

Welcome to FireSim’s documentation!

New to FireSim? Jump to the FireSim Basics page for more info.

Getting Started:

	1. FireSim Basics
	1.1. Two common use cases:
	1.1.1. Single-Node Simulation, in Parallel

	1.1.2. Datacenter/Cluster Simulation

	1.2. Other Use Cases

	1.3. Background/Terminology

	1.4. Using FireSim/The FireSim Workflow

	2. Initial Setup/Installation
	2.1. First-time AWS User Setup
	2.1.1. Creating an AWS Account

	2.1.2. AWS Credit at Berkeley

	2.1.3. Requesting Limit Increases

	2.2. Configuring Required Infrastructure in Your AWS Account
	2.2.1. Select a region

	2.2.2. Key Setup

	2.2.3. Check your EC2 Instance Limits

	2.2.4. Start a t2.nano instance to run the remaining configuration commands

	2.2.5. Run scripts from the t2.nano

	2.2.6. Terminate the t2.nano

	2.2.7. Subscribe to the AWS FPGA Developer AMI

	2.3. Setting up your Manager Instance
	2.3.1. Launching a “Manager Instance”

	2.3.2. Setting up the FireSim Repo

	2.3.3. Completing Setup Using the Manager

	3. Running FireSim Simulations
	3.1. Running a Single Node Simulation
	3.1.1. Building target software

	3.1.2. Setting up the manager configuration

	3.1.3. Launching a Simulation!

	3.2. Running a Cluster Simulation
	3.2.1. Returning to a clean configuration

	3.2.2. Building target software

	3.2.3. Setting up the manager configuration

	3.2.4. Launching a Simulation!

	4. Building Your Own Hardware Designs (FireSim FPGA Images)
	4.1. Amazon S3 Setup

	4.2. Build Recipes

	4.3. Running a Build

Advanced Docs:

	Manager Usage (the firesim command)
	1. Overview
	1.1. “Inputs” to the Manager

	1.2. Logging

	2. Manager Command Line Arguments
	2.1. --runtimeconfigfile FILENAME

	2.2. --buildconfigfile FILENAME

	2.3. --buildrecipesconfigfile FILENAME

	2.4. --hwdbconfigfile FILENAME

	2.5. --overrideconfigdata SECTION PARAMETER VALUE

	2.6. TASK

	3. Manager Tasks
	3.1. firesim managerinit

	3.2. firesim buildafi

	3.3. firesim shareagfi

	3.4. firesim launchrunfarm

	3.5. firesim terminaterunfarm

	3.6. firesim infrasetup

	3.7. firesim boot

	3.8. firesim kill

	3.9. firesim runworkload

	3.10. firesim runcheck

	4. Manager Configuration Files
	4.1. config_runtime.ini

	4.2. config_build.ini

	4.3. config_build_recipes.ini

	4.4. config_hwdb.ini

	5. Manager Network Topology Definitions (user_topology.py)
	5.1. user_topology.py contents:

	6. AGFI Metadata/Tagging

	Workloads
	Defining Custom Workloads
	Uniform Workload JSON

	Non-uniform Workload JSON (explicit job per simulated node)

	SPEC 2017
	Intspeed

	Intrate

	Running Fedora on FireSim

	ISCA 2018 Experiments
	Prerequisites

	Building Benchmark Binaries/Rootfses

	Figure 5: Ping Latency vs. Configured Link Latency

	Figure 6: Network Bandwidth Saturation

	Figure 7: Memcached QoS / Thread Imbalance

	Figure 8: Simulation Rate vs. Scale

	Figure 9: Simulation Rate vs. Link Latency

	Running all experiments at once

	Debugging & Testing with RTL Simulation
	Target-Level Simulation

	MIDAS-Level Simulation
	Examples

	FPGA-Level Simulation
	Usage

	Tutorial: Developing New Devices
	Getting Started

	Memory-mapped Registers

	DMA and Interrupts
	TileLink Client Port

	TileLink Protocol and State Machine

	Interrupts

	Connecting Devices to Bus
	SoC Mixin Traits

	Top-Level Design and Configuration

	Running Test Software
	Debugging Verilog Simulation

	Creating Simulation Model

	Supernode
	Intro

	Build

	Running simulations

	Work in Progress!

	Miscellaneous Tips
	Add the fsimcluster column to your AWS management console

	FPGA Dev AMI Remote Desktop Setup

Indices and tables

	Index

	Module Index

	Search Page

1. FireSim Basics

FireSim is a cycle-accurate, FPGA-accelerated scale-out computer system
simulation platform developed in the Berkeley Architecture Research Group in
the EECS Department at the University of California, Berkeley.

FireSim is capable of simulating from one to thousands of multi-core compute
nodes, derived from silicon-proven and open target-RTL, with an optional
cycle-accurate network simulation tying them together. FireSim runs on FPGAs in public
cloud environments like AWS EC2 F1, removing the high capex traditionally
involved in large-scale FPGA-based simulation.

FireSim is useful both for datacenter architecture research as well as running
many single-node architectural experiments in parallel on FPGAs. By harnessing
a standardized host platform and providing a large amount of
automation/tooling, FireSim drastically simplifies the process of building and
deploying large-scale FPGA-based hardware simulations.

To learn more, see the FireSim website [https://fires.im] and the FireSim
ISCA 2018 paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf].

For a two-minute overview that describes how FireSim simulates a datacenter,
see our ISCA 2018 lightning talk on YouTube [https://www.youtube.com/watch?v=4XwoSe5c8lY].

1.1. Two common use cases:

1.1.1. Single-Node Simulation, in Parallel

In this mode, FireSim allows for simulation of individual Rocket
Chip-based nodes without a network, which allows individual simulations to run
at ~150 MHz. The FireSim manager has the ability to automatically distribute
jobs to many parallel simulations, expediting the process of running large
workloads like SPEC. For example, users can run all of SPECInt2017 on Rocket Chip
in ~1 day by running the 10 separate workloads in parallel on 10 FPGAs.

1.1.2. Datacenter/Cluster Simulation

In this mode, FireSim also models a cycle-accurate network with
parameterizeable bandwidth and link latency, as well as configurable
topology, to accurately model current and future datacenter-scale
systems. For example, FireSim has been used to simulate 1024 quad-core
Rocket Chip-based nodes, interconnected by a 200 Gbps, 2us network. To learn
more about this use case, see our ISCA 2018 paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf] or two-minute lightning talk [https://www.youtube.com/watch?v=4XwoSe5c8lY].

1.2. Other Use Cases

This release does not support a non-cycle-accurate network as our AWS Compute Blog Post/Demo [https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/]
used. This feature will be restored in a future release.

If you have other use-cases that we haven’t covered, feel free to contact us!

1.3. Background/Terminology

[image: FireSim Infrastructure Setup]
FireSim Infrastructure Diagram

	FireSim Manager (firesim)

	This program (available on your path as firesim
once we source necessary scripts) automates the work required to launch FPGA
builds and run simulations. Most users will only have to interact with the
manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim
command is just like the vagrant and docker commands, but for FPGA simulators
instead of VMs/containers.

	Manager Instance

	This is the AWS EC2 instance that you will
SSH-into and do work on. This is where you’ll clone your copy of FireSim and
use the FireSim Manager to deploy builds/simulations from.

	Build Farm

	These are instances that are elastically
started/terminated by the FireSim manager when you run FPGA builds.
The manager will automatically ship source for builds to these instances and
run the Verilog -> FPGA Image process on them.

	Run Farm

	These are a tagged collection of F1 (and M4) instances that the manager
automatically launches and deploys simulations onto. You can launch multiple
Run Farms in parallel, each with their own tag, to run multiple separate
simulations in parallel.

To disambiguate between the computers being simulated and the computers doing
the simulating, we also define:

	Target

	The design and environment under simulation. Generally, a
group of one or more multi-core RISC-V microprocessors with or without a network between them.

	Host

	The computers executing the FireSim simulation – the Run Farm from above.

We frequently prefix words with these terms. For example, software can run
on the simulated RISC-V system (target-software) or on a host x86 machine (host-software).

1.4. Using FireSim/The FireSim Workflow

The tutorials that follow this page will guide you through the complete flow for
getting an example FireSim simulation up and running. At the end of this
tutorial, you’ll have a simulation that simulates a single quad-core Rocket
Chip-based node with a 4 MB last level cache, 16 GB DDR3, and no NIC. After
this, you can continue to a tutorial that shows you how to simulate
a globally-cycle-accurate cluster-scale FireSim simulation. The final tutorial
will show you how to build your own FPGA images with customized hardware.
After you complete these tutorials, you can look at the Advanced documentation
in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in our tutorials:

	Initial Setup/Installation

	First-time AWS User Setup: You can skip this if you already have an AWS
account/payment method set up.

	Configuring required AWS resources in your account: This sets up the
appropriate VPCs/subnets/security groups required to run FireSim.

	Setting up a “Manager Instance” from which you will coordinate building
and deploying simulations.

	Single-node simulation tutorial: This tutorial guides you through the process of running one simulation on a Run Farm consisting of a single f1.2xlarge, using our pre-built public FireSim AGFIs.

	Cluster simulation tutorial: This tutorial guides you through the process of running an 8-node cluster simulation on a Run Farm consisting of one f1.16xlarge, using our pre-built public FireSim AGFIs and switch models.

	Building your own hardware designs tutorial (Chisel to FPGA Image): This tutorial guides you through the full process of taking Rocket Chip RTL and any custom RTL plugged into Rocket Chip and producing a FireSim AGFI to plug into your simulations. This automatically runs Chisel elaboration, FAME-1 Transformation, and the Vivado FPGA flow.

Generally speaking, you only need to follow step 4 if you’re modifying Chisel
RTL or changing non-runtime configurable hardware parameters.

Now, hit next to proceed with setup.

2. Initial Setup/Installation

This section will guide you through initial setup of your AWS account to support
FireSim, as well as cloning/installing FireSim on your manager instance.

Initial Setup/Installation:

	2.1. First-time AWS User Setup
	2.1.1. Creating an AWS Account

	2.1.2. AWS Credit at Berkeley

	2.1.3. Requesting Limit Increases

	2.2. Configuring Required Infrastructure in Your AWS Account
	2.2.1. Select a region

	2.2.2. Key Setup

	2.2.3. Check your EC2 Instance Limits

	2.2.4. Start a t2.nano instance to run the remaining configuration commands

	2.2.5. Run scripts from the t2.nano

	2.2.6. Terminate the t2.nano

	2.2.7. Subscribe to the AWS FPGA Developer AMI

	2.3. Setting up your Manager Instance
	2.3.1. Launching a “Manager Instance”

	2.3.2. Setting up the FireSim Repo

	2.3.3. Completing Setup Using the Manager

2.1. First-time AWS User Setup

If you’ve never used AWS before and don’t have an account, follow the instructions
below to get started.

2.1.1. Creating an AWS Account

First, you’ll need an AWS account. Create one by going to
aws.amazon.com [https://aws.amazon.com] and clicking “Sign Up.”
You’ll want to create a personal account. You will have to give it a
credit card number.

2.1.2. AWS Credit at Berkeley

If you’re an internal user at Berkeley and affiliated with UCB-BAR or the RISE
Lab, see the RISE Lab Wiki [https://rise.cs.berkeley.edu/wiki/resources/aws] for instructions on
getting access to the AWS credit pool. Otherwise, continue with the following section.

2.1.3. Requesting Limit Increases

In our experience, new AWS accounts do not have access to EC2 F1 instances by
default. In order to get access, you should file a limit increase
request.

Follow these steps to do so:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

You’ll probably want to start out with the following requests, depending on your existing limits:

Request 1:

Region: US East (Northern Virginia)
Primary Instance Type: f1.2xlarge
Limit: Instance Limit
New limit value: 1

Request 2:

Region: US East (Northern Virginia)
Primary Instance Type: f1.16xlarge
Limit: Instance Limit
New limit value: 1

This allows you to run one node on the f1.2xlarge or eight nodes on the
f1.16xlarge.

For the “Use Case Description”, you should describe your project and write
something about hardware simulation and mention that information about the tool
you’re using can be found at: https://fires.im

This process has a human in the loop, so you should submit it ASAP. At
this point, you should wait for the response to this request.

If you’re at Berkeley/UCB-BAR, you also need to wait until your account has
been added to the RISE billing pool, otherwise your personal CC will be charged
for AWS usage.

Hit Next below to continue.

2.2. Configuring Required Infrastructure in Your AWS Account

Once we have an AWS Account setup, we need to perform some advance setup
of resources on AWS. You will need to follow these steps even if you
already had an AWS account as these are FireSim-specific.

2.2.1. Select a region

Head to the EC2 Management
Console [https://console.aws.amazon.com/ec2/v2/home]. In the top
right corner, ensure that the correct region is selected. You should
select one of: us-east-1 (N. Virginia), us-west-2 (Oregon), or eu-west-1
(Ireland), since F1 instances are only available in those regions.

Once you select a region, it’s useful to bookmark the link to the EC2
console, so that you’re always sent to the console for the correct
region.

2.2.2. Key Setup

In order to enable automation, you will need to create a key named
firesim, which we will use to launch all instances (Manager
Instance, Build Farm, Run Farm).

To do so, click “Key Pairs” under “Network & Security” in the
left-sidebar. Follow the prompts, name the key firesim, and save the
private key locally as firesim.pem. You can use this key to access
all instances from your local machine. We will copy this file to our
manager instance later, so that the manager can also use it.

2.2.3. Check your EC2 Instance Limits

AWS limits access to particular instance types for new/infrequently used
accounts to protect their infrastructure. You should make sure that your
account has access to f1.2xlarge, f1.16xlarge,
m4.16xlarge, and c4.4xlarge instances by looking at the “Limits” page
in the EC2 panel, which you can access
here [https://console.aws.amazon.com/ec2/v2/home#Limits:]. The
values listed on this page represent the maximum number of any of these
instances that you can run at once, which will limit the size of
simulations (# of nodes) that you can run. If you need to increase your
limits, follow the instructions on the
Requesting Limit Increases page.
To follow this guide, you need to be able to run one f1.2xlarge instance
and two c4.4xlarge instances.

2.2.4. Start a t2.nano instance to run the remaining configuration commands

To avoid having to deal with the messy process of installing packages on
your local machine, we will spin up a very cheap t2.nano instance to
run a series of one-time aws configuration commands to setup our AWS
account for FireSim. At the end of these instructions, we’ll terminate
the t2.nano instance. If you happen to already have boto3 and
the AWS CLI installed on your local machine, you can do this locally.

Launch a t2.nano by following these instructions:

	Go to the EC2 Management
Console [https://console.aws.amazon.com/ec2/v2/home] and click
“Launch Instance”

	On the AMI selection page, select “Amazon Linux AMI…”, which should
be the top option.

	On the Choose an Instance Type page, select t2.nano.

	Click “Review and Launch” (we don’t need to change any other
settings)

	On the review page, click “Launch”

	Select the firesim key pair we created previously, then click
Launch Instances.

	Click on the instance name and note its public IP address.

2.2.5. Run scripts from the t2.nano

SSH into the t2.nano like so:

ssh -i firesim.pem ec2-user@INSTANCE_PUBLIC_IP

Which should present you with something like:

Last login: Mon Feb 12 21:11:27 2018 from 136.152.143.34

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2017.09-release-notes/
4 package(s) needed for security, out of 5 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-30-2-66 ~]$

On this machine, run the following:

aws configure
[follow prompts]

See
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
for more about aws configure. You should specify the same region that
you chose above and set the default output format to json.

Again on the t2.nano instance, do the following:

sudo pip install boto3
wget https://raw.githubusercontent.com/firesim/firesim/master/scripts/aws-setup.py
python aws-setup.py

This will create a VPC named firesim and a security group named
firesim in your account.

2.2.6. Terminate the t2.nano

At this point, we are finished with the general account configuration.
You should terminate the t2.nano instance you created, since we do not
need it anymore (and it shouldn’t contain any important data).

2.2.7. Subscribe to the AWS FPGA Developer AMI

Go to the AWS Marketplace page for the FPGA Developer
AMI [https://aws.amazon.com/marketplace/pp/B06VVYBLZZ]. Click the
button to subscribe to the FPGA Dev AMI (it should be free) and follow
the prompts to accept the EULA (but do not launch any instances).

Now, hit next to continue on to setting up our Manager Instance.

2.3. Setting up your Manager Instance

2.3.1. Launching a “Manager Instance”

Now, we need to launch a “Manager Instance” that acts as a
“head” node that we will ssh or mosh into to work from.
Since we will deploy the heavy lifting to separate c4.4xlarge and
f1 instances later, the Manager Instance can be a relatively cheap instance. In this guide, however,
we will use a c4.4xlarge,
running the AWS FPGA Developer AMI (be sure to subscribe if you have not done so. See Subscribe to the AWS FPGA Developer AMI).

Head to the EC2 Management
Console [https://console.aws.amazon.com/ec2/v2/home]. In the top
right corner, ensure that the correct region is selected.

To launch a manager instance, follow these steps:

	From the main page of the EC2 Management Console, click
Launch Instance. We use an on-demand instance here, so that your
data is preserved when you stop/start the instance, and your data is
not lost when pricing spikes on the spot market.

	When prompted to select an AMI, search in the Community AMIs tab for
“FPGA” and select the option that starts with FPGA Developer AMI - 1.3.5.
DO NOT USE ANY OTHER VERSION.

	When prompted to choose an instance type, select the instance type of
your choosing. A good choice is a c4.4xlarge.

	On the “Configure Instance Details” page:

	First make sure that the firesim VPC is selected in the
drop-down box next to “Network”. Any subnet within the firesim
VPC is fine.

	Additionally, check the box for “Protect against accidental
termination.” This adds a layer of protection to prevent your
manager instance from being terminated by accident. You will need
to disable this setting before being able to terminate the
instance using usual methods.

	Also on this page, expand “Advanced Details” and in the resulting
text box, paste the following:

#!/bin/bash
echo "machine launch script started" > /home/centos/machine-launchstatus
sudo yum install -y mosh
sudo yum groupinstall -y "Development tools"
sudo yum install -y gmp-devel mpfr-devel libmpc-devel zlib-devel vim git java java-devel
curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-rpm.repo
sudo yum install -y sbt texinfo gengetopt
sudo yum install -y expat-devel libusb1-devel ncurses-devel cmake "perl(ExtUtils::MakeMaker)"
deps for poky
sudo yum install -y python34 patch diffstat texi2html texinfo subversion chrpath git wget
install DTC. it's not available in repos in FPGA AMI
DTCversion=dtc-1.4.4
wget https://git.kernel.org/pub/scm/utils/dtc/dtc.git/snapshot/$DTCversion.tar.gz
tar -xvf $DTCversion.tar.gz
cd $DTCversion
make -j16
make install
cd ..
rm -rf $DTCversion.tar.gz
rm -rf $DTCversion

get a proper version of git
sudo yum -y remove git
sudo yum -y install epel-release
sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm
sudo yum -y install git2u

bash completion for manager
sudo yum -y install bash-completion

graphviz for manager
sudo yum -y install graphviz python-devel

these need to match what's in deploy/requirements.txt
sudo pip install fabric==1.14.0
sudo pip install boto3==1.6.2
sudo pip install colorama==0.3.7
sudo pip install argcomplete==1.9.3
sudo pip install graphviz==0.8.3
for some of our workload plotting scripts
sudo pip install matplotlib==2.2.2
sudo pip install pandas==0.22.0

sudo activate-global-python-argcomplete

get a regular prompt
echo "PS1='\u@\H:\w\\$ '" >> /home/centos/.bashrc
echo "machine launch script completed" >> /home/centos/machine-launchstatus

This will pre-install all of the dependencies needed to run FireSim on your instance.

	On the next page (“Add Storage”), increase the size of the root EBS
volume to ~300GB. The default of 150GB can quickly become tight as
you accumulate large Vivado reports/outputs, large waveforms, XSim outputs,
and large root filesystems for simulations. You can get rid of the
small (5GB) secondary volume that is added by default.

	You can skip the “Add Tags” page, unless you want tags.

	On the “Configure Security Group” page, select the firesim
security group that was automatically created for you earlier.

	On the review page, click the button to launch your instance.

Make sure you select the firesim key pair that we setup earlier.

2.3.1.1. Access your instance

We HIGHLY recommend using mosh [https://mosh.org/] instead
of ssh or using ssh with a screen/tmux session running on your
manager instance to ensure that long-running jobs are not killed by a
bad network connection to your manager instance. On this instance, the
mosh server is installed as part of the setup script we pasted
before, so we need to first ssh into the instance and make sure the
setup is complete.

In either case, ssh into your instance (e.g. ssh -i firesim.pem centos@YOUR_INSTANCE_IP) and wait until the
~/machine-launchstatus file contains all the following text:

centos@ip-172-30-2-140.us-west-2.compute.internal:~$ cat machine-launchstatus
machine launch script started
machine launch script completed!

Once this line appears, exit and re-ssh into the system. If you want
to use mosh, mosh back into the system.

2.3.1.2. Key Setup, Part 2

Now that our manager instance is started, copy the private key that you
downloaded from AWS earlier (firesim.pem) to ~/firesim.pem on
your manager instance. This step is required to give the manager access
to the instances it launches for you.

2.3.2. Setting up the FireSim Repo

We’re finally ready to fetch FireSim’s sources. Run:

git clone https://github.com/firesim/firesim
cd firesim
./build-setup.sh fast

This will have initialized submodules and installed the RISC-V tools and
other dependencies.

Next, run:

source sourceme-f1-manager.sh

This will have initialized the AWS shell, added the RISC-V tools to your
path, and started an ssh-agent that supplies ~/firesim.pem
automatically when you use ssh to access other nodes. Sourcing this the
first time will take some time – however each time after that should be instantaneous.
Also, if your firesim.pem key requires a passphrase, you will be asked for
it here and ssh-agent should cache it.

Every time you login to your manager instance to use FireSim, you should ``cd`` into
your firesim directory and source this file again.

2.3.3. Completing Setup Using the Manager

The FireSim manager contains a command that will interactively guide you
through the rest of the FireSim setup process. To run it, do the following:

firesim managerinit

This will first prompt you to setup AWS credentials on the instance, which allows
the manager to automatically manage build/simulation nodes. See
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
for more about these credentials. When prompted, you should specify the same
region that you chose above and set the default output format to json.

Next, it will create initial configuration files, which we will edit in later
sections. Finally, it will prompt you for an email address, which is used to
send email notifications upon FPGA build completion and optionally for
workload completion. You can leave this blank if you do not wish to receive any
notifications, but this is not recommended.

Now you’re ready to launch FireSim simulations! Hit Next to learn how to run single-node simulations.

3. Running FireSim Simulations

These guides will walk you through running two kinds of simulations:

	First, we will simulate a single-node, non-networked target, using a pre-generated
hardware image.

	Then, we will simulate an eight-node, networked cluster target, also using
a pre-generated hardware image.

Hit next to get started!

Running FireSim Simulations:

	3.1. Running a Single Node Simulation
	3.1.1. Building target software

	3.1.2. Setting up the manager configuration

	3.1.3. Launching a Simulation!

	3.2. Running a Cluster Simulation
	3.2.1. Returning to a clean configuration

	3.2.2. Building target software

	3.2.3. Setting up the manager configuration

	3.2.4. Launching a Simulation!

3.1. Running a Single Node Simulation

Now that we’ve completed the setup of our manager instance, it’s time to run
a simulation! In this section, we will simulate 1 target node, for which we
will need a single f1.2xlarge (1 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced
sourceme-f1-manager.sh before running any of these commands.

3.1.1. Building target software

In these instructions, we’ll assume that you want to boot Linux on your
simulated node. To do so, we’ll need to build our FireSim-compatible RISC-V
Linux distro. You can do this like so:

cd firesim/sw/firesim-software
./build.sh

This process will take about 10 to 15 minutes on a c4.4xlarge instance.
Once this is completed, you’ll have the following files:

	firesim/sw/firesim-software/bbl-vmlinux[0-7] - a bootloader + Linux
kernel image for the nodes we will simulate.

	firesim/sw/firesim-software/rootfs[0-7].ext2 - a disk image for
each the nodes we will simulate

The fact that there are 8 of these is a relic from the days when we ran
FireSim simulations by hand (they are all the same) – in most cases, only
bbl-vmlinux0 and rootfs0.ext2 will used to form base images to either
build more complicated workloads (see the Defining Custom Workloads
section) or to copy around for deploying.

3.1.2. Setting up the manager configuration

All runtime configuration options for the manager are set in a file called
firesim/deploy/config_runtime.ini. In this guide, we will explain only the
parts of this file necessary for our purposes. You can find full descriptions of
all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming
you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

We’ll need to modify a couple of these lines.

First, let’s tell the manager to use the correct numbers and types of instances.
You’ll notice that in the [runfarm] section, the manager is configured to
launch a Run Farm named mainrunfarm, consisting of one f1.16xlarge and
no m4.16xlarges or f1.2xlarges. The tag specified here allows the
manager to differentiate amongst many parallel run farms (each running
a workload) that you may be operating – but more on that later.

Since we only want to simulate a single node, let’s switch to using one
f1.2xlarge and no f1.16xlarges. To do so, change this section to:

[runfarm]
per aws restrictions, this tag cannot be longer than 255 chars
runfarmtag=mainrunfarm
f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=1

You’ll see other parameters here, like runinstancemarket,
spotinterruptionbehavior, and spotmaxprice. If you’re an experienced
AWS user, you can see what these do by looking at the
Manager Configuration Files section. Otherwise, don’t change them.

Now, let’s change the [targetconfig] section to model the correct target design.
By default, it is set to model an 8-node cluster with a cycle-accurate network.
Instead, we want to model a single-node with no network. To do so, we will need
to change a few items in this section:

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-no-nic-ddr3-llc4mb

Note that we changed three of the parameters here: topology is now set to
no_net_config, indicating that we do not want a network. Then,
no_net_num_nodes is set to 1, indicating that we only want to simulate
one node. Lastly, we changed defaulthwconfig from
firesim-quadcore-nic-ddr3-llc4mb to
firesim-quadcore-no-nic-ddr3-llc4mb. Notice the subtle difference in this
last option? All we did is switch to a hardware configuration that does not
have a NIC. This hardware configuration models a Quad-core Rocket Chip with 4
MB of L2 cache and 16 GB of DDR3, and no network interface card.

We will leave the last section ([workload]) unchanged here, since we do
want to run Linux on our simulated system. The terminateoncompletion
feature is an advanced feature that you can learn more about in the
Manager Configuration Files section.

As a final sanity check, your config_runtime.ini file should now look like this:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Configuration-Details.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-no-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

3.1.3. Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run
our single-node simulation, let’s actually launch an instance and run it!

3.1.3.1. Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above.
When you do this, you will start getting charged for the running EC2 instances
(in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
i-0d6c29ac507139163 booted!
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-19-43-launchrunfarm-B4Q2ROAK0JN9EDE4.log

The output will rapidly progress to Waiting for instance boots: f1.2xlarges
and then take a minute or two while your f1.2xlarge instance launches.
Once the launches complete, you should see the instance id printed and the instance
will also be visible in your AWS EC2 Management console. The manager will tag
the instances launched with this operation with the value you specified above
as the runfarmtag parameter from the config_runtime.ini file, which we left
set as mainrunfarm. This value allows the manager to tell multiple Run Farms
apart – i.e., you can have multiple independent Run Farms running different
workloads/hardware configurations in parallel. This is detailed in the
Manager Configuration Files and the firesim launchrunfarm
sections – you do not need to be familiar with it here.

3.1.3.2. Setting up the simulation infrastructure

The manager will also take care of building and deploying all software
components necessary to run your simulation. The manager will also handle
flashing FPGAs. To tell the manager to setup our simulation infrastructure,
let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

Building FPGA software driver for FireSimNoNIC-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'infrasetup_node_wrapper'
[172.30.2.174] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.174] Installing AWS FPGA SDK on remote nodes.
[172.30.2.174] Unloading EDMA Driver Kernel Module.
[172.30.2.174] Copying AWS FPGA EDMA driver to remote node.
[172.30.2.174] Clearing FPGA Slot 0.
[172.30.2.174] Flashing FPGA Slot: 0 with agfi: agfi-0eaa90f6bb893c0f7.
[172.30.2.174] Loading EDMA Driver Kernel Module.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-32-02-infrasetup-9DJJCX29PF4GAIVL.log

Many of these tasks will take several minutes, especially on a clean copy of
the repo. The console output here contains the “user-friendly” version of the
output. If you want to see detailed progress as it happens, tail -f the
latest logfile in firesim/deploy/logs/.

At this point, the f1.2xlarge instance in our Run Farm has all the infrastructure
necessary to run a simulation.

So, let’s launch our simulation!

3.1.3.3. Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated
nodes every 10s. When you do this, you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'boot_simulation_wrapper'
[172.30.2.174] Starting FPGA simulation for slot: 0.
[172.30.2.174] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, since it will get replaced with a
live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.174 | Terminated: False
--
Simulated Switches
--
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: True
--
Summary
--
1/1 instances are still running.
1/1 simulations are still running.
--

This will only exit once all of the simulated nodes have shut down. So, let’s let it
run and open another ssh connection to the manager instance. From there, cd into
your firesim directory again and source sourceme-f1-manager.sh again to get
our ssh key setup. To access our simulated system, ssh into the IP address being
printed by the status page, from your manager instance. In our case, from
the above output, we see that our simulated system is running on the instance with
IP 172.30.2.174. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.174

This will log you into the instance running the simulation. Then, to attach to the
console of the simulated system, run:

screen -r fsim0

Voila! You should now see Linux booting on the simulated system and then be prompted
with a Linux login prompt, like so:

[truncated Linux boot output]
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: ip: SIOCGIFFLAGS: No such device
ip: can't find device 'eth0'
FAIL
Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network – that is expected because we
are simulating a design without a NIC.

Now, you can login to the system! The username is root and the password is
firesim. At this point, you should be presented with a regular console,
where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial,
let’s poweroff the simulated system and see what the manager does. To do so,
in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off
time elapsed: 468.8 s, simulation speed = 88.50 MHz
*** PASSED *** after 41492621244 cycles
Runs 41492621244 cycles
[PASS] FireSimNoNIC Test
SEED: 1526690334
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this
from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.174 | Terminated: False
--
Simulated Switches
--
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: False
--
Summary
--
1/1 instances are still running.
0/1 simulations are still running.
--
FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.log

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/), you’ll see the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform0/uartlog

What are these files? They are specified to the manager in a configuration file
(firesim/deploy/workloads/linux-uniform.json) as files that we want
automatically copied back to our manager after we run a simulation, which is
useful for running benchmarks automatically. The
Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our tutorial by terminating the f1.2xlarge instance
that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
[]
m4.16xlarges
[]
f1.2xlarges
['i-0d6c29ac507139163']
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once
you do so, you will see:

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-51-54-terminaterunfarm-T9ZAED3LJUQQ3K0N.log

At this point, you should always confirm in your AWS management console that
the instance is in the shutting-down or terminated states. You are ultimately
responsible for ensuring that your instances are terminated appropriately.

Congratulations on running your first FireSim simulation! At this point, you can
check-out some of the advanced features of FireSim in the sidebar to the left
(for example, we expect that many people will be interested in the ability to
automatically run the SPEC17 benchmarks: SPEC 2017), or you can continue
on with the cluster simulation tutorial.

3.2. Running a Cluster Simulation

Now, let’s move on to simulating a cluster of eight nodes, interconnected
by a network with one 8-port Top-of-Rack (ToR) switch and 200 Gbps, 2μs links.
This will require one f1.16xlarge (8 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced
sourceme-f1-manager.sh before running any of these commands.

3.2.1. Returning to a clean configuration

If you already ran the single-node tutorial, let’s return to a clean FireSim
manager configuration by doing the following:

cd firesim/deploy
cp sample-backup-configs/sample_config_runtime.ini config_runtime.ini

3.2.2. Building target software

If you already built target software during the single-node tutorial, you can
skip to the next part (Setting up the manager configuration). If you haven’t followed the single-node tutorial,
continue with this section.

In these instructions, we’ll assume that you want to boot Linux on each of the
nodes in your
simulated cluster. To do so, we’ll need to build our FireSim-compatible RISC-V
Linux distro. You can do this like so:

cd firesim/sw/firesim-software
./build.sh

This process will take about 10 to 15 minutes on a c4.4xlarge instance.
Once this is completed, you’ll have the following files:

	firesim/sw/firesim-software/bbl-vmlinux[0-7] - a bootloader + Linux
kernel image for the nodes we will simulate.

	firesim/sw/firesim-software/rootfs[0-7].ext2 - a disk image for
each the nodes we will simulate

The fact that there are 8 of these is a relic from the days when we ran
FireSim simulations by hand (they are all the same) – in most cases, only
bbl-vmlinux0 and rootfs0.ext2 will used to form base images to either
build more complicated workloads (see the Defining Custom Workloads
section) or to copy around for deploying.

3.2.3. Setting up the manager configuration

All runtime configuration options for the manager are set in a file called
firesim/deploy/config_runtime.ini. In this guide, we will explain only the
parts of this file necessary for our purposes. You can find full descriptions of
all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming
you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

For the 8-node cluster simulation, the defaults in this file are exactly what
we want. Let’s outline the important parameters:

	f1_16xlarges=1: This tells the manager that we want to launch one f1.16xlarge when we call the launchrunfarm command.

	topology=example_8config: This tells the manager to use the topology named example_8config which is defined in deploy/runtools/user_topology.py. This topology simulates an 8-node cluster with one ToR switch.

	linklatency=6405: This models a network with 6405 cycles of link latency. Since we are modeling processors running at 3.2 Ghz, 1 cycle = 1/3.2 ns, so 6405 cycles is roughly 2 microseconds.

	switchinglatency=10: This models switches with a minimum port-to-port latency of 10 cycles.

	netbandwidth=200: This sets the bandwidth of the NICs to 200 Gbit/s. Currently you can set any integer value less than this without making hardware modifications.

	defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb: This tells the manager to use a quad-core Rocket Chip configuration with 4 MB of L2 and 16 GB of DDR3, with a NIC, for each of the simulated nodes in the topology.

You’ll see other parameters here, like runinstancemarket,
spotinterruptionbehavior, and spotmaxprice. If you’re an experienced
AWS user, you can see what these do by looking at the
Manager Configuration Files section. Otherwise, don’t change them.

As in the single-node tutorial, we will leave the last section ([workload])
unchanged here, since we do want to run Linux on our simulated system. The
terminateoncompletion feature is an advanced feature that you can learn
more about in the Manager Configuration Files section.

As a final sanity check, your config_runtime.ini file should now look like this:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

3.2.4. Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run
our single-node simulation, let’s actually launch an instance and run it!

3.2.4.1. Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above.
When you do this, you will start getting charged for the running EC2 instances
(in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
i-09e5491cce4d5f92d booted!
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-05-53-launchrunfarm-ZGVP753DSU1Y9Q6R.log

The output will rapidly progress to Waiting for instance boots: f1.16xlarges
and then take a minute or two while your f1.16xlarge instance launches.
Once the launches complete, you should see the instance id printed and the instance
will also be visible in your AWS EC2 Management console. The manager will tag
the instances launched with this operation with the value you specified above
as the runfarmtag parameter from the config_runtime.ini file, which we left
set as mainrunfarm. This value allows the manager to tell multiple Run Farms
apart – i.e., you can have multiple independent Run Farms running different
workloads/hardware configurations in parallel. This is detailed in the
Manager Configuration Files and the firesim launchrunfarm
sections – you do not need to be familiar with it here.

3.2.4.2. Setting up the simulation infrastructure

The manager will also take care of building and deploying all software
components necessary to run your simulation (including switches for the networked
case). The manager will also handle
flashing FPGAs. To tell the manager to setup our simulation infrastructure,
let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

Building FPGA software driver for FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig
Building switch model binary for switch switch0
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'infrasetup_node_wrapper'
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 1.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 2.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 3.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 4.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 5.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 6.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 7.
[172.30.2.178] Installing AWS FPGA SDK on remote nodes.
[172.30.2.178] Unloading EDMA Driver Kernel Module.
[172.30.2.178] Copying AWS FPGA EDMA driver to remote node.
[172.30.2.178] Clearing FPGA Slot 0.
[172.30.2.178] Clearing FPGA Slot 1.
[172.30.2.178] Clearing FPGA Slot 2.
[172.30.2.178] Clearing FPGA Slot 3.
[172.30.2.178] Clearing FPGA Slot 4.
[172.30.2.178] Clearing FPGA Slot 5.
[172.30.2.178] Clearing FPGA Slot 6.
[172.30.2.178] Clearing FPGA Slot 7.
[172.30.2.178] Flashing FPGA Slot: 0 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 1 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 2 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 3 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 4 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 5 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 6 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 7 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Loading EDMA Driver Kernel Module.
[172.30.2.178] Copying switch simulation infrastructure for switch slot: 0.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-07-33-infrasetup-2Z7EBCBIF2TSI66Q.log

Many of these tasks will take several minutes, especially on a clean copy of
the repo (in particular, f1.16xlarges usually take a couple of minutes to
start, so don’t be alarmed if you’re stuck at Checking if host instance is
up...) . The console output here contains the “user-friendly” version of the
output. If you want to see detailed progress as it happens, tail -f the
latest logfile in firesim/deploy/logs/.

At this point, the f1.16xlarge instance in our Run Farm has all the
infrastructure necessary to run everything in our simulation.

So, let’s launch our simulation!

3.2.4.3. Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up the 8-port switch simulation and then starts 8 Rocket Chip
FPGA Simulations, then prints out the live status of the simulated
nodes and switch every 10s. When you do this, you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--06-28-43-linux-uniform/
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'boot_switch_wrapper'
[172.30.2.178] Starting switch simulation for switch slot: 0.
[172.30.2.178] Executing task 'boot_simulation_wrapper'
[172.30.2.178] Starting FPGA simulation for slot: 0.
[172.30.2.178] Starting FPGA simulation for slot: 1.
[172.30.2.178] Starting FPGA simulation for slot: 2.
[172.30.2.178] Starting FPGA simulation for slot: 3.
[172.30.2.178] Starting FPGA simulation for slot: 4.
[172.30.2.178] Starting FPGA simulation for slot: 5.
[172.30.2.178] Starting FPGA simulation for slot: 6.
[172.30.2.178] Starting FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, because it will be replaced with
a live status page once simulations are kicked-off:

FireSim Simulation Status @ 2018-05-19 06:28:56.087472
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-28-43-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-28-43-runworkload-ZHZEJED9MDWNSCV7.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Instance IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
8/8 simulations are still running.
--

In cycle-accurate networked mode, this will only exit when any ONE of the
simulated nodes shuts down. So, let’s let it run and open another ssh
connection to the manager instance. From there, cd into your firesim
directory again and source sourceme-f1-manager.sh again to get our ssh key
setup. To access our simulated system, ssh into the IP address being printed by
the status page, from your manager instance. In our case, from the above
output, we see that our simulated system is running on the instance with IP
172.30.2.178. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.178

This will log you into the instance running the simulation. On this machine,
run screen -ls to get the list of all running simulation components.
Attaching to the screens fsim0 to fsim7 will let you attach to the
consoles of any of the 8 simulated nodes. You’ll also notice an additional
screen for the switch, however by default there is no interesting output printed
here for performance reasons.

For example, if we want to enter commands into node zero, we can attach
to its console like so:

screen -r fsim0

Voila! You should now see Linux booting on the simulated node and then be prompted
with a Linux login prompt, like so:

[truncated Linux boot output]
[0.020000] Registered IceNet NIC 00:12:6d:00:00:02
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: OK
Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

If you also ran the single-node no-nic simulation you’ll notice a difference
in this boot output – here, Linux sees the NIC and its assigned MAC address and
automatically brings up the eth0 interface at boot.

Now, you can login to the system! The username is root and the password is
firesim. At this point, you should be presented with a regular console,
where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial,
let’s poweroff the simulated system and see what the manager does. To do so,
in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[3.748000] reboot: Power down
Power off
time elapsed: 360.5 s, simulation speed = 37.82 MHz
*** PASSED *** after 13634406804 cycles
Runs 13634406804 cycles
[PASS] FireSim Test
SEED: 1526711978
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this
from the manager:

--
Instances
--
Instance IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Instance IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: False
Instance IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
7/8 simulations are still running.
--
Teardown required, manually tearing down...
[172.30.2.178] Executing task 'kill_switch_wrapper'
[172.30.2.178] Killing switch simulation for switchslot: 0.
[172.30.2.178] Executing task 'kill_simulation_wrapper'
[172.30.2.178] Killing FPGA simulation for slot: 0.
[172.30.2.178] Killing FPGA simulation for slot: 1.
[172.30.2.178] Killing FPGA simulation for slot: 2.
[172.30.2.178] Killing FPGA simulation for slot: 3.
[172.30.2.178] Killing FPGA simulation for slot: 4.
[172.30.2.178] Killing FPGA simulation for slot: 5.
[172.30.2.178] Killing FPGA simulation for slot: 6.
[172.30.2.178] Killing FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'screens'
Confirming exit...
[172.30.2.178] Executing task 'monitor_jobs_wrapper'
[172.30.2.178] Slot 0 completed! copying results.
[172.30.2.178] Slot 1 completed! copying results.
[172.30.2.178] Slot 2 completed! copying results.
[172.30.2.178] Slot 3 completed! copying results.
[172.30.2.178] Slot 4 completed! copying results.
[172.30.2.178] Slot 5 completed! copying results.
[172.30.2.178] Slot 6 completed! copying results.
[172.30.2.178] Slot 7 completed! copying results.
[172.30.2.178] Killing switch simulation for switchslot: 0.
FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-39-35-runworkload-4CDB78E3A4IA9IYQ.log

In the cluster case, you’ll notice that shutting down ONE simulator causes the
whole simulation to be torn down – this is because we currently do not implement
any kind of “disconnect” mechanism to remove one node from a globally-cycle-accurate
simulation.

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/), you’ll see the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7476 May 19 06:45 linux-uniform0/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform1/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform1/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform1/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform2/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform2/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform2/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform3/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform3/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform3/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform4/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform4/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform4/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform5/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform5/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform5/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform6/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform6/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform6/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform7/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform7/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform7/uartlog
-rw-rw-r-- 1 centos centos 153 May 19 06:45 switch0/switchlog

What are these files? They are specified to the manager in a configuration file
(firesim/deploy/workloads/linux-uniform.json) as files that we want
automatically copied back to our manager after we run a simulation, which is
useful for running benchmarks automatically. Note that there is a directory for
each simulated node and each simulated switch in the cluster. The
Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our tutorial by terminating the f1.16xlarge instance
that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
['i-09e5491cce4d5f92d']
m4.16xlarges
[]
f1.2xlarges
[]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once
you do so, you will see:

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-50-37-terminaterunfarm-3VF0Z2KCAKKDY0ZU.log

At this point, you should always confirm in your AWS management console that
the instance is in the shutting-down or terminated states. You are ultimately
responsible for ensuring that your instances are terminated appropriately.

Congratulations on running a cluster FireSim simulation! At this point, you can
check-out some of the advanced features of FireSim in the sidebar to the left.
Or, hit next to continue to a tutorial that shows you how to build your own
custom FPGA images.

4. Building Your Own Hardware Designs (FireSim FPGA Images)

This section will guide you through building an AFI image for a FireSim
simulation.

4.1. Amazon S3 Setup

During the build process, the build system will need to upload a tar
file to Amazon S3 in order to complete the build process using Amazon’s
backend scripts (which convert the Vivado-generated tar into an AFI).
The manager will create this bucket for you automatically, you just need
to specify a name.

So, choose a bucket name, e.g. firesim-yourname. Bucket names must be
globally unique. If you choose one that’s already taken, the manager
will notice and complain when you tell it to build an AFI. To set your
bucket name, open deploy/config_build.ini in your editor and under the
[afibuild] header, replace

s3bucketname=firesim-yournamehere

with your own bucket name, e.g.:

s3bucketname=firesim-sagar

4.2. Build Recipes

In the deploy/config_build.ini file, you will notice that the [builds]
section currently contains several lines, which
indicates to the build system that you want to run all of these builds in
parallel, with the parameters listed in the relevant section of the
deploy/config_build_recipes.ini file. Here you can set parameters of the simulated
system, and also select the type of instance on which the Vivado build will be
deployed. From our experimentation, there are diminishing returns using
anything above a c4.4xlarge, so we default to that.

To start out, let’s build a simple design, firesim-singlecore-no-nic-lbp.
This is a design that has one core, no nic, and uses the latency-bandwidth pipe
memory model. To do so, comment out all of the other build entries in deploy/config_build.ini, besides the one we want.. So, you should
end up with something like this (a line beginning with a # is a comment):

[builds]
this section references builds defined in config_build_recipes.ini
if you add a build here, it will be built when you run buildafi
#firesim-singlecore-nic-lbp
firesim-singlecore-no-nic-lbp
#firesim-quadcore-nic-lbp
#firesim-quadcore-no-nic-lbp
#firesim-quadcore-nic-ddr3-llc4mb
#firesim-quadcore-no-nic-ddr3-llc4mb

4.3. Running a Build

Now, we can run a build like so:

firesim buildafi

This will run through the entire build process, taking the Chisel RTL
and producing an AFI/AGFI that runs on the FPGA. This whole process will
usually take a few hours. When the build
completes, you will see a directory in
deploy/results-build/, named after your build parameter
settings, that contains AGFI information (the AGFI_INFO file) and
all of the outputs of the Vivado build process (in the cl_firesim
subdirectory). Additionally, the manager will print out a path to a log file
that describes everything that happened, in-detail, during this run (this is a
good file to send us if you encounter problems). If you provided the manager
with your email address, you will also receive an email upon build completion,
that should look something like this:

[image: Build Completion Email]
Build Completion Email

Now that you know how to generate your own FPGA image, you can modify the target-design
to add your own features, then build a FireSim-compatible FPGA image automatically!
To learn more advanced FireSim features, you can choose a link under the “Advanced
Docs” section to the left.

Manager Usage (the firesim command)

Manager Details:

	1. Overview
	1.1. “Inputs” to the Manager

	1.2. Logging

	2. Manager Command Line Arguments
	2.1. --runtimeconfigfile FILENAME

	2.2. --buildconfigfile FILENAME

	2.3. --buildrecipesconfigfile FILENAME

	2.4. --hwdbconfigfile FILENAME

	2.5. --overrideconfigdata SECTION PARAMETER VALUE

	2.6. TASK

	3. Manager Tasks
	3.1. firesim managerinit

	3.2. firesim buildafi

	3.3. firesim shareagfi

	3.4. firesim launchrunfarm

	3.5. firesim terminaterunfarm

	3.6. firesim infrasetup

	3.7. firesim boot

	3.8. firesim kill

	3.9. firesim runworkload

	3.10. firesim runcheck

	4. Manager Configuration Files
	4.1. config_runtime.ini

	4.2. config_build.ini

	4.3. config_build_recipes.ini

	4.4. config_hwdb.ini

	5. Manager Network Topology Definitions (user_topology.py)
	5.1. user_topology.py contents:

	6. AGFI Metadata/Tagging

1. Overview

When you source sourceme-f1-manager.sh in your copy of the firesim repo,
you get access to a new command, firesim, which is the FireSim simulation
manager. If you’ve used tools like Vagrant or Docker, the firesim program
is to FireSim what vagrant and docker are to Vagrant and Docker
respectively. In essence, firesim lets us manage the entire lifecycle
of FPGA simulations, just like vagrant and docker do for VMs and
containers respectively.

1.1. “Inputs” to the Manager

The manager gets configuration information from several places:

	Command Line Arguments, consisting of:

	Paths to configuration files to use

	A task to run

	Arguments to the task

	Configuration Files

	Topology definitions for networked simulations (user_topology.py)

The following sections detail these inputs. Hit Next to continue.

1.2. Logging

The manager produces detailed logs when you run any command, which is useful
to share with the FireSim developers for debugging purposes in case you
encounter issues. The logs contain more detailed output than the manager
sends to stdout/stderr during normal operation, so it’s also useful if you
want to take a peek at the detailed commands manager is running to facilitate
builds and simulations. Logs are stored in firesim/deploy/logs/.

2. Manager Command Line Arguments

The manager provides built-in help output for the command line arguments it
supports if you run firesim --help

usage: firesim [-h] [-c RUNTIMECONFIGFILE] [-b BUILDCONFIGFILE]
 [-r BUILDRECIPESCONFIGFILE] [-a HWDBCONFIGFILE]
 [-x OVERRIDECONFIGDATA] [-f TERMINATESOMEF116]
 [-g TERMINATESOMEF12] [-m TERMINATESOMEM416] [-q]

 {managerinit,buildafi,launchrunfarm,infrasetup,boot,kill,terminaterunfarm,runworkload,shareagfi,runcheck}

FireSim Simulation Manager.

positional arguments:
 {managerinit,buildafi,launchrunfarm,infrasetup,boot,kill,terminaterunfarm,runworkload,shareagfi,runcheck}
 Management task to run.

optional arguments:
 -h, --help show this help message and exit
 -c RUNTIMECONFIGFILE, --runtimeconfigfile RUNTIMECONFIGFILE
 Optional custom runtime/workload config file. Defaults
 to config_runtime.ini.
 -b BUILDCONFIGFILE, --buildconfigfile BUILDCONFIGFILE
 Optional custom build config file. Defaults to
 config_build.ini.
 -r BUILDRECIPESCONFIGFILE, --buildrecipesconfigfile BUILDRECIPESCONFIGFILE
 Optional custom build recipe config file. Defaults to
 config_build_recipes.ini.
 -a HWDBCONFIGFILE, --hwdbconfigfile HWDBCONFIGFILE
 Optional custom HW database config file. Defaults to
 config_hwdb.ini.
 -x OVERRIDECONFIGDATA, --overrideconfigdata OVERRIDECONFIGDATA
 Override a single value from one of the the RUNTIME
 e.g.: --overrideconfigdata "targetconfig linklatency
 6405".
 -f TERMINATESOMEF116, --terminatesomef116 TERMINATESOMEF116
 Only used by terminatesome. Terminates this many of
 the previously launched f1.16xlarges.
 -g TERMINATESOMEF12, --terminatesomef12 TERMINATESOMEF12
 Only used by terminatesome. Terminates this many of
 the previously launched f1.2xlarges.
 -m TERMINATESOMEM416, --terminatesomem416 TERMINATESOMEM416
 Only used by terminatesome. Terminates this many of
 the previously launched m4.16xlarges.
 -q, --forceterminate For terminaterunfarm, force termination without
 prompting user for confirmation. Defaults to False

On this page, we will go through some of these options – others are more
complicated, so we will give them their own section on the following pages.

2.1. --runtimeconfigfile FILENAME

This lets you specify a custom runtime config file. By default, config_runtime.ini
is used. See config_runtime.ini for what this config file does.

2.2. --buildconfigfile FILENAME

This lets you specify a custom build config file. By default, config_build.ini
is used. See config_build.ini for what this config file does.

2.3. --buildrecipesconfigfile FILENAME

This lets you specify a custom build recipes config file. By default,
config_build_recipes.ini is used. See config_build_recipes.ini for what
this config file does.

2.4. --hwdbconfigfile FILENAME

This lets you specify a custom hardware database config file. By default,
config_hwdb.ini is used. See config_hwdb.ini for what this config file does.

2.5. --overrideconfigdata SECTION PARAMETER VALUE

This lets you override a single value from the runtime config file. For
example, if you want to use a link latency of 3003 cycles for a particular run
(and your config_runtime.ini file specifies differently), you can pass
--overrideconfigdata targetconfig linklatency 6405 to the manager. This
can be used with any task that uses the runtime config.

2.6. TASK

This is the only required/positional command line argument to the manager. It
tells the manager what it should be doing. See the next section for a list of
tasks and what they do. Some tasks also take other command line arguments,
which are specified with those tasks.

3. Manager Tasks

This page outlines all of the tasks that the FireSim manager supports.

3.1. firesim managerinit

This is a setup command that does the following:

	Run aws configure, prompt for credentials

	Replace the default config files (config_runtime.ini, config_build.ini, config_build_recipes.ini, and config_hwdb.ini) with clean example versions.

	Prompt the user for email address and subscribe them to notifications for their own builds.

You can re-run this whenever you want to get clean configuration files – you
can just hit enter when prompted for aws configure credentials and your email
address, and both will keep your previously specified values.

If you run this command by accident and didn’t mean to overwrite your
configuration files, you’ll find backed-up versions in
firesim/deploy/sample-backup-configs/backup*.

3.2. firesim buildafi

This command builds a FireSim AGFI (FPGA Image) from the Chisel RTL for the
configurations that you specify. The process of defining configurations to
build is explained in the documentation for config_build.ini and
config_build_recipes.ini.

For each config, the build process entails:

	[Locally] Run the elaboration process for your hardware configuration

	[Locally] FAME-1 transform the design with MIDAS

	[Locally] Attach simulation models (I/O widgets, memory model, etc.)

	[Locally] Emit Verilog to run through the AWS FPGA Flow

	Launch an FPGA Dev AMI build instance for each configuration you want built.

	[Local/Remote] Prep build instances, copy generated verilog for hardware configuration to buidl instance.

	[Remote] Run Vivado Synthesis and P&R for the configuration

	[Local/Remote] Copy back all output generated by Vivado, including the final tar file

	[Local/AWS Infra] Submit the tar file to the AWS backend for conversion to an AFI

	[Local] Wait for the AFI to become available, then notify the user of completion by email.

This process happens in parallel for all of the builds you specify. The command
will exit when all builds are completed (but you will get notified as
INDIVIDUAL builds complete).

It is highly recommended that you either run this command in a ``screen`` or use
``mosh`` to access the build instance. Builds will not finish if the manager is
killed due to disconnection to the instance.

When you run a build for a particular configuration, a directory named
LAUNCHTIME-CONFIG_TRIPLET-BUILD_NAME is created in firesim/deploy/results-build/.
This directory will contain:

	AGFI_INFO: Describes the state of the AFI being built, while the manager is running. Upon build completion, this contains the AGFI/AFI that was produced, along with its metadata.

	cl_firesim:: This directory is essentially the Vivado project that built the FPGA image, in the state it was in when the Vivado build process completed. This contains reports, stdout from the build, and the final tar file produced by Vivado.

	cl_firesim_generated.sv: This is a copy of the generated verilog used to produce this build. You can also find a copy inside cl_firesim.

3.3. firesim shareagfi

This command allows you to share AGFIs that you have already built (that are
listed in config_hwdb.ini) with other users. It will take the
named hardware configurations that you list in the [agfistoshare] section of
config_build.ini, grab the respective AGFIs for each from
config_hwdb.ini, and share them across all F1 regions with the users listed
in the [sharewithaccounts] section of config_build.ini.

You must own the AGFIs in order to do this – this will NOT let you share AGFIs
that someone else owns and gave you access to.

3.4. firesim launchrunfarm

This command launches a Run Farm on which you run simulations. Run Farms
consist of f1.16xlarge, f1.2xlarge, and m4.16xlarge instances.
Before you run the command, you define the number of each that you want in
config_runtime.ini.

A launched Run Farm is tagged with a runfarmtag from
config_runtime.ini, which is used to disambiguate multiple parallel Run
Farms; that is, you can have many Run Farms running, each running a different
experiment at the same time, each with its own unique runfarmtag. One
convenient feature to add to your AWS management panel is the column for
fsimcluster, which contains the runfarmtag value. You can see how to do
that in the Add the fsimcluster column to your AWS management console section.

The other options in the [runfarm] section, runinstancemarket,
spotinterruptionbehavior, and spotmaxprice define how instances in
the Run Farm are launched. See the documentation for config_runtime.ini for
more details.

ERRATA: One current requirement is that you must define a target config in
the [targetconfig] section of config_runtime.ini that does not require
more resources than the Run Farm you are trying to launch. Thus, you should
also setup your [targetconfig] parameters before trying to launch the
corresponding Run Farm. This requirement will be removed in the future.

Once you setup your configuration and call firesim launchrunfarm, the command
will launch the requested numbers and types of instances. If all succeeds, you
will see the command print out instance IDs for the correct number/types of
launched instances (you do not need to pay attention to these or record them).
If an error occurs, it will be printed to console.

Once you run this command, your Run Farm will continue to run until you call
``firesim terminaterunfarm``. This means you will be charged for the running
instances in your Run Farm until you call ``terminaterunfarm``. You are
responsible for ensuring that instances are only running when you want them to
be by checking the AWS EC2 Management Panel.

3.5. firesim terminaterunfarm

This command terminates some or all of the instances in the Run Farm defined
in your config_runtime.ini file, depending on the command line arguments
you supply. By default, running firesim terminaterunfarm will terminate
ALL instances with the specified runfarmtag. When you run this command,
it will prompt for confirmation that you want to terminate the listed instances.
If you respond in the affirmative, it will move forward with the termination.

If you do not want to have to confirm the termination (e.g. you are using this
command in a script), you can give the command the --forceterminate command
line argument. For example, the following will TERMINATE ALL INSTANCES IN THE
RUN FARM WITHOUT PROMPTING FOR CONFIRMATION:

firesim terminaterunfarm --forceterminate

There a few additional commandline arguments that let you terminate only
some of the instances in a particular Run Farm: --terminatesomef116 INT,
--terminatesomef12 INT, and --terminatesomem416 INT, which will terminate
ONLY as many of each type of instance as you specify.

Here are some examples:

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --forceterminate

[now, we have: 1 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --terminatesomef12 2 --forceterminate

[now, we have: 1 f1.16xlarges, 0 f1.2xlarges, 2 m4.16xlarges]

Once you call ``launchrunfarm``, you will be charged for running instances in
your Run Farm until you call ``terminaterunfarm``. You are responsible for
ensuring that instances are only running when you want them to be by checking
the AWS EC2 Management Panel.

3.6. firesim infrasetup

Once you have launched a Run Farm and setup all of your configuration options,
the infrasetup command will build all components necessary to run the
simulation and deploy those components to the machines in the Run Farm. Here
is a rough outline of what the command does:

	Constructs the internal representation of your simulation. This is a tree of
components in the simulation (simulated server blades, switches)

	For each type of server blade, query the AWS AFI API to get the build-triplet
needed to construct the software simulation driver, then build each driver

	For each type of switch in the simulation, generate the switch model binary

	For each host instance in the Run Farm, collect information about all the
resources necessary to run a simulation on that host instance, then copy
files and flash FPGAs with the required AGFIs.

Details about setting up your simulation configuration can be found in
config_runtime.ini.

Once you run a simulation, you should re-run ``firesim infrasetup`` before
starting another one, even if it is the same exact simulation on the same Run
Farm.

You can see detailed output from an example run of infrasetup in the
Running a Single Node Simulation and Running a Cluster Simulation Tutorials.

3.7. firesim boot

Once you have run firesim infrasetup, this command will actually start
simulations. It begins by launching all switches (if they exist in your
simulation config), then launches all server blade simulations. This simply
launches simulations and then exits – it does not perform any monitoring.

This command is useful if you want to launch a simulation, then plan to
interact with the simulation by-hand (i.e. by directly interacting with the
console).

3.8. firesim kill

Given a simulation configuration and simulations running on a Run Farm, this
command force-terminates all components of the simulation. Importantly, this
does not allow any outstanding changes to the filesystem in the simulated
systems to be committed to the disk image.

3.9. firesim runworkload

This command is the standard tool that lets you launch simulations, monitor the
progress of workloads running on them, and collect results automatically when
the workloads complete. To call this command, you must have first called
firesim infrasetup to setup all required simulation infrastructure on the
remote nodes.

This command will first create a directory in firesim/deploy/results-workload/
named as LAUNCH_TIME-WORKLOADNAME, where results will be completed as simulations
complete.
This command will then automatically call firesim boot to start simulations.
Then, it polls all the instances in the Run Farm every 10 seconds to determine
the state of the simulated system. If it notices that a simulation has shutdown
(i.e. the simulation disappears from the output of screen -ls), it will
automatically copy back all results from the simulation, as defined in the
workload configuration (see the Defining Custom Workloads section).

For
non-networked simulations, it will wait for ALL simulations to complete (copying
back results as each workload completes), then exit.

For
globally-cycle-accurate networked simulations, the global simulation will stop
when any single node powers off. Thus, for these simulations, runworkload
will copy back results from all nodes and force them to terminate by calling
kill when ANY SINGLE ONE of them shuts down cleanly.

A simulation shuts down cleanly when the workload running on the simulator calls poweroff.

3.10. firesim runcheck

This command is provided to let you debug configuration options without launching
instances. In addition to the output produced at command line/in the log, you will
find a pdf diagram of the topology you specify, annotated with information about
the workloads, hardware configurations, and abstract host mappings for each
simulation (and optionally, switch) in your design. These diagrams are located
in firesim/deploy/generated-topology-diagrams/, named after your topology.

Here is an example of such a diagram (click to expand/zoom):

[image: Example diagram from running ``firesim runcheck``]
Example diagram for an 8-node cluster with one ToR switch

4. Manager Configuration Files

This page contains a centralized reference for all of the configuration options
in config_runtime.ini, config_build.ini, config_build_recipes.ini,
and config_hwdb.ini.

4.1. config_runtime.ini

Here is a sample of this configuration file:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

Below, we outline each section and parameter in detail.

4.1.1. [runfarm]

The [runfarm] options below allow you to specify the number, types, and
other characteristics of instances in your FireSim Run Farm, so that the
manager can automatically launch them, run workloads on them, and terminate
them.

4.1.1.1. runfarmtag

Use runfarmtag to differentiate between different Run Farms in FireSim.
Having multiple config_runtime.ini files with different runfarmtag
values allows you to run many experiments at once from the same manager instance.

The instances launched by the launchrunfarm command will be tagged with
this value. All later operations done by the manager rely on this tag, so
you should not change it unless you are done with your current Run Farm.

Per AWS restrictions, this tag can be no longer than 255 characters.

4.1.1.2. f1_16xlarges, m4_16xlarges, f1_2xlarges

Set these three values respectively based on the number and types of instances
you need. While we could automate this setting, we choose not to, so that
users are never surprised by how many instances they are running.

Note that these values are ONLY used to launch instances. After launch, the
manager will query the AWS API to find the instances of each type that have the
runfarmtag set above assigned to them.

4.1.1.3. runinstancemarket

You can specify either spot or ondemand here, to use one of those
markets on AWS.

4.1.1.4. spotinterruptionbehavior

When runinstancemarket=spot, this value determines what happens to an instance
if it receives the interruption signal from AWS. You can specify either
hibernate, stop, or terminate.

4.1.1.5. spotmaxprice

When runinstancemarket=spot, this value determines the max price you are
willing to pay per instance, in dollars. You can also set it to ondemand
to set your max to the on-demand price for the instance.

4.1.2. [targetconfig]

The [targetconfig] options below allow you to specify the high-level
configuration of the target you are simulating. You can change these parameters
after launching a Run Farm (assuming you have the correct number of instances),
but in many cases you will need to re-run the infrasetup command to make
sure the correct simulation infrastructure is available on your instances.

4.1.2.1. topology

This field dictates the network topology of the simulated system. Some examples:

no_net_config: This runs N (see no_net_num_nodes below) independent
simulations, without a network simulation. You can currently only use this
option if you build one of the NoNIC hardware configs of FireSim.

example_8config: This requires a single f1.16xlarge, which will
simulate 1 ToR switch attached to 8 simulated servers.

example_16config: This requires two f1.16xlarge instances and one
m4.16xlarge instance, which will
simulate 2 ToR switches, each attached to 8 simulated servers, with the two
ToR switches connected by a root switch.

example_64config: This requires eight f1.16xlarge instances and one
m4.16xlarge instance, which will simulate 8 ToR switches, each attached to
8 simulated servers (for a total of 64 nodes), with the eight ToR switches
connected by a root switch.

Additional configurations are available in deploy/runtools/user_topology.py
and more can be added there. See the Manager Network Topology Definitions (user_topology.py) section
for more info.

4.1.2.2. no_net_num_nodes

This determines the number of simulated nodes when you are using
topology=no_net_config.

4.1.2.3. linklatency

In a networked simulation, this allows you to specify the link latency of the
simulated network in CYCLES. For example, 6405 cycles is roughly 2 microseconds
at 3.2 GHz. A current limitation is that this value (in cycles) must be
a multiple of 7. Furthermore, you must not exceed the buffer size specified
in the NIC’s simulation widget.

4.1.2.4. switchinglatency

In a networked simulation, this specifies the minimum port-to-port switching
latency of the switch models, in CYCLES.

4.1.2.5. netbandwidth

In a networked simulation, this specifies the maximum output bandwidth that a
NIC is allowed to produce as an integer in Gbit/s. Currently, this must be a
number between 1 and 200, allowing you to model NICs between 1 and 200 Gbit/s.

4.1.2.6. defaulthwconfig

This sets the server configuration launched by default in the above topologies.
Heterogeneous configurations can be achieved by manually specifying different
names within the topology itself, but all the example_Nconfig configurations
are homogeneous and use this value for all nodes.

You should set this to one of the hardware configurations you have defined already in
config_hwdb.ini. You should set this to the NAME (section title) of the
hardware configuration from config_hwdb.ini, NOT the actual agfi itself
(NOT something like agfi-XYZ...).

4.1.3. [workload]

This section defines the software that will run on the simulated system.

4.1.3.1. workloadname

This selects a workload to run across the set of simulated nodes.
A workload consists of a series of jobs that need to be run on simulated
nodes (one job per node).

Workload definitions are located in firesim/deploy/workloads/*.json.

Some sample workloads:

linux-uniform.json: This runs the default FireSim Linux distro on as many nodes
as you specify when setting the [targetconfig] parameters.

spec17-intrate.json: This runs SPECint 2017’s rate benchmarks. In this type of
workload, you should launch EXACTLY the correct number of nodes necessary to run the
benchmark. If you specify fewer nodes, the manager will warn that not all jobs were
assigned to a simulation. If you specify too many simulations and not enough
jobs, the manager will not launch the jobs.

Others can be found in the aforementioned directory.

4.1.3.2. terminateoncompletion

Set this to no if you want your Run Farm to keep running once the workload
has completed. Set this to yes if you want your Run Farm to be TERMINATED
after the workload has completed and results have been copied off.

4.2. config_build.ini

Here is a sample of this configuration file:

BUILDTIME/AGFI management configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[afibuild]

s3bucketname=firesim-yournamehere
buildinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[builds]
this section references builds defined in config_build_recipes.ini
if you add a build here, it will be built when you run buildafi
firesim-singlecore-nic-lbp
firesim-singlecore-no-nic-lbp
firesim-quadcore-nic-lbp
firesim-quadcore-no-nic-lbp
firesim-quadcore-nic-ddr3-llc4mb
firesim-quadcore-no-nic-ddr3-llc4mb

[agfistoshare]
firesim-singlecore-no-nic-lbp
firesim-singlecore-nic-lbp
firesim-quadcore-no-nic-lbp
firesim-quadcore-nic-lbp
firesim-quadcore-no-nic-ddr3-llc4mb
firesim-quadcore-nic-ddr3-llc4mb

[sharewithaccounts]
somebodysname=123456789012

Below, we outline each section and parameter in detail.

4.2.1. [afibuild]

This exposes options for AWS resources used in the process of building FireSim
AGFIs (FPGA Images).

4.2.1.1. s3bucketname

This is used behind the scenes in the AGFI creation process. You will only
ever need to access this bucket manually if there is a failure in AGFI creation
in Amazon’s backend.

Naming rules: this must be all lowercase and you should stick to letters and numbers.

The first time you try to run a build, the FireSim manager will try to create
the bucket you name here. If the name is unavailable, it will complain and you
will need to change this name. Once you choose a working name, you should never
need to change it.

In general, firesim-yournamehere is a good choice.

4.2.1.2. buildinstancemarket

You can specify either spot or ondemand here, to use one of those
markets on AWS.

4.2.1.3. spotinterruptionbehavior

When buildinstancemarket=spot, this value determines what happens to an
instance if it receives the interruption signal from AWS. You can specify
either hibernate, stop, or terminate.

4.2.1.4. spotmaxprice

When buildinstancemarket=spot, this value determines the max price you are
willing to pay per instance, in dollars. You can also set it to ondemand
to set your max to the on-demand price for the instance.

4.2.2. [builds]

In this section, you can list as many build entries as you want to run
for a particular call to the buildafi command (see
config_build_recipes.ini below for how to define a build entry). For
example, if we want to run the builds named [awesome-firesim-config] and [quad-core-awesome-firesim-config], we would
write:

[builds]
awesome-firesim-config
quad-core-awesome-firesim-config

4.2.3. [agfistoshare]

This is used by the shareagfi command to share the specified agfis with the
users specified in the next ([sharewithaccounts]) section. In this section,
you should specify the section title (i.e. the name you made up) for a hardware
configuration in config_hwdb.ini. For example, to share the hardware config:

[firesim-quadcore-nic-ddr3-llc4mb]
this is a comment that describes my favorite configuration!
agfi=agfi-0a6449b5894e96e53
deploytripletoverride=None
customruntimeconfig=None

you would use:

[agfistoshare]
firesim-quadcore-nic-ddr3-llc4mb

4.2.4. [sharewithaccounts]

A list of AWS account IDs that you want to share the AGFIs listed in
[agfistoshare] with when calling the manager’s shareagfi command. You
should specify names in the form usersname=AWSACCTID. The left-hand-side is
just for human readability, only the actual account IDs listed here matter.

4.3. config_build_recipes.ini

Here is a sample of this configuration file:

Build-time design configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

this file contains sections that describe hardware designs that /can/ be built.
edit config_build.ini to actually "turn on" a config to be built when you run
buildafi

[firesim-singlecore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-singlecore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-ddr3-llc4mb]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-ddr3-llc4mb]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

Below, we outline each section and parameter in detail.

4.3.1. Build definition sections, e.g. [awesome-firesim-config]

In this file, you can specify as many build definition sections as you want,
each with a header like [awesome-firesim-config] (i.e. a nice, short name
you made up). Such a section must contain the following fields:

4.3.1.1. DESIGN

This specifies the basic target design that will be built. Unless you
are defining a custom system, this should either be FireSim, for
systems with a NIC, or FireSimNoNIC, for systems without a NIC. These
are defined in firesim/sim/src/main/scala/Targets.scala.

4.3.1.2. TARGET_CONFIG

This specifies the hardware configuration of the target being simulation. Some
examples include FireSimRocketChipConfig and FireSimRocketChipQuadCoreConfig.
These are defined in firesim/sim/src/main/scala/TargetConfigs.scala.

4.3.1.3. PLATFORM_CONFIG

This specifies hardware parameters of the simulation environment - for example,
selecting between a Latency-Bandwidth Pipe or DDR3 memory models.
These are defined in firesim/sim/src/main/scala/SimConfigs.scala.

4.3.1.4. instancetype

This defines the type of instance that the build will run on. Generally, running
on a c4.4xlarge is sufficient. In our experience, using more powerful instances
than this provides little gain.

4.3.1.5. deploytriplet

This allows you to override the deploytriplet stored with the AGFI.
Otherwise, the DESIGN/TARGET_CONFIG/PLATFORM_CONFIG you specify
above will be used. See the AGFI Tagging section for more details. Most likely,
you should leave this set to None. This is usually only used if you have
proprietary RTL that you bake into an FPGA image, but don’t want to share with
users of the simulator.

4.4. config_hwdb.ini

Here is a sample of this configuration file:

Build-time design configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

this file contains sections that describe hardware designs that /can/ be built.
edit config_build.ini to actually "turn on" a config to be built when you run
buildafi

[firesim-singlecore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-singlecore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-ddr3-llc4mb]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-ddr3-llc4mb]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

This file tracks hardware configurations that you can deploy as simulated nodes
in FireSim. Each such configuration contains a name for easy reference in higher-level
configurations, defined in the section header, an agfi, which represents the
FPGA image, a custom runtime config, if one is needed, and a deploy triplet
override if one is necessary.

When you build a new AGFI, you should put the default version of it in this
file so that it can be referenced from your other configuration files.

The following is an example section from this file - you can add as many of
these as necessary:

[firesim-quadcore-nic-ddr3-llc4mb]
this is a comment that describes my favorite configuration!
agfi=agfi-0a6449b5894e96e53
deploytripletoverride=None
customruntimeconfig=None

4.4.1. [NAME_GOES_HERE]

In this example, firesim-quadcore-nic-ddr3-llc4mb is the name that will be
used to reference this hardware design in other configuration locations. The following
items describe this hardware configuration:

4.4.1.1. agfi

This represents the AGFI (FPGA Image) used by this hardware configuration.

4.4.1.2. deploytripletoverride

This is an advanced feature - under normal conditions, you should leave this set to None, so that the
manager uses the configuration triplet that is automatically stored with the
AGFI at build time. Advanced users can set this to a different
value to build and use a different driver when deploying simulations. Since
the driver depends on logic now hardwired into the
FPGA bitstream, drivers cannot generally be changed without requiring FPGA
recompilation.

4.4.1.3. customruntimeconfig

This is an advanced feature - under normal conditions, you can use the default
parameters generated automatically by the simulator by setting this field to
None. If you want to customize runtime parameters for certain parts of
the simulation (e.g. the DRAM model’s runtime parameters), you can place
a custom config file in sim/custom-runtime-configs/. Then, set this field
to the relative name of the config. For example,
sim/custom-runtime-configs/GREATCONFIG.conf becomes
customruntimeconfig=GREATCONFIG.conf.

4.4.2. Add more hardware config sections, like [NAME_GOES_HERE_2]

You can add as many of these entries to config_hwdb.ini as you want, following the format
discussed above (i.e. you provide agfi, deploytripletoverride, or customruntimeconfig).

5. Manager Network Topology Definitions (user_topology.py)

Custom network topologies are specified as Python snippets that construct a
tree. You can see examples of these in firesim/deploy/runtools/user_topology.py,
shown below. Better documentation of this API will be available once it stabilizes.

Fundamentally, you create a list of roots, which consists of switch or server
nodes, then construct a tree by adding downlinks to these roots. Since links
are bi-directional, adding a downlink from node A to node B implicitly adds
an uplink from B to A.

You can add additional topology generation methods here, then use them in
config_runtime.ini.

5.1. user_topology.py contents:

""" Define your additional topologies here. The FireSimTopology class inherits
from UserToplogies and thus can instantiate your topology. """

from runtools.firesim_topology_elements import *

class UserTopologies(object):
 """ A class that just separates out user-defined/configurable topologies
 from the rest of the boilerplate in FireSimTopology() """

 def example_1config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(1)]
 self.roots[0].add_downlinks(servers)

 def example_2config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(2)]
 self.roots[0].add_downlinks(servers)

 def example_4config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(4)]
 self.roots[0].add_downlinks(servers)

 def example_8config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(8)]
 self.roots[0].add_downlinks(servers)

 def example_16config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(2)]
 servers = [[FireSimServerNode() for y in range(8)] for x in range(2)]

 for root in self.roots:
 root.add_downlinks(level2switches)

 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def example_32config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(4)]
 servers = [[FireSimServerNode() for y in range(8)] for x in range(4)]

 for root in self.roots:
 root.add_downlinks(level2switches)

 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def example_64config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(8)]
 servers = [[FireSimServerNode() for y in range(8)] for x in range(8)]

 for root in self.roots:
 root.add_downlinks(level2switches)

 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def example_128config(self):
 self.roots = [FireSimSwitchNode()]
 level1switches = [FireSimSwitchNode() for x in range(2)]
 level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
 servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in range(2)]

 self.roots[0].add_downlinks(level1switches)

 for switchno in range(len(level1switches)):
 level1switches[switchno].add_downlinks(level2switches[switchno])

 for switchgroupno in range(len(level2switches)):
 for switchno in range(len(level2switches[switchgroupno])):
 level2switches[switchgroupno][switchno].add_downlinks(servers[switchgroupno][switchno])

 def example_256config(self):
 self.roots = [FireSimSwitchNode()]
 level1switches = [FireSimSwitchNode() for x in range(4)]
 level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
 servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in range(4)]

 self.roots[0].add_downlinks(level1switches)

 for switchno in range(len(level1switches)):
 level1switches[switchno].add_downlinks(level2switches[switchno])

 for switchgroupno in range(len(level2switches)):
 for switchno in range(len(level2switches[switchgroupno])):
 level2switches[switchgroupno][switchno].add_downlinks(servers[switchgroupno][switchno])

 def dual_example_8config(self):
 """ two separate 8-node clusters for experiments, e.g. memcached mutilate. """
 self.roots = [FireSimSwitchNode(), FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(8)]
 servers2 = [FireSimServerNode() for y in range(8)]
 self.roots[0].add_downlinks(servers)
 self.roots[1].add_downlinks(servers2)

 def triple_example_8config(self):
 """ three separate 8-node clusters for experiments, e.g. memcached mutilate. """
 self.roots = [FireSimSwitchNode(), FireSimSwitchNode(), FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(8)]
 servers2 = [FireSimServerNode() for y in range(8)]
 servers3 = [FireSimServerNode() for y in range(8)]
 self.roots[0].add_downlinks(servers)
 self.roots[1].add_downlinks(servers2)
 self.roots[2].add_downlinks(servers3)

 def no_net_config(self):
 self.roots = [FireSimServerNode() for x in range(self.no_net_num_nodes)]

6. AGFI Metadata/Tagging

When you build an AGFI in FireSim, the AGFI description stored by AWS is
populated with metadata that helps the manager decide how to deploy
a simulation. The important metadata is listed below, along with how each field
is set and used:

	firesim-buildtriplet: This always reflects the triplet combination used to BUILD the AGFI.

	firesim-deploytriplet: This reflects the triplet combination that is used to DEPLOY the AGFI. By default, this is the same as firesim-buildtriplet. In certain cases however, your users may not have access to a particular configuration, but a simpler configuration may be sufficient for building a compatible software driver (e.g. if you have proprietary RTL in your FPGA image that doesn’t interface with the outside system). In this case, you can specify a custom deploytriplet at build time. If you do not do so, the manager will automatically set this to be the same as firesim-buildtriplet.

	firesim-commit: This is the commit hash of the version of FireSim used to build this AGFI. If the AGFI was created from a dirty copy of the FireSim repo, “-dirty” will be appended to the commit hash.

Workloads

This section describes workload definitions in FireSim.

Workloads:

	Defining Custom Workloads
	Uniform Workload JSON

	Non-uniform Workload JSON (explicit job per simulated node)

	SPEC 2017
	Intspeed

	Intrate

	Running Fedora on FireSim

	ISCA 2018 Experiments
	Prerequisites

	Building Benchmark Binaries/Rootfses

	Figure 5: Ping Latency vs. Configured Link Latency

	Figure 6: Network Bandwidth Saturation

	Figure 7: Memcached QoS / Thread Imbalance

	Figure 8: Simulation Rate vs. Scale

	Figure 9: Simulation Rate vs. Link Latency

	Running all experiments at once

Defining Custom Workloads

Workloads in FireSim consist of a series of Jobs that are assigned to
be run on individual simulations. Currently, we require that a Workload defines
either:

	A single type of job, that is run on as many simulations as specfied by the user.
These workloads are usually suffixed with -uniform, which indicates that
all nodes in the workload run the same job. An example of such a workload is
firesim/deploy/workloads/linux-uniform.json.

	Several different jobs, in which case there must be exactly as many
jobs as there are running simulated nodes. An example of such a workload is
firesim/deploy/workloads/ping-latency.json.

FireSim supports can take these workload definitions and perform two functions:

	Building workloads using firesim/deploy/workloads/gen-benchmark-rootfs.py

	Deploying workloads using the manager

In the following subsections, we will go through the two aforementioned example
workload configurations, describing how these two functions use each part
of the json file inline.

ERRATA: You will notice in the following json files the field “workloads”
this should really be named “jobs” – we will fix this in a future release.

Uniform Workload JSON

firesim/deploy/workloads/linux-uniform.json is an example of a “uniform”
style workload, where each simulated node runs the same software configuration.

Let’s take a look at this file:

{
 "benchmark_name" : "linux-uniform",
 "common_bootbinary" : "bbl-vmlinux",
 "common_rootfs" : "rootfs.ext2",
 "common_outputs" : ["/etc/os-release"],
 "common_simulation_outputs" : ["uartlog", "memory_stats.csv"]
}

There is also a corresponding directory named after this workload/file:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/linux-uniform$ ls -la
total 4
drwxrwxr-x 2 centos centos 42 May 17 21:58 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../../../sw/firesim-software/bbl-vmlinux0
lrwxrwxrwx 1 centos centos 41 May 17 21:58 rootfs.ext2 -> ../../../sw/firesim-software/rootfs0.ext2

We will elaborate on this later.

Looking at the JSON file, you’ll notice that this is a relatively simple
workload definition.

In this “uniform” case, the manager will name simulations after the
benchmark_name field, appending a number for each simulation using the
workload (e.g. linux-uniform0, linux-uniform1, and so on). It is
standard pratice to keep benchmark_name, the json filename, and the above
directory name the same. In this case, we have set all of them to
linux-uniform.

Next, the common_bootbinary field represents the binary that the simulations
in this workload are expected to boot from. The manager will copy this binary
for each of the nodes in the simulation (each gets its own copy). The common_bootbinary path is
relative to the workload’s directory, in this case
firesim/deploy/workloads/linux-uniform. You’ll notice in the above output
from ls -la that this is actually just a symlink to bbl-vmlinux0 that
is built by the FireSim Linux distro in firesim/sw/firesim-software.

Similarly, the common_rootfs field represents the disk image that the simulations
in this workload are expected to boot from. The manager will copy this root
filesystem image for each of the nodes in the simulation (each gets its own copy).
The common_rootfs path is
relative to the workload’s directory, in this case
firesim/deploy/workloads/linux-uniform. You’ll notice in the above output
from ls -la that this is actually just a symlink to rootfs0.ext2 that
is built by the FireSim Linux distro in firesim/sw/firesim-software.

The common_outputs field is a list of outputs that the manager will copy out of
the root filesystem image AFTER a simulation completes. In this simple example,
when a workload running on a simulated cluster with firesim runworkload
completes, /etc/os-release will be copied out from each rootfs and placed
in the job’s output directory within the workload’s output directory (See
the firesim runworkload section). You can add multiple paths
here.

The common_simulation_outputs field is a list of outputs that the manager
will copy off of the simulation host machine AFTER a simulation completes. In
this example, when a workload running on a simulated cluster with
firesim runworkload
completes, the uartlog (an automatically generated file that contains the
full console output of the simulated system) and memory_stats.csv files
will be copied out of the simulation’s base directory on the host instance and
placed in the job’s output directory within the workload’s output directory
(see the firesim runworkload section). You can add multiple
paths here.

ERRATA: “Uniform” style workloads currently do not support being
automatically built – you can currently hack around this by building the
rootfs as a single-node non-uniform workload, then deleting the workloads
field of the JSON to make the manager treat it as a uniform workload. This will
be fixed in a future release.

Non-uniform Workload JSON (explicit job per simulated node)

Now, we’ll look at the ping-latency workload, which explicitly defines a
job per simulated node.

{
 "common_bootbinary" : "bbl-vmlinux",
 "benchmark_name" : "ping-latency",
 "deliver_dir" : "/",
 "common_args" : [],
 "common_files" : ["bin/pinglatency.sh"],
 "common_outputs" : [],
 "common_simulation_outputs" : ["uartlog"],
 "no_post_run_hook": "",
 "workloads" : [
 {
 "name": "pinger",
 "files": [],
 "command": "pinglatency.sh && poweroff -f",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "pingee",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-1",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-2",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-3",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-4",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-5",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-6",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 }
]
}

Additionally, let’s take a look at the state of the ping-latency directory
AFTER the workload is built:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-latency$ ls -la
total 15203216
drwxrwxr-x 3 centos centos 4096 May 18 07:45 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../../../sw/firesim-software/bbl-vmlinux0
-rw-rw-r-- 1 centos centos 7 May 17 21:58 .gitignore
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-1.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-2.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-3.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-4.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-5.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:46 idler-6.ext2
drwxrwxr-x 3 centos centos 16 May 17 21:58 overlay
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pingee.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pinger.ext2
-rw-rw-r-- 1 centos centos 2236 May 17 21:58 ping-latency-graph.py

First, let’s identify some of these files:

	bbl-vmlinux: Just like in the linux-uniform case, this workload just uses the default Linux binary generated in firesim-software

	.gitignore: This just ignores the generated rootfses, which we’ll learn about below.

	idler-[1-6].ext2, pingee.ext2, pinger.ext2: These are rootfses that are generated from the json script above. We’ll learn how to do this shortly.

Additionally, let’s look at the overlay subdirectory:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-latency/overlay$ ls -la */*
-rwxrwxr-x 1 centos centos 249 May 17 21:58 bin/pinglatency.sh

This is a file that’s actually committed to the repo, that runs the benchmark we want to
run on one of our simulated systems. We’ll see how this is used soon.

Now, let’s take a look at how we got here. First, let’s review some of the new
fields present in this JSON file:

	common_files: This is an array of files that will be included in ALL of the job rootfses when they’re built. This is relative to a path that we’ll pass to the script that generates rootfses.

	workloads: This time, you’ll notice that we have this array, which is populated by objects that represent individual jobs. Each job has some additional fields:

	name: In this case, jobs are each assigned a name manually. These names MUST BE UNIQUE within a particular workload.

	files: Just like common_files, but specific to this job.

	command: This is the command that will be run automatically immediately when the simulation running this job boots up. This is usually the command that starts the workload we want.

	simulation_outputs: Just like common_simulation_outputs, but specific to this job.

	outputs: Just like common_outputs, but specific to this job.

In this example, we specify one node that boots up and runs the
pinglatency.sh benchmark, then powers off cleanly and 7 nodes that just
idle waiting to be pinged.

Given this JSON description, our existing pinglatency.sh script in the
overlay directory, and the base rootfses generated in firesim-software,
the following command will automatically generate all of the rootfses that you
see in the ping-latency directory.

[from the workloads/ directory]
python gen-benchmark-rootfs.py -w ping-latency.json -r -b ../../sw/firesim-software/rootfs0.ext2 -s ping-latency/overlay

Notice that we tell this script where the json file lives, where the base rootfs image is, and where we expect to find files
that we want to include in the generated disk images. This script will take care of the rest and we’ll end up with
idler-[1-6].ext2, pingee.ext2, and pinger.ext2!

You’ll notice a Makefile in the workloads/ directory – it contains many
similar commands for all of the workloads included with FireSim.

Once you generate the rootfses for this workload, you can run it with the manager
by setting workload=ping-latency.json in config_runtime.ini. The manager
will automatically look for the generated rootfses (based on workload and job names
that it reads from the json) and distribute work appropriately.

Just like in the uniform case, it will copy back the results that we specify
in the json file. We’ll end up with a directory in firesim/deploy/results-workload/
named after the workload name, with a subdirectory named after each job in the workload,
which will contain the output files we want.

SPEC 2017

SPEC2017 is supported using the firesim-2017 branch of Speckle, which
provides the tooling required to cross-compile SPEC for RISCV. These
instructions presuppose you’ve have a license for, and have installed SPEC on
your machine either EC2 or locally. Additionally, your SPEC environment must be setup;
SPEC_DIR must be set. If you are building binaries on a different machine,
you should be able to trivially copy Speckle’s generated overlay directories to
EC2.

Some notes:

	Benchmarks use reference inputs. train or test inputs can be used by changing the Speckle invocation in the Makefile.

	You may need to increase the size of the RootFS in buildroot in firesim/sw/firesim-software.

	No support for fp{rate, speed} benchmarks yet.

Intspeed

The intspeed workload definition splits the xz benchmark into two jobs
(these are two independent inputs) to achieve better load balance across the
simulations (9T dynamic instructions becomes 4T and 5T.)

To Build Binaries And RootFSes:

cd firesim/deploy/workloads/
make spec2017-intspeed

Run Resource requirements:

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=11

To Run:

firesim launchrunfarm -c workloads/spec17-intspeed.ini
firesim infrasetup -c workloads/spec17-intspeed.ini
firesim runworkload -c workloads/spec17-intspeed.ini
firesim terminaterunfarm -c workloads/spec17-intspeed.ini

On a single-core rocket-based SoC with a DDR3 + 256 KiB LLC model, with a 160
MHz host clock, the longest benchmarks (xz, mcf) complete in about 1
day. All other benchmarks finish in under 15 hours.

Intrate

By default, the intrate workload definition spins up four copies of each
benchmark, which may be entirely inappropriate for your target machine. This
can be changed by modifying the json.

To Build Binaries and RootFSes:

cd firesim/deploy/workloads/
make spec2017-intrate

Run Resource Requirements:

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=10

To Run:

firesim launchrunfarm -c workloads/spec17-intrate.ini
firesim infrasetup -c workloads/spec17-intrate.ini
firesim runworkload -c workloads/spec17-intrate.ini
firesim terminaterunfarm -c workloads/spec17-intrate.ini

Simulation times are host and target dependent. For reference, on a
four-core rocket-based SoC with a DDR3 + 1 MiB LLC model, with a 160
MHz host clock, the longest benchmarks complete in about 30 hours when
running four copies.

Running Fedora on FireSim

You can boot Fedora disk images pulled from upstream on FireSim simulations.
These instructions assume you’ve already run through the tutorials.

Fedora currently requires some tweaks to the Linux configuration. To rebuild
Linux with this configuration, first head to sw/firesim-software and
replace the linux-config-firesim file with deploy/workloads/fedora-uniform/linux-config-firesim
and then re-run ./build.sh in sw/firesim-software. This will build a copy
of bbl-vmlinux that is compatible with Fedora.

Next, head to
deploy/workloads and run make fedora-uniform. This will download the
latest version of the disk image and apply some patches to it to ensure it
functions correctly on FireSim.

Finally, you can change your workload to fedora-uniform.json to boot Fedora on your simulations.

ISCA 2018 Experiments

This page contains descriptions of the experiments in our ISCA 2018 paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf] and instructions for
reproducing them on your own simulations.

One important difference between the configuration used in the ISCA
2018 paper and the open-source release of FireSim is that the ISCA
paper used a proprietary L2 cache design that is not open-source.
Instead, the open-source FireSim uses an LLC model that models the
behavior of having an L2 cache as part of the memory model. Even with
the LLC model, you should be able to see the same trends in these
experiments, but exact numbers may vary.

Each section below describes the resources necessary to run the experiment.
Some of these experiments require a large number of instances – you should
make sure you understand the resource requirements before you run one of the
scripts.

Compatiblity: These were last tested with commit
bba9dea4811a2445f22809ef226cf00971674758 of FireSim.

Prerequisites

These guides assume that you have previously followed the
single-node/cluster-scale experiment guides in the FireSim documentation. Note
that these are advanced experiments, not introductory tutorials.

Building Benchmark Binaries/Rootfses

We include scripts to automatically build all of the benchmark rootfs images
that will be used below. To build them, make sure you have already run
./build.sh in firesim/sw/firesim-software, then run:

cd firesim/deploy/workloads/
make allpaper

Figure 5: Ping Latency vs. Configured Link Latency

Resource requirements:

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-ping-latency.sh withlaunch

Figure 6: Network Bandwidth Saturation

Resource requirements:

f1_16xlarges=2
m4_16xlarges=1
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-bw-test.sh withlaunch

Figure 7: Memcached QoS / Thread Imbalance

Resource requirements:

f1_16xlarges=3
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-memcached-thread-imbalance.sh withlaunch

Figure 8: Simulation Rate vs. Scale

Resource requirements:

f1_16xlarges=32
m4_16xlarges=5
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-scale.sh withlaunch

Notes: Excludes supernode since it is still in beta and not merged on master.

Figure 9: Simulation Rate vs. Link Latency

Resource requirements:

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-latency.sh withlaunch

Notes: Excludes supernode since it is still in beta and not merged on master.

Running all experiments at once

This script simply executes all of the above scripts in parallel. One caveat
is that the bw-test script currently cannot run in parallel with the others,
since it requires patching the switches. This will be resolved in a future
release.

cd firesim/deploy/workloads/
./run-all.sh

Debugging & Testing with RTL Simulation

Simulation of a single FireSim node using software RTL simulators like
Verilator, Synopsys VCS, or XSIM, is the most productive way to catch bugs
before generating an AGFI.

FireSim provides flows to do RTL simulation at three different levels of
the design/abstraction hierarchy. Ordered from least to most detailed, they are:

	Target-Level: This simulates just the RTL of the target-design (Rocket
Chip). There are no host-level features being simulated. Supported
simulators: VCS, Verilator.

	MIDAS-Level: This simulates the target-design after it’s been transformed
by MIDAS. The target- and host-clock are decoupled. FPGA-hosted simulation
models are present. Abstract models for host-FPGA provided services, like
DRAM, memory-mapped IO, and PCIS are used here. Supported simulators: VCS,
Verilator.

	FPGA-Level: This is a complete simulation of the design that will passed
to the FPGA tools, including clock-domain crossings, width adapters, PLLS,
FPGA-periphery blocks like DRAM and PCI-E controllers. This leverages the
simulation flow provided by AWS. Supported simulators: VCS, Vivado XSIM.

Generally, MIDAS-level simulations are only slightly slower than simulating at
target-RTL. Moving to FPGA-Level is very expensive. This illustrated in the
chart below.

	Level

	Waves

	VCS

	Verilator

	XSIM

	Target

	Off

	4.8 kHz

	6.2 kHz

	N/A

	Target

	On

	0.8 kHz

	4.8 kHz

	N/A

	MIDAS

	Off

	3.8 kHz

	2.0 kHz

	N/A

	MIDAS

	On

	2.9 kHz

	1.0 kHz

	N/A

	FPGA

	On

	2.3 Hz

	N/A

	0.56 Hz

Notes: Default configurations of a single-core Rocket Chip instance running
rv64ui-v-add. Frequencies are given in target-Hz. Presently, the default
compiler flags passed to Verilator and VCS differ from level to level. Hence,
these numbers are only intended to ball park simulation speeds with FireSim’s
out-of-the-box settings, not provide a scientific comparison between
simulators.

Target-Level Simulation

This is described in Debugging Verilog Simulation, as part of the Developing
New Devices tutorial.

MIDAS-Level Simulation

MIDAS-level simulations are run out of the firesim/sim directory. Currently, FireSim
lacks support for MIDAS-level simulation of the NIC since DMA_PCIS is not yet
supported. So here we’ll be setting DESIGN=FireSimNoNIC. To compile a simulator,
type:

[in firesim/sim]
make <verilator|vcs>

To compile a simulator with full-visibility waveforms, type:

make <verilator|vcs>-debug

As part of target-generation, Rocket Chip emits a make fragment with recipes
for running suites of assembly tests. MIDAS puts this in
firesim/sim/generated-src/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/firesim.d.
Make sure your $RISCV environment variable is set by sourcing
firesim/source-me*.sh or firesim/env.sh, and type:

make run-<asm|bmark>-tests EMUL=<vcs|verilator>

To run only a single test, the make target is the full path to the output.
Specifically:

make EMUL=<vcs|verilator> $PWD/output/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/<RISCV-TEST-NAME>.<vpd|out>

A .vpd target will use (and, if required, build) a simulator with waveform dumping enabled,
whereas a .out target will use the faster waveform-less simulator.

Examples

Run all RISCV-tools assembly and benchmark tests on a verilated simulator.

[in firesim/sim]
make DESIGN=FireSimNoNIC
make DESIGN=FireSimNoNIC -j run-asm-tests
make DESIGN=FireSimNoNIC -j run-bmark-tests

Run rv64ui-p-simple (a single assembly test) on a verilated simulator.

make DESIGN=FireSimNoNIC
make $(pwd)/output/f1/FireSimNoNIC-FireSimRocketChipConfig-FireSimConfig/rv64ui-p-simple.out

Run rv64ui-p-simple (a single assembly test) on a VCS simulator with waveform dumping.

make DESIGN=FireSimNoNIC vcs-debug
make EMUL=vcs $(pwd)/output/f1/FireSimNoNIC-FireSimRocketChipConfig-FireSimConfig/rv64ui-p-simple.vpd

FPGA-Level Simulation

Like MIDAS-level simulation, there is currently no support for DMA_PCIS, so
we’ll restrict ourselves to instances without a NIC by setting DESIGN=FireSimNoNIC. As
with MIDAS-level simulations, FPGA-level simulations run out of
firesim/sim.

Since FPGA-level simulation is up to 1000x slower than MIDAS-level simulation,
FPGA-level simulation should only be used in two cases:

	MIDAS-level simulation of the simulation is working, but running the
simulator on the FPGA is not.

	You’ve made changes to the AWS Shell/IP/cl_firesim.sv in aws-fpga
and want to test them.

FPGA-level simulation consists of two components:

	A FireSim-f1 driver that talks to a simulated DUT instead of the FPGA

	The DUT, a simulator compiled with either XSIM or VCS, that receives commands from the aforementioned
FireSim-f1 driver

Usage

To run a simulation you need to make both the DUT and driver targets by typing:

make xsim
make xsim-dut <VCS=1> & # Launch the DUT
make xsim SIM_BINARY=<PATH/TO/BINARY> # Launch the driver

Once both processes are running, you should see:

opening driver to xsim
opening xsim to driver

This indicates that the DUT and driver are successfully communicating.
Eventually, the DUT will print a commit trace Rocket Chip. There will
be a long pause (minutes, possibly an hour, depending on the size of the
binary) after the first 100 instructions, as the program is being loaded
into FPGA DRAM.

XSIM is used by default, and will work on EC2 instances with the FPGA developer
AMI. If you have a license, setting VCS=1 will use VCS to compile the DUT
(4x faster than XSIM). Berkeley users running on the Millennium machines should
be able to source firesim/scripts/setup-vcsmx-env.sh to setup their
environment for VCS-based FPGA-level simulation.

The waveforms are dumped in the FPGA build directories(
firesim/platforms/f1/aws-fpga/hdk/cl/developer_designs/cl_<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>).

For XSIM:

<BUILD_DIR>/verif/sim/vivado/test_firesim_c/tb.wdb

And for VCS:

<BUILD_DIR>/verif/sim/vcs/test_firesim_c/test_null.vpd

When finished, be sure to kill any lingering processes if you interrupted simulation prematurely.

Tutorial: Developing New Devices

Developing New Devices:

	Getting Started

	Memory-mapped Registers

	DMA and Interrupts
	TileLink Client Port

	TileLink Protocol and State Machine

	Interrupts

	Connecting Devices to Bus
	SoC Mixin Traits

	Top-Level Design and Configuration

	Running Test Software
	Debugging Verilog Simulation

	Creating Simulation Model

Getting Started

In this tutorial, we will show you how to design a new memory-mapped IO
device, test it in simulation, and then build and run it on FireSim.

To start with, you will need to clone a copy of FireChip, the repository
that aggregates all the target RTL for FireSim. FireSim already contains
FireChip as a submodule under target-design/firechip, but it makes patches
to the codebase so that it will work with the FPGA tools. Therefore, you will
need to clone a clean copy if you want to use FireChip standalone.

Go to https://github.com/firesim/firechip and click the “Fork” button to
fork the repository to your own account. Now clone the new repo to your
local machine and initialize the submodules.

$ git clone https://github.com/yourusername/firechip.git
$ cd firechip
$ git submodule update --init
$ cd rocket-chip
$ git submodule update --init
$ cd ..

You will not need to install the riscv-tools again because you’ll just be
reusing the one in firesim. So make sure to go into firesim and source
sourceme-f1-full.sh before you run the rest of the commands in this
tutorial.

Now that everything is checked out, you can build the VCS simulator and run the
regression tests to make sure everything is working.

$ cd vsim # or "cd verisim" for verilator
$ make # builds the DefaultExampleConfig
$ make run-regression-tests

If everything is set up correctly, you should see a bunch of *.out files
in the output/ directory. If you open these up, they should all say
“Completed after XXXXX cycles” at the end and not have any error messages.

Memory-mapped Registers

In this tutorial, we will create a device which pulls in data from an
externally-connected input stream and writes the data to memory. We’ll create
our device in the file src/main/scala/example/InputStream.scala. The first
thing we need to do is set up some memory-mapped control registers that the CPU
can use to communicate with the device. The easiest way to do this is by
creating a TLRegisterNode, which provides a regmap method that can be
used to generate the hardware for reading and writing to RTL registers.

class InputStream(
 address: BigInt,
 val beatBytes: Int = 8)
 (implicit p: Parameters) extends LazyModule {

 val device = new SimpleDevice("input-stream", Seq("example,input-stream"))
 val regnode = TLRegisterNode(
 address = Seq(AddressSet(address, 0x3f)),
 device = device,
 beatBytes = beatBytes)

 lazy val module = new InputStreamModuleImp(this)
}

We want to specify or override three arguments in the TLRegisterNode
constructor. The first is the address of the device in the memory map.
The address is specified as an AddressSet containing two values, a base
address and a mask. The system bus will route all addresses that match the
base address on the bits not set in the mask. In this case, we set the
mask to 0x3f, which sets the lower six bits. This means that a 64 byte
region starting from the base address will be routed to this device.

The second argument to TLRegisterNode is a SimpleDevice object, which
provides the name and compatibility of the device table entry that will be
created for the peripheral. We won’t show how this is used in this tutorial,
but it will be important if you want to create a Linux kernel driver for
the device.

The third argument to TLRegisterNode is beatBytes, which specifies
the width of the TileLink interface. We will just pass this through from a
class argument.

We want the device to be able to write a specified amount of bytes to a
specified location in memory, so we’ll provide addr and len registers.
We will also want a running register for the CPU to signal that the device
should start operation and a complete register for the device to signal to
the CPU that it has completed.

class InputStreamModuleImp(outer: InputStream) extends LazyModuleImp(outer) {
 val addrBits = 64
 val w = 64
 val io = IO(new Bundle {
 // Not used yet
 val in = Flipped(Decoupled(UInt(w.W)))
 }
 val addr = Reg(UInt(addrBits.W))
 val len = Reg(UInt(addrBits.W))
 val running = RegInit(false.B)
 val complete = RegInit(false.B)

 outer.regnode.regmap(
 0x00 -> Seq(RegField(addrBits, addr)),
 0x08 -> Seq(RegField(addrBits, len)),
 0x10 -> Seq(RegField(1, running)),
 0x18 -> Seq(RegField(1, complete)))
}

The arguments to regmap should be a series of mappings from address
offsets to sequences of RegField objects. The RegField constructor
takes two arguments, the width of the register field and the RTL register
itself.

DMA and Interrupts

TileLink Client Port

In order to move data from the external input stream to memory, we need to
perform direct memory access (DMA). We can achieve this by giving the device
a TLClientNode. Once we add it, the LazyModule will now look like this:

class InputStream(
 address: BigInt,
 val beatBytes: Int = 8,
 val maxInflight: Int = 4)
 (implicit p: Parameters) extends LazyModule {

 val device = new SimpleDevice("input-stream", Seq("example,input-stream"))
 val regnode = TLRegisterNode(
 address = Seq(AddressSet(address, 0x3f)),
 device = device,
 beatBytes = beatBytes)
 val dmanode = TLClientNode(Seq(TLClientPortParameters(
 Seq(TLClientParameters(
 name = "input-stream",
 sourceId = IdRange(0, maxInflight))))))

 lazy val module = new InputStreamModuleImp(this)
}

For our TLClientNode, we only need a single port, so we specify a single
set of TLClientPortParameters and TLClientParameters. We override two
arguments in the TLClientParameters constructor. The name is the
name of the port and sourceId indicates the range of transaction IDs
that can be used in memory requests. The lower bound is inclusive, and the
upper bound is exclusive, so this device can use source IDs from 0 to
maxInflight - 1.

TileLink Protocol and State Machine

In the module implementation, we can now implement a state machine that
sends write requests to memory. We first call outer.dmanode.out to get
a sequence of output port tuples. Since we only have one port, we can just
pull out the first element of this sequence. For each port, we get a pair of
objects. The first is the physical TileLink port, which we can connect to RTL.
The second is a TLEdge object, which we can use to get extra metadata about
the tilelink port (like the number of address and data bits).

class InputStreamModuleImp(outer: InputStream) extends LazyModuleImp(outer) {
 val (tl, edge) = outer.dmanode.out(0)
 val addrBits = edge.bundle.addressBits
 val w = edge.bundle.dataBits
 val beatBytes = (w / 8)

 val io = IO(new Bundle {
 val in = Flipped(Decoupled(UInt(w.W)))
 })

 val addr = Reg(UInt(addrBits.W))
 val len = Reg(UInt(addrBits.W))
 val running = RegInit(false.B)
 val complete = RegInit(false.B)

 val s_idle :: s_issue :: s_wait :: Nil = Enum(3)
 val state = RegInit(s_idle)

 val nXacts = outer.maxInflight
 val xactBusy = RegInit(0.U(nXacts.W))
 val xactOnehot = PriorityEncoderOH(~xactBusy)
 val canIssue = (state === s_issue) && !xactBusy.andR

 io.in.ready := canIssue && tl.a.ready
 tl.a.valid := canIssue && io.in.valid
 tl.a.bits := edge.Put(
 fromSource = OHToUInt(xactOnehot),
 toAddress = addr,
 lgSize = log2Ceil(beatBytes).U,
 data = io.in.bits)._2
 tl.d.ready := running && xactBusy.orR

 xactBusy := (xactBusy |
 Mux(tl.a.fire(), xactOnehot, 0.U(nXacts.W))) &
 ~Mux(tl.d.fire(), UIntToOH(tl.d.bits.source), 0.U)

 when (state === s_idle && running) {
 assert(addr(log2Ceil(beatBytes)-1,0) === 0.U,
 s"InputStream base address not aligned to ${beatBytes} bytes")
 assert(len(log2Ceil(beatBytes)-1,0) === 0.U,
 s"InputStream length not aligned to ${beatBytes} bytes")
 state := s_issue
 }

 when (io.in.fire()) {
 addr := addr + beatBytes.U
 len := len - beatBytes.U
 when (len === beatBytes.U) { state := s_wait }
 }

 when (state === s_wait && !xactBusy.orR) {
 running := false.B
 complete := true.B
 state := s_idle
 }

 outer.regnode.regmap(
 0x00 -> Seq(RegField(addrBits, addr)),
 0x08 -> Seq(RegField(addrBits, len)),
 0x10 -> Seq(RegField(1, running)),
 0x18 -> Seq(RegField(1, complete)))
}

The state machine starts in the s_idle state. In this state, the CPU should
set the addr and len registers and then set the running register to
1. The state machine then moves into the s_issue state, in which it
forwards data from the in decoupled interface to memory through the
TileLink A channel.

We construct the A channel requests using the Put method in the
TLEdge object we extracted earlier. The Put method takes a unique
source ID in fromSource, the address to write to in toAddress, the
base-2 logarithm of the size in bytes in lgSize, and the data to be written
in data.

The source field must observe some constraints. There can only be one
transaction with each distinct source ID in flight at a given time.
Once you send a request on the A channel with a specific source ID,
you cannot send another until after you’ve received the response for it
on the D channel.

Once all requests have been sent on the A channel, the state machine
transitions to the s_wait state to wait for the remaining responses on
the D channel. Once the responses have all returned, the state machine
sets running to false and completed to true. The CPU can poll the
completed register to check if the operation has finished.

Interrupts

For long-running operations, we would like to have the device
notify the CPU through an interrupt. To add an interrupt to the device,
we need to create an IntSourceNode in the lazy module.

val intnode = IntSourceNode(IntSourcePortSimple(resources = device.int))

Then, in the module implementation, we can connect the complete register
to the interrupt line. That way, the CPU will get interrupted once the
state machine completes. It can clear the interrupt by writing a 0 to the
complete register.

val (interrupt, _) = outer.intnode.out(0)

interrupt(0) := complete

Connecting Devices to Bus

SoC Mixin Traits

Now that we have finished designing our peripheral device, we need to
hook it up into the SoC. To do this, we first need to create two traits:
one for the lazy module and one for the module implementation. The lazy
module trait is the following.

trait HasPeripheryInputStream { this: BaseSubsystem =>
 private val portName = "input-stream"
 val streamWidth = pbus.beatBytes * 8
 val inputstream = LazyModule(new InputStream(0x10017000, pbus.beatBytes))
 pbus.toVariableWidthSlave(Some(portName)) { inputstream.regnode }
 sbus.fromPort(Some(portName))() := inputstream.dmanode
 ibus.fromSync := inputstream.intnode
}

We add the line this: BaseSubsystem => to indicate that this trait will
eventually be mixed into a class that extends BaseSubsystem, which contains
the definition of the system bus sbus, peripheral bus pbus, and
interrupt bus ibus. We instantiate the InputStream lazy module and
give it the base address 0x10017000. We connect the pbus into the
register node, DMA node to the sbus, and interrupt node to the ibus.

The module implementation trait is as follows:

trait HasPeripheryInputStreamModuleImp extends LazyModuleImp {
 val outer: HasPeripheryInputStream

 val stream_in = IO(Flipped(Decoupled(UInt(outer.streamWidth.W))))
 outer.inputstream.module.io.in <> stream_in

 def connectFixedInput(data: Seq[BigInt]) {
 val fixed = Module(new FixedInputStream(data, outer.streamWidth))
 stream_in <> fixed.io.out
 }
}

Since the interrupts and memory ports have already been connected in the
lazy module trait, the module implementation trait only needs to create the
external decoupled interface and connect that to the InputStream module
implementation.

The connectFixedInput method will be used by the test harness to connect
an input stream model that just sends a pre-specified stream of data.

Top-Level Design and Configuration

We can now mix these traits into the SoC design. Open up
src/main/scala/example/Top.scala and add the following:

class ExampleTopWithInputStream(implicit p: Parameters) extends ExampleTop
 with HasPeripheryInputStream {
 override lazy val module = new ExampleTopWithInputStreamModule(this)
}

class ExampleTopWithInputStreamModule(outer: ExampleTopWithInputStream)
 extends ExampleTopModuleImp(outer)
 with HasPeripheryInputStreamModuleImp

We can then build a simulation using our new SoC by adding a configuration
to src/main/scala/example/Configs.scala. This configuration will cause
the test harness to instantiate an SoC with the InputStream device
and then connect a fixed input stream model to it.

class WithFixedInputStream extends Config((site, here, up) => {
 case BuildTop => (clock: Clock, reset: Bool, p: Parameters) => {
 val top = Module(LazyModule(new ExampleTopWithInputStream()(p)).module)
 top.connectFixedInput(Seq(
 BigInt("1002abcd", 16),
 BigInt("34510204", 16),
 BigInt("10329999", 16),
 BigInt("92101222", 16)))
 top
 }
})

class FixedInputStreamConfig extends Config(
 new WithFixedInputStream ++ new BaseExampleConfig)

We can now compile the simulation using VCS.

cd vsim
make CONFIG=FixedInputStreamConfig

This will produce a simv-example-FixedInputStreamConfig executable that
can be used to run tests. We will discuss how to write and run those tests in
the next section.

If you don’t have VCS installed and want to use
verilator instead, the commands are similar.

cd verisim
make CONFIG=FixedInputStreamConfig

This creates an executable called simulator-example-FixedInputStreamConfig.

Running Test Software

To test our input stream device, we want to write an application that uses
the device to write data into memory, then reads the data and prints it out.

In project-template, test software is placed in the tests/ directory,
which includes a Makefile and library code for developing a baremetal program.
We’ll create a new file at tests/input-stream.c with the following code:

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#include "mmio.h"

#define N 4
#define INPUTSTREAM_BASE 0x10017000L
#define INPUTSTREAM_ADDR (INPUTSTREAM_BASE + 0x00)
#define INPUTSTREAM_LEN (INPUTSTREAM_BASE + 0x08)
#define INPUTSTREAM_RUNNING (INPUTSTREAM_BASE + 0x10)
#define INPUTSTREAM_COMPLETE (INPUTSTREAM_BASE + 0x18)

uint64_t values[N];

int main(void)
{
 reg_write64(INPUTSTREAM_ADDR, (uint64_t) values);
 reg_write64(INPUTSTREAM_LEN, N * sizeof(uint64_t));
 asm volatile ("fence");
 reg_write64(INPUTSTREAM_RUNNING, 1);

 while (reg_read64(INPUTSTREAM_COMPLETE) == 0) {}
 reg_write64(INPUTSTREAM_COMPLETE, 0);

 for (int i = 0; i < N; i++)
 printf("%016lx\n", values[i]);

 return 0;
}

This program statically allocates an array for the data to be written to.
It then sets the addr and len registers, executes a fence
instruction to make sure they are committed, and then sets the running
register. It then continuously polls the complete register until it sees
a non-zero value, at which point it knows the data has been written to memory
and is safe to read back.

To compile this program, add “input-stream” to the PROGRAMS list in
tests/Makefile and run make from the tests directory.

To run the program, return to the vsim/ directory and run the simulator
executable, passing the newly compiled input-stream.riscv executable
as an argument.

$ cd vsim
$./simv-example-FixedInputStreamConfig ../tests/input-stream.riscv

The program should print out

000000001002abcd
0000000034510204
0000000010329999
0000000092101222

For verilator, the command is the following:

$ cd verisim
$./simulator-example-FixedInputStreamConfig ../tests/input-stream.riscv

Debugging Verilog Simulation

If there is a bug in your hardware, one way to diagnose the issue is to
generate a waveform from the simulation so that you can introspect into the
design and see what values signals take over time.

In VCS, you can accomplish this with the +vcdplusfile flag, which will
generate a VPD file that can be viewed in DVE. To use this flag, you will
need to build the debug version of the simulator executable.

$ cd vsim
$ make CONFIG=FixedInputStreamConfig debug
$./simv-example-FixedInputStreamConfig-debug +max-cycles=50000 +vcdplusfile=input-stream.vpd ../tests/input-stream.riscv
$ dve -full64 -vpd input-stream.vpd

The +max-cycles flag is used to set a timeout for the simulation. This is
useful in the case the program hangs without completing.

If you are using verilator, you can generate a VCD file that can be viewed in
an open source waveform viewer like GTKwave.

$ cd verisim
$ make CONFIG=FixedInputStreamConfig debug
$./simulator-example-FixedInputStreamConfig-debug +max-cycles=50000 -vinput-stream.vcd ../tests/input-stream.riscv
$ gtkwave -o input-stream.vcd

Creating Simulation Model

So far, we’ve been using a fixed input stream model to test our device.
But, ideally, we’d like an input stream that is defined by a software model
and configurable at runtime. We’d like to put the input data in a file and
pass it in as a command-line argument. We can’t do that in Chisel.
We’ll have to create the model in Verilog and call out to C++ using the
Verilog DPI-C API.

First, how do we include Verilog code in a Chisel codebase? We can do this
using the Chisel BlackBox class. BlackBox modules can be used like regular
Chisel modules and have defined IO ports, but the internal implementation is
left to Verilog.

class SimInputStream(w: Int) extends BlackBox(Map("DATA_BITS" -> IntParam(w))) {
 val io = IO(new Bundle {
 val clock = Input(Clock())
 val reset = Input(Bool())
 val out = Decoupled(UInt(w.W))
 })
}

One key difference in the IO bundle definition is that the implicit clock
and reset signals must be explicitly defined in a BlackBox. The BlackBox
class also takes a map that defines parameters that will be passed to the
verilog implementation. To connect the BlackBox in the test harness, we should
create a connectSimInput method in the HasPeripheryInputStreamModuleImp
trait.

def connectSimInput(clock: Clock, reset: Bool) {
 val sim = Module(new SimInputStream(outer.streamWidth))
 sim.io.clock := clock
 sim.io.reset := reset
 stream_in <> sim.io.out
}

We then add a new configuration class in
src/main/scala/example/Configs.scala that calls the connectSimInput
method.

class WithSimInputStream extends Config((site, here, up) => {
 case BuildTop => (clock: Clock, reset: Bool, p: Parameters) => {
 val top = Module(LazyModule(new ExampleTopWithInputStream()(p)).module)
 top.connectSimInput(clock, reset)
 top
 }
})

class SimInputStreamConfig extends Config(
 new WithSimInputStream ++ new BaseExampleConfig)

Now we need to create the verilog implementation of the SimInputStream
module. Make a new directory src/main/resources and add vsrc and csrc
subdirectories under it.

$ mkdir -p src/main/resources/{vsrc,csrc}

In the vsrc directory, create a file called SimInputStream.v and add
the following code.

import "DPI-C" function void input_stream_init
(
 input string filename,
 input int data_bits
);

import "DPI-C" function void input_stream_tick
(
 output bit out_valid,
 input bit out_ready,
 output longint out_bits
);

module SimInputStream #(DATA_BITS=64) (
 input clock,
 input reset,
 output out_valid,
 input out_ready,
 output [DATA_BITS-1:0] out_bits
);

 bit __out_valid;
 longint __out_bits;
 string filename;
 int data_bits;

 reg __out_valid_reg;
 reg [DATA_BITS-1:0] __out_bits_reg;

 initial begin
 data_bits = DATA_BITS;
 if ($value$plusargs("instream=%s", filename)) begin
 input_stream_init(filename, data_bits);
 end
 end

 always @(posedge clock) begin
 if (reset) begin
 __out_valid = 0;
 __out_bits = 0;

 __out_valid_reg <= 0;
 __out_bits_reg <= 0;
 end else begin
 input_stream_tick(
 __out_valid,
 out_ready,
 __out_bits);
 __out_valid_reg <= __out_valid;
 __out_bits_reg <= __out_bits;
 end
 end

 assign out_valid = __out_valid_reg;
 assign out_bits = __out_bits_reg;

endmodule

The verilog defines its inputs and outputs to match the definition in the
Chisel BlackBox. But most of the implementation is left to C++ through the
DPI functions input_stream_init and input_stream_tick. We define
these functions in a SimInputStream.cc file in the csrc directory.

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

class InputStream {
 public:
 InputStream(const char *filename, int nbytes);
 ~InputStream(void);

 bool out_valid() { return !complete; }
 uint64_t out_bits() { return data; }
 void tick(bool out_ready);

 private:
 void read_next(void);
 bool complete;
 FILE *file;
 int nbytes;
 uint64_t data;
};

InputStream::InputStream(const char *filename, int nbytes)
{
 this->nbytes = nbytes;
 this->file = fopen(filename, "r");
 if (this->file == NULL) {
 fprintf(stderr, "Could not open %s\n", filename);
 abort();
 }

 read_next();
}

InputStream::~InputStream(void)
{
 fclose(this->file);
}

void InputStream::read_next(void)
{
 int res;

 this->data = 0;

 res = fread(&this->data, this->nbytes, 1, this->file);
 if (res < 0) {
 perror("fread");
 abort();
 }

 this->complete = (res == 0);
}

void InputStream::tick(bool out_ready)
{
 int res;

 if (out_valid() && out_ready)
 read_next();
}

InputStream *stream = NULL;

extern "C" void input_stream_init(const char *filename, int data_bits)
{
 stream = new InputStream(filename, data_bits/8);
}

extern "C" void input_stream_tick(
 unsigned char *out_valid,
 unsigned char out_ready,
 long long *out_bits)
{
 stream->tick(out_ready);
 *out_valid = stream->out_valid();
 *out_bits = stream->out_bits();
}

In the C++ file, we implement an InputStream class that takes a file name
as its argument. It opens the file and reads nbytes from it for every
ready-valid handshake. The input_stream_init function constructs an
InputStream class and assigns it to a global pointer. The
input_stream_tick function updates the state by calling the tick
method, passing in the inputs from verilog. It then assigns values to the
verilog outputs.

You can now build this new configuration in VCS.

$ cd vsim
$ make CONFIG=SimInputStreamConfig

Now create a file that can be used as the input stream data. Just getting
random bytes from /dev/urandom would work. Pass this to your simulation
through the +instream= flag, and you should see the data get printed
out in the input-stream.riscv test.

$ dd if=/dev/urandom of=instream.img bs=32 count=1
$ hexdump instream.img
0000000 189b f12a 1cc1 9eb5 b65d bbef 96b6 4949
0000010 f8c8 636c 76fe 15f3 0665 0ef9 8c5d 3011
0000020
$./simv-example-SimInputStreamConfig +instream=instream.img ../tests/input-stream.riscv
9eb51cc1f12a189b
494996b6bbefb65d
15f376fe636cf8c8
30118c5d0ef90665

Supernode

Supernode support is currently in beta. Supernode is designed to improve FPGA
resource utilization for smaller designs and allow realistic rack topology
simulation (32 simulated nodes) using a single f1.16xlarge instance. The
supernode beta can be found on the supernode-beta branch of the FireSim
repository. Supernode requires slight changes in build and runtime
configurations. More details about supernode can be found in the FireSim ISCA
2018 Paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf].

Intro

Supernode packs 4 identical designs into a single FPGA, and utilizes all 4 DDR
channels available for each FPGA on AWS F1 instances. It currently does so by
generating a wrapper top level target which encapsualtes the four simulated
target nodes. The packed nodes are treated as 4 separate nodes, are assigned their
own individual MAC addresses, and can perform any action a single node could:
run different programs, interact with each other over the network, utilize
different block device images, etc.

Build

The Supernode beta can be found on the supernode-beta branch of the FireSim
repo. Here, we outline some of the changes between supernode and regular
simulations. The Supernode target wrapper can be found in
firesim/sim/src/main/scala/SimConfigs.scala. For example:

class SupernodeFireSimRocketChipConfig extends Config(
 new WithNumNodes(4) ++
 new FireSimRocketChipConfig)

In this example, SupernodeFireSimRocketChipConfig is the wrapper, while
FireSimRocketChipConfig is the target node configuration. Therefore, if we
want to simulate a different target configuration, we will generate a new
Supernode wrapper, with the new target configuration. For example:

class SupernodeFireSimRocketChipQuadCoreConfig extends Config(
 new WithNumNodes(4) ++
 new FireSimRocketChipQuadCoreConfig)

Next, when defining the build recipe, we must remmber to use the supernode
configuration: The DESIGN parameter should always be set to
SupernodeTop, while the TARGET_CONFIG parameter should be set to the
wrapper configuration that was defined in
firesim/sim/src/main/scala/SimConfigs.scala. The PLATFORM_CONFIG can
be selected the same as in regular FireSim configurations. For example:

DESIGN=SupernodeTop
TARGET_CONFIG=SupernodeFireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

We currently do not provide pre-built AGFIs for supernode. You must build your
own, using the supplied samples on the supernode-beta branch.

Running simulations

Running FireSim in supernode mode follows the same process as in
“regular” mode. Currently, the only difference is that the standard input and
standard output of the simulated nodes are written to files in the dispatched
simulation directory, rather than the main simulation screen.

Here are some important pieces that you can use to run an example 32-node config
on a single f1.16xlarge. Better documentation will be available later:

	Sample runtime config: https://github.com/firesim/firesim/blob/supernode-beta/deploy/sample-backup-configs/sample_config_runtime.ini

	Sample topology definition: https://github.com/firesim/firesim/blob/supernode-beta/deploy/runtools/user_topology.py#L33

Work in Progress!

We are currently working on restructuring supernode support to support a
wider-variety of use cases. More documentation will follow once we complete
this rewrite.

Miscellaneous Tips

Add the fsimcluster column to your AWS management console

Once you’ve deployed a simulation once with the manager, the AWS management console
will allow you to add a custom column that will allow you to see at-a-glance
which FireSim run farm an instance belongs to.

To do so, click the gear in the top right of the AWS management console. From
there, you should see a checkbox for fsimcluster. Enable it to see the column.

FPGA Dev AMI Remote Desktop Setup

To Remote Desktop into your manager instance, you must do the following:

curl https://s3.amazonaws.com/aws-fpga-developer-ami/1.4.0/Scripts/setup_gui.sh -o /home/centos/src/scripts/setup_gui.sh
sudo sed -i 's/enabled=0/enabled=1/g' /etc/yum.repos.d/CentOS-CR.repo
/home/centos/src/scripts/setup_gui.sh

The former two commands are required due to AWS FPGA Dev AMI 1.3.5 incompatibilities. See

https://forums.aws.amazon.com/message.jspa?messageID=848073#848073

and

https://forums.aws.amazon.com/ann.jspa?annID=5710

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to FireSim’s documentation!

 		
 FireSim Basics

 		
 Two common use cases:

 		
 Single-Node Simulation, in Parallel

 		
 Datacenter/Cluster Simulation

 		
 Other Use Cases

 		
 Background/Terminology

 		
 Using FireSim/The FireSim Workflow

 		
 Initial Setup/Installation

 		
 First-time AWS User Setup

 		
 Creating an AWS Account

 		
 AWS Credit at Berkeley

 		
 Requesting Limit Increases

 		
 Configuring Required Infrastructure in Your AWS Account

 		
 Select a region

 		
 Key Setup

 		
 Check your EC2 Instance Limits

 		
 Start a t2.nano instance to run the remaining configuration commands

 		
 Run scripts from the t2.nano

 		
 Terminate the t2.nano

 		
 Subscribe to the AWS FPGA Developer AMI

 		
 Setting up your Manager Instance

 		
 Launching a “Manager Instance”

 		
 Setting up the FireSim Repo

 		
 Completing Setup Using the Manager

 		
 Running FireSim Simulations

 		
 Running a Single Node Simulation

 		
 Building target software

 		
 Setting up the manager configuration

 		
 Launching a Simulation!

 		
 Running a Cluster Simulation

 		
 Returning to a clean configuration

 		
 Building target software

 		
 Setting up the manager configuration

 		
 Launching a Simulation!

 		
 Building Your Own Hardware Designs (FireSim FPGA Images)

 		
 Amazon S3 Setup

 		
 Build Recipes

 		
 Running a Build

 		
 Manager Usage (the firesim command)

 		
 Overview

 		
 “Inputs” to the Manager

 		
 Logging

 		
 Manager Command Line Arguments

 		
 –runtimeconfigfile FILENAME

 		
 –buildconfigfile FILENAME

 		
 –buildrecipesconfigfile FILENAME

 		
 –hwdbconfigfile FILENAME

 		
 –overrideconfigdata SECTION PARAMETER VALUE

 		
 TASK

 		
 Manager Tasks

 		
 firesim managerinit

 		
 firesim buildafi

 		
 firesim shareagfi

 		
 firesim launchrunfarm

 		
 firesim terminaterunfarm

 		
 firesim infrasetup

 		
 firesim boot

 		
 firesim kill

 		
 firesim runworkload

 		
 firesim runcheck

 		
 Manager Configuration Files

 		
 config_runtime.ini

 		
 config_build.ini

 		
 config_build_recipes.ini

 		
 config_hwdb.ini

 		
 Manager Network Topology Definitions (user_topology.py)

 		
 user_topology.py contents:

 		
 AGFI Metadata/Tagging

 		
 Workloads

 		
 Defining Custom Workloads

 		
 Uniform Workload JSON

 		
 Non-uniform Workload JSON (explicit job per simulated node)

 		
 SPEC 2017

 		
 Intspeed

 		
 Intrate

 		
 Running Fedora on FireSim

 		
 ISCA 2018 Experiments

 		
 Prerequisites

 		
 Building Benchmark Binaries/Rootfses

 		
 Figure 5: Ping Latency vs. Configured Link Latency

 		
 Figure 6: Network Bandwidth Saturation

 		
 Figure 7: Memcached QoS / Thread Imbalance

 		
 Figure 8: Simulation Rate vs. Scale

 		
 Figure 9: Simulation Rate vs. Link Latency

 		
 Running all experiments at once

 		
 Debugging & Testing with RTL Simulation

 		
 Target-Level Simulation

 		
 MIDAS-Level Simulation

 		
 Examples

 		
 FPGA-Level Simulation

 		
 Usage

 		
 Tutorial: Developing New Devices

 		
 Getting Started

 		
 Memory-mapped Registers

 		
 DMA and Interrupts

 		
 TileLink Client Port

 		
 TileLink Protocol and State Machine

 		
 Interrupts

 		
 Connecting Devices to Bus

 		
 SoC Mixin Traits

 		
 Top-Level Design and Configuration

 		
 Running Test Software

 		
 Debugging Verilog Simulation

 		
 Creating Simulation Model

 		
 Supernode

 		
 Intro

 		
 Build

 		
 Running simulations

 		
 Work in Progress!

 		
 Miscellaneous Tips

 		
 Add the fsimcluster column to your AWS management console

 		
 FPGA Dev AMI Remote Desktop Setup

_images/firesim_env.png

_images/runcheck_example.png
runtools.run_farm.F1_16 object at 0x7f478f081750

FireSimSwitchNode:0

downlinks: 00:12:6D:00:00:02, 00:12:6D:00:00:03, 00:12:6D:00:00:04, 00:12:6D:00:00:05, 00:12:6D:00:00:06, 00:12:6D:00:00:07, 00:12:6D:00:00:08, 00:12:6D:00:00:09
switchingtable: 8, 8,0, 1, 2,3, 4, 5,6,7

_—— @ T~ 0O

FireSimServerNode:0 FireSimServerNode: 1 FireSimServerNode:2 FireSimServerNode:3 FireSimServerNode:4 FireSimServerNode:5 FireSimServerNode:6 FireSimServerNode:7

MAC: 00:12:6D:00:00:02 MAC: 00:12:6D:00:00:03 MAC: 00:12:6D:00:00:04 MAC: 00:12:6D:00:00:05 MAC: 00:12:6D:00:00:06
linux-uniform0 linux-uniform1 linux-uniform2 linux-uniform3 linux-uniform4

MAC: 00:12:6D:00:00:07 MAC: 00:12:6D:00:00:08 MAC: 00:12:6D:00:00:09
linux-uniform5 linux-uniform6 linux-uniform7

RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb
DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig
AGFTI: agfi-09e85ffabe3543903 AGFTI: agfi-09e85ffabe3543903 AGFTI: agfi-09e85ffabe3543903 AGFT: agfi-09e85ffabe3543903 AGFI: agfi-09e85ffabe3543903
CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None

RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb
DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBContfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig
AGFT: agfi-09e85ffabe3543903 AGFI: agfi-09e85ffabe3543903 AGFTI: agfi-09e85ffabe3543903
CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None

_images/build_complete_email.png
FireSim FPGA Build Completed inbox

AWS Notifications no-reply@sns.amazonaws.com via amazonses.com
to sagark «

Your AGFI has been created!

Add

[firesim-singlecore-no-nic-lbp]
agfi=agfi-0b722a14f72b48efc

deploytripletoverride=None

customruntimeconfig=None

to your config_agfidb.ini to use this hardware configuration.

If you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

