

	PyPI:

	[image: pypiV] [https://pypi.python.org/pypi/FIBtortuosity/]

	[image: pypiDM] [https://pypi.python.org/pypi/FIBtortuosity/]

	Help!

	[image: Documentation Status] [http://fibtortuosity.readthedocs.org/en/latest/?badge=latest]

	[image: Join the chat at https://gitter.im/jat255/FIBtortuosity] [https://gitter.im/jat255/FIBtortuosity?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

FIB Tortuosity

Table of Contents

	Introduction

	Installation
	Requirements

	Python 2.7

	Python 3.5

	“Stable” Version

	Development Version

	General Instructions (for SOFCs)
	Generic analysis

	Full Analysis

	API Summary

	Full API Documentation

	PyPI:

	[image: pypiV] [https://pypi.python.org/pypi/FIBtortuosity/]

	[image: pypiDM] [https://pypi.python.org/pypi/FIBtortuosity/]

	Help!

	[image: Documentation Status] [http://fibtortuosity.readthedocs.org/en/latest/?badge=latest]

	[image: Join the chat at https://gitter.im/jat255/FIBtortuosity] [https://gitter.im/jat255/FIBtortuosity?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Introduction

This module is used to calculate the geometric tortuosity of a
three-dimensional structure, based on J. Taillon’s 2018 Ultramicroscopy paper [https://doi.org/10.1016/j.ultramic.2017.07.017].
Useful for FIB/SEM reconstructions of SOFCs, but probably useful
in other situations as well.

These methods have been written for the specific software and methods used
in our lab, and as such, might need some tweaking to work with your data. In
general, .tiff files used as inputs are expected in the format that is
output by Avizo [http://www.fei.com/software/avizo3d/]. There is part of the code that depends on the
ImageDescription tiff tag that Avizo saves. This tag saves information
about the physical dimensions of the bounding box, and is of the
format: 'BoundingBox <minX> <maxX> <minY> <maxY> <minZ> <maxZ>\n'
For the sample files in this documentation, the value is:
'BoundingBox 3231.15 6462.29 0 4100.38 0 4000\n'
If you cannot write this information into the tiff file that you are trying
to provide, the code will have to be modified.

The expected inputs are binary (0 and 1) or ternary (0, 1, or 2)
labeled 3D tif files representing the phases to calculate. Because the
module is focused on SOFC calculations primarily, it is expected that 1 index
represents the bulk electrolyte phase. If present, the 2 index is the phase
for which to calculate the tortuosity. The 0 index are the areas that cannot
be traversed (i.e. the hard boundaries that create the tortuosity).

For convenience, two small test 3D tiff files are provided for the example
calculated in the General Instructions (for SOFCs) section. Those can be downloaded
here: Electrolyte and
Cathode.

	PyPI:

	[image: pypiV] [https://pypi.python.org/pypi/FIBtortuosity/]

	[image: pypiDM] [https://pypi.python.org/pypi/FIBtortuosity/]

	Help!

	[image: Documentation Status] [http://fibtortuosity.readthedocs.org/en/latest/?badge=latest]

	[image: Join the chat at https://gitter.im/jat255/FIBtortuosity] [https://gitter.im/jat255/FIBtortuosity?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Installation

Requirements

The following dependencies are needed to run the code (as-written). Some of
these could be pretty easily removed, but the code was written with my research
results in mind, and as such, has some dependencies that make things match
my personal preferences (such as seaborn). Some details on installing them
are given below:

	Package

	Source

	PyPI

	numpy

	Source [http://www.numpy.org/]

	PyPI [https://pypi.python.org/pypi/numpy/1.11.0]

	matplotlib

	Source [http://matplotlib.org/]

	PyPI [https://pypi.python.org/pypi/matplotlib/1.5.1]

	libtiff

	Source [http://www.remotesensing.org/libtiff/]

	N/A

	pylibtiff

	Source [https://github.com/pearu/pylibtiff], Python 3 port [https://github.com/jat255/pylibtiff/tree/ENH_py3_upgrade]

	PyPI [https://pypi.python.org/pypi/libtiff/]

	scikit-fmm

	Source [https://github.com/scikit-fmm/scikit-fmm]

	PyPI [https://pypi.python.org/pypi/scikit-fmm]

	seaborn

	Source [https://stanford.edu/~mwaskom/software/seaborn/]

	PyPI [https://pypi.python.org/pypi/seaborn]

	hyperspy (optional)

	Source [http://www.hyperspy.org/]

	PyPI [https://pypi.python.org/pypi/hyperspy/0.8.4]

Python 2.7

To get a full set-up on Python 2.7 (hopefully) pretty easily, run the following:

$ pip install numpy matplotlib libtiff scikit-fmm seaborn fibtortuosity hyperspy

Python 3.5

On Python 3.5, things are a little bit trickier because one of the
dependencies (libtiff [https://pypi.python.org/pypi/libtiff/]) has not yet been ported to Python 3.
I have done my best to port this package myself (currently awaiting
inclusion into the main libtiff [https://pypi.python.org/pypi/libtiff/] package). I cannot guarantee it
will work, but it seems alright on my machine. To install my fork, open up a
command line and run the following:

$ git clone https://github.com/jat255/pylibtiff.git
$ cd pylibtiff
$ git checkout ENH_py3_upgrade
$ pip install .

This library depends on a compiled version of the tiff [http://www.remotesensing.org/libtiff/build.html] library as well.
On a linux system (like Ubuntu) this library is probably available in the
package repository, and can be installed with the following:

$ sudo apt-get install libtiff5 libtiff5-dev

On Windows, things are just a little bit harder. I was able to get it
built on my Windows box by follow the instructions
here [http://www.remotesensing.org/libtiff/build.html#PC].

	Some tips:

	
	Make sure to compile the version (32 or 64 bit) that matches your Python installation

	This [https://msdn.microsoft.com/en-us/library/x4d2c09s.aspx] page will explain how to get the Visual C++ compiler to work on the command line

	Once you have compiled the libtiff.dll file, add the directory containing it to your system path, and then restart any Python environments you have open. The library should now be available…

Once all that is done, run the same code as for 2.7, but take out libtiff from the pip list.

“Stable” Version

Although it shouldn’t really be considered stable, there are released versions
available for installation through pip on
PyPI [https://pypi.python.org/pypi/FIBTortuosity].

Note

Note: due to some recent bugs with PyPI, the package will likely
not show up if you use pip search, but should install as
normal with pip install.

To install the latest release:

$ pip install --user fibtortuosity

Development Version

The latest version of the code should be available in the Bitbucket
repository [https://bitbucket.org/jat255/fibtortuosity.git].
To get this version installed on your system, clone the repository,
and then install with pip:

$ git clone https://bitbucket.org/jat255/fibtortuosity.git
$ cd fibtortuosity
$ pip install -e ./

	PyPI:

	[image: pypiV] [https://pypi.python.org/pypi/FIBtortuosity/]

	[image: pypiDM] [https://pypi.python.org/pypi/FIBtortuosity/]

	Help!

	[image: Documentation Status] [http://fibtortuosity.readthedocs.org/en/latest/?badge=latest]

	[image: Join the chat at https://gitter.im/jat255/FIBtortuosity] [https://gitter.im/jat255/FIBtortuosity?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

General Instructions (for SOFCs)

Generic analysis

These instructions will walk through calculating the tortuosity for the two
example files Electrolyte and
Cathode. In general, the
low-level methods _geo_dist(),
_calc_interface(),
_calc_tort(), and
_calc_euc_x() do all the “heavy”
lifting, while modules like
tortuosity_from_labels_x() and
run_full_analysis_lsm_ysz() wrap these
methods into convenient higher-level interfaces.

	Put the downloaded files into a directory accessible to Python, and fire up a Python session (Jupyter, notebook, etc.)

	Import the module:

>>> import fibtortuosity as ft

	The following code will use the higher order function
tortuosity_from_labels_x() to calculate
the tortuosity in the x direction (perpendicular to the electrolyte boundary)
The x direction function includes some additional code (compared to the y and z
versions) that calculates the euclidean distance from the boundary of the bulk
electrolyte, rather than simply from the edge of the volume.

geo, euc, tort, and desc will contain the results of this calculation afterwards:

>>> geo, euc, tort, desc = ft.tortuosity_from_labels_x('example_electrolyte.tif',
... 'example_electrolyte_and_cathode.tif',
... 'LSM',
... units='nm',
... print_output=True,
... save_output=False)
 Starting calculation on LSM in x direction.
 Loaded electrolyte data in 0:00:00.257833 seconds.
 Loaded cathode data in 0:00:00.252949 seconds.
 ImageDescription is: b'BoundingBox 3231.15 6462.29 0 4100.38 0 4000\n'
 Bounding box dimensions are: (3231.14, 4100.38, 4000.00) nm
 Voxel dimensions are: (16.16, 20.50, 20.00) nm
 Starting geodesic calculation at: 2016-04-05 15:52:57.412840
 Geodesic calculation took: 0:00:07.159744
 Calculating zero distance interface took: 0:00:00.207048
 Calculating euclidean distance took: 0:00:00.378937
 Calculating tortuosity took: 0:00:00.295921
 Total execution time was: 0:00:08.597359

	If HyperSpy [http://www.hyperspy.org/] is installed, it can be used to easily visualize the three-dimensional
data that is produced as a result (example below is in Jupyter):

>>> %matplotlib qt4
>>> import hyperspy.api as hs
>>> t_s = hs.signals.Image(tort)
>>> for i, n in enumerate(['z', 'x', 'y']):
... t_s.axes_manager[i].name = n
>>> t_s.plot()

[image: Tortuosity HyperSpy plot]

	The tortuosity_profile() and
plot_tort_prof() methods can be used
to visualize the average tortuosity over a dimension:

>>> t_avg, e_avg = ft.tortuosity_profile(tort, euc, axis='x')
>>> ft.plot_tort_prof(t_avg, e_avg, 'x')

[image: Tortuosity profile plot]

	To save the results, a variety of export options are available.
The average profiles can be easily saved using save_profile_to_csv().
The 3D tortuosity (or euclidean/geodesic distance) arrays can be saved as a 3D tiff
using the save_as_tiff() method.
Also, if HyperSpy [http://www.hyperspy.org/] is being used, it can save the data in the .hdf5 format
(see its documentation [http://hyperspy.org/hyperspy-doc/current/user_guide/getting_started.html#saving] for details).
Furthermore, any of the Numpy [http://docs.scipy.org/doc/numpy-1.10.0/reference] methods for saving (such as save() [https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.save.html#numpy.save]
or savez() [https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.savez.html#numpy.savez]) can be used directly on the resulting arrays.

	To save profile:

>>> ft.save_profile_to_csv('profile.csv', e_avg, t_avg, 'x', 'LSM')

	To save tiff file:

>>> # Using `desc` allows the file to be opened directly in Avizo
>>> print(desc)
 b'BoundingBox 3231.15 6462.29 0 4100.38 0 4000\n'
>>> ft.save_as_tiff('tortuosity.tif', tort, 'float32', desc)
 Writing TIFF records to tort_results.tif
 filling records: 100% done (12Mi+1003Ki+361 bytes/s)
 resized records: 31Mi+46Ki+716 bytes -> 8Mi+717Ki+565 bytes (compression: 3.59x)

This gives you the following output:
Tortuosity-profile and
Tortuosity-data

Full Analysis

In my personal research, I more fully combined these methods into the highest-level
function run_full_analysis_lsm_ysz(),
so I could just run one function, walk away, and let it run. It has
some additional useful features, like texting a number when it’s done or showing
a browser notification. Also, it’s written with specific materials in mind, so it
may take some tweaking to get it running for your specific needs, but I include
it here as an idea of what can be done with the underlying code.

To do a full analysis of a sample (all phases and all directions),
I would run something like the following, making sure that each of the files
specified are in the current directory:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	>>> import itertools
>>> import fibtortuosity as ft
>>> phases = ['LSM','YSZ','Pore']
>>> directions = ['x', 'y', 'z']
>>> for p, d in itertools.product(phases, directions):
... ft.run_full_analysis_lsm_ysz(electrolyte_file="bulkYSZ.tif",
... electrolyte_and_pore_file="bulkYSZandPRE.tif",
... electrolyte_and_lsm_file="bulkYSZandLSM.tif",
... electrolyte_and_ysz_file="bulkYSZandYSZ.tif",
... date='2016-04-05',
... phase=p,
... direction=d,
... npzfile=None,
... units='nm',
... delay=0,
... calculate_all=True,
... load_from_prev_run=False,
... create_hspy_sigs=False,
... save_avizo_tiff=True,
... tort_profile=True,
... save_tort_prof=True,
... in_ipython=False)

After this has run, the directory will contain all the tortuosity data saved
as .tif files, as well as all the average profiles for each phase and
each direction, which can then be plotted/analyzed however is necessary.

	PyPI:

	[image: pypiV] [https://pypi.python.org/pypi/FIBtortuosity/]

	[image: pypiDM] [https://pypi.python.org/pypi/FIBtortuosity/]

	Help!

	[image: Documentation Status] [http://fibtortuosity.readthedocs.org/en/latest/?badge=latest]

	[image: Join the chat at https://gitter.im/jat255/FIBtortuosity] [https://gitter.im/jat255/FIBtortuosity?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

API Summary

	fibtortuosity.tortuosity_from_labels_x

	

	fibtortuosity.tortuosity_from_labels_y

	

	fibtortuosity.tortuosity_from_labels_z

	

	fibtortuosity.calculate_geodesic_distance

	

	fibtortuosity.save_results

	

	fibtortuosity.load_results

	

	fibtortuosity.run_full_analysis_lsm_ysz

	

	fibtortuosity.save_as_tiff

	

	fibtortuosity.tortuosity_profile

	

	fibtortuosity.plot_tort_prof

	

	fibtortuosity.save_profile_to_csv

	

	fibtortuosity.load_profile_from_csv

	

	fibtortuosity._geo_dist

	

	fibtortuosity._calc_interface

	

	fibtortuosity._calc_tort

	

	fibtortuosity._calc_euc_x

	

Full API Documentation

Index

	PyPI:

	[image: pypiV] [https://pypi.python.org/pypi/FIBtortuosity/]

	[image: pypiDM] [https://pypi.python.org/pypi/FIBtortuosity/]

	Help!

	[image: Documentation Status] [http://fibtortuosity.readthedocs.org/en/latest/?badge=latest]

	[image: Join the chat at https://gitter.im/jat255/FIBtortuosity] [https://gitter.im/jat255/FIBtortuosity?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

 _static/ajax-loader.gif

_images/tort_hs_plot.png
18000

16000

4 14000

12000

10000

8000

Figure 1
200+« BEV
50 100 50
2 axis

200

200+ B@V

(82,)

18

16

14

12

10

08

06

04

02

00

_images/tort_profile_plot.png
Average tortuosity
=ooe e
=N
s & o

=
o
G

=
o
S

0.95

500

1000 1500 2000
Euclidean distance (x direction, nm)

2500

3000

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 FIB Tortuosity

 		
 Introduction

 		
 Installation

 		
 Requirements

 		
 Python 2.7

 		
 Python 3.5

 		
 “Stable” Version

 		
 Development Version

 		
 General Instructions (for SOFCs)

 		
 Generic analysis

 		
 Full Analysis

 		
 API Summary

 		
 Full API Documentation

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

