

FISCO BCOS Overview

FISCO BCOS [https://github.com/FISCO-BCOS] is an open-sourced, cross-industry, collaborative, and secure blockchain platform. Two major camps of blockchain technology - public and consortium chains, to better serve the general public, open consortium chain is the perfect choice for enterprises to unlock the potential of collaborative businesses model. FISCO BCOS is born to support open consortium chain applications, by supporting multiple chains, and cross-chain communication.

The community - Financial Blockchain Shenzhen Consortium (FISCO) is established on May 31, 2016. It has attracted more than 100 members including financial institutions and financial information service companies so far. The first members include the following organizations: Beyondsoft, Huawei, Shenzheng, Shenzhou Digital, Forms Syntron, Tencent, WeBank, Yuexiu Jinke.

FISCO BCOS is developed based on the existing BCOS open-sourced platform. Focusing on collaborative businesses model cross industry, considering from multiple dimensions such as business suitability, performance, security, normality, technical feasibility, operation & governance, and cost, to finally provide a blockchain solution.

Based on FISCO BCOS’s blockchain platform, different blockchain scenarios can be quickly built, with following benefits:

	For banking institutions, it can reduce the settlement cost, improve the efficiency of the operation of the middle and back offices, and improve the automation of the process.

	For non-banking financial institutions, it can enhance the authority of equity registration, information deposit, reduce the risk of counterparty, solve data tracking and information anti-counterfeiting problems, and reduce the operating costs of auditing.

	For financial regulators, it provides consistent and easy-to-audit data. Through data analysis of inter-agency blockchains, financial services can be regulated faster and more accurately than traditional audit process, and anti-money laundering can be strengthened.

	Others, in cross-border financial scenarios, it helps to achieve ledger sharing among the institutions, reduce the cost of inter-bank reconciliation and settlement, and dispute friction costs, thereby improving the processing speed and efficiency of cross-border businesses.

So, what is FISCO BCOS? It is a platform/community with software developers building blockchain frameworks and solutions.

The open source license for FISCO BCOS is GPL3.0.

Contribute on Github [https://github.com/FISCO-BCOS].

Read the Whitepaper [https://github.com/FISCO-BCOS/whitepaper/blob/master/FISCO%20BCOS%20Whitepaper(EN).pdf].

	Advance Messages Onchain Protocol

	Contract Name Service

	Permission Model

	Group signature and Ring signature

	Parallel PBFT

	Regulated Zero-knowledge proof

	System Contract Introduction

	System Configuration

Advance Messages Onchain Protocol

Author: fisco-dev

Introduction

AMOP (Advance Messages Onchain Protocol) aims to provide a safe and efficient message channel. In consortium chain, all nodes, no matter consensus node or observation node, can use AMOP as the message channel with the following advantages:

	Real-time: AMOP messages do not rely on transactions and consensus. Messages are transmitted nearly real-time with only a few milliseconds delay between nodes.

	Reliable: When the message is transmitted by AMOP, it will leverage any feasible routes in the blockchain network.The message is guaranteed to be reachable as long as at least one route is available between sender and receiver node.

	Efficient: AMOP protocol is concise and clean. It takes very minimized CPU and network bandwidth.

	Secure: Supports SSL encryption on the network and the encryption algorithm is configurable.

	Easy to use: AMOP is embedded in the SDK.

Network Architecture

[image: ../../_images/amop_en.png]Take the classic IDC (Internet Data Center) bank architecture as an example:

	SF (Server Farm) area: Applications within the organization’s intranet can leverage the SDK to send AMOP messages to the proxy. If there is no DMZ, applications will link to blockchain nodes directly.

	DMZ (Demilitarized Zone) area: Physical or logical isolated network. This area is optional but recommended for better security.

	Blockchain P2P network: The logical area which contains blockchain nodes from different organizations. This is usually deployed within the DMZ zone but can also be placed in the SF area.

	Proxy Server: Responsible for forwarding messages from internal applications to the blockchain P2P network. It is recommended to place the proxy inside DMZ.

Configuration

Below is a sample code for sending AMOP messages (Spring Bean):

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<!-- Thread pool configuration, config as needs -->
<bean id="pool" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="corePoolSize" value="50" />
 <property name="maxPoolSize" value="100" />
 <property name="queueCapacity" value="500" />
 <property name="keepAliveSeconds" value="60" />
 <property name="rejectedExecutionHandler">
 <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy" />
 </property>
</bean>

<!-- Blockchain nodes configuration -->
<bean id="channelService" class="cn.webank.channel.client.Service">
 <property name="orgID" value="WB" /> <!-- Configure the organization's name -->
 <property name="allChannelConnections">
 <map>
 <entry key="WB"> <!-- Setup SDK to link to the blockchain proxy in DMZ. If no DMZ, link to blockchain node directly.-->
 <bean class="cn.webank.channel.handler.ChannelConnections">
 <property name="connectionsStr">
 <list>
 <value>NodeA@127.0.0.1:30333</value><!-- Format: Node name @ IP address: Port Node name can be any -->
 </list>
 </property>
 </bean>
 </entry>
 </map>
 </property>
 </bean>
</bean>

If DMZ is used, the below is require to configured for the proxy server:

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <!-- Blockchain nodes configuration -->
 <bean id="proxyServer" class="cn.webank.channel.proxy.Server">
 <property name="remoteConnections">
 <bean class="cn.webank.channel.handler.ChannelConnections">
 <property name="connectionsStr">
 <list>
 <value>NodeA@127.0.0.1:5051</value><!-- Format: Node name @ IP address: Port Node name can be any -->
 </list>
 </property>
 </bean>
 </property>

 <property name="localConnections">
 <bean class="cn.webank.channel.handler.ChannelConnections">
 </bean>
 </property>
 <!-- Proxy listening port config for SDK connection -->
 <property name="bindPort" value="30333"/>
 </bean>
</beans>

How to use SDK

The sending and receiving is based on publish-subscribe pattern. The server creates the topic and subscribes to it. Clients connect to the topic to send message to the server.

Multiple topics are supported in a blockchain. There is no limitation for the number of servers and clients. If multiple servers are subscribing to the same topic, only the first available server will receive the message.

Server-side example:

package cn.webank.channel.test;

import java.util.ArrayList;
import java.util.List;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import cn.webank.channel.client.Service;

public class Channel2Server {
 static Logger logger = LoggerFactory.getLogger(Channel2Server.class);

 public static void main(String[] args) throws Exception {
 if(args.length < 1) {
 System.out.println("Parameters: Receive topic");
 return;
 }

 String topic = args[0];

 ApplicationContext context = new ClassPathXmlApplicationContext("classpath:applicationContext.xml");
 Service service = context.getBean(Service.class);

 //config topic, support multiple topic
 List<String> topics = new ArrayList<String>();
 topics.add(topic);
 service.setTopics(topics);

 //handle PushCallback class, see Callback code
 PushCallback cb = new PushCallback();
 service.setPushCallback(cb);

 //run server
 service.run();
 }
}

Server-side PushCallback example:

package cn.webank.channel.test;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import cn.webank.channel.client.ChannelPushCallback;
import cn.webank.channel.dto.ChannelPush;
import cn.webank.channel.dto.ChannelResponse;

class PushCallback extends ChannelPushCallback {
 static Logger logger = LoggerFactory.getLogger(PushCallback2.class);

 //onPush function, Called when the AMOP message is received
 @Override
 public void onPush(ChannelPush push) {
 DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
 logger.debug("Received PUSH message:" + push.getContent());

 System.out.println(df.format(LocalDateTime.now()) + "server:Received PUSH message:" + push.getContent());

 //Response
 ChannelResponse response = new ChannelResponse();
 response.setContent("receive request seq:" + String.valueOf(push.getMessageID()));
 response.setErrorCode(0);

 push.sendResponse(response);
 }
}

Client-side example:

package cn.webank.channel.test;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.Date;
import java.util.Random;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import cn.webank.channel.client.Service;
import cn.webank.channel.dto.ChannelRequest;
import cn.webank.channel.dto.ChannelResponse;

public class Channel2Client {
 static Logger logger = LoggerFactory.getLogger(Channel2Client.class);

 public static void main(String[] args) throws Exception {
 if(args.length < 1) {
 System.out.println("Parameters: target topic");
 return;
 }

 String topic = args[0];

 DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

 ApplicationContext context = new ClassPathXmlApplicationContext("classpath:applicationContext.xml");

 Service service = context.getBean(Service.class);
 service.run();

 Thread.sleep(2000); //It takes a little time to set up the connection, and if the message is sent immediately, it will fail

 ChannelRequest request = new ChannelRequest();
 request.setToTopic(topic); //Set message's topic
 request.setMessageID(service.newSeq()); //Message sequence number that uniquely identifies a message, use newSeq() random generate
 request.setTimeout(5000); //Timeout of message

 request.setContent("request seq:" + request.getMessageID()); //Message content

 ChannelResponse response = service.sendChannelMessage2(request); //Send message

 System.out.println(df.format(LocalDateTime.now()) + "Received response seq:" + String.valueOf(response.getMessageID()) + ", Error code:" + response.getErrorCode() + ", message content:" + response.getContent());
 }
}

Running the test app locally

After creating the above configurations, you can start the AMOP server and client with the below command lines:

Start AMOP server:

java -cp 'conf/:apps/*:lib/*' cn.webank.channel.test.Channel2Server [topic name]

Start AMOP client

java -cp 'conf/:apps/*:lib/*' cn.webank.channel.test.Channel2Client [topic name] [message content] [number of messages]

Error Code

	99: Message failed to deliver as there is no available route to the destination server. Check the node status with the sequence number(seq) generated while sending message as well as verify the route status.

	102: Connection Timeout. The server may be overloaded or not reachable.

Contract Name Service

Overview

1.Steps to call a smart contract

Implement a smart contract includes steps: coding, compiling and deploying.
Take HelloWorld.sol as an example:

// HelloWorld.sol path: FISCO-BCOS/tool/HelloWorld.sol
pragma solidity ^0.4.2;
contract HelloWorld{
 string name;
 function HelloWorld(){
 name="Hi,Welcome!";
 }
 function get()constant returns(string){
 return name;
 }
 function set(string n){
 name=n;
 }
}

After compiling the contract, a description of the contract interface - ABI - is provided as follows:

[
 {
 "constant": false,
 "inputs": [
 {
 "name": "n",
 "type": "string"
 }
],
 "name": "set",
 "outputs": [
],
 "payable": false,
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
],
 "name": "get",
 "outputs": [
 {
 "name": "",
 "type": "string"
 }
],
 "payable": false,
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
],
 "payable": false,
 "stateMutability": "nonpayable",
 "type": "constructor"
 }
]

Deploy the contract to the blockchain to generate an address, Such as: 0x269ab4bc23b07efeb3c3fd52eecfc4cbe6a50859.
Finally, use the ABI and address to call the smart contract. The key input parameters are ABI and address even there are different SDK tools.

2. Brief to CNS

ABI and contract address are mandatory when we trigger the smart contract. Below are some disadvantages of using the ABI and contract address directly.

	The ABI is a lengthy JSON string which is not user-friendly.

	Contract address is a magic number which is difficult to remember and can easily type wrong.

	The contract will be unreachable if the address had been forgotten.

	The contract address is changed after deployment.

	It is difficult to manage versioning and contract gated-upgrade.

With the CNS in place, we see the following advantages as a caller:

	No longer need to maintain the ABI and contract address.

	Only needs to know the contract name, version, function name and parameters

	Contract upgrade is transparent to the caller

	Supports gated-upgrade for contracts

[image: ../../_images/en_cns_1.png]

How it works

1. Overall framework

[image: ../../_images/en_cns_2.png]

The client calls the contract service by RPC, first it will visit contract naming service to get underlying business contract details (ABI and address), then construct a call to business smart contract by using it’s ABI and address, and finally return the results to the client.

2. Key components

a. Contract Manager

Contract manager contains mapping between the name and contract information. CNS Manager (cns_manager.js) is a tool that allows us to add, update, list and reset the mappings. Any changes made with the tool will be synchronized to the systems automatically.

	Mapping in the contract manager:

Key: contract name, contract version number
Value: ABI, address.

	Sample implementation code: systemcontractv2/ContractAbiMgr.sol

	Abstract Contract: tool/ContractBase.sol

	Provide multi-version management by inheriting from ContractBase.sol, and initializing ContractAbiMgr with version number.

ContractAbiMgr is managed by system contract, system contract should be deployed before applying CNS.

b. CNS Manager Tool

Provide add, update, list and reset naming mapping information by calling contract manager.

	Tool: tool/cns_manager.js

babel-node cns_manager.js
 cns_manager.js Usage:
 babel-node cns_manager.js get contractName [contractVersion]
 babel-node cns_manager.js add contractName
 babel-node cns_manager.js update contractName
 babel-node cns_manager.js list [simple]
 babel-node cns_manager.js historylist contractName [contractVersion] [simple]
 babel-node cns_manager.js reset contractName [contractVersion] index

List of utility methods:

	Command : add

	Parameter : contractName

	Function : add contract name to contract management

	Note : Duplicate contract name raise warning. This can be resolve in following two ways: 1. change the contract version and specify the version number during calling by CNS. or 2. overwrite mapping in contract manager by calling ‘update’ command.

//first time add Test, success
babel-node cns_manager.js add Test
cns add operation => cns_name = Test
 cns_name =>Test
 contract =>Test
 version =>
 address =>0x233c777fccb9897ad5537d810068f9c6a4344e4a
 abi =>[{"constant":false,"inputs":[{"name":"num","type":"uint256"}],"name":"trans","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"Ok","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"}]

//second time add, failed
babel-node cns_manager.js add Test
cns_manager.js Begin........................
 [WARNING] cns add operation failed , ====> contract => Test version => already exist. you can update it or change its version.

	Command : get

	Parameter : 1. contractName 2. contractVersion [optional]

	Description : Get contract information by name and version

babel-node cns_manager.js get HelloWorld
cns_manager.js Begin........................
 ====> contract => HelloWorld ,version =>
 contract = HelloWorld
 version =
 address = 0x269ab4bc23b07efeb3c3fd52eecfc4cbe6a50859
 timestamp = 1516866720115 => 2018/1/25 15:52:0:115
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]

	Command : update

	Parameter : contractName

	Description : Update stored contract information

	Note : 1, Failure in case the corresponding contract does not exist. To resolve, add the missing contract first; 2, The overwritten information can be queried by ‘historylist’ command and reset by ‘reset’ command.

babel-node cns_manager.js update Test
cns_manager.js Begin........................
 ====> Are you sure you want to update the cns of the contract ?(Y/N)
Y
cns update operation => cns_name = Test
 cns_name =>Test
 contract =>Test
 version =>
 address =>0x233c777fccb9897ad5537d810068f9c6a4344e4a
 abi =>[{"constant":false,"inputs":[{"name":"num","type":"uint256"}],"name":"trans","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"Ok","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"}]
Send transaction successfully: 0x1d3caff1fba49f5ad8af3d195999454d01c64d236d9ac3ba91350dd543b10c13

	Command : list

	Parameter : simple[optional]

	Description : List all the existing mappings in the contract manager. Display the contract name and version in case option ‘simple’ provided, else display all the details.

babel-node cns_manager.js list simple
cns_manager.js Begin........................
 cns total count => 11
 1. contract = ContractAbiMgr ,version =
 2. contract = SystemProxy ,version =
 3. contract = TransactionFilterChain ,version =
 4. contract = AuthorityFilter ,version =
 5. contract = Group ,version =
 6. contract = CAAction ,version =
 7. contract = ConfigAction ,version =
 8. contract = NodeAction ,version =
 9. contract = HelloWorld ,version =
 10. contract = Ok ,version =
 11. contract = Test ,version =

	Command : historylist

	Parameter : 1. contract name | 2, contract version [optional]

	Description : Display all update history for provided contract

babel-node cns_manager.js historylist HelloWorld
cns_manager.js Begin........................
 cns history total count => 3
 ====> cns history list index = 0 <====
 contract = HelloWorld
 version =
 address = 0x1d2047204130de907799adaea85c511c7ce85b6d
 timestamp = 1516865606159 => 2018/1/25 15:33:26:159
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
 ====> cns history list index = 1 <====
 contract = HelloWorld
 version =
 address = 0x9c3fb4dd0a3fc5e1ea86ed3d3271b173a7084f24
 timestamp = 1516866516542 => 2018/1/25 15:48:36:542
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
 ====> cns history list index = 2 <====
 contract = HelloWorld
 version =
 address = 0x1d2047204130de907799adaea85c511c7ce85b6d
 timestamp = 1516866595160 => 2018/1/25 15:49:55:160
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]

	Command : reset

	Parameter : 1. contract name 2. contract version [optional] 3. index

	Description : Resets the information in contract manager from its history at the specified index.

c. RPC interface

The base class of the RPC interface is modified to support CNS

RPC interface is modified such that it is backward compatible to Ethereum call
RPC format details: https://github.com/ethereum/wiki/wiki/JSON-RPC

	eth_call

request:
{
 "jsonrpc": "2.0",
 "method": "eth_call",
 "params": [
 {
 "data": {
 "contract": "",
 "version": "",
 "func": "",
 "params": [

]
 }
 },
 "latest"
],
 "id": 1
}

response:
{
 "id": 1,
 "jsonrpc": "2.0",
 "result": {
 "result": [], //return result, json format
 "ret_code": 0,
 "ret_msg": "success!"
 }
}

	eth_sendRawTransaction
The RPC request and response format are the same except the ‘data’ field which is encoded as RLP HEX string.

"data": {
 "contract": "",
 "version": "",
 "func": "",
 "params": [

]
 }

d. JavaScript RPC call

Path: web3lib/web3sync.jsInterface:

callByNameService
sendRawTransactionByNameService

Examples

// Test contract
// Path tool/HelloWorld.sol
pragma solidity ^0.4.4;
contract HelloWorld{
 string name;
 function HelloWorld(){
 name="Hi,Welcome!";
 }
 function get()constant public returns(string){
 return name;
 }
 function set(string n) public{
 name=n;
 }
}

	Deployment:babel-node deploy.js HelloWorld

When contract gets deployed successfully, the cns_manager add function is called by default, and the file name would be same as the contract name. In case of failure, action as below:

	Call ‘cns_manager add’ again if a specific name is needed.

	No action needed for a test contract.

	Call ‘cns_manager update’ for bug fix or upgrade.

	Modify the contract’s version if previous contract is still in use (refer to multi-version deployment).

 //examples of success
 babel-node deploy.js Test0
 deploy.js Start........................
 Soc File :Test0
 Test0Compiled successfully！
 Test0Contract address 0xfc7055a9dc68ff79a58ce4f504d8c780505b2267
 Test0Deployed successful ！
 cns add operation => cns_name = Test0
 cns_name =>Test0
 contract =>Test0
 version =>
 address =>0xfc7055a9dc68ff79a58ce4f504d8c780505b2267
 abi =>[{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"HelloWorld","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"}]
 Send transaction successfully: 0x84d1e6b16c58e3571f79e80588472ab8d12779234e75ceed4ac592ad1d653086

 //Example of failure, the contract already has corresponding information
 babel-node deploy.js HelloWorld
 deploy.js Start........................
 Soc File :HelloWorld
 HelloWorld Compiled successfully！
 HelloWorld Contract address 0xc3869f3d9a5fc728de82cc9c807e85b77259aa3a
 HelloWorld Deployed successful ！
 [WARNING] cns add operation failed , ====> contract => HelloWorld version => is already exist. you can update it or change its version.

Multi-version Deployment
In case multi-version Deployment using ‘cns_manager add’ fails due to duplicate version, modify the contract version by providing unique version number in the constructor of ContractBase.sol.

pragma solidity ^0.4.4;
contract HelloWorld is ContractBase("v-1.0"){
 string name;
 function HelloWorld(){
 name="Hi,Welcome!";
 }
 function get()constant public returns(string){
 return name;
 }
 function set(string n) public{
 name=n;
 }
}

re-deploy

babel-node deploy.js HelloWorld
deploy.js Start........................
Soc File :HelloWorld
HelloWorldCompiled successfully！
HelloWorldContract address 0x027d156c260110023e5bd918cc243ac12be45b17
HelloWorldDeployed successful ！
cns add operation => cns_name = HelloWorld/v-1.0
 cns_name =>HelloWorld/v-1.0
 contract =>HelloWorld
 version =>v-1.0
 address =>0x027d156c260110023e5bd918cc243ac12be45b17
 abi =>[{"constant":true,"inputs":[],"name":"getVersion","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"version_para","type":"string"}],"name":"setVersion","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
Send transaction successfully: 0x9a409003f5a17220809dd8e1324a36a425acaf194efd3ef1f772bbf7b49ee67c

The latest contract version is v-1.0

	RPC calls

1. get - HelloWorld contract default version
curl -X POST --data '{"jsonrpc":"2.0","method":"eth_call","params":[{"data":{"contract":"HelloWorld","version":"","func":"get","params":[]}},"latest"],"id":1}' "http://127.0.0.1:8746"

{"id":1,"jsonrpc":"2.0","result":"[\"call defaut version\"]\n"}

2. get - HelloWorld contract version v-1.0
 curl -X POST --data '{"jsonrpc":"2.0","method":"eth_call","params":[{"data":{"contract":"HelloWorld","version":"v-1.0","func":"get","params":[]}},"latest"],"id":1}' "http://127.0.0.1:8746"

{"id":1,"jsonrpc":"2.0","result":"[\"call v-1.0 version\"]\n"}

	Upgrade contract
Contract can be upgraded using ‘update’ command.
If cns_manager has HelloWorld added already with old address, in order to be able to redeploy and upgrade HelloWorld, it requires to use ‘update’ command to avoid failure while adding.

babel-node cns_manager.js update HelloWorld
cns_manager.js Begin........................
 ====> Are you sure update the cns of the contract ?(Y/N)
Y
cns update operation => cns_name = HelloWorld
 cns_name =>HelloWorld
 contract =>HelloWorld
 version =>
 address =>0x93d62e961a6801d3f614a5add207cdf45b0ff654
 abi =>[{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
Send transaction successfully: 0xc8ee384185a1aaa3817474d6db6394ff6871a7bc56a15e564e7b1f57c8bfda1a

Call get interface again:
curl -X POST --data '{"jsonrpc":"2.0","method":"eth_call","params":[{"data":{"contract":"HelloWorld","version":"","func":"get","params":[]}},"latest"],"id":1}' "http://127.0.0.1:8746"
{"id":1,"jsonrpc":"2.0","result":"[\"Hi,Welcome!\"]\n"}

Return 'Hi,Welcome!'.
That means the current contract is the newly deployed contract.

	Reset contractUse ‘reset’ to recover the original contract after the update.
First, list history of updated contract.

babel-node cns_manager.js historylist HelloWorld
cns_manager.js Begin........................
 cns history total count => 4
 ====> cns history list index = 0 <====
 contract = HelloWorld
 version =
 address = 0x1d2047204130de907799adaea85c511c7ce85b6d
 timestamp = 1516865606159 => 2018/1/25 15:33:26:159
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
 ====> cns history list index = 1 <====
 contract = HelloWorld
 version =
 address = 0x9c3fb4dd0a3fc5e1ea86ed3d3271b173a7084f24
 timestamp = 1516866516542 => 2018/1/25 15:48:36:542
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
 ====> cns history list index = 2 <====
 contract = HelloWorld
 version =
 address = 0x1d2047204130de907799adaea85c511c7ce85b6d
 timestamp = 1516866595160 => 2018/1/25 15:49:55:160
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
 ====> cns history list index = 3 <====
 contract = HelloWorld
 version =
 address = 0x269ab4bc23b07efeb3c3fd52eecfc4cbe6a50859
 timestamp = 1516866720115 => 2018/1/25 15:52:0:115
 abi = [{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]

Then find out which history item need to be retrieved.
babel-node cns_manager.js reset HelloWorld 3
cns_manager.js Begin........................
 ====> Are you sure update the cns of the contract ?(Y/N)
Y
cns update operation => cns_name = HelloWorld
 cns_name =>HelloWorld
 contract =>HelloWorld
 version =>
 address =>0x269ab4bc23b07efeb3c3fd52eecfc4cbe6a50859
 abi =>[{"constant":false,"inputs":[{"name":"n","type":"string"}],"name":"set","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"}]
Send transaction successfully: 0x4809a6105916a483ca70c4efe8e306bc01ca5d937515320d09e94a83f4a91b76

Then execute 'get' command with contract name as HelloWorld one more time:
curl -X POST --data '{"jsonrpc":"2.0","method":"eth_call","params":[{"data":{"contract":"HelloWorld","version":"","func":"get","params":[]}},"latest"],"id":1}' "http://127.0.0.1:8746"
{"id":1,"jsonrpc":"2.0","result":"[\"call defaut version\"]\n"}

'call defaut version' in repsonse shows it is the latest contract.

	Call by JavaScript

//Call HelloWorld get
var result = web3sync.callByNameService("HelloWorld","get","",[]);

//Call HelloWorld v-1.0 get
var result = web3sync.callByNameService("HelloWorld","get","v-1.0",[]);

//Call HelloWorld set sendRawTransaction
var result = web3sync.sendRawTransactionByNameService(config.account,config.privKey,"HelloWorld","set","",["test message!"]);

//Call HelloWorld v-1.0 set sendRawTransaction
var result = web3sync.sendRawTransactionByNameService(config.account,config.privKey,"HelloWorld","set","v-1.0",["test message!"]);

Appendix One: Function overload

Solidity supports function overload. The value format of input ‘func’ parameter is different than original when calling overloaded function:

//file : OverloadTest.sol
pragma solidity ^0.4.4;
contract OverloadTest {
 string public msg;
 uint256 public u;

 function OverloadTest() {
 msg = "OverloadTest Test";
 u = 0x01;
 }

 function set(string _msg) public {
 msg = _msg;
 }
 function set(uint256 _u) public {
 u = _u;
 }

 function get() public constant returns(string){
 return msg;
 }

 function get(uint256 i) public constant returns(uint256){
 return u;
 }
}

In OverloadTest.sol:set function is a overloaded function, one function is set(string), the other is set(uint256).get function is also an overloaded function, one function is get(), the other is get(uint256).

Deployment Procedure:

babel-node deploy.js OverloadTest
RPC=http://0.0.0.0:8546
Ouputpath=./output/
deploy.js Start........................
OverloadTest Compiled successfully！
Send transaction successfully: 0xff8a5708b3f7b335570a50639f2073e5e0b8b2002faa909dc75727059de94f4e
OverloadTest Contract address 0x919868496524eedc26dbb81915fa1547a20f8998
OverloadTest Deployed successful！
cns add operation => cns_name = OverloadTest
 cns_name =>OverloadTest
 contract =>OverloadTest
 version =>
 address =>0x919868496524eedc26dbb81915fa1547a20f8998
 abi =>[{"constant":false,"inputs":[{"name":"_msg","type":"string"}],"name":"set","outputs":[],"payable":false,"type":"function"},{"constant":false,"inputs":[{"name":"_u","type":"uint256"}],"name":"set","outputs":[],"payable":false,"type":"function"},{"constant":true,"inputs":[],"name":"msg","outputs":[{"name":"","type":"string"}],"payable":false,"type":"function"},{"constant":true,"inputs":[],"name":"get","outputs":[{"name":"","type":"string"}],"payable":false,"type":"function"},{"constant":true,"inputs":[{"name":"i","type":"uint256"}],"name":"get","outputs":[{"name":"","type":"uint256"}],"payable":false,"type":"function"},{"constant":true,"inputs":[],"name":"u","outputs":[{"name":"","type":"uint256"}],"payable":false,"type":"function"},{"inputs":[],"payable":false,"type":"constructor"}]
===>> namecall params = {"contract":"ContractAbiMgr","func":"addAbi","version":"","params":["OverloadTest","OverloadTest","","[{\"constant\":false,\"inputs\":[{\"name\":\"_msg\",\"type\":\"string\"}],\"name\":\"set\",\"outputs\":[],\"payable\":false,\"type\":\"function\"},{\"constant\":false,\"inputs\":[{\"name\":\"_u\",\"type\":\"uint256\"}],\"name\":\"set\",\"outputs\":[],\"payable\":false,\"type\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"msg\",\"outputs\":[{\"name\":\"\",\"type\":\"string\"}],\"payable\":false,\"type\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"get\",\"outputs\":[{\"name\":\"\",\"type\":\"string\"}],\"payable\":false,\"type\":\"function\"},{\"constant\":true,\"inputs\":[{\"name\":\"i\",\"type\":\"uint256\"}],\"name\":\"get\",\"outputs\":[{\"name\":\"\",\"type\":\"uint256\"}],\"payable\":false,\"type\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"u\",\"outputs\":[{\"name\":\"\",\"type\":\"uint256\"}],\"payable\":false,\"type\":\"function\"},{\"inputs\":[],\"payable\":false,\"type\":\"constructor\"}]","0x919868496524eedc26dbb81915fa1547a20f8998"]}
Send transaction successfully: 0x56e2267cd46fddc11abc4f38d605adc1f76d3061b96cf4026b09ace3502d2979

The overload function needs to specify the full function signature other than just the name:

When call get()， “func” is “get()”;
When call get(uint256 i), “func” is “get(uint256)”;When call set(string _msg), “func” is “set(string)”;When call set(uint256 _u), “func” is “set(uint256)”;

Example:

Call get():
curl -X POST --data '{"jsonrpc":"2.0","method":"eth_call","params":[{"data":{"contract":"OverloadTest","version":"","func":"get","params":[]}},"latest"],"id":1}' "http://127.0.0.1:8546"
{"id":1,"jsonrpc":"2.0","result":"[\"OverloadTest Test\"]\n"}

Call get(uint256 i):
curl -X POST --data '{"jsonrpc":"2.0","method":"eth_call","params":[{"data":{"contract":"OverloadTest","version":"","func":"get(uint256)","params":[1]}},"latest"],"id":1}' "http://127.0.0.1:8546"
{"id":1,"jsonrpc":"2.0","result":"[\"1\"]\n"}

Call set(string _msg) by Javascript:
var result = web3sync.sendRawTransactionByNameService(config.account,config.privKey,"OverloadTest","set(string)","",["test message!"]);

jsCall set(uint256 _i)):
var result = web3sync.sendRawTransactionByNameService(config.account,config.privKey,"OverloadTest","set(uint256)","",["0x111"]);

Appendix two: RPC called by Java

Take HelloWorld.sol contract as an example:

	Deploy HelloWorld.sol and use the cns_manager.js to register HelloWorld to contract manager.

	Download web3sdk [https://github.com/FISCO-BCOS/web3sdk], the version needs >= V1.1.0.

	The HelloWorld Java wrapper (reference tutorial [https://github.com/FISCO-BCOS/web3sdk#%E4%BA%94%E5%90%88%E7%BA%A6%E7%BC%96%E8%AF%91%E5%8F%8Ajava-wrap%E4%BB%A3%E7%A0%81%E7%94%9F%E6%88%90]) generated by web3sdk, code package - org.bcos.cns - as below:

package org.bcos.cns;

import java.math.BigInteger;
import java.util.Arrays;
import java.util.Collections;
import java.util.concurrent.Future;
import org.bcos.channel.client.TransactionSucCallback;
import org.bcos.web3j.abi.TypeReference;
import org.bcos.web3j.abi.datatypes.Function;
import org.bcos.web3j.abi.datatypes.Type;
import org.bcos.web3j.abi.datatypes.Utf8String;
import org.bcos.web3j.crypto.Credentials;
import org.bcos.web3j.protocol.Web3j;
import org.bcos.web3j.protocol.core.methods.response.TransactionReceipt;
import org.bcos.web3j.tx.Contract;
import org.bcos.web3j.tx.TransactionManager;

/**
 * Auto generated code.

 * Do not modify!

 * Please use the web3j command line tools, or {@link org.bcos.web3j.codegen.SolidityFunctionWrapperGenerator} to update.
 *
 * <p>Generated with web3j version none.
 */
public final class HelloWorld extends Contract {
 private static final String BINARY = "6060604052341561000c57fe5b5b604060405190810160405280600b81526020017f48692c57656c636f6d65210081525060009080519060200190610059929190610060565b505b610105565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106100a157805160ff19168380011785556100cf565b828001600101855582156100cf579182015b828111156100ce5782518255916020019190600101906100b3565b5b5090506100dc91906100e0565b5090565b61010291905b808211156100fe5760008160009055506001016100e6565b5090565b90565b6102e2806101146000396000f30060606040526000357c0100900463ffffffff1680634ed3885e146100465780636d4ce63c146100a0575bfe5b341561004e57fe5b61009e600480803590602001908201803590602001908080601f01602080910402602001604051908101604052809392919081815260200183838082843782019150505050505091905050610139565b005b34156100a857fe5b6100b0610154565b60405180806020018281038252838181518152602001915080519060200190808383600083146100ff575b8051825260208311156100ff576020820191506020810190506020830392506100db565b505050905090810190601f16801561012b5780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b806000908051906020019061014f9291906101fd565b505b50565b61015c61027d565b60008054600181600116156101000203166002900480601f0160208091040260200160405190810160405280929190818152602001828054600181600116156101000203166002900480156101f25780601f106101c7576101008083540402835291602001916101f2565b820191906000526020600020905b8154815290600101906020018083116101d557829003601f168201915b505050505090505b90565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061023e57805160ff191683800117855561026c565b8280016001018555821561026c579182015b8281111561026b578251825591602001919060010190610250565b5b5090506102799190610291565b5090565b602060405190810160405280600081525090565b6102b391905b808211156102af576000816000905550600101610297565b5090565b905600a165627a7a723058205f78cf9b4365c5a429ff9e4ebc4abf1f9e9d44f0a41c19c85c9d394438f3fe7b0029";

 public static final String ABI = "[{\"constant\":false,\"inputs\":[{\"name\":\"n\",\"type\":\"string\"}],\"name\":\"set\",\"outputs\":[],\"payable\":false,\"type\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"get\",\"outputs\":[{\"name\":\"\",\"type\":\"string\"}],\"payable\":false,\"type\":\"function\"},{\"inputs\":[],\"payable\":false,\"type\":\"constructor\"}]";

 private HelloWorld(String contractAddress, Web3j web3j, Credentials credentials, BigInteger gasPrice, BigInteger gasLimit, Boolean isInitByName) {
 super(BINARY, contractAddress, web3j, credentials, gasPrice, gasLimit, isInitByName);
 }

 private HelloWorld(String contractAddress, Web3j web3j, TransactionManager transactionManager, BigInteger gasPrice, BigInteger gasLimit, Boolean isInitByName) {
 super(BINARY, contractAddress, web3j, transactionManager, gasPrice, gasLimit, isInitByName);
 }

 private HelloWorld(String contractAddress, Web3j web3j, Credentials credentials, BigInteger gasPrice, BigInteger gasLimit) {
 super(BINARY, contractAddress, web3j, credentials, gasPrice, gasLimit, false);
 }

 private HelloWorld(String contractAddress, Web3j web3j, TransactionManager transactionManager, BigInteger gasPrice, BigInteger gasLimit) {
 super(BINARY, contractAddress, web3j, transactionManager, gasPrice, gasLimit, false);
 }

 public Future<TransactionReceipt> set(Utf8String n) {
 Function function = new Function("set", Arrays.<Type>asList(n), Collections.<TypeReference<?>>emptyList());
 return executeTransactionAsync(function);
 }

 public void set(Utf8String n, TransactionSucCallback callback) {
 Function function = new Function("set", Arrays.<Type>asList(n), Collections.<TypeReference<?>>emptyList());
 executeTransactionAsync(function, callback);
 }

 public Future<Utf8String> get() {
 Function function = new Function("get",
 Arrays.<Type>asList(),
 Arrays.<TypeReference<?>>asList(new TypeReference<Utf8String>() {}));
 return executeCallSingleValueReturnAsync(function);
 }

 public static Future<HelloWorld> deploy(Web3j web3j, Credentials credentials, BigInteger gasPrice, BigInteger gasLimit, BigInteger initialWeiValue) {
 return deployAsync(HelloWorld.class, web3j, credentials, gasPrice, gasLimit, BINARY, "", initialWeiValue);
 }

 public static Future<HelloWorld> deploy(Web3j web3j, TransactionManager transactionManager, BigInteger gasPrice, BigInteger gasLimit, BigInteger initialWeiValue) {
 return deployAsync(HelloWorld.class, web3j, transactionManager, gasPrice, gasLimit, BINARY, "", initialWeiValue);
 }

 public static HelloWorld load(String contractAddress, Web3j web3j, Credentials credentials, BigInteger gasPrice, BigInteger gasLimit) {
 return new HelloWorld(contractAddress, web3j, credentials, gasPrice, gasLimit, false);
 }

 public static HelloWorld load(String contractAddress, Web3j web3j, TransactionManager transactionManager, BigInteger gasPrice, BigInteger gasLimit) {
 return new HelloWorld(contractAddress, web3j, transactionManager, gasPrice, gasLimit, false);
 }

 public static HelloWorld loadByName(String contractName, Web3j web3j, Credentials credentials, BigInteger gasPrice, BigInteger gasLimit) {
 return new HelloWorld(contractName, web3j, credentials, gasPrice, gasLimit, true);
 }

 public static HelloWorld loadByName(String contractName, Web3j web3j, TransactionManager transactionManager, BigInteger gasPrice, BigInteger gasLimit) {
 return new HelloWorld(contractName, web3j, transactionManager, gasPrice, gasLimit, true);
 }
}

Two additional loadByName methods are generated for CNS call.

	Call the method by contract name

package org.bcos.main;

import java.math.BigInteger;
import java.util.concurrent.Future;

import org.bcos.channel.client.Service;
import org.bcos.cns.HelloWorld;
import org.bcos.web3j.abi.datatypes.Utf8String;
import org.bcos.web3j.crypto.Credentials;
import org.bcos.web3j.crypto.ECKeyPair;
import org.bcos.web3j.crypto.Keys;
import org.bcos.web3j.protocol.Web3j;
import org.bcos.web3j.protocol.channel.ChannelEthereumService;
import org.bcos.web3j.protocol.core.methods.response.TransactionReceipt;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main {
	public static void main(String[] args) throws Exception {

		ApplicationContext context = new ClassPathXmlApplicationContext("classpath:applicationContext.xml");
		//init service
		Service service = context.getBean(Service.class);
 ChannelEthereumService channelEthereumService = new ChannelEthereumService();
 channelEthereumService.setTimeout(10000);
 channelEthereumService.setChannelService(service);

 //init web3
 Web3j web3j = Web3j.build(channelEthereumService);
 service.run();

 //init private key
 ECKeyPair keyPair = Keys.createEcKeyPair();
 Credentials credentials = Credentials.create(keyPair);

 	BigInteger gasPrice = new BigInteger("99999999");
 	BigInteger gasLimit = new BigInteger("99999999");

 	//Use CNS call the contract when the contract is created by loadByName.
 	HelloWorld instance = HelloWorld.loadByName("HelloWorld", web3j, credentials, gasPrice , gasLimit);

 	//Call HelloWorld set
 	Future<TransactionReceipt> receiptResult = instance.set(new Utf8String("HelloWorld Test."));
 	receiptResult.get();

 	//Call HelloWorld get
		Future<Utf8String> result = instance.get();
		System.out.println("HelloWorld get result = " + result.get().toString());

		return;
	}
}

CNS can be used to call contract function if the contract instance created by loadByName.

 HelloWorld instance = HelloWorld.loadByName("HelloWorld", web3j, credentials, gasPrice , gasLimit);

The ‘get’ and ‘set’ functions are called by CNS as the contract instance is created by loadByName.

	P.S.:The Java wrapper method - loadByName - is generated by XX.sol as follows:

 public static XX loadByName(String contractName, Web3j web3j, Credentials credentials, BigInteger gasPrice, BigInteger gasLimit) {
 return new XX(contractName, web3j, credentials, gasPrice, gasLimit, true);
 }

public static XX loadByName(String contractName, Web3j web3j, TransactionManager transactionManager, BigInteger gasPrice, BigInteger gasLimit) {
 return new XX(contractName, web3j, transactionManager, gasPrice, gasLimit, true);
 }

The value format of contractName input parameter is: contractName@version, version is optional.

	Summary

	Use JavaScript tool to deploy contracts.

	Use cns_manager.js tool to register a contract to contract manager.

	Use websdk tool to generate Java wrapper.

	Add the Java wrapper to project and create the contract by loadByName.

	Call the contract function.

Permission Model

Author: fisco-dev

Introduction to Permission Model - ARPI

Unlike public chain which anyone can access, transact and search, the consortium chain has the specific entry requirements, such as access control, various transactions support, privacy & security,high stablity etc. There are two key aspects in the consortium chain: “permission” and “control”

The permission model ARPI(Account—Role—Permission—Interface) is based on the thought of system level permission and interface level permission.

System level permission controls whether an account can deploy or call a contract. When a request is received, the system will check the sender’s permissions and will permit or reject accordingly. Interface level permission controls whether an account can call a specific interface of a contract. The admin can give an account the permissions to call all or part of the interfaces of a contract.

In the ARPI model, there are 4 objects - Account, Role, Permission and Interface, their relationship is as below:

Account : Role -> N : 1

An account (person or organization) can only have one specific role, but a role can be assigned to zero or more accounts. In practice, a role may have multiple accounts with different pair of public and private keys for each，when a transaction starts, the sender signs the transaction with its private key, and then the receiver can verify it by using sender’s public key to know which account the transaction was initiated from, so that the transaction can be controlled and traced.

Role : Permission -> N : N

A role can have multiple permissions and a permission can also be assigned to multiple roles. You can have fine granularity of permission control under the ARPI model. You can set permission to the contract’s interfaces.

ARPI objects relationship is as below:[image: ../../_images/arpi_objects_en.png]

ARPI Framework Implementation

TransactionFilterChain contract is deployed along with the system proxy contract during initialization, and it is registered by system proxy contract at the same time. All the permissions’ CRUD is maintained by TransactionFilterChain on a blockchain. When a request is received, the system will check whether the sender’s account has permissions to the corresponding operations, if yes, then it is executed, otherwise exception is thrown.

ARPI process flow as below:
[image: ../../_images/arpi_process_flow_en.png]

Two general types of permissions:

	Deploy contract, only the approved contract can be deployed on the chain for execution.

	Call contract, only the permitted accounts can call the corresponding interfaces of the contract to execute their business transactions.

Process flow details:

	TransactionFilterChain includes multiple independent filters with it’s specific filtering logic. An account will have the specific permissions if it passes all filters’ validation. A filter can be managed by a member of the consortium and the permissions can be added independently.

	Each filter has a switch, the filter is effective only when it is switched on. By default, filter is switched off during the initialization.

	There are different groups within the filter, when the filter is executed, corresponding group (with it’s permissions) is found based on the sender’s account.

	The Group contains the permissions of deploying contract or calling contract. For deploying a contract only one input sender’s address is needed, whereas for calling a contract four inputs sender’s address, contract address, function and the parameters are required. By default, the group does not have the permission for deploying the contract during initialization.

	It is possible to configure black list validation which can be effective while calling a contract. If the black list mode is on, no permission will be returned, if the user was added into the black list, even though an account has the permission for an interface. By default, the black list mode is off.

	An interface is comprised of a function along name with its parameters.

	The address changes once a contract gets redeployed, so the permissions of the contract need to be re-granted.

ARPI practice on consortium chain

Roles and Permissions are generally related to scenarios, there will have different roles and permissions design based on different business requirement. Based on the practice on FISCO BCOS, here let’s list out the definitions of roles and permissions for reference:

	Chain Super Admin (God account)A chain super administrator is selected by the consortium committee or public, who has all the permissions to the system. This role has following permissions: assign roles to users, add permissions to roles, which includes the permissions to perform any operations. The God account is required to execute the system contracts.

	Chain/Filter adminA chain/filter administrator can manage filters and audit, modify and delete information of nodes, accounts and contracts on the chain. This role has following permissions: execute the system contracts – CAAction, NodeAction, ContractABIAction and SystemProxy.

	Operation adminAn operation administrator is a person who deploys/manages the non-system contracts and nodes configuration, but doesn’t participate in business transactions. This role has following permissions: execute ConfigAction, deploy non-system contracts (except for SystemProxy, which is needed to get ConfigAction). For the non-system contracts, chain manager needs to call ContractABIAction to make the contract effective (this call can be made by contract name rather than by address)

	TraderA Trader is a person who uses the system to conduct business transactions and query the results, the role here can be subdivided based on different business requirements. This role has following permissions: execute and query business contracts.

	Chain regulator (Optional to be a group)A regulator is a person who is responsible for setting up the permission specifications. The person usually is not participant in the chain’s management but can participant in the business transactions. This role has following permissions: trace the operation records (The inputs for deploying and calling the contracts will be recorded by Event notification, which can be used for audit purposes)

Script Usage Guidelines

	ARPI_Model.js located under folder systemcontract, provides one step execution to start the ARPI mode which includes enabling access control and setting up the roles and permissions according to the previous section ARPI practice on consortium chain.

Note: The access control will be enabled after executing ARPI_Model.js, you can be disabled by using the GOD account, to avoid impacting other accounts to deploy or call contracts accidently.

	AuthorityManager.js located under the same folder systemcontract, used to manage TransactionFilterChain and provides the query interfaces to FilterChain, Filter, and Group.

Note: AuthorityManager.js and ARPI_Model.js execution requires God account.

	FilterChain can be obtained without index. FilterChain provides the functions to add, delete, show and reset a filter on the chain. The commands are as below:

babel-node AuthorityManager.js FilterChain addFilter <filter's name><version><description>
babel-node AuthorityManager.js FilterChain delFilter <filter's index>
babel-node AuthorityManager.js FilterChain showFilter
babel-node AuthorityManager.js FilterChain resetFilter

	Filter can be obtained with its index from FilterChain. Filter provides the functions 1) to enable, disable and display status of a filter. 2) to add an account to a new or existing group. 3) to display the group of the given account. The commands as below:

babel-node AuthorityManager.js Filter getFilterStatus <filter's index>
babel-node AuthorityManager.js Filter enableFilter <filter's index>
babel-node AuthorityManager.js Filter disableFilter <filter's index>
babel-node AuthorityManager.js Filter setUsertoNewGroup <filter's index> <user's account>
babel-node AuthorityManager.js Filter setUsertoExistingGroup <filter's index> <user's account> <group's address>
babel-node AuthorityManager.js Filter listUserGroup <filter's index> <user's account>

	Group can be obtained with the filter’s index in the FilterChain and it’s binding user’s account. Group provides the functions to maintain its permission list, enable/disable the permission for deploying contract and verifying black list. The commands as below:

babel-node AuthorityManager.js Group getBlackStatus <filter's index> <user's account>
babel-node AuthorityManager.js Group enableBlack <filter's index> <user's account>
babel-node AuthorityManager.js Group disableBlack <filter's index> <user's account>
babel-node AuthorityManager.js Group getDeployStatus <filter's index> <user's account>
babel-node AuthorityManager.js Group enableDeploy <filter's index> <user's account>
babel-node AuthorityManager.js Group disableDeploy <filter's index> <user's account>
babel-node AuthorityManager.js Group addPermission <filter's index> <user's account> <contract address> <func name(parameters)>
babel-node AuthorityManager.js Group delPermission <filter's index> <user's account> <contract address> <func name(parameters)>
babel-node AuthorityManager.js Group checkPermission <filter's index> <user's account> <contract address> <func name(parameters)>
babel-node AuthorityManager.js Group listPermission <filter's index> <user's account>

	Prompt for missing the permissions

The following error is raised if no permission to deploy a contract:Transaction failed to send! Error: NoDeployPermission .

The following error is raised if no permission to call a contract:Transaction failed to send! Error: NoTxPermission .OrError: NoCallPermission .

	An example for using AuthorityManager.js as below (to avoid unexpected exception, please ensure the account configured in config.js is the God account)

//Add a filter to FilterChain with 3 parameters – filter name, version and description.
babel-node AuthorityManager.js FilterChain addFilter NewFilter 2.0 FilterUsedForTest

//Delete a filter from FilterChain with its index
babel-node AuthorityManager.js FilterChain delFilter 1

//Display all filters on FilterChain
babel-node AuthorityManager.js FilterChain showFilter

//Reset FilterChain to its initialize status
babel-node AuthorityManager.js FilterChain resetFilter

//Display a filter's status with its index
babel-node AuthorityManager.js Filter getFilterStatus 1

//Enable a filter with its index
babel-node AuthorityManager.js Filter enableFilter 1

//Disable a filter with its index
babel-node AuthorityManager.js Filter disableFilter 1

//Grant a new role(group) to an account with two parameters – filter's index and user's account
babel-node AuthorityManager.js Filter setUsertoNewGroup 0 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

//Grant an existing role(group) to an account with 3 parameters – filter's index, user's account and group's address (the group's address is getting from command 'listUserGroup' after the group have been created by command 'setUsertoNewGroup')
babel-node AuthorityManager.js Filter setUsertoExistingGroup 0 0x6ea2ae822657da5e2d970309b106207746b7b6b3 Group.address

//Display the role(group) of an user's account with 2 parameters – filter's index and user's account
babel-node AuthorityManager.js Filter listUserGroup 0 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

// Display the status of black list mode with 2 parameters – filer's index and group's address
babel-node AuthorityManager.js Group getBlackStatus 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

// Enable black list validation with 2 parameters – filer's index and group's address
babel-node AuthorityManager.js Group enableBlack 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

// Disable black list validation with 2 parameters – filer's index and group's address
babel-node AuthorityManager.js Group disableBlack 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

// Display the permission status of deploying contract with 2 parameters - filer's index and group's address
babel-node AuthorityManager.js Group getDeployStatus 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

// Enable the permission of deploying contract with 2 parameters - filer's index and group's address
babel-node AuthorityManager.js Group enableDeploy 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

// Disable the permission of deploying contract with 2 parameters - filer's index and group's address
babel-node AuthorityManager.js Group disableDeploy 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

// Add the permissions to a group with 4 parameters - filer's index and group's address, contract's address and contract's interface
>Note: the contract's address here is the real address rather than the DNS name, so the permission need to be re-granted if the contract get re-deployed
babel-node AuthorityManager.js Group addPermission 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9 ContractA.address "set1(string)"

//Delete the permissions from a Group with 4 parameters - filer's index and Group's address, contract's address and contract's interface
babel-node AuthorityManager.js Group delPermission 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9 ContractA.address "set1(string)"

//Check if the permissions of a Group exist with 4 parameters - filer's index and Group's address, contract's address and contract's interface
babel-node AuthorityManager.js Group checkPermission 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9 ContractA.address "set1(string)"

//List the permissions of a group with 2 parameters - filer's index and group's address
babel-node AuthorityManager.js Group listPermission 1 0x4015bd4dd8767d568fc54cf6d0817ecc95d166d9

Group signature and Ring signature

Author: fisco-dev

Catalog

	1 Introduction

	2 Deployment

	3 Note

 Parallel PBFT

Parallel PBFT

Author: fisco-dev

1. Glossary

Blockchain:

Blockchain is a growing list of records, called blocks, which are linked using cryptography. Each block contains current block data and a cryptographic hash of the previous block. There are two key concepts in blockchain: cryptography and decentralization. These two key concepts are used to ensure that the block data cannot be tampered with.
A block consists of block head and block body. The block head contains the block height(h), previous block hash(prevHash) etc., and the block body mainly contains transaction data.

[image: ../../_images/pbft_blockchain.jpg]

 Regulated Zero-knowledge proof

Regulated Zero-knowledge proof

Author: fisco-dev

To meet the regulatory requirements, FISCO BCOS provides a framework to perform anonymous transactions by zero-knowledge proof, it also satisfies the regulatory requirement that regulators can regulate every transaction.

1. Glossary

Zero-knowledge proof: Let you validate the truth of something without revealing how you know that truth or sharing the content of this truth with the verifier.

Zero-knowledge proof on blockchain: A proof, derived from the user data, to be verified by the blockchain nodes to prove that the user knows the secret information, and the proof itself cannot be reverted back to the original data. It helps the node to verify the user data’s correctness without having knowledge of any part of the original data. So zero-knowledge proof provides a way to perform secret transactions using blockchain, although there exists a regulatory risk.

FISCO-BCOS regulated Zero-knowledge proof: FISCO BCOS node works as verifier for all secret transactions (implemented by zero-knowledge proof) on the chain. While all transactions can be ONLY decrypted/overseen by authorized regulator.

2. Underlying library

libzkg：Regulated Zero-knowledge proof library [https://github.com/FISCO-BCOS/libzkg]

3. Case study

(1) Regulated one-to-one anonymous transfer

In FISCO BCOS, one-to-one anonymous transfer can be verified by the blockchain nodes without knowing receiver’s and sender’s identities and amount. In the meantime, regulator can decrypt the anonymous transfer. More details：zkg-tx1to1 [https://github.com/FISCO-BCOS/zkg-tx1to1]

[image: ../../_images/1-1_anonymous_transfer.png]

(2) Coming soon…

 System Contract Introduction

System Contract Introduction

Author: fisco-dev

	FISCO BCOS System Contract Introduction
	Design Overview

	How it works
	System Proxy

	Node Management

	CA Management

	Permissions Management

	Configuration Management

	Customizations
	Example 1 - Custom Business Contract

	Example 2 - Custom Permission Contract

Design Overview

In order to meet the requirements of access control, identity authentication, configuration management and permissions management etc., FISCO BCOS will deploy a set of powerful, flexible, and custom-defined smart contracts during the network initialization, collectively referred to as system contracts.

The system contract is deployed by administrator during initialization. For redeploying any changes or upgrades while the network is running, it is necessary for the blockchain administrator to get an agreement of all the nodes within the network.

FISCO BCOS system contract is comprised of five modules: System Proxy, Node Management, CA Management, Permissions Management and Configuration Management. System contracts is extendable and can be called by both core system and DAPP. There could be one or more smart contracts in a module. The modules are as below:

[image: ../../_images/systemcontract_module.png]module structure

How it works

Code path: systemcontractv2/. Brief of each module is as below:

System Proxy

SystemProxy.sol, the system proxy’s implementation, provides a mapping between route and contract address, unified system contract interface. In SystemProxy.sol, routing info is held by a mapping field, named as ‘_routes’. The value of mapping is structured as below:

struct SystemContract {
 address _addr;		#contract address
 bool _cache;		#cache flag
 uint _blocknumber;		#block height when the contract is active
}

Key functions:

	function
	input parameters
	output parameters
	description

	getRoute
	string key#route name
	address#contract
address, bool#catch
flag, uint # block
height
	get route
information

	setRoute
	string key#route name,
address addr#contract
address, bool cache#cache
flag, unit blocknumber
#block height
	N/A
	set route,
overwrite if
route name
exists

Node Management

NodeAction.sol is the implementation contract of the node management module. It implements the function of registering, managing and maintaining the list information of all nodes in the network. Every time a node in the network joins or quits, it must controlled by the node management contract.
Three node types: Core, Full, and Light.

enum NodeType{
 None,
 Core,
 Full,
 Light
 }

Structure for node information:

struct NodeInfo{
 string id;
 string ip;
 uint port;
 NodeType category;
 string desc;
 string CAhash;
 string agencyinfo;
 uint idx;
 uint blocknumber; #block height
 }

Key functions:

	function
	input parameters
	output parameters
	description

	registerNode
	string _id
string _ip
uint _port
NodeType _category
string _desc
string _CAhash
string _agencyinfo
uint _idx
	bool #result
	register node
Ignore if the node exists

	cancelNode
	string _id
	bool #result
	cancel node
Ignore if the node not exists

CA Management

CAAction.sol is the implementation contract of the CA management module. It provides nodes’ certificate registration, management and maintenance. Node joins or quits the chain must controlled by CA management contract if certificate verification enabled.

Structure for certificate data:

struct CaInfo{
 string hash;		#certificate hash
 string pubkey;		#certificate public key
 string orgname;		#organization name
 uint notbefore;		#certificate effective date
 uint notafter;		#certificate expire date
 CaStatus status;	#certificate status
 string whitelist;	#IP whitelist
 string blacklist;	#IP blacklist
 uint blocknumber;	#block height
 }

Key functions:

	function
	input parameters
	output parameters
	description

	update
	string _hash
string _pubkey
string _orgname
uint _notbefore
uint _notafter
CaStatus _status
string _whitelist
string _blacklist
	bool #result
	update certificate
create certificate if certificate not exists

	get
	string _hash
	string#certificate hash
string#certificate public key
string#organization name
uint#certificate effective date
uint#certificate expire date
CaStatus#certificate status
uint##block height
	get certificate information

Permissions Management

Permissions management’s design principles: 1, One external account only belongs to one role. 2, One role only has one permission list. 3, Permission is identified by a combination of function and its contract address.

Permission module are comprised of 4 contracts: TransactionFilterChain.sol [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/systemcontract/TransactionFilterChain.sol], TransactionFilterBase.sol [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/systemcontract/TransactionFilterBase.sol], AuthorityFilter.sol [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/systemcontract/AuthorityFilter.sol], Group.sol [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/systemcontract/Group.sol].

TransactionFilterChain.sol, the implementation of Filter pattern, provides a unified function ‘process’ for permission checking. It holds an address list of Filter contract which extends from TransactionFilterBase. All permissions will be checked by the calling ‘process’ function of each Filter contract sequentially.

All Filters must implement TransactionFilterBase’s ‘process’ interface, AuthorityFilter is inherited from TransactionFilterBase’s role permission Filter implementation. Its process interface implements the checking logic for the permissions of the user role groups.

Group.sol handles the concept of Role. It internally maintains the mapping flag for all permission entries for this role.

Key functions:

	contract
	function
	input parameters
	output parameters
	description

	TransactionFilterBase
	process
	address origin #external address
address from#from account address
address to#to account address
string func#contract address
string input#transaction input
	bool#result
	permission checking

	Group
	setPermission
	address to#to account address
string func#contract address
bool permission#permission flag
	bool#result
	set permission

Configuration Management

ConfigAction.sol is the implementation of configuration management module for entire network. It maintains configurable information for the entire network in the FISCO BCOS blockchain. The configuration information is kept consistent through out the entire network by transactions broadcast. In principle, only the blockchain administrator can issue transactions broadcast to perform network-wide configuration changes.

Key functions:

	function
	input parameters
	output parameters
	description

	set
	string key #parameter
string value#config information value
	N/A
	set configuration

	get
	string key #parameter
	string #config information
uint#block height
	get configuration

key parameters:

	parameter
	description
	default value
	recommend value

	maxBlockHeadGas
	Gas spend limitation for each block (Hex)
	200000000
	20000000000

	intervalBlockTime
	an interval btw block generation(ms) (Hex)
	1000
	1000

	maxBlockTranscations
	configure the max transaction in a block(Hex)
	1000
	1000

	maxNonceCheckBlock
	Trace back max previous block number to avoid nonce duplication.(Hex)
	1000
	1000

	maxBlockLimit
	max delay for transaction commit(Hex)
	1000
	1000

	maxTranscationGas
	Gas spend limitation for each transaction(Hex)
	20000000
	20000000

	CAVerify
	CA verification flag
	FALSE
	FALSE

Customizations

Example 1 - Custom Business Contract

To customize a business contract by modifying business configuration. Refer to the steps below:

	Implement ‘set’ and ‘get’ based on business requirement.

	Deploy business contract and get contract address.

	Call the ‘setRoute’ method in SystemProxy to register contract address in the routing table.

	Business smart contract is now ready to be called.

How to call the business contract:

	Call the ‘getRoute’ method in SystemProxy to get the contract address.

	Get configured information by calling the ‘get’ method with address in step 1.

Example 2 - Custom Permission Contract

Permission checking can be extended by adding new Filter. Refer to the steps below:

	Create a Filter permission contract by inheriting TransactionFilterBase. The custom permissions verification logic should be implemented into the ‘process’ interface as per the business requirements.

	Deploy custom permission contract and get contract address.

	Call the ‘getRoute’ method in SystemProxy to get contract address of TransactionFilterChain.

	Register custom filter contract by calling ‘addFilter’ method in TransactionFilterChain.

	The contract is now ready for calling.

 System Configuration

System Configuration

Author: fisco-dev

Design Overview

There are many distributed nodes in a block chain. To ensure the configuration is in sync on all nodes, a mechanism has been built in FISCO BCOS using smart contract to sync up the configuration across all nodes:

[image: ../../_images/sys_para.png]reference

System Properties

maxBlockTranscations

Description: configure the max transaction in a block

Value: (0,2000]

Default: 1000

intervalBlockTime

Description: an interval btw block generation(ms)

Value: >= 1,000

Default: 1,000

maxTranscationGas

Description: Gas spend limitation for each transaction

Value: >= 30,000,000

Default: 30,000,000

maxNonceCheckBlock

Description: Trace back max previous block number to avoid nonce duplication.

Value: >= 1000

Default: 1000

maxBlockLimit

Description: max delay for transaction commit

Value: >= 1000

Default: 1000

CAVerify

Description: enable CA verification

Value: true/false

Default: false

omitEmptyBlock

Description: skip empty blocks (will not store the block when there is no transaction)

Value: true/false

Default: true

update configuration

Configuration can be updated by calling system contract on any node but using genesis node is recommended.

Command to update configuration:

babel-node tool.js ConfigAction set [parameter] [value]

Command to get configuration:

babel-node tool.js ConfigAction get [parameter]

An example to change block generation interval

cd tools/systemcontract;
babel-node tool.js ConfigAction set intervalBlockTime 1000

allow to commit empty block

cd tools/systemcontract;
babel-node tool.js ConfigAction set omitEmptyBlock false

 Index

Index

 FISCO-BCOS-DOC

FISCO-BCOS-DOC

FISCO BCOS docs repository

Visit: https://fisco-bcos-documentation.readthedocs.io

_static/up.png

_images/pbft_parallel.png

_images/pbft_process.png
paskaze

verty

-

mare than 23 vete

mare than 23 vete

e

_images/pbft_consensus.jpg
request | pre-prepare} prepare | commit | reply

_images/pbft_error.png

_images/systemcontract_module.png
-,

System Proxy Module

N

Node Management Module

N

CA Management Module

N

Permissions Management Module

Configuration Management Module

_static/ajax-loader.gif

_images/pbft_role.png
(%N

Follower
node

hes o vee

— |

_images/sys_para.png
.
s

Smart Contract Layer

General configuration

contract

Underlying Blockchain

General configuration
cache

Consensus Access Control
Module Module

_static/comment-bright.png

_images/en_cns_1.png
EASIER @Smart Contract CNS

» Easier to call acontract
» Contract upgrade can be transparent to the caller

» Supports gated-upgrade for contracts

{

"contra ello”,
"method":"set",
"version”: "1.0%, >
"param”:{
"args":[“abc”]
}
}

Contract Manager

_images/en_cns_2.png
Blockchain

Business Contract

RPC
Transaction

Contract Naming
Service

_images/arpi_objects_en.png
[]
Account A Account B T Account C

e

Permission A Permission B Permission C Permission D

% % S %

Interface A Interface B Interface C Interface D

Smart contract A Smart contract B Smart contract C

_images/arpi_process_flow_en.png
From:Address

i i
| To:Address E — Transaction Filter Chain
1 1

_Fun(ParamType) | ==
/T =
1

Filter 1 —> Filter2 |-
'y
N
Account Y
