ok",
"details": "a message"

}

The values that you receive are the following:
¢ Subscriptionld, is the identifier of a subscription process following the id schemas of OpenStack.
* type, is the element type, in our case, it is always “Server”.

« isPattern, is used to define some type of pattern in order to search the information in the list of attributes. In
our case, this attribute is not used and is always fixed to “false”.

¢ id, is the id of a server, the same id of Serverld of OpenStack.
e attributes, this is a list of attributes:
— type is the type of attribute, for our case, this key has always the value “Probe”.
— value, is the value of the attribute expressed in percentage.
— name is the name of the attribute. In our case, this key takes one of the following values:
% CPU, amount of used CPU of a server.
* Memory, amount of used Memory of the same server.
+ Disk, amount of used disk (HDD) of the same server.
+ Network, amount of used network interface of the same server.

« statusCode, in NGSI-10 this key shows the information that the system should return when it receives this
message. Currently, our implementation does not take into consideration this information but have to be defined
following the standard. Its values are always the same in that case how you can see in the previous example.

Elasticity rules

Create a new elasticity rule

Verb | URI Description
POST | /{tenantld}/servers/{serverld}/rules | Create a new rule associated to the server.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation creates a new elasticity rules associated to a server, which is identified by {serverld}. The request
specifies the rule to be activated and the action associated to it (increase or decrease the number of servers). The
response returns a 200 Ok message together with the id of the new rule created.

Request:

1.5. FIWARE Policy Manager - Open RESTful API Specification 43

Fiware-Cloto, Release

"name": <NAME>,
"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>

}

The values that you receive are the following:
* name is the key whose value represents the name of the rule.

* condition is the key whose value is the description of the scalability rule associated to this server. It could be
one or more than one and the format of this rule is the following:

* action is the key whose value represents the action to take over the server. Its values are up and down.

Response:

{
"serverId": <serverId>,
"ruleId": <RULE_ID>

}

The values that you receive are the following:

* serverld is the key whose value specifies the server ID in the URI, following the OpenStack ID format. An
example of it is the id 52415800-8b69-11e0-9b19-734{6af67565.

* ruleld is the key that represents the id of the rule, following the OpenStack Id format (e.g. 52415800-8b69-
11e0-9b19-734£6f006e54).

Update an elasticity rule

Verb | URI Description
PUT /{tenantld }/servers/{serverld}/rules/{ruleld} | Update an elasticity rule.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation allows to update the rule condition, the action or both or a specific server identified by its {serverld}
and a specific rule identified by its {ruleld}. This operation requires a request context and the response has no body
on it.

Request:

{
"name": <NAME>,
"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>
}

Where:
* name is the key whose value represents the name of the rule.

« condition is the key whose value is the description of the scalability rule associated to this server. It could be
one or more than one and the format of this rule is the following:

* action is the key whose value represents the action to take over the server. Its values are up and down.

Response:

44 Chapter 1. Introduction

Fiware-Cloto, Release

"name": <NAME>,
"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>

Delete an elasticity rule

Verb URI Description
DELETE | /{tenantld}/servers/{serverld}/rules/{ruleld} | Delete an elasticity rule.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation deletes a specific rule, identified by its {ruleld}, within a server, identified by its {serverld}. This
operation does not require a request body and response body. The response is a 200 Ok if it was deleted without any
problem or error message in other case.

Get an elasticity rule

Verb | URI Description
GET /{tenantld }/servers/{serverld}/rules/{ruleld} | Get an elasticity rule.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation gets a specific rule, identified by its {ruleld}, within a server, identified by its {serverld}. This operation
does not require a request body and response body is in JSON format.

Response:

{
"name": <NAME>,
"condition": <CONDITION_DESCRIPTION>,
"action": <ACTION_ON_SERVER>,
"ruleId": "<RULE_ID>"

}

Where:
* name is the key whose value represents the name of the rule.

* condition is the key whose value is the description of the scalability rule associated to this server. It could be
one or more than one and the format of this rule is the following:

* action is the key whose value represents the action to take over the server. Its values are up and down.

* ruleld is the key that represents the id of the rule, following the OpenStack Id format (e.g. 52415800-8b69-
11e0-9b19-734£6f006e54).

1.5. FIWARE Policy Manager - Open RESTful API Specification 45

Fiware-Cloto, Release

Subscription to rules

Create a new subscription

Verb | URI Description
POST | /{tenantld}/servers/{serverld}/subscription/ | Create a new subscription for the server.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation creates a new subcription rules associated to a rule, which is identified by {ruleld}. The request
specifies the rule to be activated and the action associated to it (increase or decrease the number of servers). The
response returns a 200 Ok message together with the id of the new subscription created.

Request:

{
"ruleId": <RULE_ID>,
"url": <URL_TO_NOTIFY>,
}

The values that you receive are the following:
* ruleld is the key whose value identifies the rule associated to this server.
* url is the key whose value is the url to notify the action when the rule is fired.

Response:

{
"subscriptionId": <SUBSCRIPTION_ID>

}

The values that you receive are the following:

* subscriptionld is the key that represents the id of the subscription, following the OpenStack Id format (e.g.
52415800-8b69-11e0-9b19-734f6f006e54).

Delete a subscription

Verb URI Description
DELETE | /{tenantld}/servers/{serverld}/subscription/{subscriptionld} | Delete a subscription.

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation deletes a subscription, identified by its {subscriptionld}, within a server, identified by its {serverld}.
This operation does not require a request body and response body. The response is a 200 Ok if it was deleted without
any problem or error message in other case.

Get a subscription

Verb | URI Description
GET /{tenantld }/servers/{serverld }/subscription/subscriptionld} | Get a subscription.

46 Chapter 1. Introduction

Fiware-Cloto, Release

Normal Response Code(s): 200 (Ok)

Error Response Code(s): identityFault (400, 500, ...), badRequest (400), unauthorized (401), forbidden (403), bad-
Method (405), serviceUnavailable (503)

This operation gets a subscription, identified by its {subscriptionld}, within a server, identified by its {serverld}. This
operation does not require a request body and response body is in JSON format.

Response:

{
"subscriptionId": <SUBSCRIPTION_ID>,
"url": <URL_TO_NOTIFY>,
"serverId": <SERVER_ID>,
"ruleId": "<RULE_ID>"
}

Where:

* subscriptionld is the key that represents the id of the subscription, following the OpenStack Id format (e.g.
52415800-8b69-11e0-9b19-734£6f006e54).

* url is the key whose value is the url to notify the action when the rule is fired.

« serverld is the key whose value specifies the server ID in the URI, following the OpenStack ID format. An
example of it is the id 52415800-8b69-11e0-9b19-734{6af67565.

¢ ruleld is the key that represents the id of the rule, following the OpenStack Id format (e.g. 52415800-8b69-
11e0-9b19-734£6£006e54).

1.5.4 Elasticity Rules

In this section we explain how it is represented an elasticity rule.

Rules Engine

Rules are described using JSON, and contain information about CPU and Memory, Disk and Network usage, in first
instance.

Conditions
Conditions are represented as JSON format as a compound of attributes representing server measures with a
value and an operator.
Attributes are:
* cpu
* mem
e hdd
¢ net
Supported operators are:
e greater
* greater equal

e Jess

1.5. FIWARE Policy Manager - Open RESTful API Specification 47

Fiware-Cloto, Release

* less equal

"condition": {
"cpu": {
"value": 98.3,
"operand": "greater"
}I
"mem": {
"value": 95,
"operand": "greater equal"
}y
"hdd": {
"value": 95,
"operand": "greater equal"
}I
"net": {
"value": 95,
"operand": "greater equal"
}
}
Actions

There are two types of actions:

* notify-scale: with two different options

* scaleUp
"action": {
"actionName": "notify-scale",
"operation": "scaleUp"

}y

¢ scaleDown

"action": {
"actionName": "notify-scale",
"operation": "scaleDown"

}I

These actions send a meessage with the following format:

{"action": <ACTION_NAME>,
"serverId": <SERVER_ID>}

Where:
* ACTION_NAME is the name of the action (scaleUp or Scale Down).

« SERVER_ID is the key whose value specifies the server ID that fulfills the condition, following the OpenStack
ID format. An example of it is the id 52415800-8b69-11e0-9b19-734f6af67565.

¢ notify-email

48 Chapter 1. Introduction

Fiware-Cloto, Release

"action": {
"actionName": "notify-email",
"email": “name@host.com”,

"body": “Example body”
}y

This action send a meessage with the following format:

{"action": "notify-email",
"serverId": <SERVER_ID>,
"email": <EMAIL>,
"description": <DESCRIPTION>}

Where:

* SERVER _ID is the key whose value specifies the server ID that fulfills the contidion, following the OpenStack
ID format. An example of it is the id 52415800-8b69-11e0-9b19-734f6af67565.

* EMALIL is the email address where the message should be sent.

* DESCRIPTION is the body of the email which contains the detail that the creator of the rule wanted to inform.

Example Rule

The rule is compound of three parts, name, conditions and actions. In this case, the name will be “AlertCPU”
Every fact is like “(server (server-id 12345-abcd)(cpu 50)(mem 33)(hdd 66)(net 66))”

In this case, the condition defined expects all server with cpu usage more than 98.3, memory usage 95, hdd space used
95 and network usage 95.

Actions will create an HTTP POST notification to an url specified on every subscription to this rule. In this case the
notification will be that server should be scaled up because CPU usage is greater than limit.

This is the rule as is expected to:

{

"action": {
"actionName": "notify-scale",
"operation": "scaleUp"
}I
"name": "AlertCPU",
"condition": {
"cpu": {
"value": 98.3,
"operand": "greater"
}I
"mem": {
"value": 95,
"operand": "greater equal"
}I
"hdd": {
"value": 95,
"operand": "greater equal"
}I
"net": {
"value": 95,
"operand": "greater equal"

1.5. FIWARE Policy Manager - Open RESTful API Specification 49

Fiware-Cloto, Release

50

Chapter 1. Introduction

	Introduction

