

    
      
          
            
  
fink cloud deployment tools



	Introduction
	Related documents
	Infrastructure as code [https://martinfowler.com/bliki/InfrastructureAsCode.html]

	AWS IAM service [https://aws.amazon.com/iam/]

	AWS S3 service [https://aws.amazon.com/s3/]

	AWS CloudFormation service [https://aws.amazon.com/cloudformation/]

	AWS Codedeploy service [https://aws.amazon.com/codedeploy/]

	AWS Lambda service [https://aws.amazon.com/lambda/]

	AWS API Gateway service [https://aws.amazon.com/api-gateway/]

	Low-level interface to AWS services [http://botocore.readthedocs.io/en/latest/index.html]





	Problem reporting instructions





	Getting Started Guide
	Infrastructure as code

	Installation
	Install Python

	Install pip and virtualenv
	MacOS





	Install fink and fink plugins
	Install fink





	Setting the ENV environment variable

	preparing your AWS account for deployments using fink tools





	fink.cloud
	Create your first stack with cloud

	Deploy a stack to AWS





	fink.lambda
	Deploy a simple AWS Lambda function





	fink.code

	fink.api





	Overview

	Installing fink
	Related documents
	Python Package Index [https://pypi.python.org/pypi]

	Version Identification and Dependency Specification [https://www.python.org/dev/peps/pep-0440/]

	fink changelog [http://fink.readthedocs.io/en/latest/CHANGELOG.html]





	What you need to know about python package management
	A history of Python packaging [https://blog.startifact.com/posts/older/a-history-of-python-packaging.html]

	Python Packaging Do’s and Don’ts [https://gregoryszorc.com/blog/2014/07/15/python-packaging-do%27s-and-don%27ts/]

	The Nine Circles of Python Dependency Hell [https://tech.knewton.com/blog/2015/09/the-nine-circles-of-python-dependency-hell/]





	fink package structure

	Maintaining dependencies for your project

	Defining which fink plugins to use

	Setup virtualenv

	Installing all dev dependencies in one go

	Deactivate a virtualenv

	Updating fink
	General remarks on “breaking changes” and deprecated features

	Dependency specification (pinning versions)

	Updating from gcdt to fink 1.0.0
	changed tool names

	removed long deprecated hook mechanism

	you explicitly need to install all used fink tools

	remove the deprecated ami lookup

	moved cloudformation helpers to fink.cloud

	we introduce config validation for all fink tools and plugins













	fink tool
	Related documents
	Infrastructure as code [https://martinfowler.com/bliki/InfrastructureAsCode.html]

	Low-level interface to AWS services [http://botocore.readthedocs.io/en/latest/index.html]

	Setting the ENV variable





	Usage

	Commands
	config

	version









	cloud command
	Related documents
	AWS CloudFormation service [https://aws.amazon.com/cloudformation/]





	Usage

	Commands
	deploy

	list

	delete

	generate

	preview

	dot

	stop

	start

	version





	Folder Layout
	Config file example

	Configuring RoleARN for a cloudformation stack

	Configuring NotificationARNs for a cloudformation stack

	Setting the ENV variable





	Howto

	Kumo lifecycle hooks

	DEPRECATED Kumo legacy hooks

	Using fink functionality in your cloudformation templates

	Accessing context and config in cloudformation

	Stack Policies

	Signal handling





	cloud config 1.0.3
	Description

	Data Structures
	cloud - structure

	stack - structure

	parameters - structure

	deployment - structure

	defaults - structure

	arn - structure









	cloud particles
	Related documents
	AWS CloudFormation service [https://aws.amazon.com/cloudformation/]

	troposphere [https://github.com/cloudtools/troposphere]

	stacker [https://github.com/remind101/stacker]





	Goals

	Detailed requirements

	Status on cloud particles implementation

	Usage

	Sample particles
	instance





	Quickstart example using particles

	Developing your own particles





	code command
	Related documents
	AWS Codedeploy service [https://aws.amazon.com/codedeploy/]





	Usage
	deploy

	version





	Folder Layout

	code configuration
	add stack_output.yml to your code bundle

	Adding a settings.json file

	Configure log group

	Setting the ENV variable





	Signal handling





	fink.code configuration 1.0.1
	Description

	Data Structures
	code - structure

	codedeploy - structure

	bundling - structure

	defaults - structure

	foldersItem - structure









	lambda command
	Related documents
	AWS Lambda service [https://aws.amazon.com/lambda/]





	Usage
	clean

	bundle

	deploy

	list

	metrics

	wire

	unwire

	delete

	rollback

	invoke

	logs

	version





	Folder Layout

	Sample config file

	lambda configuration as part of the fink_<env>.json file
	log retention

	S3 upload

	runtime support

	AWS Lambda environment variables

	Adding a settings.json file

	Adding event configuration





	Deploying AWS Lambda@Edge

	Setting the ENV variable

	Environment specific configuration for your lambda functions

	Defining dependencies for your NodeJs lambda function

	Sample NodeJs lambda function





	api command
	Related documents
	AWS API Gateway service [https://aws.amazon.com/api-gateway/]





	Usage
	deploy

	export

	list

	apikey-create

	apikey-list

	apikey-delete

	version





	Folder Layout
	Create custom domain

	Setting the ENV variable









	api tool config 1.0.1
	Description

	Data Structures
	api - structure

	api_def - structure

	customDomain - structure

	lambda - structure

	entries - structure

	arn - structure









	Plugins for fink
	Introduction
	Related documents
	fink (cloud deployment tools) [https://github.com/finklabs/fink]

	blinker signals [https://pythonhosted.org/blinker/]

	pluggy is similar to our fink plugin mechanism [https://github.com/pytest-dev/pluggy]

	slack-webhooks [https://api.slack.com/incoming-webhooks]

	hocon config format [https://github.com/typesafehub/config]

	hocon in python [https://github.com/chimpler/pyhocon]

	using virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/]









	Overview
	Plugin system key functions

	Plugin installation

	Plugin configuration

	Plugin descriptions





	fink plugin mechanism
	Anatomy of a plugin

	Overview of the fink lifecycle

	List of fink signals

	Developing plugins

	Testing a plugin





	Overview on configuration
	Structure of the configuration (internal representation)

	Multiple levels of fink configuration

	Context





	fink.config-reader plugin
	Related documents
	JSON [https://en.wikipedia.org/wiki/JSON]

	YAML [https://en.wikipedia.org/wiki/YAML]





	json configuration files

	yaml configuration files

	python configuration files

	finkignore patterns

	reference to base config file





	fink.lookups plugin
	Related documents
	credstash [https://github.com/fugue/credstash]





	lookup stack output

	lookup acm certificate

	lookup secret

	lookup parameter





	fink.lookups plugin config 1.0.4
	Description

	Data Structures
	fink.lookups - structure

	defaults - structure

	lookup_type - structure

	lookup_format - structure









	fink.bundler plugin
	Related documents

	Sample config





	fink.say-hello plugin

	fink.slack-integration plugin
	Related documents
	Python requests library [http://docs.python-requests.org/en/master/]

	Slack webhooks [https://api.slack.com/incoming-webhooks]

	Test tool for requests library [https://github.com/bhodorog/pytest-vts]





	slack integration plugin functionality

	Setup

	Configuration





	fink-slack-integration plugin config 1.0.2
	Description

	Data Structures
	fink.slack_integration - structure

	defaults - structure













	Frequently Asked Questions (faq)
	Homebrew Python

	Python package errors

	Bundling error

	Missing configuration error

	Environment variable error

	Using hooks in fink





	Changelog
	[0.1.436] - 2017-08-17
	Fixed





	[0.1.435] - 2017-08-17
	Added





	[0.1.433] - 2017-08-14
	Added





	[0.1.432] - 2017-08-10
	Fixed





	[0.1.431] - 2017-08-10
	Added

	Deprecated





	[0.1.430] - 2017-08-08
	Added





	[0.1.429] - 2017-08-07
	Added





	[0.1.428] - 2017-08-03
	Added





	[0.1.427] - 2017-08-01
	Added





	[0.1.426] - 2017-08-01
	Added





	[0.1.425] - 2017-08-01
	Fixed





	[0.1.424] - 2017-08-01
	Added

	Deprecated





	[0.1.423] - 2017-07-21
	Added





	[0.1.422] - 2017-07-18
	Fixed





	[0.1.421] - 2017-07-18
	Fixed





	[0.1.420] - 2017-07-18
	Added

	Deprecated





	[0.1.419] - 2017-07-17
	Added





	[0.1.418] - 2017-07-17
	Added





	[0.1.417] - 2017-07-13
	Added





	[0.1.415] - 2017-07-12
	Fixed





	[0.1.413] - 2017-07-07
	Added





	[0.1.412] - 2017-07-05
	Added





	[0.1.411] - 2017-07-04
	Added





	[0.1.410] - 2017-07-03
	Fixed





	[0.1.409] - 2017-07-03
	Added





	[0.1.408] - 2017-06-30
	Added





	[0.1.407] - 2017-06-30
	Fixed





	[0.1.406] - 2017-06-30
	Added





	[0.1.405] - 2017-06-30
	Fixed





	[0.1.404] - 2017-06-29
	Added





	[0.1.403] - 2017-06-22
	Added





	[0.1.402] - 2017-06-21
	Fixed





	[0.1.401] - 2017-06-20
	Fixed





	[0.1.400] - 2017-06-20
	Fixed





	[0.1.399] - 2017-06-19
	Fixed





	[0.1.398] - 2017-06-16
	Added





	[0.1.397] - 2017-06-16
	Fixed





	[0.1.396] - 2017-06-12
	Added





	[0.1.394] - 2017-06-09
	Added





	[0.1.393] - 2017-06-09
	Added





	[0.1.392] - 2017-06-07
	Added





	[0.1.391] - 2017-06-02
	Added





	[0.1.390] - 2017-05-31
	Added





	[0.1.8] - 2017-04-27
	Added





	[0.1.7] - 2017-04-27
	Added





	[0.1.6] - 2017-04-26
	Added





	[0.1.5] - 2017-04-26
	Added





	[0.1.4] - 2017-04-07
	Added





	[0.1.0] - 2017-04-05
	Added

	Changed





	[0.0.84] - 2017-03-30
	Added





	[0.0.83] - 2017-03-29
	Added





	[0.0.82] - 2017-03-29
	Added

	Fixed





	[0.0.81] - 2017-03-24
	Added

	Fixed





	[0.0.80] - 2017-03-09
	Fixed





	[0.0.79] - 2017-03-08
	Fixed





	[0.0.78] - 2017-03-06
	Added





	[0.0.77] - 2017-02-20
	Added





	[0.0.76] - 2017-01-30
	Added





	[0.0.75] - 2017-01-24
	Added

	Changed





	[0.0.73] - 2017-01-09
	Fixed





	[0.0.64] - 2016-11-11
	Fixed





	[0.0.63] - 2016-11-08
	Fixed





	[0.0.62] - 2016-11-07
	Added

	Fixed





	[0.0.61] - 2016-11-07
	Fixed





	[0.0.60] - 2016-10-07
	Added

	Fixed





	[0.0.57] - 2016-09-23
	Added

	Fixed





	[0.0.55] - 2016-09-16
	Added





	[0.0.51] - 2016-09-05
	Fixed





	[0.0.45] - 2016-09-01
	Added

	Fixed





	[0.0.35] - 2016-08-29
	Added





	[0.0.34] - 2016-08-tbd
	Fixed





	[0.0.33] - 2016-08-18
	Added

	Fixed





	[0.0.30] - 2016-08-02
	Added

	Removed





	[0.0.29] - 2016-07-21
	Added

	Fixed





	[0.0.26] - 2016-07-19
	Added

	Fixed









	Development of fink
	Contributing

	Issues and Feature Requests

	Common for all Tools

	Installing the development version locally

	Running Unit-Tests

	Mock calls to AWS services

	documenting fink
	Installation of docu tools

	build docu

	Release docu to Readthedocs

	Initialize api docu





	Implementation details
	configuration





	fink design
	Design Goals

	Design Principles

	Design Decisions
	Use botocore over boto3





	Use pytest over nose

	Capturing of log output during test

	Use Sphinx, Readthedocs, and Markdown for documentation

	Keep a changelog

	Use docopt to build the command line interface

	Using Maya: Datetimes for Humans

	Plugin mechanism

	Config handling using openapi

















          

      

      

    

  

    
      
          
            
  
Introduction

This userguide aims to make it easy for you to get started using the fink tools in your projects. fink helps you to code your infrastructure on AWS and put it under version control as infrastructure-as-code together with the implementation of your service. In this way you can fully automate your infrastructure and your service deployments.

fink provides tools for traditional compute services and also managed serverless computing services. fink was implemented internally at finklabs.

fink and userguide are released under MIT License [http://github.com/finklabs/fink/LICENSE].

The fink userguide starts with this introduction, then provides an overview on fink like a guided tour on how fink is structured and what it offers to you. The following parts each covers one fink tool. The remaining parts go into more technical topics like developing fink or using it as library to build your own tools based on fink.

This user guide assumes that you know the AWS services you want to automate so we do not cover AWS services in great detail and instead point to relevant documentation. But even if you are starting out on AWS, fink will help you to quickly leave the AWS webconsole behind and to move towards infrastructure-as-code.


Related documents

This section aims to provide to you a list of related documents that will be useful to gain a detailed understanding about what the fink tool suite does. With this background you will be able to tap into the full potential of the fink tools.



	Infrastructure as code [https://martinfowler.com/bliki/InfrastructureAsCode.html]

	AWS IAM service [https://aws.amazon.com/iam/]

	AWS S3 service [https://aws.amazon.com/s3/]

	AWS CloudFormation service [https://aws.amazon.com/cloudformation/]

	AWS Codedeploy service [https://aws.amazon.com/codedeploy/]

	AWS Lambda service [https://aws.amazon.com/lambda/]

	AWS API Gateway service [https://aws.amazon.com/api-gateway/]

	Low-level interface to AWS services [http://botocore.readthedocs.io/en/latest/index.html]








Problem reporting instructions

Please use Github issues to report fink issues: fink issues [https://github.com/finklabs/fink/issues]. To check on the progress check out the fink project board: fink project board [https://github.com/finklabs/fink/projects/1]







          

      

      

    

  

    
      
          
            
  
Getting Started Guide

Welcome to the getting started guide of fink. In this guide we will cover what fink is and how to use it to create beautiful infrastructure as code (IaC):

fink tools to manage AWS infrastructure using CloudFormation and CodeDeploy:


	using AWS CloudFormation with fink.cloud

	deploy your application on AWS EC2 with AWS CodeDeploy scripts and fink.code



fink contains two more tools to manage serverless infrastructure on AWS:


	deploy and configure AWS Lambda with fink.lambda

	deploy API Gateway and manage API keys with fink.api



All of these things you can do for different Environments (dev, stage, prod)


Infrastructure as code

Infrastructure as Code (IaC) is a type of IT infrastructure that teams can automatically provision through code, rather than using a manual GUI-centered process. Through defining your infrastructure as code you can apply similar tools and workflows like when working with your application code like:


	version control

	test

	review

	share

	reuse (like creating test envs)

	audit






Installation


Install Python

First of all you need to have Python installed. Python should be 2.7 or higher

On MacOS try to use preinstalled Python




Install pip and virtualenv

virtualenv [http://python-guide-pt-br.readthedocs.io/en/latest/dev/virtualenvs/] is a tool to create isolated Python environments. virtualenv creates a folder which contains all the necessary executables to use the packages that a Python project would need.


MacOS

$ sudo pip install virtualenv --upgrade










Install fink and fink plugins


Install fink

First of all you need to create virtualenv and activate it. We recommend create virtualenv in the same directory as a project, and add it to .gitignore. It’s pretty easy.

$ cd <project-folder>
$ virtualenv venv
$ source venv/bin/activate
$ pip install pip --upgrade # we always should have latest pip version in our virtualenv





fink needs some fink-glugins so you should install these together. fink-glugins are powerful tool to add features to fink without having to directly modify the fink core. The easiest way is to put the dependencies into a requirements_fink.txt file:

fink
fink.config-reader
fink.lookups
fink.bundler
fink.slack-integration
fink.cloud
fink.code
fink.lambda
fink.api





You can find more information about plugins in docs [http://fink.readthedocs.io/en/latest/fink_plugins/index.html]
then

$ pip install -U -r requirements_fink.txt





To check that everything is good and fink installed just do:

$ fink version
fink version 0.1.418
fink commands:
 * fink.cloud 1.0.0
 * fink.code 1.0.0
 * fink.lambda 1.0.0
 * fink.api 1.0.0
fink plugins:
 * fink.config-reader version 1.0.0
 * fink.bundler version 1.0.0
 * fink.slack-integration version 1.0.0
 * fink.lookups version 1.0.0










Setting the ENV environment variable

For almost all fink commands you need to set the ENV environment variable. ENV is required to recognize which config file to use (fink_<env>.json). Usually you have a different config file for each environment (dev, stage, prod). You need to set ENV before running any fink command.

The following command will use the fink_dev.json config file

$ export PYTHONIOENCODING=UTF-8
$ ENV=dev cloud list 
...





Alternatively you can set the ENV variable for the duration of your terminal session. Set it like this:

$ export ENV=dev
$ cloud list
...








preparing your AWS account for deployments using fink tools

When you store your infrastructure as code in a version control system you do not want to keep the secret credentials with them for obvious reasons. Also you want to have the flexibility to deploy the same stack to different accounts without changing the code. In order to achieve this we store the credentials in AWS SSM parameter store:

[image: essential parameters in your account]

Another preparation step you need to take is a basestack (look for fink.base-sample-stack). This stack contains some essential infrastructure elements you need so your infrastructure deployments will work like roles, policies, an S3 artifact bucket etc. The basestack exposes some values using Outputs which can be looked up during deployments. So you deploy the basestack once per account and all other stack use this infrastructure.






fink.cloud

fink.cloud is a tool which help you to manage and deploy your infrastructure. AWS Cloudformation uses helps you configure and manage your AWS infrastructure as code. In cloud we have our cloudformation templates generated by troposphere [https://github.com/cloudtools/troposphere]. With cloud you can easily create (and configure) infrastructure for different environments (and AWS accounts) like for example (dev, stage, prod).


Create your first stack with cloud

First of all you need to create two files:


	cloudformation.py - here you will describe your infrastructure using troposphere

	fink_(dev|stage|prod) - settings for your ENV in json format, needs to include all parameters for the cloudformation template + stack name. You should have separate config for each ENV.



Let’s create a simple fink_dev.json (please change all values according your AWS account):

{
  "cloud": {
    "stack": {
      "StackName": "fink.superc-sample-stack"
    },
    "parameters": {
      "VPCId": "lookup:stack:<stack-name>:DefaultVPCId",
      "ScaleMinCapacity": "1",
      "ScaleMaxCapacity": "1",
      "InstanceType": "t2.micro",
      "DefaultInstancePolicyARN": "lookup:stack:<stack-name>:DefaultInstancePolicyARN",
      "AMI": "lookup:parameter:base_ami"
    }
  }
}





The values for VPCId and DefaultInstancePolicyARN are filled by by the fink-lookups which then will be used in the template. The fink.lookups plugin will search the outputs in the CloudFormation stack (as mentioned in the config).

Instead of <stack-name> you should provide your stack name or use hardcoded value(not recommended).
It’s time to create our first Infrastructure as Code. Let’s do this.
Here is a simple cloudformation.py [https://github.com/finklabs/fink-sample-stack/blob/master/infrastructure/cloudformation.py] script. Use it as a template for creating your infrastructure.




Deploy a stack to AWS

Before running a deployment we need to set some necessary ENV variables. Remember: You need this ENV variables exported each time before running any fink command.

$ export ENV=dev
$ export AWS_DEFAULT_PROFILE=fink # Default profile.
$ export AWS_DEFAULT_REGION=eu-west-1
$ export PYTHONIOENCODING=UTF-8





Run your first infrastructure deployment. It’s really easy:

$ cloud deploy





[image: Kumo deploy output]
More information about fink.cloud can be found in docs [http://fink.readthedocs.io/en/latest/20_cloud.html]






fink.lambda

fink.lambda will help you to deploy, manage and control AWS Lambda functions. Runtimes supported by lambda are: nodejs4.3, nodejs6.10, python2.7, python3.6


Deploy a simple AWS Lambda function

Create a fink_(dev|stage|prod).json file (please change all values according your AWS account):

"lambda": {
  "bundling": {
    "folders": [
        {
            "source": "./node_modules",
            "target": "./node_modules"
        }
    ],
    "zip": "bundle.zip"
  },
  "lambda": {
    "name" = "jenkins-fink-lifecycle-for-lambda",
    "description" = "lambda test for lambda",
    "role" = "lookup:stack:<stack-name>:LambdaArnForDeploy",
    "handlerFunction" = "handler.handle",
    "handlerFile" = "handler.py",
    "timeout" = "300",
    "memorySize" = "256",
    "vpc": {
            "subnetIds": [
                "lookup:stack:<stack-name>:LambdaSubnetIda",
                "lookup:stack:<stack-name>:LambdaSubnetIdb",
                "lookup:stack:<stack-name>:LambdaSubnetIdc"
            ],
        }
  }
}





then do:

$ lambda deploy





More information about fink.lambda can be found in docs [http://fink.readthedocs.io/en/latest/40_lambda.html]






fink.code

fink.code will help you to deploy your application using AWS CodeDeploy [https://aws.amazon.com/codedeploy/].
code will create an artifact bundle file and upload it to s3 which contains all files that you have in your codedeploy folder. Create the fink_(dev|stage|prod).json file (please change all values according your AWS account):

"code": {
  "codedeploy": {
    "applicationName": "lookup:stack:fink-sample-stack:applicationName",
    "deploymentGroupName": "lookup:stack:fink-sample-stack:DeploymentGroup",
    "deploymentConfigName": "lookup:stack:fink-sample-stack:DeploymentConfig",
    "artifactsBucket": "lookup:stack:<stack-name>:s3DeploymentBucket"
  }
}





then do:

$ code deploy





More information about fink.code can be found in docs [http://fink.readthedocs.io/en/latest/30_code.html]




fink.api

fink.api is a tool that will help you to deploy and manage your API with AWS API Gateway. All you need is to put your swagger.yml into the same folder as a fink_(dev|stage|prod).json file. Also, add some new configs into it (please change all values according your AWS account):

"api": {
    "api": {
        "apiKey": "xxxxxxxxxxxxxx",
        "description": "Gcdt sample API based on dp api-mock",
        "name": "jenkins-fink-sample-api-dev",
        "targetStage": "mock"
    }
}





More information about fink.api can be found in docs [http://fink.readthedocs.io/en/latest/50_api.html]







          

      

      

    

  

    
      
          
            
  
Overview

Outline how fink works at a high level


	Identify the key functions

	Inputs and Outputs - identify inputs what you, the reader, need to enter

	and outputs, what you expect in response for example reports

	provide further details

	assumptions on user experience, for examples, experience or proficiency in related areas or previous training







          

      

      

    

  

    
      
          
            
  
Installing fink

This chapter covers the fink installation. fink’s behaviour can be customized using plugins. The fink plugin mechanism relies on standard Python package mechanisms. In order to get a good experience and get the most out of fink you need to know a few things about Python packaging.

This chapter aims to provide you with all the information you need to know on this topic.


Related documents



	Python Package Index [https://pypi.python.org/pypi]

	Version Identification and Dependency Specification [https://www.python.org/dev/peps/pep-0440/]

	fink changelog [http://fink.readthedocs.io/en/latest/CHANGELOG.html]








What you need to know about python package management

There is now a lot of packaging infrastructure in the Python community, a lot of technology, and a lot of experience. We will try cover some basic things and give you best practice what to use for Python package management.


	Always use virtualenv. A virtualenv is effectively an overlay on top of your system Python install. Creating a virtualenv can be thought of as copying your system Python environment into a local location. When you modify virtualenvs, you are modifying an isolated container. Modifying virtualenvs has no impact on your system Python.

	Use pip for installing packages. Python packaging has historically been a mess. There are a handful of tools and APIs for installing Python packages. As a casual Python user, you only need to know of one of them: pip.
If someone says install a package, you should be thinking create a virtualenv, activate a virtualenv, pip install <package>. You should never run pip install outside of a virtualenv. (The exception is to install virtualenv and pip itself, which you almost certainly want in your system/global Python.)

	Use requirements file for installing all project dependencies. Always strictly specify the package version. Bad one: somepackage=>2.0.3. Good one: somepackage==2.0.3



Here is some useful links if you want dive deeper into Python package management.



	A history of Python packaging [https://blog.startifact.com/posts/older/a-history-of-python-packaging.html]

	Python Packaging Do’s and Don’ts [https://gregoryszorc.com/blog/2014/07/15/python-packaging-do%27s-and-don%27ts/]

	The Nine Circles of Python Dependency Hell [https://tech.knewton.com/blog/2015/09/the-nine-circles-of-python-dependency-hell/]








fink package structure

The following diagram gives an overview on the fink packages. Please note how we grouped the fink packages in the following categories:


	fink - the fink core (livecycle mechanism, fink tools)

	fink plugins - packages to customize how you use fink

	fink generators and tools - scaffolding and tools to make your work even more efficient



[image: fink package structure overview]

At finklabs we have very few (currently one) fink packages we do not want to open-source. The finklabs-config-reader has very opinionated defaults on how we use fink on our AWS infrastructure that is very specific and optimized for our media usecase.




Maintaining dependencies for your project

It is a very common practice not to install Python packages by hand. Instead dependencies and version are managed in a documented and repeatable way. Basically you add the names and versions of your packages to a text file. Most projects also group their dependencies into direct dependencies of the service or application and packages they need to develop, build, test and document.

The grouping is not enforced by packaging but to have a std. within an organization is beneficial especially if your want to reuse CI/CD tools.

A little opinionated but pretty common:


	requirements.txt tools and packages your service directly depends on

	requirements_def.txt tools and packages you need to develop and test your service

	requirements_fink.txt fink and fink plugins you use to deploy your service to AWS



The easiest way to install fink is via pip and virtualenv.




Defining which fink plugins to use

fink needs at least some fink-glugins so you should want to install these together. Add fink and the plugins you use to requirements_fink.txt

fink
fink.say-hello
fink.config-reader
fink.lookups
fink.bundler
fink.slack-integration
fink.gen-serverless
fink.cloud
fink.code
fink.lambda
fink.api





This is also a best practice to use the same requirements_fink.txt file on your build server, too.




Setup virtualenv

Using virtualenvs for Python is considered best practice. This is what you need to do:


	create a virtualenv (‘$ virtualenv venv’)

	install the packages you want to use (see above)

	a virtualenv works basically like every other technical device, you need to switch it on before you can use it (‘$ source ./venv/bin/activate’)



Prepare the venv:

$ virtualenv venv





Activate the venv for use:

$ source ./venv/bin/activate








Installing all dev dependencies in one go

Install the dependencies into venv:

$ pip install -U -r requirements_fink.txt





Now you can start using fink:

$ fink version





BTW, fink version shows you all the versions of fink and installed plugins. So you can use this to quickly check which plugins are installed.




Deactivate a virtualenv

I do not throw away my lawn mower once I am done but with my terminals I do that. But you can deactivate a virtualenv:

$ deactivate








Updating fink

You should frequently update your fink installation to get access to new features and bugfixes.
When updating your fink installation, please update fink and all the plugins. Just updating fink or a single plugin could easily break your fink installation.

$ pip install -U -r requirements_fink.txt





This will update fink and all fink plugins specified in requirements_fink.txt


General remarks on “breaking changes” and deprecated features

We have two conflicting goals when maintaining fink:


	we want to introduce new features and replace older ones with newer implementations

	we want to be compatible with existing infrastructure and configurations



Besides that this is a pretty standard situation for a deployment tool and many other software projects. Nevertheless we want to make it explicit and consequently document here how we handle this.

We make sure that fink does work with our existing configurations. Frequent releases are ok but our squads expect downward compatibility for new patch versions. We could accept minor releases with breaking changes but expect an “update-documentation” which documents all steps that are necessary to upgrade.

We recently discussed and confirmed this in the fink grooming on 05.07.17 with representatives of the CO and VE squads.

In case we need to deprecate something we announce that in the fink changelog [http://fink.readthedocs.io/en/latest/CHANGELOG.html] respectively in the changelog of fink plugins and tools.

The following sections go into dependency specification and provide information for how to upgrade from one version to the next.




Dependency specification (pinning versions)

Like we said above we guarantee compatibility with your installation procedures and configurations for patch versions. If you need to enforce compatibility it is recommended to best pin fink packages to minor versions in requirements_fink.txt.

This is just a sample, you need to pin to the actual versions you want to use:

fink==1.0.*
fink.config-reader==1.0.*
fink.lookups==1.0.*
fink.bundler==1.0.*
fink.slack-integration==1.0.*
fink.cloud==1.0.*
fink.code==1.0.*
fink.lambda==1.0.*
fink.api==1.0.*





Detailed information on Version Identification and Dependency Specification [https://www.python.org/dev/peps/pep-0440/].




Updating from gcdt to fink 1.0.0


changed tool names

To better match AWS service names we changed the tool names in fink 1.0.0. The old Japanese names used by gcdt have been nice but proved difficult to remember. To ease migration the gcdt commands still can be used for another say 3-4 month but after that we use the new command names only.








	fink command
	gcdt command
	AWS service name




	cloud
	kumo
	CloudFormation


	code
	tenkai
	CodeDeploy


	lambda
	ramuda
	AWS Lambda


	api
	yugen
	API Gateway








removed long deprecated hook mechanism

Removed long deprecated hook support from cloud, code and lambda. No more ‘pre_bundle’, ‘pre_hook’, ‘pre_create_hook’, ‘pre_update_hook’, ‘post_create_hook’, ‘post_update_hook’, ‘post_hook’ any more.

Please use the fink lifecycle hook mechanism instead:

cloud lifecycle hooks [http://fink.readthedocs.io/en/latest/20_cloud.html#cloud-lifecycle-hooks]
using hooks in fink [http://fink.readthedocs.io/en/latest/60_faq.html#using-hooks-in-fink]
list of available hooks to use [http://fink.readthedocs.io/en/latest/fink_plugins/15_plugin_mechanism.html#list-of-fink-signals]




you explicitly need to install all used fink tools

You need to install fink-tools (fink-cloud, fink-code, fink-lambda, fink-api). Please add the tools to your requirements_fink.txt like described in the installation section above.




remove the deprecated ami lookup

Newer finklabs base_ami uses a different naming scheme. Consequently the ami lookup implemented in fink provides you with old base_ami ids.




moved cloudformation helpers to fink.cloud

If you use iam and route53 helpers you need to change imports for these submodules from gcdt to fink.cloud.




we introduce config validation for all fink tools and plugins

The new config validation looks for required properties and does format checks in some cases. fink now also validates datatypes. We found some errors where string type was uses in existing configurations instead of the correct integer type and you need to fix this before your configuration can pass as valid:

A sample for a valid use of integer values:

"lambda": {
  ...
  "memorySize": 128,
  "timeout": 15,
}















          

      

      

    

  

    
      
          
            
  
fink tool


Related documents



	Infrastructure as code [https://martinfowler.com/bliki/InfrastructureAsCode.html]

	Low-level interface to AWS services [http://botocore.readthedocs.io/en/latest/index.html]






Setting the ENV variable

You you need to set an environment variable “ENV” which indicates the account/staging area you want to work with. This parameter tells the tools which config file to use. For example if you want to set the environment variable ENV to ‘DEV’ you can do that as follows:

export ENV=DEV










Usage

To see available commands, call fink without any arguments:

$ fink
Usage:
        fink config
        fink version








Commands


config

This command is intended to provide tooling support for maintaining configuration.

The config command does the following:


	read configuration defaults

	read the config from file (‘fink_<env>.json’)

	run the lookups

	format and output the config to the console






version

If you need help please ask on the fink slack channel or open a ticket. For this it is always great if you are able to provide information about the fink version you are using.
A convenient way to find out the version of your fink install provides the following command:

$ fink version
WARNING: Please consider an update to fink version: 0.1.433
fink version 0.1.432
fink plugins:
 * fink.config-reader version 0.0.11
 * fink.bundler version 0.0.27
 * fink.slack-integration version 0.0.11
 * fink.lookups version 0.0.12





fink version also provides you with an easy way to check whether a new release of fink is available.









          

      

      

    

  

    
      
          
            
  
cloud command

cloud is finks CloudFormation deploy tool.


Related documents



	AWS CloudFormation service [https://aws.amazon.com/cloudformation/]








Usage

To see available commands, call cloud without any arguments:

Usage:
        cloud deploy [--override-stack-policy] [-v]
        cloud list [-v]
        cloud delete -f [-v]
        cloud generate [-v]
        cloud preview [-v]
        cloud dot [-v]
        cloud stop [-v]
        cloud start [-v]
        cloud version

-h --help           show this
-v --verbose        show debug messages








Commands


deploy

will create or update a CloudFormation stack

to be able to update a stack that is protected by a stack policy you need to supply “–override-stack-policy”




list

will list all available CloudFormation stacks




delete

will delete a CloudFormation stack




generate

will generate the CloudFormation template for the given stack and write it to your current working directory.




preview

will create a CloudFormation ChangeSet with your current changes to the template




dot

Visualize the cloudformation template of your stack using cloud dot.

[image: Sample Cloudformation]

Installation of the dot binary is required on your Mac to convert the graph into svg (http://www.graphviz.org/Download_macos.php).

$ brew install graphviz








stop

"cloud stop" is a brand new feature we start rolling out to finklabs AWS accounts.
We would like your feedback. Please talk to us if you require any improvements 
(additional resources etc.).





Use cloud stop to stop resources contained in your cloudformation stack using cloud stop.

cloud stop currently comprises of the following features:


	resize autoscaling group to minSize=0, maxSize=0

	stop Ec2 instances

	stop RDS



Add this optional configuration to the cloud section of the config file to exclude your stack resources from start / stop.

...
"deployment": {
  "DisableStop": true
}








start

"cloud start" is a brand new feature we start rolling out to finklabs AWS accounts.
We would like your feedback. Please talk to us if you require any improvements.





Start resources contained in your cloudformation stack using cloud start.

cloud start currently comprises of the following features:


	start RDS

	start EC2 instances

	restore autoscaling group minSize, maxSize to original values






version

will print the version of fink you are using






Folder Layout

The folder layout looks like this:

cloudformation.py -> creates troposphere template, needs a method like this:

def generate_template():
    return t.to_json()





fink_dev.json -> settings for dev in json format, needs to include all parameters for the cloudformation template + stack name

Further settings files, depending on your environments in the format of fink_<ENV>.json


Config file example

"stack": {
    "StackName": "sample-stack"
} 





You like examples better than documentation? Check out our sample-stack at https://github.com/finklabs/fink-sample-stack/tree/master/infrastructure




Configuring RoleARN for a cloudformation stack

There is a new Feature in CloudFormation which lets a User specify a Role which shall be used to execute the Stack. Docs can be found at http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_CreateStack.html
This can be used to limit access of users drastically and only give CloudFormation the permission to do all the heavy lifting.

"stack": {
    "RoleARN": "arn:aws:iam::<AccountID>:role/<CloudFormationRoleName>"
}





Make sure the role may be assumed by CloudFormation. See also: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-servicerole.html




Configuring NotificationARNs for a cloudformation stack

Amazon Simple Notification Service topic Amazon Resource Names (ARNs) that AWS CloudFormation associates with the stack.

{
  "cloud": {
    "stack": {
      "StackName": "infra-dev-cloud-sample-stack",
      "NotificationARNs": [
        "arn:aws:sns:eu-west-1:123456789012:mytopic1",
        "arn:aws:sns:eu-west-1:123456789012:mytopic2"
      ]
    },
    ...





Specify an empty list to remove all notification topics.




Setting the ENV variable

You you need to set an environment variable “ENV” which indicates the account/staging area you want to work with. This parameter tells the tools which config file to use. For example if you want to set the environment variable ENV to ‘DEV’ you can do that as follows:

export ENV=DEV





This can also be exploited to have different configuration for different regions which is not yet directly supported.

export ENV=DEV_eu-west-1





Will load the config file named fink_dev_eu-west-1.json






Howto


	create and fill cloudformation.py with the contents of your stack

	create and fill settings_<env>.conf with valid parameters for your CloudFormation template

	call cloud deploy to deploy your stack to AWS






Kumo lifecycle hooks

Kumo lifecycle hooks work exactly like fink lifecycle hooks but have a specialized integration for cloud templates.

def my_hook(params):
    context, config = params
    ...

def register():
    """Please be very specific about when your hook needs to run and why.
    E.g. run the sample stuff after at the very beginning of the lifecycle
    """
    fink_signals.initialized.connect(my_hook)


def deregister():
    fink_signals.initialized.disconnect(my_hook)





One cloud speciality for the command_finalized hook is that you can access the context attribute ‘stack_output’. to access
and use outputs of your stack within the hook implementation.




DEPRECATED Kumo legacy hooks

The hooks in this section are deprecated please use fink lifecycle hooks (see above).

Please note the legacy hooks will be removed with the next minor release (v 0.2.0).

cloud offers numerous hook functions that get called during the lifecycle of a cloud deploy run:


	pre_hook()
	gets called before everything else - even config reading. Useful for e.g. creating secrets in credstash if they don’t exist





	pre_create_hook()
	gets called before a stack is created





	pre_update_hook()
	gets called before a stack is updated





	post_create_hook()
	gets called after a stack is created





	post_update_hook()
	gets called after a stack is updated





	post_hook()
	gets called after a stack is either updated or created







You can basically call any custom code you want. Just implement
the function in cloudformation.py

Multiple ways of using parameters in your hook functions:


	no arguments (as previous to version 0.0.73.dev0.dev0)

	use kwargs dict and just access the arguments you need e.g. “def pre_hook(**kwargs):”

	use all positional arguments e.g. “def pre_hook(awsclient, config, parameters, stack_outputs, stack_state):”

	use all arguments as keyword arguments or mix.

	with version 0.0.77 we decided to move away from using boto_sessions towards awsclient (more flexible and low-level).






Using fink functionality in your cloudformation templates

Historically cloudformation.py templates imported functionality from fink and finklabs_utils packages. With version 0.0.77 we consolidated and copied get_env over to fink.utils.

Made functionality available in fink (sounds awful but it was there already anyway) :


	fink.utils: get_env now available



Continued no changes:


	fink.iam: IAMRoleAndPolicies



The following functionality requires awsclient to lookup information from AWS. The awsclient is available in the cloudformation template only within the scope of a hook (see above). Consequently you need to execute your calls within the scope of a hook:


	fink.servicediscovery: get_outputs_for_stack

	fink.route53: create_record

	fink.cloud_util: ensure_ebs_volume_tags_autoscaling_group






Accessing context and config in cloudformation

In the last few month we learned about a few usecases where it is desired to have access to config and context within your template. We had some workarounds using hooks but now there is a proper implementation for this feature.

In order to access context and config in your cloudformation.py you need to add both context and config as arguments to the `generate_template? function of your template:

def generate_template(context, config):
    template = troposphere.Template()
    ph.initialize(template, 'miaImportProcessor')
    assemble_particles(template, context, config)
    return template.to_json()





In case you do not want to use this information in your template you don’t have to use it (like before).

def generate_template():
    ...








Stack Policies

cloud does offer support for stack policies. It has a default stack policy that will get applied to each stack:

{
  "Statement" : [
    {
      "Effect" : "Allow",
      "Action" : "Update:Modify",
      "Principal": "*",
      "Resource" : "*"
    },
    {
      "Effect" : "Deny",
      "Action" : ["Update:Replace", "Update:Delete"],
      "Principal": "*",
      "Resource" : "*"
    }
  ]
}





This allows an update operation to modify each resource but disables replacement or deletion. If you supply “–override-stack-policy” to cloud then it will use another default policy that gets applied during updates and allows every operation on every resource:

{
  "Statement" : [
    {
      "Effect" : "Deny",
      "Action" : "Update:*",
      "Principal": "*",
      "Resource" : "*"
    }
  ]
}





If you want to lock down your stack even more you can implement two functions in your cloudformation.py file:


	get_stack_policy()

	
	the actual stack policy for your stack





	get_stack_policy_during_update()

	
	the policy that gets applied during updates







These should return a valid stack policy document which is then preferred over the default value.




Signal handling

cloud receives a SIGINT or SIGTERM signal during a stack update cancel_update_stack is called for the stack.







          

      

      

    

  

    
      
          
            
  
cloud config 1.0.3





Description

Documentation of the config file format for cloud (a fink tool). Note: if you want to add to the documentation please edit the openapi_cloud.yaml file




Data Structures


cloud - structure

The cloud config is organized into the following structure:











	Name
	Required
	Type
	Format
	Properties
	Description




	defaults
	Yes
	defaults
	 
	 
	finetune fink tool lifecycle (override at own risk)


	deployment
	No
	deployment
	 
	 
	details regarding the deployment phase of the stack


	parameters
	No
	parameters
	 
	 
	parameters used in the cloudformation template


	stack
	Yes
	stack
	 
	 
	configure stack details








stack - structure

Use the stack section to configure stack details.











	Name
	Required
	Type
	Format
	Properties
	Description




	NotificationARNs
	No
	array of arn
	 
	 
	configure SNS recipients for stack events


	RoleARN
	No
	string
	 
	 
	role to use for cloudformation deployment


	StackName
	Yes
	string
	 
	 
	name of your cloudformation stack


	TemplateBody
	No
	string
	 
	 
	 


	artifactBucket
	No
	arn
	 
	 
	s3 bucket use to upload the cloudformation template to AWS








parameters - structure

AWS cloudformation parameters. Parameters in the config must match the parameters used in the template!




deployment - structure

Stack properties specific to the deployment phase.











	Name
	Required
	Type
	Format
	Properties
	Description




	DisableStop
	No
	boolean
	 
	 
	disable the cloud stop & start mechanism for this stack.








defaults - structure

Default properties to finetune fink tool lifecycle (override at own risk).











	Name
	Required
	Type
	Format
	Properties
	Description




	non_config_commands
	Yes
	array of string
	 
	{‘default’: [‘stop’, ‘start’, ‘list’]}
	cloud commands that do not require a config file.


	validate
	Yes
	boolean
	 
	{‘default’: True}
	use this if you need to switch off config validation.








arn - structure

Amazon Resource Name [http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html]











	Name
	Required
	Type
	Format
	Properties
	Description




	arn
	No
	string
	 
	 
	Amazon Resource Name [http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html]













          

      

      

    

  

    
      
          
            
  
cloud particles

At finklabs we create our infrastructure via AWS cloudformation and in order to do that efficiently we wanted to use reusable building blocks. For that to achieve we where evaluating different solutions available to us via open source.

So this is basically conceptual paper-ware (structure and a few helpers). You still need to write the particles.

Please be aware not to let cloud particles stop you from anything. In case you do not have particles or you do not want to write any you can still build beautiful infrastructure from the raw services provided by AWS.

cloud particles are perfectly optional. There is no tight coupling! You can totally bring your own building-block-mechanism and still use cloud for deployment. You do not even have to use troposphere - as long as your mechanism can export a valid json cloudformation template we are fine. Actually we encourage you to do so. Please share with us what you come up with.


Related documents



	AWS CloudFormation service [https://aws.amazon.com/cloudformation/]

	troposphere [https://github.com/cloudtools/troposphere]

	stacker [https://github.com/remind101/stacker]








Goals


	codify best practices for infrastructure

	use cloudformation.py to assemble a stack from particles

	complexity is handled in particle






Detailed requirements


	particle has default parameters that can be overridden

	particle provides default permission that can be overridden

	we distribute particles as python packages (later move away from github subprojects)

	we want to distribute generic std. particles company wide (e.g. finklabs-particles)

	we want to distribute squad specific particles (e.g. mes-particles)






Status on cloud particles implementation


	cloud particle implementation is based on MES template_generator.py

	answered “what is the minimum information we need to provide to use a particle?”

	restore troposphere character (talked about context => template is the context)

	added SERVICE_NAME and DEFAULT_TAGS to template

	I liked the “template_generator” implementation but class structure gets in the
way when creating stacks from multiple particle sources

	move cloudformation parameters and outputs into particle

	move permissions profile to particle



TODOs


	create particle profiles using awacs to further shrink the particles

	look into naming conventions / tooling for autogenerated resource names
here it is important that in case we generate random names we can regenerate
the same names during testing (fink placebo tools)

	share particles via package (need Github repo, Jenkins build, ...)






Usage

To build better infrastructure at finklabs we want to assemble infrastructure from reusable particles.

The fink.cloud_particle_helper module contains the functionality (initialize, get_particle_permissions, and Particle) to integrate the cloud particles into troposphere




Sample particles


instance

will create or update a CloudFormation stack






Quickstart example using particles

With cloud particles you can import particles from multiple sources:

from fink_cloud import cloud_particle_helper as ph
import eventbus_particle as eb
import reusable_particles as rp





We use cloudformation.py to assemble a stack from particles:

def assemble_particles(template):
    ################# parameters #############################################
    param_sns_alerts_topic = template.add_parameter(troposphere.Parameter(
        'SNSAlertsTopic',
        Description='Name for topic that receive notifications for validation.',
        Type='String'
    ))

    ################# particles ##############################################
    particles = []  # list of Particle()
    sg_frontend_web = Ref('%sFrontendWeb' % template.SERVICE_NAME)

    ################# s3 bucket ##############################################
    particles.append(rp.create_s3_bucket(template))
    ...





Under the hood we use troposphere to code cloudformation templates. The troposphere template instance is used as a common context to exchange information between cloud particles. With cloud each cloudformation.py needs to implement a generate_template function.

def generate_template():
    template = troposphere.Template()
    ph.initialize(template, 'miaImportProcessor')
    assemble_particles(template)
    return template.to_json()








Developing your own particles

We just started with cloud particles and plan to provide more help on particle development in the future.







          

      

      

    

  

    
      
          
            
  
code command

code is finks CodeDeploy tool.


Related documents



	AWS Codedeploy service [https://aws.amazon.com/codedeploy/]








Usage

To see available commands, call this:

Usage:
        code bundle [-v]
        code deploy [-v]
        code version

-h --help           show this
-v --verbose        show debug messages






deploy

bundles your code then uploads it to S3 as a new revision and triggers a new deployment




version

will print the version of fink you are using






Folder Layout

codedeploy -> folder containing your deployment bundle

codedeploy_env.conf -> settings for your code

"codedeploy": {
    "applicationName": "mep-dev-cms-stack2-mediaExchangeCms-F5PZ6BM2TI8",
    "deploymentGroupName": "mep-dev-cms-stack2-mediaExchangeCmsDg-1S2MHZ0NEB5MN",
    "deploymentConfigName": "CodeDeployDefaultemplate.AllAtOnce01",
    "artifactsBucket": "7finity-portal-dev-deployment"
}








code configuration


add stack_output.yml to your code bundle

If you need a convenient way of using the stack output during codedeploy on your instance then you can use this feature.

code adds a stack_output.yml to the bundle artifact if you add the following configuration:

{
    'stack_output': 'lookup:stack:<your_stack_name>'
    ...
}








Adding a settings.json file

code supports a settings section. If it is used a settings.json file is added to the zip bundle containing the values. You can specify the settings within the code section.

    ...
    "settings": {
        "MYVALUE": "FOO"
    }





You can use lookups like for the rest of the configuration. Note that the values are looked up BEFORE the the instance is deployed via codedeploy. If values change during the instance lifecycle it does not recognise the changes. For values that must be updated you should lookup the values in your code using for example credstash.

    ...
    "settings": {
        "accountId": "lookup:stack:infra-dev:AWSAccountId"
    }








Configure log group

In case code deploy fails we attempt to provide the log output from the ec2 instance to ease your troubleshooting. The default log group is ‘/var/log/messages’. In case your ec2 instances are configured to log into another log group you can provide the necessary log group configuration to code like this:

"code": {
    ...
    "deployment": {
        "LogGroup": "/my/loggroup"
    }
}





Note: as a convention each ec2 instances has its own log stream with using the instanceId as name of the stream.




Setting the ENV variable

You you need to set an environment variable “ENV” which indicates the account/staging area you want to work with. This parameter tells the tools which config file to use. For example if you want to set the environment variable ENV to ‘DEV’ you can do that as follows:

export ENV=DEV










Signal handling

code receives a SIGINT or SIGTERM signal during a deployment stop_deployment is called for the running deployment with autoRollbackEnabled.







          

      

      

    

  

    
      
          
            
  
fink.code configuration 1.0.1





Description

Documentation of the config file format for code (a fink tool). Note: if you want to add to the documentation please edit the openapi_code.yaml file




Data Structures


code - structure

The code config is organized into the following structure:











	Name
	Required
	Type
	Format
	Properties
	Description




	bundling
	No
	bundling
	 
	 
	configure details regarding bundle artifact


	codedeploy
	Yes
	codedeploy
	 
	 
	configure codedeploy details


	defaults
	Yes
	defaults
	 
	 
	finetune fink tool lifecycle (override at own risk)








codedeploy - structure

The codedeploy section.











	Name
	Required
	Type
	Format
	Properties
	Description




	applicationName
	Yes
	string
	 
	 
	 


	artifactsBucket
	No
	string
	 
	 
	s3 bucket name used to upload the artifact bundle


	deploymentConfigName
	Yes
	string
	 
	 
	 


	deploymentGroupName
	Yes
	string
	 
	 
	 








bundling - structure

Configuration specific to the bundling phase.











	Name
	Required
	Type
	Format
	Properties
	Description




	folders
	Yes
	array of foldersItem
	 
	 
	an array of folder items


	zip
	No
	string
	 
	{‘default’: ‘bundle.zip’}
	filename for the artifact bundle (e.g. bundle.zip)








defaults - structure

Default properties to finetune fink tool lifecycle (override at own risk).











	Name
	Required
	Type
	Format
	Properties
	Description




	log_group
	Yes
	string
	 
	{‘default’: ‘/var/log/messages’}
	finklabs specific configuration from baseami.


	settings_file
	Yes
	string
	 
	{‘default’: ‘settings.json’}
	validate the tool configuration against openapi spec.


	stack_output_file
	Yes
	string
	 
	{‘default’: ‘stack_output.yml’}
	validate the tool configuration against openapi spec.


	validate
	Yes
	boolean
	 
	{‘default’: True}
	use this if you need to switch off config validation.








foldersItem - structure











	Name
	Required
	Type
	Format
	Properties
	Description




	source
	Yes
	string
	 
	 
	 


	target
	No
	string
	 
	 
	 













          

      

      

    

  

    
      
          
            
  
lambda command

lambda is finks AWS Lambda deployment tool.


Related documents



	AWS Lambda service [https://aws.amazon.com/lambda/]








Usage

To see available commands, call this:

Usage:
        lambda clean
        lambda bundle [--keep] [-v]
        lambda deploy [--keep] [-v]
        lambda list
        lambda metrics <lambda>
        lambda info
        lambda wire [-v]
        lambda unwire [-v]
        lambda delete [-v] -f <lambda> [--delete-logs]
        lambda rollback [-v] <lambda> [<version>]
        lambda ping [-v] <lambda> [<version>]
        lambda invoke [-v] <lambda> [<version>] [--invocation-type=<type>] --payload=<payload> [--outfile=<file>]
        lambda logs <lambda> [--start=<start>] [--end=<end>] [--tail]
        lambda version

Options:
-h --help               show this
-v --verbose            show debug messages
--keep                  keep (reuse) installed packages
--payload=payload       '{"foo": "bar"}' or file://input.txt
--invocation-type=type  Event, RequestResponse or DryRun
--outfile=file          write the response to file
--delete-logs           delete the log group and contained logs
--start=start           log start UTC '2017-06-28 14:23' or '1h', '3d', '5w', ...
--end=end               log end UTC '2017-06-28 14:25' or '2h', '4d', '6w', ...
--tail                  continuously output logs (can't use '--end'), stop 'Ctrl-C'






clean

removes local bundle files.




bundle

zips all the files belonging to your lambda according to your config and requirements.txt and puts it in your current working directory as bundle.zip. Useful for debugging as you can still provide different environments.




deploy

Deploy an AWS Lambda function to AWS. If the lambda function is non-existent it will create a new one.

For an existing lambda function lambda checks whether the hashcode of the bundle has changed and updates the lambda function accordingly. This feature was added to lambda so we are able to compare the hashcodes locally and save time for bundle uploads to AWS.

This only works if subsequent deployments are executed from the same virtualenv (and same machine). The current implementation of the fink-bundler starts every deployment with a fresh virtualenv. If you want the hashcode comparison you need to provide the --keep option. With the ‘–keep’ option the virtualenv is preserved. Otherwise the hashcodes of the lambda code bundles will be different and the code will be deployed.

If you can not reuse (‘–keep’) the virtualenv for example in case you deploy from different machines you need to use git to check for code changes and skip deployments accordingly.

In any case configuration will be updated and an alias called “ACTIVE” will be set to this version.




list

lists all existing lambda functions including additional information like config and active version:

dp-dev-store-redshift-create-cdn-tables
    Memory: 128
    Timeout: 180
    Role: arn:aws:iam::644239850139:role/lambda/dp-dev-store-redshift-cdn-LambdaCdnRedshiftTableCr-G7ME657RXFDB
    Current Version: $LATEST
    Last Modified: 2016-04-26T18:03:44.705+0000
    CodeSha256: KY0Xk+g/Gt69V0siRhgaG7zWbg234dmb2hoz0NHIa3A=








metrics

displays metric for a given lambda:

dp-dev-ingest-lambda-cdnnorm
    Duration 488872443
    Errors 642
    Invocations 5202
    Throttles 13








wire

“wires” the AWS Lambda function to an event source.




unwire

delets the event configuration for the lambda function




delete

deletes a lambda function

If you use the --delete-logs the cloudwatch log group associated to the AWS Lambda function is deleted including log entries, too. This helps to save cost for items used in testing.




rollback

sets the active version to ACTIVE -1 or to a given version




invoke

In this section, you invoke your Lambda function manually using the lambda invoke command.

$ lambda invoke my_hello_world \
--invocation-type RequestResponse \
--payload '{"key1":"value1", "key2":"value2", "key3":"value3"}'





If you want you can save the payload to a file (for example, input.txt) and provide the file name as a parameter:

$ lambda invoke my_hello_world \
--invocation-type RequestResponse \
--payload file://input.txt





The preceding invoke command specifies RequestResponse as the invocation type, which returns a response immediately in response to the function execution. Alternatively, you can specify Event as the invocation type to invoke the function asynchronously.




logs

The lambda logs command provides you with convenient access to log events emitted by your AWS Lambda function.

The command offers ‘–start’ and ‘–end’ options where you can filter the log events to your specification. You can use human readable dates like ‘2017-07-24 14:00:00’ or you can specify dates in the past relative to now using ‘1m’, ‘2h’, ‘3d’, ‘5w’, etc.

$ lambda logs ops-dev-captain-crunch-slack-notifier --start=1d
MoinMoin fin0007m!
2017-07-07
07:00:32  START RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8 Version: $LATEST
07:00:36  END RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8
07:00:36  REPORT RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8        Duration: 4221.50 ms    Billed Duration: 4300 ms        Memory Size: 128 MB     Max Memory Used: 43 MB
Bye fin0007m. Talk to you soon!





The ‘–start’ option has a default of ‘1d’. This means if you run lambda logs <your-function-name> you get the log output of your function for the last 24 hours.

$ lambda logs ops-dev-captain-crunch-slack-notifier
MoinMoin fin0007m!
2017-07-07
07:00:32  START RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8 Version: $LATEST
07:00:36  END RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8
07:00:36  REPORT RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8        Duration: 4221.50 ms    Billed Duration: 4300 ms        Memory Size: 128 MB     Max Memory Used: 43 MB
Bye fin0007m. Talk to you soon!





You can use lambda logs to tail the log output of your lambda function. The default start date in tail mode is 5 minutes before. You can specify any past start date in tail mode but you can not specify an ‘–end’ option in tail mode. To exit the lambda logs tail mode use Ctrl-C.

$ lambda logs ops-dev-captain-crunch-slack-notifier --start=1d --tail
MoinMoin fin0007m!
Use 'Ctrl-C' to exit tail mode
2017-07-07
07:00:32  START RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8 Version: $LATEST
07:00:36  END RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8
07:00:36  REPORT RequestId: f75cd7de-62e1-11e7-937d-ef5726c6f5c8        Duration: 4221.50 ms    Billed Duration: 4300 ms        Memory Size: 128 MB     Max Memory Used: 43 MB
^CReceived SIGINT signal - exiting command 'lambda logs'








version

will print the version of fink you are using






Folder Layout




Sample config file

sample fink_dev.json file:

{
  "lambda": {
    "lambda": {
      "name": "dp-dev-store-redshift-load",
      "description": "Lambda function which loads normalized files into redshift",
      "role": "arn:aws:iam::644239850139:role/lambda/dp-dev-store-redshift-cdn-lo-LambdaCdnRedshiftLoad-DD2S84CZFGT4",
      "handlerFunction": "handler.lambda_handler",
      "handlerFile": "handler.py",
      "timeout": "180",
      "memorySize": "128",
      "events": [
        {
          "event_source": {
            "arn":  "arn:aws:s3:::my-bucket",
            "events": ["s3:ObjectCreated:*"]
          }
        },
        {
          "event_source": {
            "name": "send_reminder_to_slack",
            "schedule": "rate(1 minute)"
          }
        }
      ],
      "vpc": {
        "subnetIds": [
          "subnet-87685dde",
          "subnet-9f39ccfb",
          "subnet-166d7061"
        ],
        "securityGroups": [
          "sg-ae6850ca"
        ]
      }
    },
    "bundling": {
      "zip": "bundle.zip",
      "preBundle": [
        "../bin/first_script.sh",
        "../bin/second_script.sh"
      ],
      "folders": [
        {
          "source": "../redshiftcdnloader",
          "target": "./redshiftcdnloader"
        },
        {
          "source": "psycopg2-linux",
          "target": "psycopg2"
        }
      ]
    },
    "deployment": {
      "region": "eu-west-1",
      "artifactBucket": "7finity-$PROJECT-deployment"
    }
  }
}








lambda configuration as part of the fink_<env>.json file


log retention

Possible values for the log retention in days are: 1, 3, 5, 7, 14, 30, 60, 90, 120, 150, 180, 365, 400, 545, 731, 1827, and 3653.

{
    "lambda": {
        ...
        "logs": {
            "retentionInDays": 90
        }
}








S3 upload

lambda can upload your lambda functions to S3 instead of inline through the API.
To enable this feature add this to the “lambda” section of your fink_<env>.json config file:

"deployment": {
    "region": "eu-west-1",
    "artifactBucket": "7finity-$PROJECT-deployment"
}





You can get the name of the bucket from Ops and it should be part of the stack outputs of the base stack in your account (s3DeploymentBucket).




runtime support

fink supports the nodejs4.3, nodejs6.10, python2.7, python3.6 runtimes.

Add the runtime config to the lambda section of your fink configuration.

    "runtime": "nodejs4.3"





At this point the following features are implemented:


	install dependencies before bundling (dependencies are defined in package.json)

	bundling (bundle the lambda function code and dependencies)

	deployment (the nodejs4.3 lambda function is setup with the nodejs4.3 runtime)

	configuration (bundles settings_<env>.conf file for your environments)

	nodejs support is tested by our automated fink testsuite

	if no runtime is defined fink uses the default runtime python2.7



Note: for this to work you need to have npm installed on the machine you want to run the lambda bundling!




AWS Lambda environment variables

Ramuda supports AWS Lambda environment variables. You can specify them within the lambda section.

    ...
    "environment": {
        "MYVALUE": "FOO"
    }





More information you can find in AWS docs [http://docs.aws.amazon.com/lambda/latest/dg/env_variables.html].




Adding a settings.json file

Ramuda supports a settings section. If used a settings.json file is added to the zip bundle. You can specify the settings within the lambda section.

    ...
    "settings": {
        "MYVALUE": "FOO"
    }





You can use lookups like for the rest of the configuration. Note that the values are looked up BEFORE the AWS Lambda function is deployed. If values change during the AWS Lambda function lifecycle it does not recognise the changes. For values that must be updated you should lookup the values in your code using for example credstash.

    ...
    "settings": {
        "accountId": "lookup:stack:infra-dev:AWSAccountId"
    }








Adding event configuration

fink can be used to easily schedule functions to occur on regular intervals. Just list your expressions to schedule them using cron or rate syntax in your fink_<env>.json config file like this:

...
"events": [{
    "event_source": {
        "name": "send_reminder_to_slack",
        "schedule": "rate(1 minute)"
    }
}]





The schedule expression defines when to execute your lambda function in cron or rate format [http://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html].

Supported event types [http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html#supported-notification-event-types].

Similarly, you can have your functions execute in response to events that happen in the AWS ecosystem, such as S3 uploads, Kinesis streams, and SNS messages, etc..

In your fink_<env>.json config file, define your event sources. The following sample config will execute your AWS Lambda function in response to new objects in your my-bucket S3 bucket. Note that your function must accept event and context parameters.

...
"events": [{
    "event_source": {
        "arn":  "arn:aws:s3:::my-bucket",
        "events": ["s3:ObjectCreated:*"],
        "suffix": ".jpg"
    }
}],





Similarly, for a Simple Notification Service (SNS) event:

...
"events": [{
    "event_source": {
        "arn":  "arn:aws:sns:::your-event-topic-arn",
        "events": ["sns:Publish"]
    }
}]





Kinesis is slightly different as it is not event-based but pulling from a stream:

...
"events": [{
    "event_source": {
        "arn": arn:aws:kinesis:eu-west-1:1234554:stream/your_stream"
        "starting_position": "TRIM_HORIZON",
        "batch_size": 50,
        "enabled": true
    }
}]





Lambda@Edge needs a CloudFront event trigger.

...
"events": [{
    "event_source": {
        "arn": "arn:aws:cloudfront::420189626185:distribution/E1V934UN4EJGJA",
        "cache_behavior": "*",
        "cloudfront_event": "origin-request"
    }
}]










Deploying AWS Lambda@Edge

AWS Lambda@Edge is relatively new so we have to deal with some (hopefully temporary) limitations (like it is only available in Virginia):


	AWS Lambda@Edge functions must be deployed to ‘us-east-1’ region

	can not use artifact bucket for upload

	max memory use 128 MB

	max timeout 3 seconds for ‘origin request’ and ‘origin response’ events; for ‘viewer request’ and ‘viewer response’ events timeout is 1 second

	lambda@edge does not implement ALIAS or $LATEST so we use the version-nbr of the last published version of the lambda function for wiring

	unwire removes the lambda trigger for the configured CloudFront distribution (regardless if the lambda function is the same as the configured one or not)

	‘lambda wire’ and ‘lambda unwire’ finish after initiation of the replication to CloudFront. This means CloudFront distribution is in ‘Pending’ state when fink.lambda exits.

	you cannot delete lambda functions that have been replicated to CloudFront edge locations






Setting the ENV variable

You you need to set an environment variable “ENV” which indicates the account/staging area you want to work with. This parameter tells the tools which config file to use. For example if you want to set the environment variable ENV to ‘DEV’ you can do that as follows:

export ENV=DEV








Environment specific configuration for your lambda functions

Please put the environment specific configuration for your lambda function into a fink_<env>.json file. For most teams a useful convention would be to maintain at least ‘dev’, ‘qa’, and ‘prod’ envs.




Defining dependencies for your NodeJs lambda function

A sample package.json file to that defines a dependency to the 1337 npm module:

{
  "name": "my-sample-lambda",
  "version": "0.0.1",
  "description": "A very simple lambda function",
  "main": "index.js",
  "dependencies": {
    "1337": "^1.0.0"
  }
}








Sample NodeJs lambda function

From using lambda extensively we find it a good practise to implement the ping feature. With the ping ramdua automatically checks if your code is running fine on AWS.

Please consider to implement a ping in your own lambda functions:

var l33t = require('1337')


exports.handler = function(event, context, callback) {
    console.log( "event", event );

    if (typeof(event.lambda_action) !== "undefined" && event.lambda_action == "ping") {
        console.log("respond to ping event");
        callback(null, "alive");
    } else {
        console.log(l33t('finklabs rocks!'));  // 910m3x r0ck5!
        callback();  // success
    }
};











          

      

      

    

  

    
      
          
            
  
api command

api is finks API Gateway deployment tool.


Related documents



	AWS API Gateway service [https://aws.amazon.com/api-gateway/]








Usage

To see available commands, call this:

Usage:
        api deploy [-v]
        api delete -f [-v]
        api export [-v]
        api list [-v]
        api apikey-create <keyname> [-v]
        api apikey-list [-v]
        api apikey-delete [-v]
        api custom-domain-create [-v]
        api version

-h --help           show this
-v --verbose        show debug messages






deploy

creates/updates an API from a given swagger file




export

exports the API definition to a swagger file




list

lists all existing APIs




apikey-create

creates an API key




apikey-list

lists all existing API keys




apikey-delete

deletes an API key




version

will print the version of fink you are using






Folder Layout

swagger.yaml -> API definition in swagger with API Gateway extensions

{
    "api": {
        "api": {
            "name": "dp-dev-serve-api-2",
            "description": "description",
            "targetStage": "dev",
            "apiKey": "xxx",
            "cacheClusterEnabled": true
            "cacheClusterSize": "0.5"
            "methodSettings": {
                "/path/to/resource/GET": {
                    "cachingEnabled": false
                }
            }
        }
    },
    "lambda": {
        "lambda": {
        
            "entries": [
              {
                "name": "dp-dev-serve-api-query",
                "alias": "ACTIVE"
              },
              {
                "name": "dp-dev-serve-api-query-elasticsearch",
                "alias": "ACTIVE"
              }
            ]
        ...
        }
    }
}





Set the config attribute cacheClusterEnabled to true in your fink_<env>.json config file to enable a cache cluster for the specified stage resource.

Set the config attribute cacheClusterSize to ‘0.5’|‘1.6’|‘6.1’|‘13.5’|‘28.4’|‘58.2’|‘118’|‘237’ in your fink_<env>.json config file to configure the size for an enabled cache cluster. Default setting is ‘0.5’.

The config attribute methodSettings allows you to define settings related to a setting_key. A setting_key is defined as <resource_path>/<http_method>. So it is important that your setting_key contains the http_method (GET, PUT, OPTIONS, etc.), too. You can specify method setting properties as defined in the AWS docs: https://botocore.readthedocs.io/en/latest/reference/services/apigateway.html#APIGateway.Client.update_stage like for example ‘cachingEnabled’, ‘loggingLevel’, etc.


Create custom domain

Currently the certificates need to be deployed in us-east-1 and used in the certificateArn in the customDomain section. If you use ACM lookup (fink-lookups) to lookup your certificate arn for api it uses us-east-1 already.

"customDomain": {
  "basePath": "",
  "certificateName": "wildcard.finklabs.com-2017-3-2",
  "certificateArn": "lookup:acm:*.infra.finklabs.cloud",
  "domainName": "unittest-fink-sample-api-dev-eu-west-1.dev.mes.finklabs.cloud",
  "hostedDomainZoneId": "lookup:stack:infra-dev:internalDomainHostedZoneID",
  "route53Record": "unittest-fink-sample-api-dev-eu-west-1.dev.infra.finklabs.cloud"
}








Setting the ENV variable

You you need to set an environment variable “ENV” which indicates the account/staging area you want to work with. This parameter tells the tools which config file to use. For example if you want to set the environment variable ENV to ‘DEV’ you can do that as follows:

export ENV=DEV













          

      

      

    

  

    
      
          
            
  
api tool config 1.0.1





Description

Documentation of the config file format for api (a fink tool). Note: if you want to add to the documentation please edit the openapi_api_gateway.yaml file!




Data Structures


api - structure

The api tool config is organized into the following structure:











	Name
	Required
	Type
	Format
	Properties
	Description




	api
	Yes
	api_def
	 
	 
	 


	customDomain
	No
	customDomain
	 
	 
	 


	lambda
	No
	lambda
	 
	 
	 








api_def - structure

Use the api section to configure API Gateway details.











	Name
	Required
	Type
	Format
	Properties
	Description




	apiKey
	Yes
	string
	 
	 
	 


	cacheClusterEnabled
	No
	boolean
	 
	 
	Enables a cache cluster for the Stage resource specified in the input


	cacheClusterSize
	No
	string
	 
	 
	Specifies the cache cluster size for the Stage resource specified in the input, if a cache cluster is enabled (defaults to ‘0.5’)


	description
	Yes
	string
	 
	 
	The description for the Deployment resource to create


	methodSettings
	No
	methodSettings
	 
	 
	A map that defines the method settings for a Stage resource


	name
	Yes
	string
	 
	 
	The name of the Stage resource for the Deployment resource to create


	targetStage
	Yes
	string
	 
	 
	The name of the Stage resource for the Deployment resource to create





Methodsettings schema:

A map that defines the method settings for a Stage resource




customDomain - structure

Configuration necessary to setup a custom domain for the api.











	Name
	Required
	Type
	Format
	Properties
	Description




	basePath
	Yes
	string
	 
	 
	 


	certificateArn
	Yes
	arn
	 
	 
	The reference to an AWS-managed certificate. AWS Certificate Manager is the only supported source


	certificateName
	Yes
	string
	 
	 
	The user-friendly name of the certificate


	domainName
	Yes
	string
	 
	 
	The name of the DomainName resource


	hostedDomainZoneId
	Yes
	string
	 
	 
	 


	route53Record
	Yes
	string
	 
	 
	 








lambda - structure











	Name
	Required
	Type
	Format
	Properties
	Description




	entries
	No
	array of entries
	 
	 
	 








entries - structure











	Name
	Required
	Type
	Format
	Properties
	Description




	alias
	Yes
	string
	 
	 
	 


	name
	Yes
	string
	 
	 
	 


	swaggerRef
	No
	string
	 
	 
	 








arn - structure

Amazon Resource Name [http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html]











	Name
	Required
	Type
	Format
	Properties
	Description




	arn
	No
	string
	 
	 
	Amazon Resource Name [http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html]













          

      

      

    

  

    
      
          
            
  
Plugins for fink



	Introduction
	Related documents
	fink (cloud deployment tools) [https://github.com/finklabs/fink]

	blinker signals [https://pythonhosted.org/blinker/]

	pluggy is similar to our fink plugin mechanism [https://github.com/pytest-dev/pluggy]

	slack-webhooks [https://api.slack.com/incoming-webhooks]

	hocon config format [https://github.com/typesafehub/config]

	hocon in python [https://github.com/chimpler/pyhocon]

	using virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/]









	Overview
	Plugin system key functions

	Plugin installation

	Plugin configuration

	Plugin descriptions





	fink plugin mechanism
	Anatomy of a plugin

	Overview of the fink lifecycle

	List of fink signals

	Developing plugins

	Testing a plugin





	Overview on configuration
	Structure of the configuration (internal representation)

	Multiple levels of fink configuration

	Context





	fink.config-reader plugin
	Related documents
	JSON [https://en.wikipedia.org/wiki/JSON]

	YAML [https://en.wikipedia.org/wiki/YAML]





	json configuration files

	yaml configuration files

	python configuration files

	finkignore patterns

	reference to base config file





	fink.lookups plugin
	Related documents
	credstash [https://github.com/fugue/credstash]





	lookup stack output

	lookup acm certificate

	lookup secret

	lookup parameter





	fink.lookups plugin config 1.0.4
	Description

	Data Structures
	fink.lookups - structure

	defaults - structure

	lookup_type - structure

	lookup_format - structure









	fink.bundler plugin
	Related documents

	Sample config





	fink.say-hello plugin

	fink.slack-integration plugin
	Related documents
	Python requests library [http://docs.python-requests.org/en/master/]

	Slack webhooks [https://api.slack.com/incoming-webhooks]

	Test tool for requests library [https://github.com/bhodorog/pytest-vts]





	slack integration plugin functionality

	Setup

	Configuration





	fink-slack-integration plugin config 1.0.2
	Description

	Data Structures
	fink.slack_integration - structure

	defaults - structure

















          

      

      

    

  

    
      
          
            
  
Introduction

Plugins are a way to add features to fink without having to directly modify the fink core.

This fink plugin userguide aims to make it easy for you to get started using plugins in your projects. fink plugins help you customize the fink tools towards your specific project needs.

fink plugins are available for many different areas from reading your specific configuration format, to looking up credentials from your secret-store. fink plugins were implemented internally at finklabs.

finklabs [http://www.finklabs.com/] – The Global Media Exchange – is a provider of a global, open marketplace for premium video content as well as a technical service provider for the entire value chain of online video marketing.

fink plugins and userguide are released under MIT License [http://github.com/finklabs/fink/LICENSE].

The fink plugins userguide starts with this introduction, then provides an overview on how to use and configure fink plugins in general. The following parts each cover one fink plugin.

This user guide assumes that you know fink and the AWS services you want to automate so we do not cover AWS services in great detail and instead point to relevant documentation. But even if you are starting out on AWS, fink will help you to quickly leave the AWS webconsole behind and to move towards infrastructure-as-code.


Related documents

This section aims to provide to you a list of related documents that will be useful to gain a detailed understanding about what the fink tool suite does. With this background you will be able to tap into the full potential of the fink tools.



	fink (cloud deployment tools) [https://github.com/finklabs/fink]

	blinker signals [https://pythonhosted.org/blinker/]

	pluggy is similar to our fink plugin mechanism [https://github.com/pytest-dev/pluggy]

	slack-webhooks [https://api.slack.com/incoming-webhooks]

	hocon config format [https://github.com/typesafehub/config]

	hocon in python [https://github.com/chimpler/pyhocon]

	using virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/]











          

      

      

    

  

    
      
          
            
  
Overview

This sections provides and overview on the fink plugin system. It covers everything necessary to understand how it works at a high level.


Plugin system key functions

Main functionality of the fink plugin system is to provide means so fink can be customized and extended without changing the core functionality. This is necessary for example in case not everybody uses slack or datadog. In this situation one can just not use the plugin or use a plugin which supports an alternate service.

Plugins are added to fink via python packages. The following section covers how to do that.

The fink plugin mechanism also encapsulates the plugin code in a way that it is separated from fink core. This enables us to change and test a plugin as a component independent from fink core. More details about the plugin mechanism are covered in the next chapter.




Plugin installation

Plugins are maintained as standard python packages. Just install plugins you want via pip install <plugin_name>. Same idea applies to removing plugins from a project setup. Using pip uninstall <plugin_name> removes the plugin.

A more sophisticated way of doing that which goes well with CI/CD is to simply add your fink plugins to your projects requirements_fink.txt file. Especially if you need more tools and plugins this makes setting up your CI environment easy and reproducible. pip install -r requirements.txt -r requirments_dev.txt installs all the packages you need for your service and for developing it.




Plugin configuration

Configuration for a plugin are specific for that plugin so please consult the plugins documentation for specific configuration options. General mechanism is that you add the configuration for the plugin to your fink_<env>.json file. Add a section with the plugin name like in the following snippet:

    ...
    'plugins': {
        ...
        'fink.slack_integration': {
            'slack_webhook': 'lookup:secret:slack.webhook:CONTINUE_IF_NOT_FOUND'
        },
        ...
    }








Plugin descriptions

The following table lists the plugins and gives a brief overview what each plugin is used for.

Plugin | Description
—— | ———–
fink.config_reader | read configuration files in json, python, or yaml format
fink.lookup | lookup information related to your AWS account
fink.bundler | create code bundles for code and lambda.
fink.say_hello | simple plugin to demonstrate how plugins work / are developed
fink.slack_integration | send deployment status information to slack

Please refer to detailed plugin’s documentation later in this document folder for detailed information about that plugin.

Later we are going to put plugins in separate repositories so they can have independent owners and development / release cycles. With that we move the detailed plugin documentation to the plugin README and documentation.







          

      

      

    

  

    
      
          
            
  
fink plugin mechanism

The previous chapter gave an overview on the fink plugin system so please make sure that you have read through that one. This section goes into more detail in how the fink plugin mechanism works. So you can customize plugins or even write new ones.

fink plugins are standard python packages which are installed separately. How to do this is covered in the previous chapter plugin overview [http://fink.readthedocs.io/en/latest/fink_plugins/10_overview.html]. To understand how the plugin mechanism works one must know about the fink lifecycle which is covered in the next section.

If a fink command is entered on the command line things are processed in the following order:


	Python interpreter loads the fink package

	CLI options and arguments are parsed

	we check if any relevant plugins are installed (details in plugin entry_points)

	relevant plugins are loaded and check if they comply to fink plugin structure.

	register() function of each plugin is called.

	then the fink lifecycle is executed

	each lifecycle step fires an event which we call signal




Anatomy of a plugin

Each fink plugin must implement register() and deregister() functions to be a valid fink-plugin that can be used. Note how the register() function connects the plugin function say_hello with the initialized lifecycle step. deregister() just disconnects the plugin functionality from the fink lifecycle.

def say_hello(context):
    """
    :param context: The boto_session, etc.. say_hello plugin needs the 'user'
    """
    print('MoinMoin %s!' % context.get('user', 'to you'))

...

def register():
    """Please be very specific about when your plugin needs to run and why.
    E.g. run the sample stuff after at the very beginning of the lifecycle
    """
    fink_signals.initialized.connect(say_hello)
    fink_signals.finalized.connect(say_bye)


def deregister():
    fink_signals.initialized.disconnect(say_hello)
    fink_signals.finalized.disconnect(say_bye)





Handing in information to your plugin functions. Look into fink.fink_signals for details.

def my_plug_function(params):
    """
    :param params: context, config (context - the env, user, _awsclient, etc..
                   config - The stack details, etc..)
    """
    context, config = params
    # implementation here
    ...





All fink lifecycle steps provide the (context, config) tuple besides initialized and finalized. These two only provide the context.

The same lifecycle & signals mechanism applies to fink hooks. So if you ever wondered how fink hooks are work - now you know.




Overview of the fink lifecycle

The fink lifecycle is the essential piece of the fink tool core. It is like the clockwork of a watch. The fink lifecycle makes sure that everything is executed in the right order and everything works together like commands, hooks, plugins, etc.

The fink lifecycle is generic. This means the fink lifecycle is the same for each and every fink tool. But it is possible that a tool does not need a certain lifecycle step to it just skips it. For example there is no bundling for cloud(, yet?).

The coarse grained fink lifecycle looks like that:

[image: fink_lifecycle]

If during processing of a lifecycle an error occurs then the processing stops.




List of fink signals

The list of fink signals you can use in plugins or hooks:


	initialized - after reading arguments and context

	config_read_init

	config_read_finalized

	check_credentials_init

	check_credentials_finalized

	lookup_init

	lookup_finalized

	config_validation_init

	config_validation_finalized

	bundle_pre - we need this signal to implement the prebundle-hook

	bundle_init

	bundle_finalized

	command_init

	command_finalized

	error

	finalized



The order of this list also represents the order of the lifecycle steps with in the fink lifecycle.




Developing plugins

If you want to develop a plugin to integrate some service or to optimize the configuration for your environment we recommend that you “fork” the say_hello plugin so you have the right structure and start from there.

If you need help developing your plugin or want to discuss your plans and get some feedback please don’t be shy. The SRE squad is here to help.




Testing a plugin

Testing a fink plugin should be easy since its code is decoupled from fink core. It is a good practice to put the tests into the tests folder. Also please prefix all your test files with test_ in this way pytest can pick them up.
Please make sure that your plugin test coverage is on the save side of 80%.







          

      

      

    

  

    
      
          
            
  
Overview on configuration

Configuration and configuration file formats are very dear to us and we already know to you, too. For example a team likes to use multiple tool specific hocon files so this functionality is provided by a team specific team.config_reader. Other teams like to have all the configuration for a service environment in one single config file (fink.config_reader).

Regarding configuration file formats many things are possible and it should be very simple to implement your specific requirements as a plugin so you could use XML or INI format. Talk to us and do not shy away from good old json config.


Structure of the configuration (internal representation)

The datastructure used by fink internally to represent the configuration is basically json compatible.

We have configuration on the following levels:


	top-level

	tool-level (tools are cloud, code, lambda, api)

	plugin specific configuration



{
    'cloud': {
        ...
    },
    'code': {
        ...
    },
    'lambda': {
        ...
    },
    'api': {
        ...
    },
    'plugins' {
        'plugin_a': {
            ...
        },
        ...
    }
}








Multiple levels of fink configuration

Configuration is assembled in multiple levels:

[image: fink configuration defaults]

The multiple levels of configurations represent different stages in the lifecycle process. This allows to have a very generic “catch-all” configuration but to override this configuration in specific cases when we have more specific information. Like when using a plugin. For example the fink.config_reader looks for .json config files.




Context

The fink context is the “internal” datastructure fink is using to process the CLI command that need to be executed. So for instance each plugin or hook can find out about the tool, command, or env it is currently processing. With the context we follow the convention to prefix private attributes with an ‘_‘ like with the _awsclient that plugins use to access AWS services but _awsclient does not show up in the slack notification.

{
  'version': '0.1.426',
  'command': 'preview',
  '_awsclient': <fink.fink_awsclient.AWSClient object at 0x10291a490>,
  'env': 'dev',
  '_arguments': {
    '--override-stack-policy': False,
    '-f': False,
    'delete': False,
    'deploy': False,
    'dot': False,
    'generate': False,
    'list': False,
    'preview': True,
    'version': False
  },
  'tool': 'cloud',
  'plugins': [
    'fink.config-reader',
    'fink.bundler',
    'fink.say-hello',
    'fink.slack-integration',
    'fink.doctor',
    'fink.gru',
    'fink.lookups'
  ],
  'user': 'markfink'
}











          

      

      

    

  

    
      
          
            
  
fink.config-reader plugin

Read config from files in json, python or yaml format.
There is a section called overview on configuration above. Please make sure you have that one covered.


Related documents



	JSON [https://en.wikipedia.org/wiki/JSON]

	YAML [https://en.wikipedia.org/wiki/YAML]








json configuration files

The fink.config_reader plugin allows us to have configurations in json format.

The configuration files are environment specific. This means the config file looks like fink_<env>.json` where  stands for the environment you use (some thing like dev, stage, prod, etc.).
  
    
    
    fink.lookups plugin
    
    

    
 
  
  

    
      
          
            
  
fink.lookups plugin

The lookups functionality was previously part of the hocon config reader. The lookup functionality was refactored into this fink-lookups plugin and with the refactoring we also pinned the functionality it into a dedicated lifecycle step.


Related documents



	credstash [https://github.com/fugue/credstash]








lookup stack output

The stack lookup is used to substitute configuration where the value is an output from another cloudformation stack.

format: lookup:stack:<stackname>:<output>
sample: lookup:secret:slack.token




lookup acm certificate

format: lookup:acm:<name_1>:...:<name_n>:
sample: lookup:acm:foo.mes.finklabs.cloud:supercars.infra.finklabs.cloud:*.dev.infra.finklabs.cloud

‘acm’ lookup uses the AWS ACM (Certificate Manager) functionality. It is configured as default lookup.

Features of the acm lookup:


	pass a list of hostnames that should be secured.

	check all certificates in ACM if the configured CN (DomainName) or SANs (SubjectAlternativeNames) (including wildcards) if they match for the given list of hostnames

	the chosen certificates STATUS must be ISSUED

	if there are multiple matches, use the one with the most distant expiry date

	return the ARN of the certificate

	wildcards for hosted zone are expressed with “*.”

	‘ERROR’ in case a certificate matching the specified list of names can not be found



Note: if you use ACM lookup in api / API Gateway you need to deploy the certificates to the us-east-1 region.




lookup secret

The secret lookup is used to substitute configuration where the value is a password, or other sensitive information that you can not commit to a sourcecode repository. The keys are stored in credstash (DynamoDB + KMS).

format: lookup:secret:<name>.<subname>

lookup the ‘slack.webhook’ entry from credstash
sample: lookup:secret:slack.webhook

lookup the ‘slack.webhook’ entry from credstash
sample: lookup:secret:slack.webhook:CONTINUE_IF_NOT_FOUND

note in the second example that the slack.webhook lookup does not fail it the accounts credstash does not have the slack.webhook entry.

more info on storing keys in AWS using credstash [https://github.com/fugue/credstash]




lookup parameter

The parameter lookup is used to substitute configuration where the value is a password, or other sensitive information that you can not commit to a sourcecode repository. The keys are stored in AWS Simple Systems Manager (SSM) parameter store. If you want to replace credstash (see above) you can use type ‘SecureString’ to store your parameters encrypted. Like with credstash your encryption key is stored in KMS.

format: lookup:parameter:<name>.<subname>

lookup the ‘slack.webhook’ entry from SSM parameter store
sample: lookup:parameter:slack.webhook

lookup the ‘slack.webhook’ entry from SSM parameter store
sample: lookup:parameter:slack.webhook:CONTINUE_IF_NOT_FOUND

note in the second example the slack.webhook lookup does not fail it the accounts SSM parameter store does not have the slack.webhook entry.

more info on SSM parameter store [http://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html]







          

      

      

    

  

  
    
    
    fink.lookups plugin config 1.0.4
    
    

    
 
  
  

    
      
          
            
  
fink.lookups plugin config 1.0.4





Description

Documentation of the config file format for fink.lookups (a fink plugin). Note: if you want to add to the documentation please edit the openapi_lookups.yaml file




Data Structures


fink.lookups - structure

The plugin config is organized into the following structure:











	Name
	Required
	Type
	Format
	Properties
	Description




	defaults
	Yes
	defaults
	 
	 
	finetune fink tool lifecycle (override at own risk)








defaults - structure

Default properties to fine tune fink tool lifecycle (override at own risk).











	Name
	Required
	Type
	Format
	Properties
	Description




	lookups
	Yes
	array of lookup_type
	 
	{‘default’: [‘parameter’, ‘secret’, ‘stack’, ‘acm’]}
	define which lookups can be used for this deployment


	validate
	Yes
	boolean
	 
	{‘default’: True}
	use this if you need to switch off config validation.








lookup_type - structure











	Name
	Required
	Type
	Format
	Properties
	Description




	lookup_type
	No
	string
	 
	 
	 








lookup_format - structure











	Name
	Required
	Type
	Format
	Properties
	Description




	lookup_format
	No
	string
	 
	 
	 













          

      

      

    

  

  
    
    
    fink.bundler plugin
    
    

    
 
  
  

    
      
          
            
  
fink.bundler plugin

Create code bundles for code and lambda.


Related documents




Sample config

bundling sample for cloud:

...
"bundling": {
    "folders": [
        { "source" = "./codedeploy", target = "." },
        { "source" = "../app", target = "app" },
        { "source" = "../images", target = "images" },
        { "source" = "../supercars", target = "supercars" }
    ]
}





Bundling sample for lambda:

...
"bundling": {
  "zip": "bundle.zip",
  "folders": [
    { "source": "./vendored", "target": "."},
    { "source": "./impl", "target": "impl"}
  ]
},











          

      

      

    

  

  
    
    
    fink.say-hello plugin
    
    

    
 
  
  

    
      
          
            
  
fink.say-hello plugin

This is probably the friendliest plugin ever. It simply greets the user.

Purpose of this plugin is to demonstrate how the fink plugin mechanism works to developers. You can use it as blueprint to jump-start developing your own plugin.

# -*- coding: utf-8 -*-
"""A fink plugin which demonstrates how to implement hello world as plugin."""
from __future__ import unicode_literals, print_function

from fink import fink_signals


def say_hello(context):
    """say hi.
    :param context: The boto_session, etc.. say_hello plugin needs the 'user'
    """
    print('MoinMoin %s!' % context.get('user', 'to you'))


def say_bye(context):
    """say bye.
    :param context: The boto_session, etc.. say_hello plugin needs the 'user'
    """
    print('Bye %s. Talk to you soon!' % context.get('user', 'then'))


def register():
    """Please be very specific about when your plugin needs to run and why.
    E.g. run the sample stuff after at the very beginning of the lifecycle
    """
    fink_signals.initialized.connect(say_hello)
    fink_signals.finalized.connect(say_bye)


def deregister():
    fink_signals.initialized.disconnect(say_hello)
    fink_signals.finalized.disconnect(say_bye)









          

      

      

    

  

  
    
    
    fink.slack-integration plugin
    
    

    
 
  
  

    
      
          
            
  
fink.slack-integration plugin

Announce the status of your deployments on slack.


Related documents



	Python requests library [http://docs.python-requests.org/en/master/]

	Slack webhooks [https://api.slack.com/incoming-webhooks]

	Test tool for requests library [https://github.com/bhodorog/pytest-vts]








slack integration plugin functionality

Announce deployments on the slack channel for your squad:

[image: fink.slack integration]

In case a deployments fails you get a notification, too:

[image: fink.slack integration]




Setup

To setup the slack integration for your account you need two things:


	a slack webhook [https://api.slack.com/incoming-webhooks]

	you need to add the slack webhook to SSM parameter store so the lookup:parameter:slack.webhook works






Configuration

slack.webhook is provided via parameter lookup:

    ...
    "plugins": {
        "fink.slack_integration": {
            "channel": "<my_teams_slack_channel>"
        },
        ...
    }





Note the slack.webhook configuration is provided via default configuration. You do not need to change that as long as you are happy with the default config:

    "slack_webhook": "lookup:parameter:slack.webhook:CONTINUE_IF_NOT_FOUND"











          

      

      

    

  

  
    
    
    fink-slack-integration plugin config 1.0.2
    
    

    
 
  
  

    
      
          
            
  
fink-slack-integration plugin config 1.0.2





Description

Documentation of the config file format for fink.slack-integration (a fink plugin). Note: if you want to add to the documentation please edit the openapi_slack_integration.yaml file




Data Structures


fink.slack_integration - structure

The plugin config is organized into the following structure:











	Name
	Required
	Type
	Format
	Properties
	Description




	defaults
	Yes
	defaults
	 
	 
	finetune fink tool lifecycle (override at own risk)








defaults - structure

Default properties to finetune fink tool lifecycle (override at own risk).











	Name
	Required
	Type
	Format
	Properties
	Description




	slack_webhook
	Yes
	string
	 
	{‘default’: ‘lookup:parameter:slack.webhook:CONTINUE_IF_NOT_FOUND’}
	webhook for posting to slack


	validate
	Yes
	boolean
	 
	{‘default’: True}
	use this if you need to switch off config validation.













          

      

      

    

  

  
    
    
    Frequently Asked Questions (faq)
    
    

    
 
  
  

    
      
          
            
  
Frequently Asked Questions (faq)


Homebrew Python

If you installed Python via Homebrew on OS X and get this error:

must supply either home or prefix/exec-prefix -- not both





You can find a solution on here [http://stackoverflow.com/questions/24257803/distutilsoptionerror-must-supply-either-home-or-prefix-exec-prefix-not-both]




Python package errors

Please ensure that you have the latest version of pip, setuptools and virtualenv

If you have error like this:

pip._vendor.pkg_resources.DistributionNotFound:





or

pkg_resources.DistributionNotFound: regex==2017.6.07





you should update your pip and virtualenv packages

$ pip install -U pip
$ pip install -U virtualenv








Bundling error

This error is usually caused by not having installed the fink-bundler plugin:

(.python) root@:/app# AWS_PROFILE=superuser-dev ENV=qa lambda deploy
ERROR: u'_zipfile'
ERROR: u'_zipfile'
Traceback (most recent call last):
  File "/root/.python/bin/lambda", line 11, in <module>
    sys.exit(main())
  File "/root/.python/local/lib/python2.7/site-packages/fink/lambda_main.py", line 255, in main
    dispatch_only=['version', 'clean']))
  File "/root/.python/local/lib/python2.7/site-packages/fink/fink_lifecycle.py", line 195, in main
    return lifecycle(awsclient, env, tool, command, arguments)
  File "/root/.python/local/lib/python2.7/site-packages/fink/fink_lifecycle.py", line 142, in lifecycle
    raise(e)
KeyError: u'_zipfile'





You need to add fink-bundler into requirements_fink.txt and do:

$ pip install -U -r requirements_fink.txt








Missing configuration error

After updating fink to the latest version you get the following error:

Configuration missing for ‘cloud’





This error appears if you used hocon based configs without having installed the finklabs-config-reader plugin. You can install it or use conf2json [http://sre-docs.finklabs.cloud/finklabs-config-reader/userguide/40_finklabs_config_reader.html#command-conf2json] util (only for finklabs users) to transform your hocon configs into json one.




Environment variable error

If you run any fink commands (cloud, code, lambda etc) and get the following error:

ERROR: 'ENV' environment variable not set!





Environment variable “ENV” indicated the account/staging area you want to work with. This parameter tells the tools which config file to use. Please be sure that you provide the correct environment variables (ENV=PROD/DEV/etc.)

$ export ENV=DEV








Using hooks in fink

We implemented hooks in fink similar to the plugin mechanism.

You can use hooks in fink in the following places:


	use hooks in a cloudformation.py template

	use hooks in a fink_<env>.py config file

	use hooks in a hookfile.py. Please specify the location of the hookfile in your config file.



For details on fink_lifecycle and fink_signals please take a look into the fink plugins section of this documentation.







          

      

      

    

  

  
    
    
    Changelog
    
    

    
 
  
  

    
      
          
            
  
Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].


[0.1.436] - 2017-08-17


Fixed


	api: default value for cache size property (#328)








[0.1.435] - 2017-08-17


Added


	api: add cache size property (#328)








[0.1.433] - 2017-08-14


Added


	cloud: stop / start cloudformation stack (#342)








[0.1.432] - 2017-08-10


Fixed


	fink: removed explicit requests dependency (#359)








[0.1.431] - 2017-08-10


Added


	fink-lookups: added acm lookup documentation, do acm lookup by default (#359)






Deprecated


	fink-lookups: ami was already deprecated but made it more explicit + docs








[0.1.430] - 2017-08-08


Added


	api: implement cache settings on method level (#328)








[0.1.429] - 2017-08-07


Added


	cloud: fixed compatibility issue with templates in update case (#357)








[0.1.428] - 2017-08-03


Added


	cloud: use ‘context’ and ‘config’ in cloudformation templates (#353)

	cloud: add ‘stack_output’ attribute to context (#353)

	added section on version pinning to installation guide








[0.1.427] - 2017-08-01


Added


	api: cacheClusterEnabled setting (#328)








[0.1.426] - 2017-08-01


Added


	cloud: cloud_particle_helper plus docs (#244)








[0.1.425] - 2017-08-01


Fixed


	cloud, code: report correct deployment status on slack (#348)








[0.1.424] - 2017-08-01


Added


	lambda: mechanism for flexible event wiring (#264)






Deprecated


	lambda: ‘events’ config dictionary like ‘s3Sources’ and ‘timeSchedules’ (#264)








[0.1.423] - 2017-07-21


Added


	code: improve output in case of errors (#316)








[0.1.422] - 2017-07-18


Fixed


	cloud: fix warning message for deprecated format (#337)








[0.1.421] - 2017-07-18


Fixed


	dependencies for logcapture mechanism (#285)








[0.1.420] - 2017-07-18


Added


	cloud: add SNS notifications (#185)

	logcapture mechanism for tests (#285)






Deprecated


	cloud: “cloudformation” config section, use “parameters” & “stack” instead (#337)








[0.1.419] - 2017-07-17


Added


	cloud: add status message for empty changeset (#126)








[0.1.418] - 2017-07-17


Added


	lambda & code settings files - json format (#295)








[0.1.417] - 2017-07-13


Added


	getting started guide (#312)








[0.1.415] - 2017-07-12


Fixed


	cloud update when using the artifactBucket setting (#332)








[0.1.413] - 2017-07-07


Added


	lambda logs command (#247)








[0.1.412] - 2017-07-05


Added


	fix some docu issues for lambda








[0.1.411] - 2017-07-04


Added


	configure cloudwatch logs for lambda (#191)








[0.1.410] - 2017-07-03


Fixed


	fix ‘file://’ prefix for lambda invoke payload (#246)








[0.1.409] - 2017-07-03


Added


	use roleARN for cloud delete, too (#162)








[0.1.408] - 2017-06-30


Added


	cloud preview for new stack (#73)








[0.1.407] - 2017-06-30


Fixed


	do not fail check_fink_update when PyPi is down (#313)








[0.1.406] - 2017-06-30


Added


	support for AWS Lambda ENV variables (#262)








[0.1.405] - 2017-06-30


Fixed


	minor documentation changes for cloud. Better description of usage of a role for CloudFormation (#162)








[0.1.404] - 2017-06-29


Added


	handle SIGTERM and SIGINT signals and stop running deployments accordingly (#40)








[0.1.403] - 2017-06-22


Added


	define GracefulExit exception (#40)








[0.1.402] - 2017-06-21


Fixed


	lambda redeploy version without changes issue (#145)








[0.1.401] - 2017-06-20


Fixed


	cloud artifactBucket handling (#292)








[0.1.400] - 2017-06-20


Fixed


	datetime handling (#226)








[0.1.399] - 2017-06-19


Fixed


	code clean up /tmp files (#60)








[0.1.398] - 2017-06-16


Added


	cloud use special role for cloudformation deployments (#162)








[0.1.397] - 2017-06-16


Fixed


	cloud parameter diffing without params fails (#64)

	cloud parameter diffing flaws (#184)








[0.1.396] - 2017-06-12


Added


	lambda invoke command (#246)








[0.1.394] - 2017-06-09


Added


	add stack_output.yml to code bundle artifact (#266)








[0.1.393] - 2017-06-09


Added


	lambda works with python3.6








[0.1.392] - 2017-06-07


Added


	added some documentation related to fink-bundler and AWS Lambda runtimes








[0.1.391] - 2017-06-02


Added


	support for nodejs6.10 + python3.6 runtimes

	specify folders (source & target) for code bundles

	lambda ‘–keep’ option to speed up your dev cycles








[0.1.390] - 2017-05-31


Added


	prepare for nodejs6.10 runtime (PR 293)








[0.1.8] - 2017-04-27


Added


	improve exception handling (#285)
plus proper error message for missing config








[0.1.7] - 2017-04-27


Added


	check AWS Lambda runtime in lambda config (#254)








[0.1.6] - 2017-04-26


Added


	getLogger helper to be used by fink plugins (#213)








[0.1.5] - 2017-04-26


Added


	fink plugin version info in version cmd and datadog (#250)

	use fink plugins in E2E test lifecycle (#250)








[0.1.4] - 2017-04-07


Added


	fink package publicly available on PyPi (#250)








[0.1.0] - 2017-04-05


Added


	open source on Github (#255)

	moved build jobs to new infra jenkins (#255)






Changed


	it is now mandatory for fink users to maintain plugin dependencies








[0.0.84] - 2017-03-30


Added


	support for hooks in cloudformation templates and hookfiles (#218)








[0.0.83] - 2017-03-29


Added


	updated fink plugin dependency








[0.0.82] - 2017-03-29


Added


	added scaffolding mechanism

	use MIT LICENSE (#253)






Fixed


	tamed greedy lookup (#258)

	cloud fixed deprecated pre_hook (#259)








[0.0.81] - 2017-03-24


Added


	included plugin documentation

	fink.config_reader for json config files (#218)






Fixed


	lambda bundle includes settings_<env>.conf file (#249)

	minor improvements from code review sessions (#230)

	missing environment is not properly handled (#248)








[0.0.80] - 2017-03-09


Fixed


	fixed lambda vpc config handling (#225)








[0.0.79] - 2017-03-08


Fixed


	cloud docu bug (#183)

	servicediscovery timestamp localization issue (#217)

	lambda bundling issue (#225)








[0.0.78] - 2017-03-06


Added


	moved hocon config_reader to plugin (#150)

	split fink.lookups plugin from config_reader (#150)

	improved slack plugin (webhooks, consolidated msgs) (#219)

	extracted bundle step into bundler plugin (#150)








[0.0.77] - 2017-02-20


Added


	moved to std python logging + activate DEBUG logs via -v (#175)

	std. fink lifecycle (#152)

	removed finklabs_utils as installation dependency (#152)

	cloudformation utilities need awsclient (see cloud documentation) (#152)

	plugin mechanism (#152)

	moved datadog and slack reporting functionality to fink plugins (#152)

	cmd dispatcher + testable main modules + tests (#152)

	migrated boto_session to awsclient (#152)








[0.0.76] - 2017-01-30


Added


	lambda replaced git short hash in target filename with sha256 (#169)

	requirements.txt and settings_<env>.conf optional for lambda (#114)

	made boto_session a parameter in credstash (#177)








[0.0.75] - 2017-01-24


Added


	added fink installer (#201)

	fink outdated version warning (#155)

	moved docs from README to sphinx / readthedocs (PR194)

	pythonic dependency management (without pip-compile) (#178)

	removed finklabs-utils dependency (#178)






Changed


	moved CHANGELOG.md to docs folder








[0.0.73] - 2017-01-09


Fixed


	(#194)








[0.0.64] - 2016-11-11


Fixed


	wrong boto client used when getting lambda arn








[0.0.63] - 2016-11-08


Fixed


	pre-hook fires before config is read (#165)








[0.0.62] - 2016-11-07


Added


	lambda pre-bundle hooks






Fixed


	compress bundle.zip in lambda bundle/deploy








[0.0.61] - 2016-11-07


Fixed


	moved build system to infra account (#160)








[0.0.60] - 2016-10-07


Added


	cloud now has the visualize cmd. Req. dot installation (#136).

	code now has the slack notifications (#79).- FIX moved tests to pytest to improve cleanup after tests (#119).

	cloud now has parametrized hooks (#34).






Fixed


	moved tests to pytest to improve cleanup after tests (#119).

	lambda rollback to previous version.

	cloud Parameter diffing does not work for aws coma-seperated inputs (#77).

	lambda fail deployment on failing ping (#113).

	moved tests to pytest to improve cleanup after tests (#119).

	speedup tests by use of mocked service calls to AWS services (#151).








[0.0.57] - 2016-09-23


Added


	code now supports execution of bash scripts before bundling, can be used to bundle packages at runtime.






Fixed


	code now returns proper exit codes when deployment fails.








[0.0.55] - 2016-09-16


Added


	cloud utils EBS tagging functionality (intended for post hooks)

	cloud now supports host zones as a parameter for creating route53 records








[0.0.51] - 2016-09-05


Fixed


	cloud parameter diff now checks if stack has parameters beforehand








[0.0.45] - 2016-09-01


Added


	lambda autowire functionality

	fink sends metrics and events to datadog






Fixed


	api will add invoke lambda permission for new paths in existing APIs








[0.0.35] - 2016-08-29


Added


	consolidated slack configuration to .fink files

	configuration for slack_channel








[0.0.34] - 2016-08-tbd


Fixed


	refactored api structure to api_main and api_core

	improved api testability and test coverage

	further improved lambda test coverage








[0.0.33] - 2016-08-18


Added


	fink pull request builder






Fixed


	refactored code structure to code_main and code_core

	improved code testability and test coverage

	refactored lambda structure to lambda_main and lambda_core

	improved lambda testability and test coverage








[0.0.30] - 2016-08-02


Added


	refactored cloud structure to cloud_main and cloud_core

	improved cloud testability and test coverage

	Rate limiting when preview with empty changeset (#48)






Removed


	cloud validate

	cloud scaffold








[0.0.29] - 2016-07-21


Added


	bump finklabs-utils to 0.0.11






Fixed


	create_stack was broken








[0.0.26] - 2016-07-19


Added


	cloud now supports stack policies, see README for details

	cloud now displays changes in CloudFormation template parameters






Fixed


	prettify output

	removed debug output

	removed some unnecessary import validations

	cloud will now exit when importing a cloudformation.py not from your current working directory











          

      

      

    

  

  
    
    
    Development of fink
    
    

    
 
  
  

    
      
          
            
  
Development of fink


Contributing

If you find any bugs or if you need new features please feel free to issue a pull request with your changes.




Issues and Feature Requests

Please open a GitHub issue for any bug reports and feature requests.




Common for all Tools


	All tools imply that your working directory is the directory that contains the artifact you want to work with.

	Furthermore you are responsible for supplying a valid set of AWS credentials. A good tool is aws-mfa [https://pypi.python.org/pypi/aws-mfa/0.0.5]

	You you need to set an environment variable “ENV” which indicates the account/staging area you want to work with. This parameter tells the tools which config file to use. Basically something like fink_$(ENV).json is evaluated in the configuration component.






Installing the development version locally

To install your local development version (after checkout):

$ pip install -e .





use pip to install the dev requirements:

$ pip install -r requirements_dev.txt








Running Unit-Tests

Use the pytest test-runner to run the fink unit tests. A few tests (with ‘_aws’ in the file name) need AWS. Please turn on your VPN and set the AWS_DEFAULT_PROFILE, ENV, and ACCOUNT environment variables. Details here: https://confluence.finklabs.com/display/OPSSHARED/Deployment+on+AWS.

You need to install the development version of this package so you can run the tests:

$ pip install -e .





$ export AWS_DEFAULT_PROFILE=superuser-dp-dev
$ export ENV=DEV
$ export ACCOUNT=dp # => or your team account





Note: You need to enter an MFA code to run the tests.

$ python -m pytest tests/test_cloud*





Please make sure that you do not lower the fink test coverage. You can use the following command to make sure:

$ python -m pytest --cov fink tests/test_lambda*





This requires the coverage package (included in the requirements_dev.txt file):

$ pip install -r requirements_dev.txt








Mock calls to AWS services

For testing fink together with botocore and AWS services we use placebo_awsclient (a tool based on the boto maintainers placebo project). The way placebo_awsclient works is that it is attached to the botocore session and used to record and later playback the communication with AWS services.

The recorded json files for fink tests are stored in ‘tests/resources/placebo_awsclient’.

fink testing using placebo playback is transparent (if you know how to run fink tests nothing changes for you).

To record a test using placebo (first remove old recordings if any):

$ rm -rf tests/resources/placebo_awsclient/tests.test_code_aws.test_code_exit_codes/
$ export PLACEBO_MODE=record
$ python -m pytest -vv --cov-report term-missing --cov fink tests/test_code_aws.py::test_code_exit_codes





To switch off placebo record mode and use playback mode:

$ export PLACEBO_MODE=playback





To run the tests against AWS services (without recording) use normal mode:

$ export PLACEBO_MODE=normal





Please note:


	prerequisite for placebo to work is that all fink tools support that the awsclient is handed in as parameter (by the test or main). If a module creates its own botocore session it breaks fink testability.

	in order to avoid merging placebo json files please never record all tests (it would take to long anyway). only record aws tests which are impacted by your change.

	fink testing using placebo works well together with aws-mfa.

	if you record the tests twice the json files probably get messed up.
Please do not do this.

	Please commit the placebo files in a separate commit. This makes reviewing of pull requests easier.






documenting fink

For fink we need documentation and we publish it on Readthedocs. Consequently the tooling is already set like sphinx, latex, ... We would like to use markdown instead of restructured text so we choose recommonmark.

Detailed information on using markdown and sphinx [http://blog.readthedocs.com/adding-markdown-support/]


Installation of docu tools

$ pip install -r requirements_docs.txt





If you need to create the pdf docu install pdflatex [https://thetechsolo.wordpress.com/2016/01/28/latex-on-mac-the-easy-way/] (... you also need texlive!).

$ brew cask install mactex








build docu

In order to build the html and pdf version of the documentation

$ make html
$ make latexpdf








Release docu to Readthedocs

To release the documentation to Readthedocs most of the time there are no additional steps necessary. Just connect your rtfd account to your github repo.




Initialize api docu

We used the sphinx-apidoc tool to create the skeleton (80_fink_api.rst) for fink’ api documentation.

$ sphinx-apidoc -F -o apidocs fink










Implementation details

This section is used to document fink implementation for fink developers and maintainers.


configuration

note: fink design has a section on openapi, too

configuration in fink is implemented in a few places:


	openapi functionality in fink (in ‘fink/fink_openapi.py’)

	openapi based validation for each tool (in ‘fink_<tool>/openapi_<tool>.yaml’ and ‘fink_<tool>/plugin.py’)

	the functionality to create docs from openapi specs [https://github.com/finklabs/fink-docs/blob/develop/docs/openapi2rst.py]











	actual tool config
	actual command
	need to run
	need to run


	via config-reader
	is non-config-command
	incept_defaults
	validate_config




	yes
	yes
	yes
	yes


	yes
	no
	yes
	yes


	no
	yes
	yes *)
	no


	no
	no
	no
	no





*) The above table shows that there is a case where we run a non-config-command and do not have configuration from the config reader. In this case we still need the defaults but the defaults alone might not be a valid configuration. To make this case work the incept-defaults functionality needs to disable the config validation for the impacted configuration part.






fink design


Design Goals


	support development teams with tools and templates

	ease, simplify, and master infrastructure-as-code






Design Principles


	write testable code

	tests need to run on all accounts (not just dp account)

	make sure additions and changes have powerful tests

	use pylint to increase your coding style

	we adhere to Semantic Versioning [http://semver.org/].






Design Decisions

In this section we document important design decisions we made over time while maintaining fink.


Use botocore over boto3

With botocore and boto3 AWS provides two different programmatic interfaces to automate interaction with AWS services.

One of the most noticeable differences between botocore and boto3
is that the client objects:


	require parameters to be provided as **kwargs

	require the arguments typically be provided as CamelCased values.



For example::

ddb = session.create_client('dynamodb')
ddb.describe_table(TableName='mytable')





In boto3, the equivalent code would be::

layer1.describe_table(table_name='mytable')





There are several reasons why this was changed in botocore.

The first reason was because we wanted to have the same casing for
inputs as well as outputs.  In both boto3 and botocore, the response
for the describe_table calls is::

{'Table': {'CreationDateTime': 1393007077.387,
            'ItemCount': 0,
            'KeySchema': {'HashKeyElement': {'AttributeName': 'foo',
                                             'AttributeType': 'S'}},
            'ProvisionedThroughput': {'ReadCapacityUnits': 5,
                                      'WriteCapacityUnits': 5},
            'TableName': 'testtable',
            'TableStatus': 'ACTIVE'}}





Notice that the response is CamelCased.  This makes it more difficult
to round trip results.  In many cases you want to get the result of
a describe* call and use that value as input through a corresponding
update* call.  If the input arguments require snake_casing but
the response data is CamelCased then you will need to manually convert
all the response elements back to snake_case in order to properly
round trip.

This makes the case for having consistent casing for both input and
output.  Why not use snake_casing for input as well as output?

We choose to use CamelCasing because this is the casing used by
AWS services.  As a result, we don’t have to do any translation from
CamelCasing to snake_casing.  We can use the response values
exactly as they are returned from AWS services.

This also means that if you are reading the AWS API documentation
for services, the names and casing referenced there will match
what you would provide to botocore.  For example, here’s the
corresponding API documentation for
dynamodb.describe_table <http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html>__.






Use pytest over nose

For many years py.test and nose coexisted as Python unit test frameworks in addition to std. Python unittest. Nose was developed by Mozilla and was popular for quite some time. In 2015 Mozilla switched from nose to pytest.

http://mathieu.agopian.info/presentations/2015_06_djangocon_europe/

There are many arguments in favour of pytest. For us the most important is pytest fixtures which provides us with a reliable and reusable mechanism to prepare and cleanup resources used during testing.




Capturing of log output during test

In our tests we use a logcapture fixture from fink_testtools.helpers to capture log output. The fixture use the textfixtures package under the hood.

use it like this:

logcapture.check(
    ('root', 'INFO', 'a message'),
    ('root', 'ERROR', 'another error'),
)





or:

records = list(logcapture.actual())
assert records[0][2] == 'a message'





details here: http://testfixtures.readthedocs.io/en/latest/logging.html




Use Sphinx, Readthedocs, and Markdown for documentation

Many, many documentation tools populate this space since it is so easy to come up with something. However for Open Source projects Readthedocs is the dominant platform to host the documentation.

The Sphinx is the Python std. docu tool. In combination with markdown tools set is a very convenient way to create Readthedocs conform documentation.




Keep a changelog

We where already keeping a changelog which “almost” followed the guide. In June 2017 we decided to make the format more explicit.

The fink changelog format is defined here: http://keepachangelog.com/en/1.0.0/




Use docopt to build the command line interface

There is a never-ending discussion going about pros and cons of CLI tools for Python. Some of these tools are contained in the Python std. library, some are independent open source library additions. At the moment the most popular tools are Optparse, Argparse, Click, and Docopt

https://www.youtube.com/watch?v=pXhcPJK5cMc

We decided to use docopt for out command line interface because it is simple and very flexible. In addition we developed a dispatch mechanism to ease the docopt usage and to make the fink CLI commands testable.




Using Maya: Datetimes for Humans

We had some issues in the past using datetimes correctly across different timezones and locales. finklabs SRE team took an initiative to improve the situation and we. We looked into pytz and maya. Maya had a convincing offering and is maintained by Kenneth Reitz so we decided to use it for datetime handling within fink.




Plugin mechanism

fink uses entry points similar to pluggy [https://github.com/pytest-dev/pluggy] to find installed plugins

For communication with the plugin we use Blinker signals [https://pythonhosted.org/blinker/]. This helps us to decouple the fink code base from plugin code and vice-versa. Blinker is of cause only one way to do that. Blinker is fast, simple, well documented, etc. so there are some popular frameworks using it (Flask, Pelican, ...).




Config handling using openapi

A wide area of fink functionality is related to configuration:


	default values for tools and plugins

	validation of configuration

	scaffolding of minimal (required properties) configuration

	sample of complete configuration

	documentation of configuration



To cover all this fink configuration usecases we decided to use the openapi specifications. Using openapi alows us to build on existing workflows and tooling.









          

      

      

    

  

  
    
    
    Index
    
    

    
 
  
  

    
      
          
            

Index



 




          

      

      

    

  
_images/fink_lifecycle.png
read config process validate bundle execute the
from file (create zip gedt
LI e artifact) command






_images/cloud_deploy_output.gif





nav.xhtml

    
      Table of Contents


      
        		fink cloud deployment tools


        		Introduction
          
          		Related documents


          		Problem reporting instructions


          


        


        		Getting Started Guide
          
          		Infrastructure as code


          		Installation
            
            		Install Python


            		Install pip and virtualenv


            		Install fink and fink plugins


            		Setting the ENV environment variable


            		preparing your AWS account for deployments using fink tools


            


          


          		fink.cloud
            
            		Create your first stack with cloud


            		Deploy a stack to AWS


            


          


          		fink.lambda
            
            		Deploy a simple AWS Lambda function


            


          


          		fink.code


          		fink.api


          


        


        		Overview


        		Installing fink
          
          		Related documents


          		What you need to know about python package management


          		fink package structure


          		Maintaining dependencies for your project


          		Defining which fink plugins to use


          		Setup virtualenv


          		Installing all dev dependencies in one go


          		Deactivate a virtualenv


          		Updating fink
            
            		General remarks on “breaking changes” and deprecated features


            		Dependency specification (pinning versions)


            		Updating from gcdt to fink 1.0.0


            


          


          


        


        		fink tool
          
          		Related documents
            
            		Setting the ENV variable


            


          


          		Usage


          		Commands
            
            		config


            		version


            


          


          


        


        		cloud command
          
          		Related documents


          		Usage


          		Commands
            
            		deploy


            		list


            		delete


            		generate


            		preview


            		dot


            		stop


            		start


            		version


            


          


          		Folder Layout
            
            		Config file example


            		Configuring RoleARN for a cloudformation stack


            		Configuring NotificationARNs for a cloudformation stack


            		Setting the ENV variable


            


          


          		Howto


          		Kumo lifecycle hooks


          		DEPRECATED Kumo legacy hooks


          		Using fink functionality in your cloudformation templates


          		Accessing context and config in cloudformation


          		Stack Policies


          		Signal handling


          


        


        		cloud config 1.0.3
          
          		Description


          		Data Structures
            
            		cloud - structure


            		stack - structure


            		parameters - structure


            		deployment - structure


            		defaults - structure


            		arn - structure


            


          


          


        


        		cloud particles
          
          		Related documents


          		Goals


          		Detailed requirements


          		Status on cloud particles implementation


          		Usage


          		Sample particles
            
            		instance


            


          


          		Quickstart example using particles


          		Developing your own particles


          


        


        		code command
          
          		Related documents


          		Usage
            
            		deploy


            		version


            


          


          		Folder Layout


          		code configuration
            
            		add stack_output.yml to your code bundle


            		Adding a settings.json file


            		Configure log group


            		Setting the ENV variable


            


          


          		Signal handling


          


        


        		fink.code configuration 1.0.1
          
          		Description


          		Data Structures
            
            		code - structure


            		codedeploy - structure


            		bundling - structure


            		defaults - structure


            		foldersItem - structure


            


          


          


        


        		lambda command
          
          		Related documents


          		Usage
            
            		clean


            		bundle


            		deploy


            		list


            		metrics


            		wire


            		unwire


            		delete


            		rollback


            		invoke


            		logs


            		version


            


          


          		Folder Layout


          		Sample config file


          		lambda configuration as part of the fink_<env>.json file
            
            		log retention


            		S3 upload


            		runtime support


            		AWS Lambda environment variables


            		Adding a settings.json file


            		Adding event configuration


            


          


          		Deploying AWS Lambda@Edge


          		Setting the ENV variable


          		Environment specific configuration for your lambda functions


          		Defining dependencies for your NodeJs lambda function


          		Sample NodeJs lambda function


          


        


        		api command
          
          		Related documents


          		Usage
            
            		deploy


            		export


            		list


            		apikey-create


            		apikey-list


            		apikey-delete


            		version


            


          


          		Folder Layout
            
            		Create custom domain


            		Setting the ENV variable


            


          


          


        


        		api tool config 1.0.1
          
          		Description


          		Data Structures
            
            		api - structure


            		api_def - structure


            		customDomain - structure


            		lambda - structure


            		entries - structure


            		arn - structure


            


          


          


        


        		Plugins for fink
          
          		Introduction
            
            		Related documents


            


          


          		Overview
            
            		Plugin system key functions


            		Plugin installation


            		Plugin configuration


            		Plugin descriptions


            


          


          		fink plugin mechanism
            
            		Anatomy of a plugin


            		Overview of the fink lifecycle


            		List of fink signals


            		Developing plugins


            		Testing a plugin


            


          


          		Overview on configuration
            
            		Structure of the configuration (internal representation)


            		Multiple levels of fink configuration


            		Context


            


          


          		fink.config-reader plugin
            
            		Related documents


            		json configuration files


            		yaml configuration files


            		python configuration files


            		finkignore patterns


            		reference to base config file


            


          


          		fink.lookups plugin
            
            		Related documents


            		lookup stack output


            		lookup acm certificate


            		lookup secret


            		lookup parameter


            


          


          		fink.lookups plugin config 1.0.4
            
            		Description


            		Data Structures


            


          


          		fink.bundler plugin
            
            		Related documents


            		Sample config


            


          


          		fink.say-hello plugin


          		fink.slack-integration plugin
            
            		Related documents


            		slack integration plugin functionality


            		Setup


            		Configuration


            


          


          		fink-slack-integration plugin config 1.0.2
            
            		Description


            		Data Structures


            


          


          


        


        		Frequently Asked Questions (faq)
          
          		Homebrew Python


          		Python package errors


          		Bundling error


          		Missing configuration error


          		Environment variable error


          		Using hooks in fink


          


        


        		Changelog
          
          		[0.1.436] - 2017-08-17
            
            		Fixed


            


          


          		[0.1.435] - 2017-08-17
            
            		Added


            


          


          		[0.1.433] - 2017-08-14
            
            		Added


            


          


          		[0.1.432] - 2017-08-10
            
            		Fixed


            


          


          		[0.1.431] - 2017-08-10
            
            		Added


            		Deprecated


            


          


          		[0.1.430] - 2017-08-08
            
            		Added


            


          


          		[0.1.429] - 2017-08-07
            
            		Added


            


          


          		[0.1.428] - 2017-08-03
            
            		Added


            


          


          		[0.1.427] - 2017-08-01
            
            		Added


            


          


          		[0.1.426] - 2017-08-01
            
            		Added


            


          


          		[0.1.425] - 2017-08-01
            
            		Fixed


            


          


          		[0.1.424] - 2017-08-01
            
            		Added


            		Deprecated


            


          


          		[0.1.423] - 2017-07-21
            
            		Added


            


          


          		[0.1.422] - 2017-07-18
            
            		Fixed


            


          


          		[0.1.421] - 2017-07-18
            
            		Fixed


            


          


          		[0.1.420] - 2017-07-18
            
            		Added


            		Deprecated


            


          


          		[0.1.419] - 2017-07-17
            
            		Added


            


          


          		[0.1.418] - 2017-07-17
            
            		Added


            


          


          		[0.1.417] - 2017-07-13
            
            		Added


            


          


          		[0.1.415] - 2017-07-12
            
            		Fixed


            


          


          		[0.1.413] - 2017-07-07
            
            		Added


            


          


          		[0.1.412] - 2017-07-05
            
            		Added


            


          


          		[0.1.411] - 2017-07-04
            
            		Added


            


          


          		[0.1.410] - 2017-07-03
            
            		Fixed


            


          


          		[0.1.409] - 2017-07-03
            
            		Added


            


          


          		[0.1.408] - 2017-06-30
            
            		Added


            


          


          		[0.1.407] - 2017-06-30
            
            		Fixed


            


          


          		[0.1.406] - 2017-06-30
            
            		Added


            


          


          		[0.1.405] - 2017-06-30
            
            		Fixed


            


          


          		[0.1.404] - 2017-06-29
            
            		Added


            


          


          		[0.1.403] - 2017-06-22
            
            		Added


            


          


          		[0.1.402] - 2017-06-21
            
            		Fixed


            


          


          		[0.1.401] - 2017-06-20
            
            		Fixed


            


          


          		[0.1.400] - 2017-06-20
            
            		Fixed


            


          


          		[0.1.399] - 2017-06-19
            
            		Fixed


            


          


          		[0.1.398] - 2017-06-16
            
            		Added


            


          


          		[0.1.397] - 2017-06-16
            
            		Fixed


            


          


          		[0.1.396] - 2017-06-12
            
            		Added


            


          


          		[0.1.394] - 2017-06-09
            
            		Added


            


          


          		[0.1.393] - 2017-06-09
            
            		Added


            


          


          		[0.1.392] - 2017-06-07
            
            		Added


            


          


          		[0.1.391] - 2017-06-02
            
            		Added


            


          


          		[0.1.390] - 2017-05-31
            
            		Added


            


          


          		[0.1.8] - 2017-04-27
            
            		Added


            


          


          		[0.1.7] - 2017-04-27
            
            		Added


            


          


          		[0.1.6] - 2017-04-26
            
            		Added


            


          


          		[0.1.5] - 2017-04-26
            
            		Added


            


          


          		[0.1.4] - 2017-04-07
            
            		Added


            


          


          		[0.1.0] - 2017-04-05
            
            		Added


            		Changed


            


          


          		[0.0.84] - 2017-03-30
            
            		Added


            


          


          		[0.0.83] - 2017-03-29
            
            		Added


            


          


          		[0.0.82] - 2017-03-29
            
            		Added


            		Fixed


            


          


          		[0.0.81] - 2017-03-24
            
            		Added


            		Fixed


            


          


          		[0.0.80] - 2017-03-09
            
            		Fixed


            


          


          		[0.0.79] - 2017-03-08
            
            		Fixed


            


          


          		[0.0.78] - 2017-03-06
            
            		Added


            


          


          		[0.0.77] - 2017-02-20
            
            		Added


            


          


          		[0.0.76] - 2017-01-30
            
            		Added


            


          


          		[0.0.75] - 2017-01-24
            
            		Added


            		Changed


            


          


          		[0.0.73] - 2017-01-09
            
            		Fixed


            


          


          		[0.0.64] - 2016-11-11
            
            		Fixed


            


          


          		[0.0.63] - 2016-11-08
            
            		Fixed


            


          


          		[0.0.62] - 2016-11-07
            
            		Added


            		Fixed


            


          


          		[0.0.61] - 2016-11-07
            
            		Fixed


            


          


          		[0.0.60] - 2016-10-07
            
            		Added


            		Fixed


            


          


          		[0.0.57] - 2016-09-23
            
            		Added


            		Fixed


            


          


          		[0.0.55] - 2016-09-16
            
            		Added


            


          


          		[0.0.51] - 2016-09-05
            
            		Fixed


            


          


          		[0.0.45] - 2016-09-01
            
            		Added


            		Fixed


            


          


          		[0.0.35] - 2016-08-29
            
            		Added


            


          


          		[0.0.34] - 2016-08-tbd
            
            		Fixed


            


          


          		[0.0.33] - 2016-08-18
            
            		Added


            		Fixed


            


          


          		[0.0.30] - 2016-08-02
            
            		Added


            		Removed


            


          


          		[0.0.29] - 2016-07-21
            
            		Added


            		Fixed


            


          


          		[0.0.26] - 2016-07-19
            
            		Added


            		Fixed


            


          


          


        


        		Development of fink
          
          		Contributing


          		Issues and Feature Requests


          		Common for all Tools


          		Installing the development version locally


          		Running Unit-Tests


          		Mock calls to AWS services


          		documenting fink
            
            		Installation of docu tools


            		build docu


            		Release docu to Readthedocs


            		Initialize api docu


            


          


          		Implementation details
            
            		configuration


            


          


          		fink design
            
            		Design Goals


            		Design Principles


            		Design Decisions


            		Use pytest over nose


            		Capturing of log output during test


            		Use Sphinx, Readthedocs, and Markdown for documentation


            		Keep a changelog


            		Use docopt to build the command line interface


            		Using Maya: Datetimes for Humans


            		Plugin mechanism


            		Config handling using openapi


            


          


          


        


      


    
  

_images/fink-package-structure.png
gcdt package structure overview

open sourced repos and packages (hosted on Github and PyP)

package:
gedt

gedt plugins.

package:
gedt.config-reader

package:
gedtdookups

package:
gedt-bundier

package:
gedtdatadog-integration

package:
gedtslack-ntegration

‘glomex inten repos and packages (hosted on intemal reposerver)

et plugins.

package:
glomex-config-reader

package:
glomex-checks

generators and tools

package:
gedt.gen-serveriess

package:
gedt-gru

package:
gedt-kumo

package:
gedttenkal

package:
gedt-ramuda

package:
gedt-yugen






_images/slack_notification_failed.png
gedtkumo 9
deploy failed for stack ‘gedt-sample-stack'

Error
Anerror occurred (ValidationError) when calling the CreateStack operation:
Template format error: 2011-09-09 is not a supported value
forAWSTemplateFormatVersion.

deploy complete for stack ‘gedt-sample-stack’

| success





_images/slack_notifications.png
m gedtkumo App 5
delete complete for stack 'gedt-sample-stack’

| success

gedtramuda App 51101
deploy complete for lambda function ‘jenkins-gcdt-lifecycle-for-ramuda’

| success

delete complete for lambda function jenkins-gedt-lifecycle-for-ramuda’

| success

* gedtyugen Ape 51260
deploy complete for api ‘jenkins-gedt-sample-api-dev’
| success

delete complete for api ‘jenkins-gedt-sample-api-dev’

| success





_images/fink_configuration.png
internal hierarchy of configurations in gedt

glomex-cloud-deployment-tools
gedt.gedt_defaults DEFAULT_CONFIG

gedt-plugins

commons.gedt_defaults.DEFAULT_CONFIG

gedt-plugins

plugins glomex_config_reader

N

config = {kumo':

.}, ‘tenkai';

read fles:
settings_dev.conf
lambda_dev.conf





_static/comment-bright.png





_static/comment-close.png





_static/minus.png





_static/comment.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/file.png





_static/plus.png





_static/up-pressed.png





_static/down.png





_static/up.png





_static/images/AWS_parameter_store_parameters.png
ces v  Resource Groups v CloudFormation EC2 Lambd: CloudWatch

=
4

Q Filter by attributes

Name Type Last Modified User

base_ami SecureString - aliasfawslssm 1 November 11,2017 at 1055:13AMUTC+1  am:aws:iam::580762641671:ro0t
slack webhook SecureString - aliasfawslssm 2 November 11, 2017 at 5:37:25 PM UTC+1 ‘am:aws:iam::580762641671:ro0t





_static/images/slack_notifications.png
m gedtkumo App 5
delete complete for stack 'gedt-sample-stack’

| success

gedtramuda App 51101
deploy complete for lambda function ‘jenkins-gcdt-lifecycle-for-ramuda’

| success

delete complete for lambda function jenkins-gedt-lifecycle-for-ramuda’

| success

* gedtyugen Ape 51260
deploy complete for api ‘jenkins-gedt-sample-api-dev’
| success

delete complete for api ‘jenkins-gedt-sample-api-dev’

| success





_static/images/fink_lifecycle.png
read config process validate bundle execute the
from file (create zip gedt
LI e artifact) command






_static/images/slack_notification_failed.png
gedtkumo 9
deploy failed for stack ‘gedt-sample-stack'

Error
Anerror occurred (ValidationError) when calling the CreateStack operation:
Template format error: 2011-09-09 is not a supported value
forAWSTemplateFormatVersion.

deploy complete for stack ‘gedt-sample-stack