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CHAPTER 1

Introduction

1.1 Overview

Firedrake-Fluids is a collection of finite element-based numerical models for the study of fluid dynamical systems. It
uses the Firedrake framework to automate the solution of the governing equations written in their weak form using
the high-level, compact, near-mathematical Unified Form Language (UFL). The complexity of writing a numerical
model is hidden through abstraction, and model developers do not need to concern themselves with hand-writing the
low-level (e.g. C or Fortran) code required to solve the equations; this is all derived and optimised automatically from
a high-level specification. Furthermore, model developers do not need to be experts in parallel programming to enable
their code to be portable across different hardware architectures (e.g. a cluster of multi-core CPUs, or a single GPU);
the generated code is targetted, compiled and executed automatically on a desired architecture using the PyOP2 library
with which Firedrake is coupled.

Some information briefly outlining Firedrake’s automated solution technique and the setup of Firedrake-Fluids can
be found in the sections following this one. The remaining chapters provide details on the models available within
Firedrake-Fluids, along with any auxiliary parameterisations that the user may wish to include. In addition, information
regarding how to set up a model is also given.

1.1.1 Automated solution technique

When a model in Firedrake-Fluids is executed by the Python interpreter, the model’s UFL (along with the compu-
tational mesh used to discretise the domain) is first passed to the Firedrake framework. Within this framework, the
UFL is first converted to an abstract syntax tree (AST) by a modified version of the FEniCS Form Compiler (FFC).
Additionally, the topology of the mesh is described by a PETSc DMPlex object to allow the efficient execution of the
generated code over the whole mesh. The DMPlex object and the AST are then passed to the PyOP2 library which,
after the AST has been optimised by the COFFEE compiler and converted into low-level generated C code, targets
and compiles the generated code towards a specific hardware architecture and executes it on that hardware.

As an example, consider the UFL statement in Figure ufl_expression.

Fig. 1.1: An example of a UFL expression.

This one single line of UFL is converted to a kernel comprising many lines of generated C code, which perform the
evaluation of the expression, as shown in Figure c_kernel.
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Fig. 1.2: An example of C code, generated automatically, for the purpose of evaluating an expression defined by a
high-level, near-mathematical UFL statement.
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1.2 Directory structure

The directory structure of the Firedrake-Fluids codebase is as follows:

• /: The Firedrake-Fluids base directory contains general information in the README file, information about
the license in the COPYING file, and a full list of authors in the AUTHORS file.

• /docs: Contains the source code and images for this documentation.

• /firedrake_fluids: Comprises a collection of Python files containing the implementation of the different
models and auxiliary functionality.

• /schema: Contains a set of schema files used to define the different options a simulation configuration file can
take (see Section [sect:configuringasimulation] for more details).

• /tests: A set of test cases to help ensure the correctness of the models.

1.3 Setup

1.3.1 Dependencies

Before running the models in Firedrake-Fluids, please ensure that all the dependencies specified in the README file
are satisfied. Installations for Firedrake (and its dependencies) can be found here. Firedrake-Fluids also relies on
the libspud library (and the Python bindings) to retrieve simulation-related options (e.g. the time-step size and initial
conditions) from a configuration/setup file. Following the steps below at the command line will download and build
libspud, and install the Python bindings:

bzr checkout lp:~spud/spud/trunk libspud
cd libspud
./configure
make
cd python
sudo python setup.py install

1.3.2 Installation

The Firedrake-Fluids Python module can be installed with:

sudo python setup.py install

Alternatively, the firedrake_fluids directory may be added to the PYTHONPATH environment variable in order
to use the module. This can be done at the command line, e.g.:

export PYTHONPATH=$PYTHONPATH:/home/christian/firedrake-fluids/firedrake_fluids

Following this, it is recommended that you run make test (from the Firedrake-Fluids base directory) to ensure that
the setup and models are working correctly.

1.2. Directory structure 5
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CHAPTER 2

Shallow water model

The shallow water model solves the non-linear, non-rotational shallow water equations which describe the dynamics of
a free surface and a depth-averaged velocity field. For modelling purposes, the free surface is split up into a mean com-
ponent 𝐻 (i.e. the hydrostatic depth to the seabed) and a perturbation component ℎ (see Figure shallow_water_setup).

Fig. 2.1: Single-layer shallow water set-up.

2.1 Model equations

The shallow water equation set comprises a momentum equation and a continuity equation, each of which are defined
below. These are defined on a domain Ω and for a time 𝑡 ∈ [0, 𝑇 ].

2.1.1 Momentum equation

The momentum equation is solved in non-conservative form such that

𝜕u

𝜕𝑡
+ u · ∇u = −𝑔∇ℎ+ ∇ · T− 𝐶𝐷

||u||u
(𝐻 + ℎ)

,

where 𝑔 is the acceleration due to gravity, u is the velocity, and 𝐶𝐷 is the non-dimensional drag coefficient. The stress
tensor T is given by

T = 𝜈
(︀
∇u + ∇uT

)︀
− 2

3
𝜈 (∇ · u) I,

where 𝜈 is the isotropic kinematic viscosity, and I is the identity tensor.

7
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2.1.2 Continuity equation

The continuity equation is given by

𝜕ℎ

𝜕𝑡
+ ∇ · ((𝐻 + ℎ)u) = 0.

2.1.3 Discretisation and solving

The model equations are discretised using a Galerkin finite element method. Essentially, this begins by deriving
the weak form of the equations by multiplying through by a test function w ∈ 𝐻1(Ω)3 (where 𝐻1(Ω)3 is the first
Hilbertian Sobolev space ) and integrating over Ω. In the case of the momentum equation, this becomes∫︁

Ω

w · 𝜕u
𝜕𝑡

dV +

∫︁
Ω

w · (u · ∇u) dV = −
∫︁
Ω

𝑔w · ∇ℎ dV −
∫︁
Ω

∇w · T dV −
∫︁
Ω

𝐶𝐷w · ||u||u
(𝐻 + ℎ)

dV.

A solution u ∈ 𝐻1(Ω)3 is sought such that it is valid ∀w.

The solution fields u and ℎ are each represented by a set of interpolating basis functions, such that

w =

𝑁u_nodes∑︁
𝑖=1

𝜑𝑖w𝑖,

u =

𝑁u_nodes∑︁
𝑖=1

𝜑𝑖u𝑖,

and

ℎ =

𝑁h_nodes∑︁
𝑖=1

𝜓𝑖ℎ𝑖,

where 𝜑𝑖 and 𝜓𝑖 are the basis functions representing the velocity and free surface perturbation fields, respectively;
𝑁u_nodes and 𝑁h_nodes are the number of velocity and free surface solution nodes, respectively; and the coefficients
u𝑖 and ℎ𝑖 are to be found by a solution method. If the basis functions 𝜑𝑖 are continuous across each cell/element
in the mesh, then the method is known as a continuous Galerkin (CG) method, whereas if the basis functions are
discontinuous, then the method is known as a discontinuous Galerkin (DG) method.

The momentum equation, discretised in space, then becomes a matrix system:

M
𝜕u

𝜕𝑡
+ A(u)u = −Cℎ−Ku−D(u, ℎ)u,

where M, A, K, C and D are the mass, advection, stress, gradient and drag matrices, respectively.

The time-derivative is discretised using the implicit backward Euler method, yielding a fully discrete system of equa-
tions:

M
u𝑛+1 − u𝑛

∆𝑡
+ A(u𝑛+1)u𝑛+1 = −Cℎ𝑛+1 −Ku𝑛+1 −D(u𝑛+1, ℎ𝑛+1)u𝑛+1,

where ∆𝑡 is the time-step.

The finite element method is also applied to the continuity equation, which must be solved along with the momen-
tum equation, yielding a block-coupled system. In Firedrake-Fluids, this system is preconditioned using a fieldsplit
preconditioner and solved with the GMRES linear solver.
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2.2 Configuring a simulation

The configuration/setup of a shallow water simulation in Firedrake-Fluids is defined in a Shallow Water Markup
Language (.swml) file. This is essentially an XML file that contains tags/elements which are specific to the context
of a shallow water simulation. The full range of possible options that are available to the user are defined by a set of
schema files in the schemas directory; these can be thought of as ‘templates’ from which an .swml setup file can be
constructed.

Creating a shallow water setup/configuration file is best done using the Diamond graphical user interface (GUI) that
is supplied with the libspud dependency. At the command line, from the Firedrake-Fluids base directory, creating an
.swml file called example.swml can be done using:

diamond -s schemas/shallow_water.rng example.swml

Note that the -s flag is used to specify the location of the schema file shallow_water.rng, while the final com-
mand line argument is the name of the setup file we want to create. The Diamond GUI will look something like the
one shown in Figure diamond.

Fig. 2.2: The Diamond graphical user interface. Notice that all the available options are currently in blue; this means
that they still need to be specified the user, after which the font colour will turn black.

Details of each of the options (and sub-options underneath, displayed by clicking the black arrows) are given in the

2.2. Configuring a simulation 9
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following sub-sections.

2.2.1 Simulation name

All simulations must be given a name under /simulation_name. This name is used when outputting solution files
created during the simulation. Please use alpha-numeric characters and avoid using non-standard characters such as
ampersands, commas, semi-colons, etc here.

2.2.2 Geometry

The /geometry section of the setup file concerns the dimension of the problem, and the location of the computational
mesh used to discretise the domain.

The dimension should be one of the first options to be set. Be careful here; this option can only be set once because
other options further down the list rely on it.

In the case of the mesh file location, note that only Gmsh .msh files are supported.

2.2.3 Function spaces

Since two fields, velocity u and free surface perturbation ℎ, have to be solved for in the shallow water model, two
function spaces may be specified. In Firedrake-Fluids, the function spaces are assumed to be composed of Lagrange
polynomial basis functions. The order of these polynomials can be specified in the degree sub-option of each
function_space. The family refers to whether the basis functions are continuous or discontinuous across the
cells/elements of the mesh.

2.2.4 Input/output (I/O)

Solution files may be dumped at specific intervals, specified in time units. Setting the io/dump_period option to
zero will result in dumps at every time-step. Note that solution files can currently only be written in VTU format (see
http://www.vtk.org for more information).

Users can also enable checkpointing which allows them to resume the simulation at a later time. The checkpoint data
will be written to a file called checkpoint.npz. The time interval between checkpoint dumps can be specified
under io/checkpoint/dump_period. The simulation can be later resumed by specifying the location of this
file with the -c flag (see Running a simulation for more details).

2.2.5 Timestepping

The time-step ∆𝑡 and finish time 𝑇 are specified under timestepping/timestep and
timestepping/finish_time, respectively. The timestepping/start_time (i.e. the initial value
of 𝑡) is usually set to zero.

For simulations which are known to converge to a steady-state, Firedrake-Fluids can stop the simulation when the
maximum difference of all solution fields (i.e. u and ℎ) between time 𝑛 and 𝑛 + 1 becomes less than a user-defined
tolerance; this is specified in timestepping/steady_state/tolerance.

2.2.6 Physical parameters

The only physical parameter applicable to the equation set solved in the Firedrake-Fluids shallow water model is the
acceleration due to gravity. This is approximately 9.8 ms−2 on Earth.

10 Chapter 2. Shallow water model
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2.2.7 System: Core fields

The model requires three fields to be set up under the /system/core_fields section of the setup file. These are
the key fields used in shallow water simulations, and are named

• Velocity (a prognostic field, corresponding to u).

• FreeSurfacePerturbation (a prognostic field, corresponding to ℎ)

• FreeSurfaceMean (a prescribed field, corresponding to 𝐻)

It is here that the initial and boundary conditions for the fields can be specified. These can either be constant values,
or values defined by a C++ expression.

C++ expressions

Non-constant values for initial and boundary conditions can be specified under the cpp sub-option; here, a Python
function needs to be written which returns a string containing a C++ expression. An example is given in Figure
cpp_expression.

Fig. 2.3: An example of a Python function returning a string containing a C++ expression. This C++ expression
is used to define the non-constant values of a boundary condition. The function must be called val and have the
argument t, which is the current simulation time that may be included in the C++ expression. The variable x contains
the coordinates of the domain (i.e. x[0], x[1] and x[2] are the 𝑥, 𝑦, and 𝑧 coordinates, respectively).

Boundary conditions

A new boundary condition can be created for a given field by clicking the + button next to the gray
boundary_condition option. Each boundary condition must be given a unique name.

The surfaces on which the boundary conditions need to be applied should be specified under
boundary_condition/surface_ids; multiple surface IDs should be separated by a single space. The
type of boundary condition should then be specified along with its value; the available types are (for velocity):

• Dirichlet: Strong Dirichlet boundary conditions can be enforced for both the FreeSurfacePerturbation and Ve-
locity fields by selecting the dirichlet type.

• No-normal flow: Imposing a no-normal flow condition for velocity (i.e. u · n = 0) can
currently only be done weakly by integrating the continuity equation by parts (by enabling the
/system/equations/continuity_equation/integrate_by_parts option) and selecting the
no_normal_flow boundary condition type.

• Flather: A open boundary condition can be imposed weakly by integrating the continuity equation by parts
and selecting the flather boundary condition type in the configuration options. This boundary condition
enforces:

u = uexterior +

√︂
𝑔

𝐻
(ℎ− ℎexterior) ,

where uexterior and ℎexterior are the known/expected values for velocity and the free surface perturbation. Any
difference between the exterior values and the simulated values along the boundary is allowed out of the domain
in such a way that minimises spurious reflections. Note that the implementation currently assumes that u ·n ≥ 0
along the outflow (e.g. the outflow is through the north or east boundaries, for unit square domains).

2.2. Configuring a simulation 11
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For the free surface perturbation field ℎ, only Dirichlet boundary conditions are available.

2.2.8 System: Equations

As already described in Model equations, there are two equations which make up the shallow water model: the
momentum equation and the continuity equation. Options for both of these fields, concerning their discretisation
and parameters (e.g. for 𝐶𝐷 and 𝜈), can be found under /system/equations/momentum_equation and
/system/equations/continuity_equation.

Spatial discretisation

The spatial discretisation (continuous or discontinuous Galerkin) currently depends on the continuity of the function
spaces in use, rather than on the choices made in this option. However, if continuous_galerkin is selected,
there are stabilisation-related sub-options available to stabilise the advection term when using CG. See Stabilisation
methods for more information on the stabilisation schemes available.

Mass term

An option is available to exclude the mass term in the momentum (or continuity) equation, under
../mass_term/exclude_mass_term.

Advection term

An option is available to exclude the advection term in the momentum (or continuity) equation, under
../advection_term/exclude_advection_term. The advection term may also be integrated by parts by
enabling the ../advection_term/integrate_by_parts option; this is required for the imposition of weak
velocity boundary conditions.

Drag term

To include the quadratic drag term in the momentum equation, the drag_term option must be enabled under
/system/equations/momentum_equation/ and the non-dimensional drag coefficient 𝐶𝐷 should be speci-
fied.

Stress term

To include the stress term in the momentum equation, the stress_term option must be enabled and the isotropic,
kinematic physical viscosity of the fluid 𝜈 must be specified.

Turbulence parameterisation

By default, the momentum equation does not account for turbulent Reynolds stresses. However, if the
turbulence_parameterisation option is enabled, then the Reynolds stresses can be parameterised through
the calculation of an eddy viscosity, which models the effects of small-scale eddies on the large-scale flow turbulence.
This eddy viscosity is added to the background viscosity 𝜈 in the stress term. More information can be found in
Turbulence parameterisation.

12 Chapter 2. Shallow water model



Firedrake-Fluids Documentation, Release 0.2-dev

Source term

An additional user-defined source term can be added to the right-hand side of the equation under consideration via the
source_term sub-option.

2.3 Running a simulation

A shallow water simulation can be run by executing the shallow_water.py file with the Python interpreter, and
providing the path to the .swml simulation configuration file. An example would be:

python firedrake_fluids/shallow_water.py example.swml

from the Firedrake-Fluids base directory. Available flags for the shallow water model are:

• -c: Initialise a simulation from a specified checkpoint file.

• -h: Display a help message.

2.4 Current limitations

• When using a discontinuous Galerkin method, the form of the stress tensor is currently restricted to:

T = 𝜈∇u.

• When using a discontinuous Galerkin discretisation, the interior penalty method is the only method available
for determining the value of ∇u at the discontinuous interior element boundaries. Similarly, only a simple
upwinding method can be used to determine u along interior element boundaries.

2.3. Running a simulation 13
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CHAPTER 3

Stabilisation methods

When using a continuous Galerkin discretisation in advection-dominated problems, it may be necessary to stabilise
the advection term in the momentum equation.

The implementation of the stabilisation methods can be found in the file stabilisation.py.

3.1 Streamline upwind

This method adds some upwind diffusion in the direction of the streamlines. The term is given by∫︁
Ω

𝑘

||u||2
(u · ∇w)(u · ∇u)

which is added to the LHS of the momentum equation. The term 𝑘 takes the form

𝑘 =
1

2

(︂
1

tanh(Pe)
− 1

Pe

)︂
||u||∆𝑥

where

Pe =
||u||∆𝑥

2𝜈

is the Peclet number, and ∆𝑥 is the size of each element.

15
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CHAPTER 4

Turbulence parameterisation

This chapter describes the turbulence models that are available in Firedrake-Fluids.

4.1 Large Eddy Simulation (LES)

The UFL implementation of all LES models can be found in the file les.py.

4.1.1 Smagorinsky model

The model calculates an eddy viscosity 𝜈′

𝜈′ = (𝐶𝑠∆𝑒)
2 |S|,

where 𝐶𝑠 is the Smagorinsky coefficient which is typically between 0.1 and 0.2 , and ∆𝑒 is some measure of the
element size. Here it is given by the square root of the element’s area in 2D, or cube root of the element’s volume in
3D. The term |S| is the modulus of the strain rate tensor S:

S =
1

2

(︀
∇u + ∇uT

)︀
.

The eddy viscosity 𝜈′ is added to the background/physical viscosity of the fluid, thereby contributing to the stress term
in the momentum equation.

17
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CHAPTER 5

Diagnostic fields

Some stand-alone functions are available in the diagnostics.py file for computing flow diagnostics.

5.1 Courant number

The Courant number diagnostic computes the field defined by

||u||∆𝑡
∆𝑥

,

where ∆𝑡 is the time-step size and ∆𝑥 is the element size (more specifically, it is twice the element’s circumradius).

5.2 Grid Reynolds number

The Reynolds number (whose length scale is relative to the element size ∆𝑥) is defined by

Re =
𝜌||u||∆𝑥

𝜇
,

where 𝜌 is the fluid density, 𝜇 is the dynamic viscosity, and ||u|| is the magnitude to the velocity field. Alternatively,

Re =
||u||∆𝑥
𝜈

,

where 𝜈 is the kinematic viscosity.

5.3 Divergence

This diagnostic field computes the divergence

∇ · u,

of a vector field u.

19
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