

Welcome to fhirbug’s documentation!

Fhirbug intends to be a full-featured FHIR [https://www.hl7.org/fhir/] server for python >= 3.6. It has been
designed to be easy to set up and configure and be flexible when it comes to
the rest of tools it is combined with, like web frameworks and database interfaces.
In most simple cases, very little code has to be written apart from field
mappings.

Fhirbug is still under development! The API may still change at any time,
it probably contains heaps of bugs and has never been tested in production. If
you are interested in making it better, you are very welcome to contribute!

What fhirbug does:

	It provides the ability to create “real time” transformations between your ORM models to valid FHIR resources through an extensive mapping API.

	Has been designed to work with existing data-sets and database schemas but can of course be used with its own database.

	It’s compatible with the SQLAlchemy [https://www.sqlalchemy.org/], DjangoORM [https://www.djangoproject.com/] and PyMODM [https://github.com/mongodb/pymodm] ORMs, so if you can describe your database in one of them, you are good to go. It should also be pretty easy to extend to support any other ORM, feel free to submit a pull request!

	Handles many of the FHIR REST operations and searches like creating and updating resources, performing advanced queries such as reverse includes, paginated bundles, contained or referenced resources, and more.

	Provides the ability to audit each request, at the granularity that you desire, all the way down to limiting which of the attributes for each model should be accessible for each user.

What fhirbug does not do:

	Provide a ready to use solution for a Fhir server. Fhirbug is a framework, we want things to be as easy as possible but you will still have to write code.

	Contain a web server. Fhirbug takes over once there is a request string and request body and returns a json object. You have to handle the actual requests and responses.

	Handle authentication and authorization. It supports it, but you must write the implementation.

	A ton of smaller stuff, which you can find in the Roadmap_.

Contents:

	Quickstart
	Preparation

	Creating your first Mappings

	Letting the magic happen

	Handling requests

	Advanced Queries

	Further Reading

	Overview
	Creating Mappings

	FHIR Resources
	Uses of FHIR Resources in Fhirbug

	Creating resources

	Ignore missing required Attributes

	The base Resource class

	Auditing
	Auditing at the request level

	Auditing at the resource level

	Auditing at the attribute level

	Logging
	Enhancing or persisting the default handler

	Creating a custom log handler

	API
	Attributes

	Mixins

	fhirbug.server
	Request Parsing

	Request Handling

	Auth

	fhirbug.exceptions

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Contents:

	Quickstart

	Preparation

	Creating your first Mappings

	Letting the magic happen

	Handling requests

	Advanced Queries

	Further Reading

This section contains a brief example of creating a simple application using
fhirbug. It’s goal is to give the reader a general idea of how fhirbug
works, not to provide them with in-depth knowledge about it.

For a more detailed guide check out the Overview and the API docs.

Preparation

In this example we will use an sqlite3 [https://docs.python.org/3/library/sqlite3.html] database with SQLAlchemy and flask.
The first is in the standard library, you can install SQLAlchemy and flask
using pip:

$ pip install sqlalchemy flask

Let’s say we have a very simple database schema, for now only containing a table
for Patients and one for hospital admissions. The SQLAlchemy models look like this:

models.py

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, DateTime, Integer, String, ForeignKey
from sqlalchemy.orm import relationship

Base = declarative_base()

class PatientModel(Base):
 __tablename__ = 'patients'

 patient_id = Column(Integer, primary_key=True)
 first_name = Column(String)
 last_name = Column(String)
 dob = Column(DateTime) # date of birth
 gender = Column(Integer) # 0: female, 1: male, 2: other, 3: unknown

class AdmissionModel(Base):
 __tablename__ = 'admissions'

 id = Column(Integer, primary_key=True)
 status = Column(String) # 'a': active, 'c': closed
 patient_id = Column(Integer, ForeignKey('patients.patient_id'))
 date_start = Column(DateTime) # date and time of admission
 date_end = Column(DateTime) # date and time of release

 patient = relationship("patientmodel", back_populates="admissions")

To create the database and tables, open an interactive python shell and
type the following:

>>> from sqlalchemy import create_engine
>>> from models import Base

>>> engine = create_engine('sqlite:///:memory:')
>>> Base.metadata.create_all(engine)

Creating your first Mappings

We will start by creating mappings between our Patient and Admission models and
the Patient [https://www.hl7.org/fhir/patient.html] and Encounter [https://www.hl7.org/fhir/encounter.html] FHIR resources. In our simple example the mapping
we want to create looks something like this:

Relationships between db columns and fhir attributes for the Patient

	DB column

	FHIR attribute

	notes

	patient_id

	id

	read-only

	first_name, last_name

	name

	first and last
name must be combined
into a HumanName resource

	dob

	birthDate

	must be converted to type
FHIRDate

	gender

	gender

	values must be translated
between the two systems
(eg: 0 -> ‘female’)

Mapping in fhirbug is pretty straightforward. All we need to do is:

	Subclass the model class, inheriting from FhirBaseModel

	Add a member class called FhirMap

	Inside it, add class attributes using the names of the fhir attributes of the
resource you are setting up.

	Use Attributes to describe how the conversion between
db columns and FHIR attributes should happen

Since we are using SQLAlchemy, we will use the fhirbug.db.backends.SQLAlchemy
module, and more specifically inherit our Mappings from
fhirbug.db.backends.SQLAlchemy.models.FhirBaseModel

So, we start describing our mapping for the Patient resource from the id field
which is the simplest:

Warning

Fhirbug needs to know which ORM the mappings we create are for.
Therefore, before importing FhirBaseModel, we must have configured
the fhirbug settings. If you write the following code in an
interactive session instead of a file, you will get an error unless
you configure fhirbug first. To do so, just paste the code described
below.

mappings.py

from models import Patient as PatientModel
from fhirbug.db.backends.SQLAlchemy.models import FhirBaseModel
from fhirbug.models.attributes import Attribute

class Patient(PatientModel, FhirBaseModel):
 class FhirMap:
 id = Attribute('patient_id')

Note

The fact that we named the mapper class Patient is important, since
when fhirbug looks for a mapper, it looks by default for a class
with the same name as the fhir resource.

By passing the column name as a string to the Attribute we tell fhirbug
that the id attribute of the Patient FHIR resource should be retrieved from the
patient_id column.

For the birthDate attribute we get the information from a single database column,
but it must be converted to and from a FHIR DateTime datatype. So, we will use the
DateAttribute helper and let it handle
conversions automatically.

We will also add the name attribute, using the NameAttribute
helper. We tell it that we get and set the family name from the column last_name and
the given name from first_name

mappings.py

from models import Patient as PatientModel
from fhirbug.db.backends.SQLAlchemy.models import FhirBaseModel
from fhirbug.models.attributes import Attribute, DateAttribute, NameAttribute

class Patient(PatientModel, FhirBaseModel):
 class FhirMap:
 id = Attribute('patient_id')
 birthDate = DateAttribute('dob')
 name = NameAttribute(family_getter='last_name',
 family_setter='last_name',
 given_getter='first_name',
 given_setter='first_name')

Letting the magic happen

Let’s test what we have so far. First, we must provide fhirbug with some
basic configuration:

>>> from fhirbug.config import settings
>>> settings.configure({
... 'DB_BACKEND': 'SQLAlchemy',
... 'SQLALCHEMY_CONFIG': {
... 'URI': 'sqlite:///:memory:'
... }
... })

Now, we import or mapper class and create an item just as we would if it were a
simple SQLAlchemy model:

>>> from datetime import datetime
>>> from mappings import Patient
>>> patient = Patient(dob=datetime(1980, 11, 11),
... first_name='Alice',
... last_name='Alison')

This patient object we have created here is a classic SQLAlchemy model.
We can save it, delete it, change values for its columns, etc. But it has
also been enhanced by fhirbug.

Here’s some stuff that we can do with it:

>>> to_fhir = patient.to_fhir()
>>> to_fhir.as_json()
{
 'birthDate': '1980-11-11T00:00:00',
 'name': [{'family': 'Alison', 'given': ['Alice']}],
 'resourceType': 'Patient'
}

The same way that all model attributes are accessible from the patient instance,
all FHIR attributes are accessible from patient.Fhir:

>>> patient.Fhir.name
<fhirbug.Fhir.Resources.humanname.HumanName at 0x7fc62e1cbcf8>
>>> patient.Fhir.name.as_json()
{'family': 'Alison', 'given': ['Alice']}
>>> patient.Fhir.name.family
'Alison'
>>> patient.Fhir.name.given
['Alice']

If you set an attribute on the FHIR resource:

>>> patient.Fhir.name.family = 'Walker'

The change is applied to the actual database model!

>>> patient.last_name
'Walker'

>>> patient.Fhir.birthDate = datetime(1970, 11, 11)
>>> patient.dob
datetime.datetime(1970, 11, 11, 0, 0)

Handling requests

We will finish this quick introduction to fhirbug with a look on how requests
are handled. First, let’s create a couple more entries:

>>> from datetime import datetime
>>> from fhirbug.config import settings
>>> settings.configure({
... 'DB_BACKEND': 'SQLAlchemy',
... 'SQLALCHEMY_CONFIG': {
... 'URI': 'sqlite:///:memory:'
... }
... })
>>> from fhirbug.db.backends.SQLAlchemy.base import session
>>> from mappings import Patient
>>> session.add_all([
... Patient(first_name='Some', last_name='Guy', dob=datetime(1990, 10, 10)),
... Patient(first_name='Someone', last_name='Else', dob=datetime(1993, 12, 18)),
... Patient(first_name='Not', last_name='Me', dob=datetime(1985, 6, 6)),
...])
>>> session.commit()

Great! Now we can simulate some requests. The mapper class we defined earlier
is enough for us to get some nice FHIR functionality like searches.

Let’s start by asking for all Patient entries:

>>> from fhirbug.server.requestparser import parse_url
>>> query = parse_url('Patient')
>>> Patient.get(query, strict=False)
{
 "entry": [
 {
 "resource": {
 "birthDate": "1990-10-10T00:00:00",
 "name": [{"family": "Guy", "given": ["Some"]}],
 "resourceType": "Patient",
 }
 },
 {
 "resource": {
 "birthDate": "1993-12-18T00:00:00",
 "name": [{"family": "Else", "given": ["Someone"]}],
 "resourceType": "Patient",
 }
 },
 {
 "resource": {
 "birthDate": "1985-06-06T00:00:00",
 "name": [{"family": "Me", "given": ["Not"]}],
 "resourceType": "Patient",
 }
 },
],
 "resourceType": "Bundle",
 "total": 3,
 "type": "searchset",
}

We get a proper Bundle [https://www.hl7.org/fhir/bundle.html] Resource containing all of our Patient records!

Advanced Queries

This quick guide is almost over, but before that let us see some more things Fhirbug can do. We start by asking only one result per page.

>>> query = parse_url('Patient?_count=1')
>>> Patient.get(query, strict=False)
{
 "entry": [
 {
 "resource": {
 "birthDate": "1990-10-10T00:00:00",
 "name": [{"family": "Guy", "given": ["Some"]}],
 "resourceType": "Patient",
 }
 }
],
 "link": [
 {"relation": "next", "url": "Patient/?_count=1&search-offset=2"},
 {"relation": "previous", "url": "Patient/?_count=1&search-offset=1"},
],
 "resourceType": "Bundle",
 "total": 4,
 "type": "searchset",
}

Notice how when defining our mappings we declared birthDate as a
DateAttribute and name as a NameAttribute? This allows us to
use several automations that Fhirbug provides like advanced searches:

>>> query = parse_url('Patient?birthDate=gt1990&given:contains=one')
>>> Patient.get(query, strict=False)
{
 "entry": [
 {
 "resource": {
 "birthDate": "1993-12-18T00:00:00",
 "name": [{"family": "Else", "given": ["Someone"]}],
 "resourceType": "Patient",
 }
 }
],
 "resourceType": "Bundle",
 "total": 1,
 "type": "searchset",
}

Here, we ask for all Patients that were born after 1990-01-01 and whose given
name contains one.

Further Reading

You can dive into the actual documentation starting at the Overview or
read the docs for the API.

Overview

Contents:

	Creating Mappings

	FHIR Resources
	Uses of FHIR Resources in Fhirbug
	As return values of mapper.to_fhir()

	As values for mapper Attributes

	Creating resources

	Ignore missing required Attributes

	The base Resource class

	Auditing
	Auditing at the request level

	Auditing at the resource level
	Controlling access to the entire resource

	Controlling access to specific attributes

	Auditing at the attribute level

	Logging
	Enhancing or persisting the default handler

	Creating a custom log handler

Creating Mappings

Fhirbug offers a simple declarative way to map your database tables to
Fhir Resources [https://www.hl7.org/fhir/resourcelist.html]. You need to have created models for your tables using one of
the supported ORMs.

Let’s see an example using SQLAlchemy. Suppose we have this model of our database
table where patient personal infrormation is stored.

(Note that we have named the model Patient. This allows Fhirbug to match it to the corresponding resource automatically. If we wanted to give it a different name, we would then have to define __Resource__ = ‘Patient’ after the __tablename__)

from sqlalchemy import Column, Integer, String

class Patient(Base):
 __tablename__ = "PatientEntries"

 id = Column(Integer, primary_key=True)
 name_first = Column(String)
 name_last = Column(String)
 gender = Column(Integer) # 0: unknown, 1:female, 2:male
 ssn = Column(Integer)

To map this table to the Patient [https://www.hl7.org/fhir/patient.html] resource, we will make it inherit it fhirbug.db.backends.SQLAlchemy.FhirBaseModel instead of Base.
Then we add a class named FhirMap as a member and add all fhir fields we want to support using Attributes:

Note

You do not need to put your FhirMap in the same class as your models. You could just as well extend it in a second class while using FhirBaseModel as a mixin.

from sqlalchemy import Column, Integer, String
from fhirbug.db.backends.SQLAlchemy import FhirBaseModel
from fhirbug.models import Attribute, NameAttribute
from fhirbug.db.backends.SQLAlchemy.searches import NumericSearch

class Patient(FhirBaseModel):
 __tablename__ = "PatientEntries"

 pat_id = Column(Integer, primary_key=True)
 name_first = Column(String)
 name_last = Column(String)
 gender = Column(Integer) # 0: unknown, 1:female, 2:male, 3:other
 ssn = Column(Integer)

 @property
 def get_gender(self):
 genders = ['unknown', 'female', 'male', 'other']
 return genders[self.gender]

 @set_gender.setter
 def set_gender(self, value):
 genders = {'unknown': 0, 'female': 1, 'male': 2, 'other': 3}
 self.gender = genders[value]

 class FhirMap:
 id = Attribute('pat_id', searcher=NumericSearch('pid'))
 name = NameAttribute(given_getter='name_first', family_getter='name_last')
 def get_name(instance):
 gender = Attribute('get_gender', 'set_gender')

FHIR Resources

Contents:

	FHIR Resources

	Uses of FHIR Resources in Fhirbug

	As return values of mapper.to_fhir()

	As values for mapper Attributes

	Creating resources

	Ignore missing required Attributes

	The base Resource class

Fhirbug uses fhir-parser [https://github.com/smart-on-fhir/fhir-parser] to automatically parse the Fhir specification and
generate classes for resources based on resource definitions. It’s an excellent
tool that downloads the Resource Definition files from the official website
of FHIR and generates classes automatically. For more details, check
out the project’s repository [https://github.com/smart-on-fhir/fhir-parser].

Fhirbug comes with pre-generated classes for all FHIR Resources, which live
inside fhirbug.Fhir.resources. You can generate your own resource classes
based on a subset or extension of the default resource definitions but this is
not currently covered by this documentation.

Uses of FHIR Resources in Fhirbug

As return values of mapper.to_fhir()

FHIR Resource classes are used when a mapper instance is converted to a FHIR
Resource using .to_fhir().

Supposing we have defined a mapper for the Location resource, we could
see the following:

>>> Location
mappings.Location
>>> location = Location.query.first()
<mappings.Location>
>>> location.to_fhir()
<fhirbug.Fhir.Resources.patient.Patient>

As values for mapper Attributes

FHIR Resources are also used as values for mapper attributes that are either
references to other Resources, Backbone Elements [https://www.hl7.org/fhir/backboneelement.html] or complex datatypes [https://www.hl7.org/fhir/datatypes.html#complex].

For example, let’s return back to the Location example. As we can see in the
FHIR specification, the Location.address attribute is of type Address [https://www.hl7.org/fhir/datatypes.html#Address].
This would mean something like this:

>>> location.Fhir.address
<fhirbug.Fhir.Resources.address.Address>
>>> location.Fhir.address.as_json()
{
 'use': 'work',
 'type': 'physical',
 [...]
}
>>> location.Fhir.address.use
'work'

Creating resources

You will be wanting to use the Resource classes to create return values for your
mapper attributes.

The default way for creating resource instances is by passing a json object to
the constructor:

>>> from fhirbug.Fhir.resources import Observation
>>> o = Observation({
... 'id': '2',
... 'status': 'final',
... 'code': {'coding': [{'code': '5', 'system': 'test'}]},
... })

As you can see, this may get a but verbose so there are several shortcuts to help
with that.

Resource instances can be created:

	by passing a dict with the proper json structure as we already saw

	by passing the same values as keyword arguments:

>>> o = Observation(
... id='2', status='final', code={'coding': [{'code': '5', 'system': 'test'}]}
...)

	when an attribute’s type is a Backbone Element or a complex type, we can
pass a resource:

>>> from fhirbug.Fhir.resources import CodeableConcept
>>> test_code = CodeableConcept(coding=[{'code': '5', 'system': 'test'}])
>>> o = Observation(id='2', status='final', code=test_code)

	When an attribute has a cardinality larger than one, that is its values
are part of an array, but we only want to pass one value, we can skip
the array:

>>> test_code = CodeableConcept(coding={'code': '5', 'system': 'test'})
>>> o = Observation(id='2', status='final', code=test_code)

Fhirbug tries to make it as easy to create resources as possible by providing
several shortcuts with the base contructor.

Ignore missing required Attributes

If you try to initialize a resource without providing a value for a required
attribute you will get an error:

>>> o = Observation(id='2', status='final')
FHIRValidationError: {root}:
'Non-optional property "code" on <fhirbug.Fhir.Resources.observation.Observation object>
is missing'

You can suppress errors into warnings by passing the strict=False argument:

>>> o = Observation(id='2', status='final', strict=False)

Fhirbug will display a warning but it will not complain again if you try to save
or serve the instance. It’s up to you make sure that your data is well defined.

The base Resource class

Tis is the abstract class used as a base to provide common functionality to all
produced Resource classes. It has been modified in order to provide a convenient
API for Creating resources.

	
class fhirbug.Fhir.base.fhirabstractbase.FHIRAbstractBase

	

Auditing

With Fhirbug you can audit requests on three levels:

	Request level: Allow or disallow the specific operation on the specific
resource, and

	Resource level: Allow or disallow access to each individual resource and/or limit access to each of its attributes.

	Attribute level: Allow or disallow access to each individual attribute for each resource.

Warning

The Auditing API is still undergoing heavy changes and is even more unstable than the rest of the project.
Use it at your own risk!

Auditing at the request level

All you need to do do in order to implement request-level auditing in Fhribug
is to provide the built-in fhirbug.server.requesthandlers with an extra
method called audit_request.

This method should accept a single positional parameter, a FhirRequestQuery and should return an
AuditEvent. If the outcome attribute
of the returned AuditEvent is “0” (the code for “Success”), the request
is processed normally.

from fhirbug.server.requesthandlers import GetRequestHandler
from fhirbug.Fhir.resources import AuditEvent

class CustomGetRequestHandler(GetRequestHandler):
 def audit_request(self, query):
 return AuditEvent(outcome="0", strict=False)

The simplest possible auditing handler, one that approves all requests.

In any other case, the request fails with status code 403,
and returns an OperationOutcome resource containing the outcomeDesc of the AuditEvent. This way you can return information about the reasons for failure.

from fhirbug.server.requesthandlers import GetRequestHandler
from fhirbug.Fhir.resources import AuditEvent

class CustomGetRequestHandler(GetRequestHandler):
 def audit_request(self, query):
 if "_history" in query.modifiers:
 if is_authorized(query.context.user):
 return AuditEvent(outcome="0", strict=False)
 else:
 return AuditEvent(
 outcome="8",
 outcomeDesc="Unauthorized accounts can not access resource history.",
 strict=False
)

Note

Notice how we passed strict=False to the AuditEvent constructor?
That’s because without it, it would not allow us to create an AuditEvent resource
without filling in all its required fields.

However, since we do not store it in this example and instead just use it to communicate
with the rest of the application, there is no need to let it validate our resource.

Since Fhirbug does not care about your web server implementation, or your
authentication mechanism, you need to collect and provide the information neccessary for authenticationg the request to the audit_request method.

Fhirbug’s suggestion is passing this information through the query.context object, by providing query_context when calling the request handler’s handle method.

Auditing at the resource level

Controlling access to the entire resource

In order to implement auditing at the resource level, give your mapper models one or more of the
methods audit_read, audit_create, audit_update, audit_delete.
The signature for these methods is the same as the one for request handlers we saw above.
They accept a single parameter holding a FhirRequestQuery and
should return an AuditEvent, whose
outcome should be "0" for success and anything else for failure.

class Patient(FhirBaseModel):
 # Database field definitions go here

 def audit_read(self, query):
 return AuditEvent(outcome="0", strict=False)

 class FhirMap:
 # Fhirbug Attributes go here

You can use Mixins to let resources share common auditing methods:

class OnlyForAdmins:
 def audit_read(self, query):
 # Assuming you have passed the appropriate query cintext to the request handler
 isSuperUser = query.context.User.is_superuser

 return (
 AuditEvent(outcome="0", strict=False)
 if isSuperUser
 else AuditEvent(
 outcome="4",
 outcomeDesc="Only admins can access this resource",
 strict=False,
)
)

class AuditRequest(OnlyForAdmins, FhirBaseModel):
 # Mapping goes here

class OperationOutcome(OnlyForAdmins, FhirBaseModel):
 # Mapping goes here

 ...

Controlling access to specific attributes

If you want more refined control over which attributes can be changed and displayed, during the
execution of one of the above audit_* methods, you can call self.protect_attributes(*attrs*) and /or
self.hide_attributes(*attrs*) inside them.

In both cases, *attrs* should be an iterable that contains a list of attribute names that should be protected or hidden.

protect_attributes()

The list of attributes passed to protect_attributes will be marked as protected for the duration of this request
and will not be allowed to change

hide_attributes()

The list of attributes passed to hide_attributes will be marked as hidden for the current request.
This means that in case of a POST or PUT request they may be changed but they will not
be included in the response.

For example if we wanted to hide patient contact information from unauthorized users,
we could do the following:

class Patient(FhirBaseModel):
 # Database field definitions go here

 def audit_read(self, query):
 if not is_authorized(query.context.user):
 self.hide_attributes(['contact'])
 return AuditEvent(outcome="0", strict=False)

 class FhirMap:
 # Fhirbug Attributes go here

Similarly, if we wanted to only prevent unauthorized users from changing the Identifiers
of Patients we would use protect_attributes:

class Patient(FhirBaseModel):
 # Database field definitions go here

 def audit_update(self, query):
 if not is_authorized(query.context.user):
 self.protect_attributes = ['identifier']
 return AuditEvent(outcome="0", strict=False)

 class FhirMap:
 # Fhirbug Attributes go here

Auditing at the attribute level

Warning

This feature is more experimental than the rest. If you intend to use it
be aware of the complications that may rise because you are inside a desciptor getter
(For example trying to get the specific attribute’s value would result in an infinte loop)

When declaring attributes, you can provide a function to the audit_set and audit_get
keyword arguments. These functions accept three positional arguments:

The first is the instance of the Attribute descriptor, the second, query being the FhirRequestQuery
for this request and the third being the attribute’s name
It should return True if access to the attribute
is allowed, or False otherwise.

It’s also possible to deny the entire request by throwing an
AuthorizationError

	
audit_get(descriptor, query, attribute_name) → boolean

	
	Parameters

	
	query (FhirRequestQuery) – The FhirRequestQuery object for this request

	attribute_name (str) – The name this attribute has been assigned to

	Returns

	True if access to this attribute is allowed, False otherwise

	Return type

	boolean

	
audit_set(descriptor, query, attribute_name) → boolean

	
	Parameters

	
	query (FhirRequestQuery) – The FhirRequestQuery object for this request

	attribute_name (str) – The name this attribute has been assigned to

	Returns

	True if changing this attribute is allowed, False otherwise

	Return type

	boolean

Logging

Fhirbug’s RequestHandlers all have a
method called log_request that is called whenever a request is done being proccessed
with several information about the request.

By default, this method returns an AuditEvent FHIR resource instance populated
with available information about the request.

Enhancing or persisting the default handler

Enhancing the generated AuditEvents with extra information about the request
and Persisiting them is pretty simple. Just use custom RequestHandlers and override the log_request method:

from fhirbug.Fhir.resources import AuditEventEntity
from fhirbug.config import import_models

class EnhancedLoggingMixin:
 def log_request(self, *args, **kwargs):
 audit_event = super(EnhancedLoggingMixin, self).log_request(*args, **kwargs)

 context = kwargs["query"].context
 user = context.user
 # We populate the entity field with info about the user
 audit_event.entity = [
 AuditEventEntity({
 "type": {"display": "Person"},
 "name": user.username,
 "description": user.userid,
 })
]
 return audit_event

class PersistentLoggingMixin:
 def log_request(self, *args, **kwargs):
 audit_event = super(PersistentLoggingMixin, self).log_request(*args, **kwargs)
 models = import_models()
 AuditEvent = getattr(models, 'AuditEvent')
 audit_event_model = AuditEvent.create_from_resource(audit_event)
 return audit_event

Create the handler
class CustomGetRequestHandler(
 PersistentLoggingMixin, EnhancedLoggingMixin, GetRequestHandler
):
 pass

Note

In order to have access to the user instance we assume you have passed
a query context to the request handler’s handle method containing
the necessary info

Note

Note that the order in which we pass the mixins to the custom handler class
is important. Python applies mixins from right to left, meaning
PersistentLoggingMixin’s super() method will call
EnhancedLoggingMixin’s log_request and EnhancedLoggingMixin’s
super() method will call GetRequestHandler’s

So, we expect the AuditEvent that is persisted by the
PersistentLoggingMixin to contain information about the user because
it is comes before EnhancedLoggingMixin in the class definition

Creating a custom log handler

If you don’t want to use fhirbug’s default log handling and want to implement
something your self, the process is pretty much the same. You implement your own
log_request method and process the information that is passed to it by
fhirbug any way you want. Essentially the only difference with the examples above
is that you do not call super() inside your custom log function.

The signature of the log_request function is the following:

Here’s an example where we use python’s built-in logging module:

from datetme import datetime
from logging import getLogger

logger = getLogger(__name__)

class CustomGetRequestHandler(GetRequestHandler):
 def log_request(self, url, status, method, *args, **kwargs):
 logger.info("%s: %s %s %s" % (datetime.now(), method, url, status))

API

Contents:

	Attributes

	Mixins

	fhirbug.server
	Request Parsing

	Request Handling

	Auth

	fhirbug.exceptions

Attributes

Mixins

fhirbug.server

Request Parsing

Request Handling

Auth

fhirbug.exceptions

	
exception fhirbug.exceptions.AuthorizationError(auditEvent, query=None)

	The request could not be authorized.

	
auditEvent = None

	This exception carries an auditEvent resource describing why authorization failed
It can be thrown anywhere in a mappings .get() method.

	
exception fhirbug.exceptions.ConfigurationError

	Something is wrong with the settings

	
exception fhirbug.exceptions.DoesNotExistError(pk=None, resource_type=None)

	A http request query was malformed or not understood by the server

	
exception fhirbug.exceptions.InvalidOperationError

	The requested opertion is not valid

	
exception fhirbug.exceptions.MappingException

	A fhir mapping received data that was not correct

	
exception fhirbug.exceptions.MappingValidationError

	A fhir mapping has been set up wrong

	
exception fhirbug.exceptions.OperationError(severity='error', code='exception', diagnostics='', status_code=500)

	An exception that happens during a requested operation that
should be returned as an OperationOutcome to the user.

	
to_fhir()

	Express the exception as an OperationOutcome resource.
This allows us to catch it and immediately return it to the user.

	
exception fhirbug.exceptions.QueryValidationError

	A http request query was malformed or not understood by the server

	
exception fhirbug.exceptions.UnsupportedOperationError

	The requested opertion is not supported by this server

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fhirbug	

 	
 	
 fhirbug.exceptions	

 	
 	
 fhirbug.models.mixins	

Index

 A
 | C
 | D
 | F
 | I
 | M
 | O
 | Q
 | T
 | U

A

 	
 	audit_get() (built-in function)

 	audit_set() (built-in function)

 	
 	auditEvent (fhirbug.exceptions.AuthorizationError attribute)

 	AuthorizationError

C

 	
 	ConfigurationError

D

 	
 	DoesNotExistError

F

 	
 	fhirbug.exceptions (module)

 	
 	fhirbug.Fhir.base.fhirabstractbase.FHIRAbstractBase (built-in class)

 	fhirbug.models.mixins (module)

I

 	
 	InvalidOperationError

M

 	
 	MappingException

 	
 	MappingValidationError

O

 	
 	OperationError

Q

 	
 	QueryValidationError

T

 	
 	to_fhir() (fhirbug.exceptions.OperationError method)

U

 	
 	UnsupportedOperationError

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to fhirbug’s documentation!

 		
 Quickstart

 		
 Preparation

 		
 Creating your first Mappings

 		
 Letting the magic happen

 		
 Handling requests

 		
 Advanced Queries

 		
 Further Reading

 		
 Overview

 		
 Creating Mappings

 		
 FHIR Resources

 		
 Uses of FHIR Resources in Fhirbug

 		
 Creating resources

 		
 Ignore missing required Attributes

 		
 The base Resource class

 		
 Auditing

 		
 Auditing at the request level

 		
 Auditing at the resource level

 		
 Auditing at the attribute level

 		
 Logging

 		
 Enhancing or persisting the default handler

 		
 Creating a custom log handler

 		
 API

 		
 Attributes

 		
 Mixins

 		
 fhirbug.server

 		
 Request Parsing

 		
 Request Handling

 		
 Auth

 		
 fhirbug.exceptions

_static/up.png

_static/up-pressed.png

