

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	firefish 0.0.1dev documentation

CU Spaceflight Simulation Software

 Copyright 2015, Cambridge University Spaceflight.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	firefish 0.0.1dev documentation

Usage examples

This section documents the example scripts shipped with the source code.

Lid-driven cavity flow

The openfoam_cavity_tutorial.py
script provides an example of low-level manipulation of OpenFOAM cases. In this
example we shall re-create the initial example [http://cfd.direct/openfoam/user-guide/cavity/#x5-40002.1] from the OpenFOAM users’
guide. It’s worth reading over that section first before trying to follow the
transliteration below.

Firstly, we need to import some things from the firefish.case module:

from firefish.case import Case, FileName, FileClass

The Case class encapsulates an OpenFOAM case
directory. We don’t want to overwrite an existing case and so we write a little
convenience wrapper function:

def create_new_case(case_dir):
 # Check that the specified case directory does not already exist
 if os.path.exists(case_dir):
 raise RuntimeError(
 'Refusing to write to existing path: {}'.format(case_dir)
)

 # Create the case
 return Case(case_dir)

The mutable_data_file() method will return a context
manager which can be used to manipulate an OpenFOAM data file. The data file is
created if it does not yet exist, its contents are parsed into a dictionary and
the dictionary is returned from the context manager. One the context is left the
dictionary is re-written to disk.

The upshot of this is that the programmer is insulated from manipulating
OpenFOAM data files directly. Let’s write the controlDict file from the
tutorial:

def write_initial_control_dict(case):
 # Control dict from tutorial
 control_dict = {
 'application': 'icoFoam',
 'startFrom': 'startTime',
 'startTime': 0,
 'stopAt': 'endTime',
 'endTime': 0.5,
 'deltaT': 0.005,
 'writeControl': 'timeStep',
 'writeInterval': 20,
 'purgeWrite': 0,
 'writeFormat': 'ascii',
 'writePrecision': 6,
 'writeCompression': 'off',
 'timeFormat': 'general',
 'timePrecision': 6,
 'runTimeModifiable': True,
 }

 with case.mutable_data_file(FileName.CONTROL) as d:
 d.update(control_dict)

Well-known file names are available through the FileName
class.

The blockMeshDict file is the next one to be created. This is an example of a
relatively complex file. The complexity is somewhat hidden by the mapping to and
from the Python domain but there is still some subtlety. Notice particularly the
rather odd way in which the boundary dictionary is specified:

def write_block_mesh_dict(case):
 block_mesh_dict = {
 'convertToMeters': 0.1,

 'vertices': [
 [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0],
 [0, 0, 0.1], [1, 0, 0.1], [1, 1, 0.1], [0, 1, 0.1],
],

 'blocks': [
 (
 'hex', [0, 1, 2, 3, 4, 5, 6, 7], [20, 20, 1],
 'simpleGrading', [1, 1, 1],
)
],

 'edges': [],

 # Note the odd way in which boundary is defined here as a
 # list of tuples.
 'boundary': [
 ('movingWall', {
 'type': 'wall',
 'faces': [[3, 7, 6, 2]],
 }),
 ('fixedWalls', {
 'type': 'wall',
 'faces': [
 [0, 4, 7, 3],
 [2, 6, 5, 1],
 [1, 5, 4, 0],
],
 }),
 ('frontAndBack', {
 'type': 'empty',
 'faces': [
 [0, 3, 2, 1],
 [4, 5, 6, 7],
],
 }),
],

 'mergePatchPairs': [],
 }

 with case.mutable_data_file(FileName.BLOCK_MESH) as d:
 d.update(block_mesh_dict)

At this point in the tutorial we’re ready to run the blockMesh command which
is one function call away:

case.run_tool('blockMesh')

We’re close to being able to run the icoFoam utility. The transport properties
need to be defined:

from firefish.case import Dimension

with case.mutable_data_file(FileName.TRANSPORT_PROPERTIES) as tp:
 tp['nu'] = (Dimension(0, 2, -1, 0, 0, 0, 0), 0.01)

We also need to create the initial conditions. Notice that we have to specify a
different class when creating them:

def write_initial_conditions(case):
 # Create the p initial conditions
 p_file = case.mutable_data_file(
 '0/p', create_class=FileClass.SCALAR_FIELD_3D
)
 with p_file as p:
 p.update({
 'dimensions': Dimension(0, 2, -2, 0, 0, 0, 0),
 'internalField': ('uniform', 0),
 'boundaryField': {
 'movingWall': { 'type': 'zeroGradient' },
 'fixedWalls': { 'type': 'zeroGradient' },
 'frontAndBack': { 'type': 'empty' },
 },
 })

 # Create the U initial conditions
 U_file = case.mutable_data_file(
 '0/U', create_class=FileClass.VECTOR_FIELD_3D
)
 with U_file as U:
 U.update({
 'dimensions': Dimension(0, 1, -1, 0, 0, 0, 0),
 'internalField': ('uniform', [0, 0, 0]),
 'boundaryField': {
 'movingWall': {
 'type': 'fixedValue', 'value': ('uniform', [1, 0, 0])
 },
 'fixedWalls': {
 'type': 'fixedValue', 'value': ('uniform', [0, 0, 0])
 },
 'frontAndBack': { 'type': 'empty' },
 },
 })

Before we can run icoFoam, we must create the mysterious fvSolution file:

def write_fv_solution(case):
 fv_solution = {
 'solvers': {
 'p': {
 'solver': 'PCG',
 'preconditioner': 'DIC',
 'tolerance': 1e-6,
 'relTol': 0,
 },
 'U': {
 'solver': 'smoothSolver',
 'smoother': 'symGaussSeidel',
 'tolerance': 1e-5,
 'relTol': 0,
 },
 },
 'PISO': {
 'nCorrectors': 2,
 'nNonOrthogonalCorrectors': 0,
 'pRefCell': 0,
 'pRefValue': 0,
 }
 }

 with case.mutable_data_file(FileName.FV_SOLUTION) as d:
 d.update(fv_solution)

And also the equally mysterious fvSchemes file:

def write_fv_schemes(case):
 fv_schemes = {
 'ddtSchemes': { 'default': 'Euler' },
 'gradSchemes': { 'default': 'Gauss linear', 'grad(p)': 'Gauss linear' },
 'divSchemes': { 'div(phi,U)': 'Gauss linear', 'default': 'none' },
 'laplacianSchemes': { 'default': 'Gauss linear orthogonal' },
 'interpolationSchemes': { 'default': 'linear' },
 'snGradSchemes': { 'default': 'orthogonal' },
 }

 with case.mutable_data_file(FileName.FV_SCHEMES) as d:
 d.update(fv_schemes)

The example script includes a main() function which performs all of
these steps:

def main(case_dir='cavity'):
 # Create a new case file, raising RuntimeError if the directory already
 # exists.
 case = create_new_case(case_dir)

 # Add the information needed by blockMesh.
 write_initial_control_dict(case)
 write_block_mesh_dict(case)

 # At this point there is enough to run blockMesh.
 case.run_tool('blockMesh')

 # Update the physical properties.
 with case.mutable_data_file(FileName.TRANSPORT_PROPERTIES) as tp:
 tp['nu'] = (Dimension(0, 2, -1, 0, 0, 0, 0), 0.01)

 # Write the fvSolution and fvSchemes files.
 write_fv_solution(case)
 write_fv_schemes(case)

 # Write the initial conditions for the p and U fields.
 write_initial_conditions(case)

 # Run the icoFoam application.
 case.run_tool('icoFoam')

After the example script is run, paraFoam may be run to inspect the solution.

Supersonic flow over wedge

The openfoam_supersonic_wedge.py
script provides an example of setting up a compressible flow solver in OpenFoam.

As in openfoam_cavity_tutorial.py
we set up the OpenFOAM case directory using the firefish.case framework.

For flows with a Mach number above 0.3 compressible effects become non negligible. A
compressible solver must therefore be used. In this case we use rhoCentralFoam. The
control file must therefore be set accordingly:

def write_control_dict(case, n_iter):
	"""Sets up the control dictionary.
	In this example we use the rhoCentralFoam compressible solver"""

	# Control dict from tutorial
	control_dict = {
		'application': 'rhoCentralFoam',
		'startFrom': 'startTime',
		'startTime': 0,
		'stopAt': 'endTime',
		'endTime': n_iter,
		'deltaT': 0.001,
		'writeControl': 'runTime',
		'writeInterval': 1,
		'purgeWrite': 0,
		'writeFormat': 'ascii',
		'writePrecision': 6,
		'writeCompression': 'off',
		'timeFormat': 'general',
		'timePrecision': 6,
		'runTimeModifiable': True,
		'adjustTimeStep' : 'no',
		'maxCo' : 1,
		'maxDeltaT' : 1e-6,
	}

	with case.mutable_data_file(FileName.CONTROL) as d:
		d.update(control_dict)

The mesh needs to be set up using the blockMeshDict. The mesh consits of three blocks in order
to model the upstream and downstream portions as well as the wedge itself. The numbering order in which the
vertices are set is very important! We declare a block via:

hex', [0, 7, 2, 1, 8, 15, 10, 9], [40, 40, 1],
 'simpleGrading', [1, 1, 1]

The first line declares which vertices make up the corners of the block. This explanation [http://cfd.direct/openfoam/user-guide/blockmesh/] best
describes the order in which the vertices should be listed. The second part of the statement
describes the cell density within the block in each of the three directions. The last part is used
when we want the mesh density to vary within the block.

We must also set the thermodynamic properties of the gas. In this case the properties have been chosen
so that the gas has a ratio of specific heats of 1.4 and that, if the temperature is 1K, then the speed of sound
is 1m/s. As this is a commonly used fluid it can be done using the write_standard_thermophysical_properties function in
the firefish.case module. We do this via:

write_standard_thermophysical_properties(case, StandardFluid.DIMENSIONLESS_AIR)

As this is a compressible flow we must also set the initial value of the temperatue field. Notice also that for the
velocity we have set a slip boundary condition on the solid walls. This is because we are using an inviscid solver. When we
move to a viscous solver we must set a no slip boundary condition on the solid walls.

def write_initial_conditions(case):
	"""Sets the initial conditions"""
	# Create the p initial conditions
	p_file = case.mutable_data_file(
		'0/p', create_class=FileClass.SCALAR_FIELD_3D
)
	with p_file as p:
		p.update({
			'dimensions': Dimension(1, -1, -2, 0, 0, 0, 0),
			'internalField': ('uniform', 1),
			'boundaryField': {
				'inlet' : {'type' : 'fixedValue', 'value' : 'uniform 1'},
				'outlet': {'type': 'zeroGradient'},
				'fixedWalls': {'type': 'zeroGradient'},
				'frontAndBack': {'type': 'empty'},
			},
		})

	# Create the U initial conditions
	U_file = case.mutable_data_file(
		'0/U', create_class=FileClass.VECTOR_FIELD_3D
)
	with U_file as U:
		U.update({
			'dimensions': Dimension(0, 1, -1, 0, 0, 0, 0),
			'internalField': ('uniform', [2, 0, 0]),
			'boundaryField': {
				'inlet' : {'type' : 'fixedValue',
						 'value' : ('uniform', [2, 0, 0])},
				'outlet': {
					'type': 'zeroGradient'
				},
				'fixedWalls': {
					'type': 'slip'
				},
				'frontAndBack': {'type': 'empty'},
			},
		})
		# Create the T initial conditions
	T_file = case.mutable_data_file(
		'0/T', create_class=FileClass.SCALAR_FIELD_3D
)
	with T_file as T:
		T.update({
			'dimensions': Dimension(0, 0, 0, 1, 0, 0, 0),
			'internalField': ('uniform', 1),
			'boundaryField': {
				'inlet' : {'type' : 'fixedValue', 'value' : ('uniform', 1)},
				'outlet': {
					'type': 'zeroGradient'
				},
				'fixedWalls': {
					'type': 'zeroGradient'
				},
				'frontAndBack': {'type': 'empty'},
			},
		})

The example script includes a main() function which performs all of
these steps. A boolean value can be passed to main() in order to reduce the number of iterations
and so speed up automatic testing.

def main(case_dir='wedge', n_iter=10):
 #Try to create new case directory
 case = create_new_case(case_dir)
 # Add the information needed by blockMesh.
 write_control_dict(case, n_iter)
 write_block_mesh_dict(case)
 #we generate the mes1h
 case.run_tool('blockMesh')
 #we prepare the thermophysical and turbulence properties
 write_standard_thermophysical_properties(case, StandardFluid.DIMENSIONLESS_AIR)
 write_turbulence_properties(case)
 #we write fvScheme and fvSolution
 write_fv_schemes(case)
 write_fv_solution(case)
 write_initial_conditions(case)
 case.run_tool('rhoCentralFoam')

After the example script is run, paraFoam may be run to inspect the solution.

Snappy Hex Mesh Example

The snappy_hex_example.py
script provides an example of running snappyHexMesh.

In order to be able to run snappyHexMesh we need to set up a control dictionary even though
it plays no part in the actual mesh generation process. Likewise, in order to use paraFoam, we need
to set up fvSchemes and fvSolution.

For snappyHexMesh to work we must have an underlying block mesh. This is generated in make_block_mesh and follows
the same procedure as in previous examples.

For the actual mesh generation we first of all load a geometry using the new Geometry class:

rocket = Geometry(GeometryFormat.STL,'example.stl','example',case)

The idea behind this class is that, when we support more geometry file types in the future, it will abstract away
the need to worry about wether something is an STL or OBJ etc.

We next scale and translate the rocket:

rocket.scale(0.5);
rocket.translate([0.5,2,2])

The Geometry class also contains mesh quality settings for this particular geometry.

Now that the geometry has been loaded we use it to initialise the SnappyHexMesh class:

snap = SnappyHexMesh(rocket,4,case)

This creates a new SnappyHexMesh class based on the example geometry and with a surface refinement level of 4.
The SnappyHexMesh class automatically sets the mesh generation settings to a set of default values. These can be altered:

snap.snap=True
snap.snapTolerance = 8;
snap.locationToKeep = [0.0012,0.124,0.19]
snap.addLayers=False

Once the mesh generator is set up we can make the mesh via the call:

snap.generate_mesh()

Several things happen all at once here:
* Surface features are extracted from the geometry (saving the STL in the trisurfaces directory if it has not already done so)
* The mesh quality settings are written to a dictionary
* The snappyHexMesh dictionary is written using the attributes of the SnappyHexMesh class
* snappyHexMesh is run as a tool within the case directory

Once this has run the mesh can be viewed via paraFoam

Join STL Example

The join_stl_example.py script
provides an example of combining multiple STL files into a single geometry and then
generating a mesh through snappyHexMesh. It is worth having a look at
snappy_hex_example.py first in order to
get a more detailed overview on how SnappyHexMesh works.

It is now very straightforwards to generate a mesh made up from multiple .STL files.

Firstly one needs to make a list containing the paths of each STL file:

path_list = ['STLS/nosecone.stl', 'STLS/upperTube.stl', 'STLS/lowerTube.stl', 'STLS/finCan.stl', 'STLS/tail.stl']

One then needs to make a list of the human-readable names that correspond to each file:

part_list = ['nosecone', 'upperTube', 'lowerTube', 'finCan', 'tail']

When examining the mesh in paraFoam or when getting force outputs it will be these names that appear.

Once this has been done the Geometry classes can be loaded by a single call of:

parts = load_multiple_geometries(GeometryFormat.STL,path_list,part_list,case)

This produces a list of firefish.geometry.Geometry objects which can scaled, translated
and rotated independently as required using the normal geometry functions.

We now use this list of Geometry objects to initialise SnappyHexMesh:

snap = SnappyHexMesh(parts,4,case)

As in snappy_hex_example.py, we can now
alter the settings of Snappy Hex Mesh by altering the attributes of the SnappyHexMesh class. Once
we’ve updated these we generate the mesh via:

snap.generate_mesh()

This generates four different meshes: the blank block mesh, the castellated mesh, the snapped mesh
and a mesh with layer addition. In order to use the final mesh as the starting point of our simulation
we perform some trickery to delete the meshes we don’t want and move the mesh we do want into the constant folder

def getTrueMesh(case):
 #the proper mesh is in the final time directory, delete the one in constant
 os.chdir(case.root_dir_path)
 call (["rm", "-r", "constant/polyMesh"])
 call (["mv", "0.002/polyMesh", "constant/"])
 call (["rm", "-r", "0.001/"])
 call (["rm", "-r", "0.002/"])
 os.chdir("../")

Kinematics Example

The kinematics_example.py script
uses the new firefish.kinematics framework to implement the kinematics example in kinematics_basis.py

We firstly define a class that inherits from firefish.kinematics.KinematicBody. We want to model a cylindrical rocket
whose principal moments of inertia vary as the rocket burns its motor. In order to vary the prinicpal moments of inertia
automatically during the timestepping routine we must overload the update_moi() function.

class CylinderRocket(KinematicBody):
 """A rocket that is a cylinder with evenly distributed mass"""
 def update_moi(self):
 radius = 0.3
 height = 2

 Ixx = (self.mass/12.0)*(3*radius**2 + height**2)
 Iyy = (self.mass/12.0)*(3*radius**2 + height**2)
 Izz = self.mass*radius**2 / 2.0

 self.MoI = [Ixx,Iyy,Izz]

In the main function we now undergo the time stepping routine. For each time step we must pass the forces acting on the rocket
along with the torques to the routine. These forces and torques must be given in the body coordinate system. The example here burns
the motor for fifty seconds and then lets it coast

def main():
 """Run through the simulation with a 50s motor burn"""
 initialMass = 100
 initialInertias = [0, 0, 0]
 rocket = CylinderRocket(initialMass,initialInertias)
 dt =1; duration = 100; gravity = 9.81;
 simulation = KinematicSimulation(rocket,gravity,duration,dt)
 while simulation.tIndex*dt <= duration:

 thrust = 0

 if simulation.tIndex*dt <= 50:
 thrust = 2000.0

 forces = [2.0, 0.0, thrust]
 torques = [0.0, 0.0, 0.0]
 mdot = 0.1

 i = simulation.tIndex

 simulation.time_step(forces,torques,mdot)

 return simulation.posits[100,2] #z position

 Copyright 2015, Cambridge University Spaceflight.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	firefish 0.0.1dev documentation

Reference

OpenFOAM case directory manipulation

This module allows the building and manipulating OpenFOAM case directories.

OpenFOAM files are mapped into Python objects using the following conventions:

	Dictionaries map to python dict.

	Keyword data entries map to tuple when the number of data
entries is greater than one. Otherwise the single data entry is the
keyword’s value.

	Lists are mapped to Python list.

	Dimension are represented via the Dimension type.

	
class firefish.case.Case(root_dir_path, create=True)

	Object representing an OpenFOAM case on disk.

	
root_dir_path

	path to case directory

	
add_tri_surface(name, geom, clobber_existing=False)

	Add a triangulated surface to the case.

Adds the geometry specified in geom to the case under the
constant/triSurface directory. The geometry is saved in STL format.

The geometry is added with the given name. If name is foo, for
example, it will be saved with the filename foo.stl.

Note

Do not add the .stl extension to name. Future versions of this
method may wish to allow other ways of specifying file format.

	Parameters:	
	name (str) – name to save surface as

	geom (stl.mesh.Mesh) – geometry representing surface

	clobber_existing (bool) – if False, do not overwrite an existing file

	Raises:	CaseAlreadyExists –
if a surface with the given name already exists
and clobber_existing was not True.

	
mutable_data_file(path, create_class=<FileClass.DICTIONARY: 'dictionary'>, create=True)

	A context manager representing a dict. Changes to the dict are
written back to disk.

	Parameters:	
	path (str or FileName) – relative path to dictionary

	create_class (str or FileClass) – specify the class of created files

	create (bool) – create file if it does not exist

>>> case = getfixture('tmpcase')
>>> with case.mutable_data_file('system/blockMeshDict') as d:
... d['boundary'] = { 'foo': { 'type': 'empty' } }
>>> case.read_data_file('system/blockMeshDict')['boundary']['foo']
{'type': 'empty'}

>>> case = getfixture('tmpcase')
>>> items = { 'application': 'simpleFoam', 'description': 'mycase' }
>>> with case.mutable_data_file(FileName.CONTROL) as d:
... d.update(items)
>>> control = case.read_data_file(FileName.CONTROL)
>>> control['application']
'simpleFoam'
>>> control['description']
'mycase'

	
read_data_file(path)

	Read the contents of the control dictionary.

	Parameters:	path (str or FileName) – relative path to dictionary

	Raises:	IOError –
the control dictionary could not be opened

	
run_tool(tool_name, flags='')

	Run an OpenFOAM tool on the case.

It is assumed that the tool accepts the standard “-case” argument.

	Parameters:	tool_name (str) – name of tool to run (e.g. “icoFoam”)

	Raises:	
	CaseToolRunFailed –
if the tool exits with an error

	OSError –
if the tool could not be started

	
exception firefish.case.CaseAlreadyExists

	Some resource already existed.

	
exception firefish.case.CaseDoesNotExist

	A case directory did not exist when we expected it to.

	
exception firefish.case.CaseException

	Base class for exceptions raised by firefish.case module.

	
exception firefish.case.CaseToolRunFailed

	There was a failure running a tool on a case directory.

	
class firefish.case.Dimension(*dims)

	Represents a value’s dimensions in OpenFOAM cases.

A dimension represents the units used to describe a physical value
e.g. one might measure velocity in metres per second or kilometres per hour.

In OpenFoam these dimensions must be built up from the standard SI units of
kilograms, metres, seconds, Kelvins, moles, Amps and candelas.

To construct a dimension we raise each unit to a given exponent and
multiply them all together e.g. metres per second is m s -1

Some commonly used units such as the Newton are not SI. We must
therefore express them as a combination of SI units e.g. we know F=ma
and so the Newton must be kg m s -2

In order to do this in OpenFoam we must pass it a tuple containing
the list of exponents for each fundamental SI unit. These are given
in the order kg, m, s, K, mol, A, cd.

e.g. for acceleration (m s -2)

>>> d = Dimension(0, 1, -2, 0, 0, 0, 0)

e.g. for pressure (kg m -1 s -2)

>>> d = Dimension(1, -1, -2, 0, 0, 0, 0)

	Parameters:	PFDataStructs.Dimension – A tuple containing the exponents to be used
for each SI unit. These are
given in the order kg, m ,s, K, mol, A, cd

Example usage:

>>> d = Dimension(0, 1, -2, 0, 0, 0, 0)
>>> str(d) # PyFOAM data file representation
'[0 1 -2 0 0 0 0]'
>>> d.unit
'ms^-2'
>>> repr(d)
'firefish.case.Dimension(0, 1, -2, 0, 0, 0, 0)'

The class also supports indexing and the sequence property

>>> d[2]
-2
>>> [v+1 for v in d]
[1, 2, -1, 1, 1, 1, 1]
>>> d[0] = 2
>>> d.unit
'kg^2ms^-2'

	
class firefish.case.FileClass

	Well known OpenFOAM dictionary classes.

	
class firefish.case.FileName

	An enumeration of well known OpenFOAM file locations.

	
class firefish.case.MeshGenerator

	An eumeration of different mesh generation methods

	
class firefish.case.StandardFluid

	An enumeration of commonly used fluids

	
AIR

	generates the recommended OpenFoam thermophysicalProperties for air.
The dictionary produced is taken from the rhoCentralFoam shock tube
tutorial

	
DIMENSIONLESS_AIR

	generates a normalised gas whith gamma=7/5 and with
the property that at 1 temperature unit the speed of sound is 1
velocity unit. The dictionary produced is taken from the rhoCentralFoam
wedge15Ma5 tutorial

	
firefish.case.read_data_file(path)

	Read and parse an OpenFOAM dict into a Python dictionary.

	Parameters:	path (str) – path to the OpenFOAM dict on disk

	Returns:	A dict representing a Python transliteration of the dict.

	Raises:	IOError –
the path could not be read from

	
firefish.case.write_standard_thermophysical_properties(case, fluid)

	” Writes a thermophysicalProperties dict in the given case for the
specified fluid.

	Parameters:	
	case (firefish.case.Case) – the case in which to write the dict

	fluid (firefish.case.StandardFluid) – the fluid to use

IO

This module contains IO utility functions for amateur rocketry file formats.

	
class firefish.io.Engine

	An individual engine record.

The thrust curve data is represented by a pandas DataFrame object, with the
following columns: time (seconds), force (Newtons), mass (grams).

	
manufacturer

	A string containing the manufacturer, or None

	
code

	A string containing the maufacturer’s product code, or None

	
comments

	A string containing any comments, or None

	
data

	A pandas DataFrame, see above

	
exception firefish.io.RSEParseError

	Raised when there is an error parsing a RockSim file.

	
firefish.io.rse_load(path)

	Load a RockSim format engine database from disk.

	Parameters:	path (str) – path name to .rse file

	Returns:	A list of Engine instances.

	Raises:	RSEParseError –
when the .rse file is invalid

Geometry manipulation

This module deals with the loading, saving and manipulation of geometry.

Most manipulation functions deal with instances of stl.mesh.Mesh.
See the numpy-stl documentation [http://numpy-stl.readthedocs.org/en/latest/stl.html#module-stl.mesh] for more information.

	
class firefish.geometry.Geometry(geomType, path, name, case)

	This class encapsulates the geometry functionality

	
extract_features()

	Extracts surface features from geometry using the surfaceFeatureExtract tool

	
recentre()

	Recentres the geometry

	
save(path)

	copies the stl from source directory into path

Args: path: the path to copy the stl file into

	
scale(factor)

	Scales geometry by factor

	Parameters:	factor – The factor to scale the gometry by

	
translate(delta)

	Translates geometry by delta

	Parameters:	delta – The vector to translate the geometry by

	
class firefish.geometry.GeometryFormat

	An enumeration of different geometry formats

	
class firefish.geometry.MeshQualitySettings

	Controls the mesh quality settings associated with the gometry

	
write_settings(case)

	Writes the quality settings to a separate dict that can be included

	
firefish.geometry.load_multiple_geometries(geomType, paths, names, case)

	Loads multiple geometries of the same type and returns as a list

	Parameters:	
	geomType (firefish.geometry.GeometryFormat) – indicates what type these geometries are

	paths – list of paths to each geometry file eg. stls/foo.stl

	names – the list of names of each geometry e.g. body, fin etc.

	case (firefish.case.Case) – the case to place each geometry in

	
firefish.geometry.stl_bounds(geom)

	Compute the bounding box of the geometry.

	Parameters:	geom (stl.mesh.Mesh) – STL geometry

	Returns:	A pair giving the minimum and maximum X, Y and Z co-ordinates as
three-dimensional array-likes.

	
firefish.geometry.stl_copy(geom)

	Copy a geometry.

Use this function sparingly. Geometry can be quite heavyweight as data
structures go.

	Parameters:	geom (stl.mesh.Mesh) – STL geometry

	Returns:	A deep copy of the geometry.

	
firefish.geometry.stl_geometric_centre(geom)

	Compute the centre of the bounding box.

	Parameters:	geom (stl.mesh.Mesh) – STL geometry

	Returns:	An array like giving the X, Y and Z co-ordinates of the centre.

	
firefish.geometry.stl_load(path)

	Convenience function to load a stl.mesh.Mesh from disk.

Note

The save() method on stl.mesh.Mesh may be used to
write geometry to disk.

	Parameters:	path (str) – pathname to STL file

	Returns:	an new instance of stl.mesh.Mesh

	
firefish.geometry.stl_recentre(geom)

	Centre a geometry such that its bounding box is centred on the origin.

This function modifies the passed geometry.

Equivalent to:

translate(geom, -geometric_centre(geom))

	Parameters:	geom (stl.mesh.Mesh) – STL geometry

	Returns:	The passed geometry to allow for easy chaining of calls.

	
firefish.geometry.stl_scale(geom, factor)

	Scale geometry by a fixed factor.

This function modifies the passed geometry. If the scale factor is a single
scalar it is applied to each axis. If it is a 3-vector then the elements
specify the scaling along the X, Y and Z axes.

	Parameters:	
	geom (stl.mesh.Mesh) – STL geometry

	factor (scalar or array like) – scale factor to apply

	Returns:	The passed geometry to allow for easy chaining of calls.

	
firefish.geometry.stl_translate(geom, delta)

	Translate a geometry along some vector.

This function modifies the passed geometry.

	Parameters:	
	geom (stl.mesh.Mesh) – STL geometry

	delta (array like) – 3-vector giving translation in X, Y and Z

	Returns:	The passed geometry to allow for easy chaining of calls.

Mesh generation

This module provides tools for building and running SnappyHexMesh

	
class firefish.meshsnappy.SnappyHexMesh(geometries, surfaceRefinement, case)

	Encapsulates all the snappyHexMesh settings

	
add_mesh_features(file_list)

	test function which runs add_features in order to write the surfaceFeatureExtractDict

	
generate_mesh()

	Generates the mesh

Note

This extracts surface features, writes the main SHM dict, a mesh quality dict and then
runs SHM.
We assume that an underlying block mesh has already been produced

	
write_snappy_dict()

	Writes the SHM dictionary

Note

This is called by SnappyHexMesh when it generates the mesh

Fin-flutter

Calculation of fin flutter vs. altitude.

The transonic flutter velocity code comes from “Peak of flight” newsletter
issue 291, which is itself a modified version of the equation in
NACA paper 4197.

The supersonic flutter criterion is from a thesis by J. Simmons at the
Air Force Institute of Technology, Ohio. (AFIT/GSS/ENY/09-J02), the torsional and
bending frequencies have to be calculated for different geometries using
finite element analysis in Solidworks.

This module provides a simple API for computing fin-flutter velocity as a
function of altitude. These can then be plotted. For example:

import matplotlib.pyplot as plt
import numpy as np
from firefish import finflutter

zs = np.linspace(0, 50000, 200)
ps, _, ss = finflutter.model_atmosphere(zs)
vs = finflutter.flutter_velocity_transonic(ps, ss, root_chord=20, +
 tip_chord=10, semi_span=10, thickness=0.2)

plt.plot(zs * 1e-3, vs)
plt.grid()
plt.title('Flutter velocity versus altitude')
plt.xlabel('Altitude [km]')
plt.ylabel('Flutter velocity [ms${}^{-1}$]')
plt.show()

(Source code)

	
firefish.finflutter.flutter_velocity_supersonic(air_densities, torsional_frequency, bending_frequency, mass, semi_span, radius_of_gyration, distance_to_COG, Mach_number)

	Calculate transonic flutter velocities for a given fin design.
The equation is valid for freestream flow in the supersonic regime
(>~M2.5)

Fin analysis have to be done for Solidworks in order to find the
frequencies for bending and torsional modes, as well as the radius_of_gyration
and distance_to_COG. Torsional and bending frequency are in rad/s, the semi-span,
radius of gyration, and distance to COG will be given in metres.

>>> import numpy as np
>>> zs = np.linspace(0, 30000, 100)
>>> ps, ts, ss = model_atmosphere(zs)
>>> rhos = (ps/1000) / (0.2869 * (ts + 273.1))
>>> vels = flutter_velocity_supersonic(rhos, 380, 104, 1, 0.1, 0.2, 0.1, 3)
>>> assert vels.shape == ps.shape

	Parameters:	
	semi_span – fin semi-span (m)

	air_densities – 1-d array of air density in kg/m^3 (np.array)

	frequency (torsional) – uncoupled torsional frequency (rad/s)

	bending_frequency – uncoupled bending frequency of the fin (rad/s)

	mass – mass of fin (kg)

	Mach_number – mach number of rocket

	distance_to_COG – distance of COG to axis of rotation (m)

	radius_of_gyration – distance at which all the mass of the fin
can be though to be concenreated, =sqrt(I/M)

	Returns:	A 1-d array containing corresponding flutter velocities in m/s.

	
firefish.finflutter.flutter_velocity_transonic(pressures, speeds_of_sound, root_chord, tip_chord, semi_span, thickness, shear_modulus=26200000000.0)

	Calculate transonic flutter velocities for a given fin design.
The equation is valid if the rocket is travelling at < M2.5 at the
given altitude.

Fin dimensions are given via the root_chord, tip_chord, semi_span and
thickness arguments. All dimensions are in centimetres.

Use shear_modulus to specify the shear modulus of the fin material in
Pascals.

>>> import numpy as np
>>> zs = np.linspace(0, 30000, 100)
>>> ps, _, ss = model_atmosphere(zs)
>>> vels = flutter_velocity_transonic(ps, ss, 20, 10, 10, 0.2)
>>> assert vels.shape == ps.shape

	Parameters:	
	pressures (np.array) – 1-d array of atmospheric pressures in Pascals

	speeds_of_sound (np.array) – 1-d array of speeds of sound in m/s

	root_chord – fin root chord (cm)

	tip_chord – fin tip chord (cm)

	semi_span – fin semi-span (cm)

	thickness – fin thickness (cm)

	shear_modulus – fin material shear modulus (Pascals)

	Returns:	A 1-d array containing corresponding flutter velocities in m/s.

	
firefish.finflutter.model_atmosphere(altitudes)

	Model atmospheric pressure, temperature and speed of sound.

	Parameters:	altitudes (np.array) – 1-d array of geopotential altitudes in metres

	Returns:	A triple giving corresponding 1-d arrays of estimated pressure,
temperature and speed of sound. Units are Pascals, Celsius and m/s
respectively.

>>> import numpy as np
>>> zs = np.linspace(0, 30000, 100)
>>> ps, ts, ss = model_atmosphere(zs)
>>> assert ps.shape == zs.shape
>>> assert ts.shape == zs.shape
>>> assert ss.shape == zs.shape

Kinematics

This module deals with kinematic models used in rocket simulation

	
class firefish.kinematics.KinematicBody(mass, inertias)

	Encapsulates information about the kinematic body

	
update_moi()

	We update moments of inertias.
Any class inheriting KinematicBody must overload this if it has non-constant
moments of inertia

	
class firefish.kinematics.KinematicSimulation(body, gravity, duration, dt)

	Encapsulates all the simulation logic and time stepping

	
time_step(forces, torques, mdot)

	Performs a single time step

	Parameters:	
	forces ([float]) – A list of the forces on the body in N in the form [Fx,Fy,Fz]

	torques ([float]) – A lst of the moments acting on the body in Nm in the
form [Mxx,Myy,Mzz]

	modt (float) – Mass flow rate of the motor. i.e. 0.1 implies the motor is
ejection 0.1 kgs^-1

 Copyright 2015, Cambridge University Spaceflight.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	firefish 0.0.1dev documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 firefish	

 	
 	
 firefish.case	

 	
 	
 firefish.finflutter	

 	
 	
 firefish.geometry	

 	
 	
 firefish.io	

 	
 	
 firefish.kinematics	

 	
 	
 firefish.meshsnappy	

 Copyright 2015, Cambridge University Spaceflight.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	firefish 0.0.1dev documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | K
 | L
 | M
 | R
 | S
 | T
 | U
 | W

A

 	

 	add_mesh_features() (firefish.meshsnappy.SnappyHexMesh method)

 	add_tri_surface() (firefish.case.Case method)

 	

 	AIR (firefish.case.StandardFluid attribute)

C

 	

 	Case (class in firefish.case)

 	CaseAlreadyExists

 	CaseDoesNotExist

 	CaseException

 	

 	CaseToolRunFailed

 	code (firefish.io.Engine attribute)

 	comments (firefish.io.Engine attribute)

D

 	

 	data (firefish.io.Engine attribute)

 	Dimension (class in firefish.case)

 	

 	DIMENSIONLESS_AIR (firefish.case.StandardFluid attribute)

E

 	

 	Engine (class in firefish.io)

 	

 	extract_features() (firefish.geometry.Geometry method)

F

 	

 	FileClass (class in firefish.case)

 	FileName (class in firefish.case)

 	firefish.case (module)

 	firefish.finflutter (module)

 	firefish.geometry (module)

 	

 	firefish.io (module)

 	firefish.kinematics (module)

 	firefish.meshsnappy (module)

 	flutter_velocity_supersonic() (in module firefish.finflutter)

 	flutter_velocity_transonic() (in module firefish.finflutter)

G

 	

 	generate_mesh() (firefish.meshsnappy.SnappyHexMesh method)

 	Geometry (class in firefish.geometry)

 	

 	GeometryFormat (class in firefish.geometry)

K

 	

 	KinematicBody (class in firefish.kinematics)

 	

 	KinematicSimulation (class in firefish.kinematics)

L

 	

 	load_multiple_geometries() (in module firefish.geometry)

M

 	

 	manufacturer (firefish.io.Engine attribute)

 	MeshGenerator (class in firefish.case)

 	MeshQualitySettings (class in firefish.geometry)

 	

 	model_atmosphere() (in module firefish.finflutter)

 	mutable_data_file() (firefish.case.Case method)

R

 	

 	read_data_file() (firefish.case.Case method)

 	

 	(in module firefish.case)

 	recentre() (firefish.geometry.Geometry method)

 	root_dir_path (firefish.case.Case attribute)

 	

 	rse_load() (in module firefish.io)

 	RSEParseError

 	run_tool() (firefish.case.Case method)

S

 	

 	save() (firefish.geometry.Geometry method)

 	scale() (firefish.geometry.Geometry method)

 	SnappyHexMesh (class in firefish.meshsnappy)

 	StandardFluid (class in firefish.case)

 	stl_bounds() (in module firefish.geometry)

 	stl_copy() (in module firefish.geometry)

 	

 	stl_geometric_centre() (in module firefish.geometry)

 	stl_load() (in module firefish.geometry)

 	stl_recentre() (in module firefish.geometry)

 	stl_scale() (in module firefish.geometry)

 	stl_translate() (in module firefish.geometry)

T

 	

 	time_step() (firefish.kinematics.KinematicSimulation method)

 	

 	translate() (firefish.geometry.Geometry method)

U

 	

 	update_moi() (firefish.kinematics.KinematicBody method)

W

 	

 	write_settings() (firefish.geometry.MeshQualitySettings method)

 	write_snappy_dict() (firefish.meshsnappy.SnappyHexMesh method)

 	

 	write_standard_thermophysical_properties() (in module firefish.case)

 Copyright 2015, Cambridge University Spaceflight.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		firefish 0.0.1dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Cambridge University Spaceflight.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		firefish 0.0.1dev documentation »

 All modules for which code is available

		firefish.case

		firefish.finflutter

		firefish.geometry

		firefish.io

		firefish.kinematics

		firefish.meshsnappy

 © Copyright 2015, Cambridge University Spaceflight.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

