

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	fits2hdf 1.0 documentation

fits2hdf: a FITS to HDF5 conversion utility

	About fits2hdf
	Motivation: why HDF5, and why not FITS?

	The HDFITS specification

	Alternatives

	Copyright and referencing

	Getting started
	Installation

	Command line usage

	Quickly adding HDF5 support in Python

	Loading HDFITS files in python

	API

About fits2hdf

fits2hdf is a conversion to utility to port FITS files to and from Hierarchical Data Format (HDF5)
files in the HDFITS format. In addition, there is a utility to port MeasurementSets (MS)
to HDF5 files. This work was first presented at the ADASS XXIV [http://arxiv.org/abs/1411.0507]
conference in Calgary, 2014. A more complete overview is given in Astronomy & Computing.

The fits2hdf utility works by first mapping data from FITS/MS/HDF into an in-memory interchange
format (IDI). fits2hdf is written in python and uses h5py, pyFits, and pyrap for file I/O.

fits2hdf is still under development, so should be considered an ‘alpha’ release that is likely
to change. Community feedback is encouraged, and if you are interested in development please
get in touch. This work is intended as a pathfinder toward getting astronomical data into
a standardized HDF5 format, so that the advantages of HDF5 can be leveraged in the future.

 Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	fits2hdf 1.0 documentation

About fits2hdf

fits2hdf is a conversion to utility to port FITS files to Hierarchical Data Format (HDF5)
files in the HDFITS format. In addition, there is a utility to port MeasurementSets (MS)
to HDF5 files. This work was first presented at the ADASS XXIV [http://arxiv.org/abs/1411.0507]
conference in Calgary, 2014. A more complete overview is given in
Astronomy & Computing [http://www.sciencedirect.com/science/article/pii/S2213133715000554].

The fits2hdf utility works by first mapping data from FITS/MS/HDF into an in-memory interchange
format (IDI). fits2hdf is written in python and uses h5py, pyFits, and pyrap for file I/O.

fits2hdf is still under development, so should be considered an ‘alpha’ release that is likely
to change. Community feedback is encouraged, and if you are interested in development please
get in touch. This work is intended as a pathfinder toward getting astronomical data into
a standardized HDF5 format, so that the advantages of HDF5 can be leveraged in the future.

Motivation: why HDF5, and why not FITS?

The Flexible Image Transport System (FITS) file format
has enjoyed several decades of widespread usage within astronomy.
Its ubiquity has been attributed
to the guiding maxim “once FITS, always FITS”: that
changes to the FITS standard must be incremental so as to
never break backward compatibility. This maxim limits
what modifications can be made, and FITS is
showing its age; the guiding principle that made FITS so
successful can now be seen as its Achilles heel.

The limitations of FITS are succinctly summarized in
Thomas et al. (2014) [http://adsabs.harvard.edu/abs/2014ASPC..485..351T] and
Thomas et al. (2015) [http://adsabs.harvard.edu/abs/2015arXiv150200996T]. Some of the limitations
are quite frankly archaic: 8-character maximum keywords in the
FITS header, lack of Unicode support, and incomplete support of basic
unsigned integer types. Other limitations become apparent when
compared against newer formats: FITS has no support for chunking, parallel I/O,
or hierarchical data models.

Motivated by data volumes, the Hierarchical Data Format (HDF5) is becoming increasingly
common in astronomy and science in general. HDF5 has several advantages over FITS,
with I/O access speed being a compelling reason to make the switch. For example, HDF5 allows
efficient reading of portions of
a dataset, such as reading along slowly-varying axes of a dataset, which incurs
significant overhead when reading from FITS files. A switch to HDF5 may save you lots of processing time.

For a more complete discussion, see HDFITS: porting the FITS data model to HDF5.

The HDFITS specification

The HDF5 format has an abstract data model, capable of storing myriad data structures.
While there are many possible mappings from FITS into HDF5, we’ve implemented one that
we are calling HDFITS v1.0. We encourage feedback, and invisage that comments from
the broader community will lead to a HDFITS v2.0.

The goal of HDFITS/fits2hdf is to provide a HDF5-based equivalent of the FITS file format,
and to provide utilities for converting between the two formats.
The motivation of this approach, as opposed to creating an HDF5-based format from scratch,
is that decades of widespread FITS usage has left a legacy that would otherwise be discarded.
By preserving the familiar underlying data model of FITS, software packages designed to read
and interpret FITS can be readily updated to read HDF5
data. Maintaining backwards-compatibility with FITS, so
that data stored in HDF5 files can be converted into FITS
for use in legacy software packages is another persuasive
reason to pursue a FITS-like data model within HDF5.

Of course, a port of the FITS data model to HDF5 does not
address issues with the FITS data model itself. Nevertheless,
as the HDF5 data model is abstracted from its
file format, an HDF5-based version of the FITS data model
can be extended without requiring changes to the storage model.
HDFITS can be used as a starting point and as a testbed for
enhancing the FITS data model.

Alternatives

There are a bunch of alternative data formats, and if you’re a free spirit
you can always roll your own higher-level data model inside the HDF5 abstract data model. Otherwise,
look into:

	NDF [http://starlink.eao.hawaii.edu/starlink] is the file format used by Starlink. Recently, Starlink added HDF5 support, meaning
that you can use the Starlink utilities to convert from FITS into the NDF-HDF5 format.

	hickle [https://github.com/telegraphic/hickle] provides a HDF5-based drop-in replacement
to the Python pickle package, allowing nice & lazy dumping of common python objects to file.

	ASDF [http://asdf-standard.readthedocs.org/] is a file format being developed for interchange, particularly for JWST.

	MeasurementSets [http://casaguides.nrao.edu/index.php?title=Measurement_Set_Contents] are how the CASA software package stores its data.

	VOTables [http://www.ivoa.net/documents/latest/VOT.html] is an XML-based format designed for the Virtual Observatory.

Copyright and referencing

This software is licensed under the MIT license. If you use this in published research, it sure
would be swell if you could cite the fits2hdf Astronomy & Computing paper [http://www.sciencedirect.com/science/article/pii/S2213133715000554]:

D.C. Price, B.R. Barsdell, L.J. Greenhill, HDFITS: Porting the FITS data model to HDF5,
Astronomy and Computing, Available online 22 May 2015, ISSN 2213-1337,
http://dx.doi.org/10.1016/j.ascom.2015.05.001.

fits2hdf makes use of a few excellent packages:

	Astropy [https://www.astropy.org], a community-developed core Python package for Astronomy.

	h5py [https://www.h5py.org], a Pythonic interface to the HDF5 binary data format.

 Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	fits2hdf 1.0 documentation

Getting started

Installation

To install, you first need to clone the directory from github:

git clone https://github.com/telegraphic/fits2hdf

and then run:

python setup.py install

from the command line. You’ll need
astropy [http://www.astropy.org/] and h5py [http://www.h5py.org/] to be installed. If you want to
use bitshuffle [https://github.com/kiyo-masui/bitshuffle] compression (good for radio astronomy data), you’ll need to install that too.

Installation through pip will likely be added in the future.

Command line usage

To use fits2hdf to convert FITS files to HDF5, use the fits2hdf command line tool:

fits2hdf input_dir output_dir <options>

	Optional arguments are:

	

	
-h, --help
	show this help message and exit

	
-c COMP, --compression=COMP

		Data compression algorithm: None, lzf,
gzip and bitshuffle (if installed).

	
-x EXT, --extension=EXT

		File extension of FITS files. Defaults to .fits

	
-v VERBOSITY, --verbosity=VERBOSITY

		verbosity level (default 0, up to 5)

	
-s SCALE_OFFSET, --scaleoffset=SCALE_OFFSET

		Add scale offset (HDF5 compression option). NB: this can be
lossy!

	
-S, --shuffle
	Apply byte shuffle filter (HDF5 compression option)

	
-C, --checksum
	Compute fletcher32 checksum on datasets.

To convert back into FITS, run hdf2fits, which uses similar options:

hdf2fits input_dir output_dir <options>

As many HDF5 features don’t have equivalents in FITS, this will (probably) only work for HDFITS files.

Quickly adding HDF5 support in Python

If you have an existing program and want to quickly be able to read HDFITS files, just change your:

from astropy.io import fits

line to:

from fits2hdf import pyhdfits as fits

Or, if you’re using pyfits, change your import pyfits as pf line to
from fits2hdf import pyhdfits as pf.

By doing this, any data in HDFITS will be converted to the PyFITS/ Astropy HDUList object on the fly.

Loading HDFITS files in python

Functions to read / write HDFITS files into an in-memory data object in python are located in
fits2hdf.io.hdfio. There are equivalent functions to read FITS files into an interchange
format in fits2hdf.io.fitsio.

For example, to read a FITS file in, then export it to HDFITS you would do:

from fits2hdf.io.fitsio import read_fits
from fits2hdf.io.hdfio import export_hdf
a = read_fits('my_file.fits')
export_hdf(a, 'my_file.hdf')

and to convert the other way:

from fits2hdf.io.fitsio import export_fits
from fits2hdf.io.hdfio import read_hdf
a = read_hdf('my_file.hdf')
export_hdf(a, 'my_file.fits')

For more exciting API musings you can read the API.

 Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	fits2hdf 1.0 documentation

API

	idi: Abstract classes for python Header-Data unit object

	io: File input / output functions.

	pyhdfits: A drop-in replacement for pyfits or astropy.io.fits.

	unit_conversion: Unit parsing, checking and sanitizing.

	printlog: Functions for pretty printing and logging.

	check_file_type: File type checking routines.

 Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	fits2hdf 1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 fits2hdf	

 	
 	
 fits2hdf.check_file_type	

 	
 	
 fits2hdf.idi	

 	
 	
 fits2hdf.io	

 	
 	
 fits2hdf.io.fitsio	

 	
 	
 fits2hdf.io.hdfcompress	

 	
 	
 fits2hdf.io.hdfio	

 	
 	
 fits2hdf.printlog	

 	
 	
 fits2hdf.pyhdfits	

 	
 	
 fits2hdf.unit_conversion	

 Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	fits2hdf 1.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | N
 | O
 | P
 | R
 | U
 | V
 | W

A

 	

 	add_image_hdu() (fits2hdf.idi.IdiHdulist method)

 	add_primary_hdu() (fits2hdf.idi.IdiHdulist method)

 	

 	add_table_hdu() (fits2hdf.idi.IdiHdulist method)

C

 	

 	check_file_type() (in module fits2hdf.check_file_type)

 	create_column() (in module fits2hdf.io.fitsio)

 	create_compressed() (in module fits2hdf.io.hdfcompress)

 	

 	create_dataset() (in module fits2hdf.io.hdfcompress)

 	create_fits() (in module fits2hdf.io.fitsio)

D

 	

 	debug() (fits2hdf.printlog.PrintLog method)

 	

 	DeprecatedGroupsHDUWarning

E

 	

 	err() (fits2hdf.printlog.PrintLog method)

 	export_fits() (in module fits2hdf.io.fitsio)

 	

 	export_hdf() (in module fits2hdf.io.hdfio)

F

 	

 	fits2hdf (module)

 	fits2hdf.check_file_type (module)

 	fits2hdf.idi (module)

 	fits2hdf.io (module)

 	fits2hdf.io.fitsio (module)

 	fits2hdf.io.hdfcompress (module)

 	

 	fits2hdf.io.hdfio (module)

 	fits2hdf.printlog (module)

 	fits2hdf.pyhdfits (module)

 	fits2hdf.unit_conversion (module)

 	fits_format_code_lookup() (in module fits2hdf.io.fitsio)

 	fits_to_units() (in module fits2hdf.unit_conversion)

G

 	

 	guess_chunk() (in module fits2hdf.io.hdfcompress)

H

 	

 	h1() (fits2hdf.printlog.PrintLog method)

 	h2() (fits2hdf.printlog.PrintLog method)

 	

 	h3() (fits2hdf.printlog.PrintLog method)

I

 	

 	IdiColumn (class in fits2hdf.idi)

 	IdiComment (class in fits2hdf.idi)

 	IdiHdulist (class in fits2hdf.idi)

 	IdiHeader (class in fits2hdf.idi)

 	IdiHistory (class in fits2hdf.idi)

 	IdiImageHdu (class in fits2hdf.idi)

 	

 	IdiPrimaryHdu (class in fits2hdf.idi)

 	IdiTableHdu (class in fits2hdf.idi)

 	is_fits() (in module fits2hdf.check_file_type)

 	is_hdf() (in module fits2hdf.check_file_type)

 	is_hdf5() (in module fits2hdf.check_file_type)

K

 	

 	keys() (fits2hdf.idi.IdiHdulist method)

L

 	

 	LinePrint (class in fits2hdf.printlog)

N

 	

 	numpy_dtype_lookup() (in module fits2hdf.io.fitsio)

O

 	

 	open() (in module fits2hdf.pyhdfits)

P

 	

 	pa() (fits2hdf.printlog.PrintLog method)

 	parse_fits_header() (in module fits2hdf.io.fitsio)

 	

 	pp() (fits2hdf.printlog.PrintLog method)

 	PrintLog (class in fits2hdf.printlog)

R

 	

 	read_fits() (in module fits2hdf.io.fitsio)

 	

 	read_hdf() (in module fits2hdf.io.hdfio)

U

 	

 	units_to_fits() (in module fits2hdf.unit_conversion)

 	

 	UnitWarning

V

 	

 	values() (fits2hdf.idi.IdiHdulist method)

 	

 	VerificationError

W

 	

 	warn() (fits2hdf.printlog.PrintLog method)

 	

 	write_headers() (in module fits2hdf.io.fitsio)

 	

 	(in module fits2hdf.io.hdfio)

 Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/up.png

fits2hdf.idi.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

fits2hdf.idi module

idi.py

Abstract classes for python Header-Data unit object. This is similar
to the HDU in FITS. Each HDU has a header dictionary and a data
dictionary. The data dictionary can be converted into a pandas
DataFrame object, and there are a few view / verify items also.

		
class fits2hdf.idi.IdiColumn(*args, **kwargs)

		Bases: astropy.table.column.Column

IDI version of astropy.table Column()

This subclasses the astropy.table Column() class, to provide an equivalent
comment object for IDI data conversion. This subclass adds the ability to
name the column

		name: string

		name of column. This is a required argument for IdiColumn, and must be
the first argument.
Column name and key for reference within Table

		data : list, ndarray or None

		Column data values

		dtype : numpy.dtype compatible value

		Data type for column

		shape : tuple or ()

		Dimensions of a single row element in the column data

		length : int or 0

		Number of row elements in column data

		description : str or None

		Full description of column

		unit : str or None

		Physical unit

		format : str or None or function or callable

		Format string for outputting column values. This can be an “old-style”
(format % value) or “new-style” (str.format) format specification
string or a function or any callable object that accepts a single value
and returns a string.

		meta : dict-like or None

		Meta-data associated with the column

		
class fits2hdf.idi.IdiComment(comment=None)

		Bases: list

Class for storing comments within a HDU

This stores comments as a list of strings. The FITS ‘COMMENT’
keyword should be stripped, and only the actual comment should
be passed.

		comment: list, string, or None

		Comment values to be used in initialization (more can be added
later by using the append method / other list methods).

		
class fits2hdf.idi.IdiHdulist(*args, **kwds)

		Bases: collections.OrderedDict

OrderedDict subclass for a dictionary of Header-data units (HDU).

This is used as a container equivalent to the FITS HDUList. This can
be initialized with no arguments, then HDUs may be appended to it
using regular ordered dict methods

		dict_data: dict

		This class can be initialized with zero arguments, or you can pass
a python-style dictionary.

		
add_image_hdu(name, header=None, data=None, history=None, comment=None)

		Add a Image HDU to HDU list

		name: str

		Name for table HDU

		header=None: dict

		Header keyword:value pairs dictionary. optional

		data=None: np.ndarray or equivalent

		Array that contains the image data

		history=None: list

		list of history data

		comment=None: list

		list of comments

		
add_primary_hdu(name, header=None, history=None, comment=None)

		Add a Primary HDU to HDU list. This should not have a data payload.

		name: str

		Name for table HDU

		header=None: dict

		Header keyword:value pairs dictionary. optional

		history=None: list

		list of history data

		comment=None: list

		list of comments

		
add_table_hdu(name, header=None, data=None, history=None, comment=None)

		Add a Table HDU to HDU list

		name: str

		Name for table HDU

		header=None: dict

		Header keyword:value pairs dictionary. optional

		data=None: IdiTableHdu

		IdiTableHdu that contains the data

		history=None: list

		list of history data

		comment=None: list

		list of comments

		
keys()

		

		
values()

		

		
class fits2hdf.idi.IdiHeader(values=None)

		Bases: collections.OrderedDict

Header unit for storing header information

This object stores a header dictionary. For FITS files, order
is important (particularly for HISTORY cards); but HDF5 does
not assign any ordering to attributes. As such, order may be lost
in translation between the two formats.

Comments should be passed to this object as dictionary entries with
keys key_COMMENT, e.g. CARD1: 1.20, CARD1_COMMENT: ‘Example entry’

		values: dict

		Dictionary of header keyword : value pairs.

		
class fits2hdf.idi.IdiHistory(history)

		Bases: fits2hdf.idi.IdiComment

Class for storing history within a HDU

This stores history log notes as a list of strings. The FITS ‘HISTORY’
keyword should be stripped and only actual history log should be passed.

		history: list, string, or None

		Comment values to be used in initialization (more can be added
later by using the append method / other list methods).

		
class fits2hdf.idi.IdiImageHdu(*args, **kwargs)

		Bases: astropy.nddata.nddata.NDData

Header-data unit for storing table data

stores header dictionary and data dictionary

		name : string

		Name of HDU. Required.

		comment : list

		List of comments. Optional

		history : list

		List of history entries. Optional

		header: dict

		Header dictionary of keyword:value pairs. Optional

		data: dict

		dictionary of key:value pairs, where data are stored
as numpy arrays

		
class fits2hdf.idi.IdiPrimaryHdu(name, header=None, history=None, comment=None)

		Bases: collections.OrderedDict

Header-data unit for storing PRIMARY metadata

This is used for storing the FITS / HDFITS PRIMARY HDU, where
there is NO data payload. Otherwise, the IdiImageHdu should be
used.

		name : string

		Name of HDU. Required.

		comment : list

		List of comments. Optional

		history : list

		List of history entries. Optional

		header: dict

		Header dictionary of keyword:value pairs. Optional

		
class fits2hdf.idi.IdiTableHdu(*args, **kwargs)

		Bases: astropy.table.table.Table

Header-data unit for storing table data

This subclasses the astropy.table Table() class.
It attaches comments, history and a header to make
it a “HDU”, instead of just a Table

		name : string

		Name of HDU. Required.

		comment : list

		List of comments. Optional

		history : list

		List of history entries. Optional

		header: dict

		Header dictionary of keyword:value pairs. Optional

		data : numpy ndarray, dict, list, or Table, optional

		Data to initialize table.

		mask : numpy ndarray, dict, list, optional

		The mask to initialize the table

		names : list, optional

		Specify column names

		dtypes : list, optional

		Specify column data types

		meta : dict, optional

		Metadata associated with the table

		copy : boolean, optional

		Copy the input data (default=True).

		
exception fits2hdf.idi.VerificationError

		Bases: exceptions.Exception

Custom data verification exception

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

fits2hdf.check_file_type.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

check_file_type.py

Utilities for checking what kind of file (HDF5 or FITS) a filepath is.

		
fits2hdf.check_file_type.check_file_type(file_name)

		Check what kind of file a file is based on its filename

		file_name: str

		file name to check type of

		filetype: string

		string of either ‘fits’, ‘hdf’, or ‘unknown’

		
fits2hdf.check_file_type.is_fits(filepath)

		Check if file is a FITS file

Returns True of False

		filepath: str

		Path to file

		
fits2hdf.check_file_type.is_hdf(filepath)

		

		
fits2hdf.check_file_type.is_hdf5(filepath)

		Check if a file is a HDF5 file

Returns True of False

		filepath: str

		Path to file

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

hdf2fits.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

hdf2fits module

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

 ==

		fits2fits module

		fits2hdf module

		fits2hdf module

		hdf2fits module

		ms2hdf module

		setup module

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

fits2hdf.unit_conversion.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

unit_conversion.py

Functions for checking and sanitizing units that do not follow the FITS specification.
This uses functions from astropy.unit to parse and handle units.

		
exception fits2hdf.unit_conversion.UnitWarning

		Bases: astropy.io.fits.verify.VerifyWarning

Unit warning class

Used when units do not parse or parse oddly

		
fits2hdf.unit_conversion.fits_to_units(unit_str)

		Do a lookup from a astropy unit and return a fits unit string

unit_str (str): a FITS unit string
returns an astropy.units.Unit(), or UnrecognizedUnit()

This will attempt to correct some common mistakes in the FITS format.

		
fits2hdf.unit_conversion.units_to_fits(unit)

		Convert an astropy unit to a FITS format string.

uses the to_string() method built-in to astropy Unit()

The output will be the format defined in the FITS standard:
http://fits.gsfc.nasa.gov/fits_standard.html

A roundtrip from fits_to_units -> units_to_fits may not return
the original string, as people often don’t follow the standard.

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

ms2hdf.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

ms2hdf module

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

fits2fits.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

fits2fits module

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

setup.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

setup module

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

fits2hdf.pyhdfits.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

pyhdfits.py

Drop-in replacement for pyfits / astro.io.fits. This provides an open() function
that opens either a FITS file, or a HDFITS file, and return a FITS object.
The idea here to replace:

>> from astropy.io import fits as pf

with the following import:

>> from fits2hdf import pyhdfits as pf

So that both HDF5 and FITS files can be read transparently.

		
fits2hdf.pyhdfits.open(*args, **kwargs)

		Open a file, and return a FITS HDUList object.

This overrides the default pyfits open, and first checks to see if the file
is a HDF5 file. If so, then the file is opened using fits2hdf.io.hdfio
and then exported to a FITS file (in memory, not on disk).

If you’re not careful, this will override the standard open() class. So,
never do “from pyhdfits import open”, as this would be bad.
#TODO: Do this slightly different, to avoid the open() issue

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

_static/comment-close.png

fits2hdf.printlog.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

printlog.py

Printing and logging utilities.

		
class fits2hdf.printlog.LinePrint(data)

		Bases: object

Print things to stdout on one line dynamically

Instead of creating multiple lines, update current line with new data.

		
class fits2hdf.printlog.PrintLog(verbosity=4)

		Bases: object

Print / log based on verbosity level

Verbosity level: 0 - 4
0: Print errors and pa only
1: Print H1
2: Print H1 + H2
3: Print H1 + H2 + H3
4: Print all
5: Print all + debugging info

		
debug(text)

		Print debug information to screen

		
err(text)

		Print out an error message / warning string

		
h1(headstr)

		Print a string as a header

		
h2(headstr)

		Print a string as a header

		
h3(headstr)

		Print a string as a 3rd level header

		
pa(text)

		Always print

		
pp(text)

		Print a text string

		
warn(text)

		Print out a warning message

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

fits2hdf.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

fits2hdf module

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

fits2hdf.io.html

 Navigation

 		
 index

 		
 modules |

 		fits2hdf 1.0 documentation »

fits2hdf.io package

Submodules

fits2hdf.io.fitsio module

fitsio.py

FITS I/O for reading and writing to FITS files.

		
exception fits2hdf.io.fitsio.DeprecatedGroupsHDUWarning

		Bases: astropy.io.fits.verify.VerifyWarning

Warning message when a deprecated ‘group HDU’ is found

		
fits2hdf.io.fitsio.create_column(col)

		Create a astropy.io.fits column object from IdiColumn

This is a helper function that automatically computes a few things
that should be obvious from the numpy data type and shape, but that
the fits.column object needs to have set explicitly.

This fills in format, dim, and array keywords.
Unit and null are left as keyword arguments.
Bscale, bzero, disp, start, and ascii are NOT supported.

		col: IdiColumn

		IdiColumn object that contains the data array

		fits_col: pf.Column

		astropy.io.fits column

		
fits2hdf.io.fitsio.create_fits(hdul, verbosity=0)

		Export HDU to FITS file in memory.

Returns an in-memory HDUlist, does not write to file.

		hdul: IdiHduList

		An IDI HDU list object to convert into a pyfits /
astropy HDUlist() object in memory

		verbosity: int

		verbosity level, 0 (none) to 5 (all)

		
fits2hdf.io.fitsio.export_fits(hdul, outfile, verbosity=0)

		Export HDU list to file

		hdul: IdiHduList

		HDU list to write to file

		outfile: str

		Filename of ourput file

		verbosity: int

		verbosity of output, 0 (none) to 5 (all)

		
fits2hdf.io.fitsio.fits_format_code_lookup(numpy_dtype, numpy_shape)

		Return a FITS format code from a given numpy dtype

		numpy_dtype: a numpy dtype object

		Numpy dtype to lookup

		numpy_shape: tuple

		shape of data array to be converted into a FITS format

		fmt_code: string

		FITS format code, e.g. 8A for character string of length 8

		fits_dim: string or None

		Returns fits dimension for TDIM keyword

L logical (Boolean) 1
X bit *
B Unsigned byte 1
I 16-bit integer 2
J 32-bit integer 4
K 64-bit integer 4
A character 1
E single precision floating point 4
D double precision floating point 8
C single precision complex 8
M double precision complex 16
P array descriptor 8
Q array descriptor 16

		
fits2hdf.io.fitsio.numpy_dtype_lookup(numpy_dtype)

		Return the local OS datatype for a given dtype

This is added to workaround a bug in binary table writing,
whereby an additional byteswap is done that is unnecessary.

		numpy_dtype: numpy.dtype

		Numpy datatype

		numpy_local_dtype: numpy.dtype

		Local numpy datatype

		
fits2hdf.io.fitsio.parse_fits_header(hdul)

		Parse a FITS header into something less stupid.

		hdul: HDUList

		FITS HDUlist from which to parse the header

This function takes a fits HDU object and returns:
header (dict): Dictionary of header values. Header comments

are written to [CARDNAME]_COMMENT

		comment (list): Comment cards are parsed and then put into list

		(order is important)

history (list): History cards also parsed into a list

		
fits2hdf.io.fitsio.read_fits(infile, verbosity=0)

		Read and load contents of a FITS file

		infile: str

		File path of input file

		verbosity: int

		Verbosity level of output, 0 (none) to 5 (all)

		
fits2hdf.io.fitsio.write_headers(hduobj, idiobj)

		copy headers over from idiobj to hduobj.

Need to skip values that refer to columns (TUNIT, TDISP), as
these are necessarily generated by the table creation

		hduobj: astropy FITS HDU (ImageHDU, BintableHDU)

		FITS HDU to which to write header values

		idiobj: IdiImageHdu, IdiTableHdu, IdiPrimaryHdu

		HDU object from which to copy headers from

		verbosity: int

		Level of verbosity, none (0) to all (5)

fits2hdf.io.hdfcompress module

hdfcompress.py

Helper functions for writing bitshuffled compressed datatsets

		
fits2hdf.io.hdfcompress.create_compressed(hgroup, name, data, **kwargs)

		Add a compressed dataset to a given group.

Use bitshuffle compression and LZ4 to compress a dataset.

hgroup: h5py group in which to add dataset
name: name of dataset
data: data to write
chunks: chunk size

		
fits2hdf.io.hdfcompress.create_dataset(hgroup, name, data, **kwargs)

		Create dataset from data, will attempt to compress

		Parameters:		
		hgroup – h5py group in which to add dataset

		name – name of dataset

		data – data to write

		
fits2hdf.io.hdfcompress.guess_chunk(shape)

		Guess the optimal chunk size for a given shape
:param shape: shape of dataset
:return: chunk guess (tuple)

#TODO: Make this better

fits2hdf.io.hdfio module

hdfio.py

HDF I/O for reading and writing to HDF5 files.

		
fits2hdf.io.hdfio.export_hdf(idi_hdu, outfile, table_type='DATA_GROUP', **kwargs)

		Export to HDF file

		idi_hdu: IdiHduList

		HDU list to write to file.

		outfile: str

		Name of output file

		These are passed to h5py, and include:

		compression=None, apply compression (lzf, bitshuffle, gzip)
shuffle=False, apply shuffle precompression filter
chunks=None, set chunk size

		
fits2hdf.io.hdfio.read_hdf(infile, mode='r+', verbosity=0)

		Read and load contents of an HDF file

		infile: str

		file name of input file to read

		mode: str

		file read mode. Defaults to ‘r+’

		verbosity: int

		Level of verbosity, none (0) to all (5)

		
fits2hdf.io.hdfio.write_headers(hduobj, idiobj, verbosity=0)

		copy headers over from idiobj to hduobj.

Need to skip values that refer to columns (TUNIT, TDISP), as
these are necessarily generated by the table creation

		hduobj: h5py group

		HDF5 group representing HDU

		idiobj: IdiImageHdu, IdiTableHdu, IdiPrimaryHdu

		HDU object to copy headers from

		verbosity: int

		Level of verbosity, none (0) to all (5)

fits2hdf.io.msio module

Module contents

 © Copyright 2015, Danny Price.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

