FEniCS hands-on

Release 2017.2.0.dev0

Jan Blechta, Roland Herzog, Jaroslav Hron, Gerd Wachsmuth

Preliminaries
1 License
2 Prolog

3 Poisson in a hundred ways

4 Heat equation

5 Navier-Stokes equations

6 Hyperelasticity

7 Eigenfunctions of Laplacian and Helmholtz equation
8 Heat equation in moving media

9 p-Laplace equation

Sep 21,2018

10
21
29
34
41

44

1 License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

2 Prolog

Motto

mine, and belongs to me and I own it, and what it is too.”

— Anne Elk (Miss)

“My theory by A. Elk. Brackets Miss, brackets. This theory goes as follows and begins now. All brontosauruses
are thin at one end, much much thicker in the middle and then thin again at the far end. That is my theory, it is

This document served primarily as task sheets for FEniCS hands-on lectures held on Chemnitz University of
Technology in September 2018. Nevertheless it is not excluded that these sheets could not be used separately or
for any other occassion.

2.1 Target audience

This tutorial gives lectures on usage of FEniCS version 2017.2.0 through its Python 3 user interface. It is specif-
ically intended for newcomers to FEniCS and as such does not assume any knowledge in Python programming.
Rather than taking a Python tutorial first, the intent is to learn-by-doing. As a consequence first steps consist of
modificating existing FEniCS demos while gradually taking bigger and bigger tasks in writing original code.

2.2 FEniCS installation

Obviously we will need a working installation of FEniCS. FEniCS can be installed in different ways which all of
them have some pros and cons. On TU Chemnitz this taken care of by organizers of the hands-on and participants
do not have to worry about this.

Nevertheless participants might want to install FEnicS to their laptops, workstation, home computers to practice
or use FEniCS outside of the tutorial classes. The easiest option for new FEniCS users on Ubuntu is to install
using APT from FEniCS PPA.

Note: This lecture material including the reference solutions is verified to be compatible with:
* FEniCS 2017.2.0,
* FEniCS 2018.1.0.

Ubuntu packages

Installing FEniCS (including mshr) from PPA:

sudo apt-get install --no-install-recommends software-properties-common
sudo add-apt-repository ppa:fenics-packages/fenics

sudo apt—-get update

sudo apt-get install --no-install-recommends fenics

will install the following versions:

Ubuntu FEnIiCS
Xenial 16.04 | 2017.2.0
Bionic 18.04 | 2018.1.0

On the other hand FEniCS 2017.2.0 can be installed on Bionic by

Remove PPA 1f previously added
sudo apt-get install --no-install-recommends software-properties-common
sudo add-apt-repository —--remove ppa:fenics-packages/fenics

Install DOLFIN from official Bionic package
sudo apt—-get update
sudo apt—-get install —--no-install-recommends python3-dolfin

Optionally install mshr from source

sudo apt—-get install libgmp-dev libmpfr-dev

wget https://bitbucket.org/fenics-project/mshr/downloads/mshr-2017.2.0.tar.gz
tar -xzf mshr-2017.2.0.tar.gz

(continues on next page)

https://www.tu-chemnitz.de/mathematik/part_dgl/teaching/WS2018_FEniCS
https://www.tu-chemnitz.de/mathematik/part_dgl/teaching/WS2018_FEniCS
https://fenicsproject.org/download/

(continued from previous page)

cd mshr-2017.2.0
mkdir build

cd build
cmake —-DPYTHON_EXECUTABLE=/usr/bin/python3
make

sudo make install
sudo ldconfig

Docker images

On the other hand FEniCS images for Docker provide the most portable solution, with arbitrary FEniCS version
choice, for systems where Docker CE can be installed and run; see https://fenicsproject.org/download/.

2.3 Resources

DOLFIN docs

DOLFIN Python API docs
* UFL manual and API docs
* mshr API docs

* Python docs

FEniCS AllAnswered

Periodic Table of Finite Elements

3 Poisson in a hundred ways

3.1 First touch

Login by SSH to tyche and type: How to login

Open a terminal window by hitting CTRL+ALT+T. Use ssh to connect to a remote system:

ssh -X -C tyche

Note:

* —Xenable X11 forwarding (allows processes on the remote machine opening windows of graph-
ical applications on the local machine)

* —C enables compression which is mainly beneficial for access from a remote network

e tyche stands here for machine tyche.mathematik.tu-chemnitz.de; username on
the local machine is used by default to login to the remote machine; the machine is not accessible
from outside the univerity, so one would login through a jump host

luigivercotti@local_machine:~$ ssh -X -C user@login.tu-chemnitz.de
user@login:~$ ssh -X -C tyche
user@tyche:~$

Alternatively one can use VPN.
For experts: Kerberos + public key + jump host

The most comfortable solution for password-less logins outside of the university:

https://www.docker.com/community-edition
https://fenicsproject.org/download/
https://fenics.readthedocs.io/projects/dolfin/en/2017.2.0
https://fenicsproject.org/docs/dolfin/2017.2.0/python/index.html
https://fenics.readthedocs.io/projects/ufl/en/2017.2.0.post0/
https://bitbucket.org/fenics-project/mshr/wiki/API
https://docs.python.org/3
https://www.allanswered.com/community/s/fenics-project/
http://femtable.org/

e add

Host login
Hostname login.tu-chemnitz.de
User <user>
ForwardAgent yes
ForwardX1ll yes
ForwardX1llTrusted yes
GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes

Host tyche
Hostname tyche.mathematik.tu-chemnitz.de
User <user>
ForwardAgent yes
ForwardX1ll yes
ForwardX11lTrusted yes
ProxyCommand ssh login -W %$h:%p

to~/.ssh/config,

* upload public key to 1ogin and tyche by

ssh-copy-id login
ssh-copy—-id tyche

e install Kerberos

which allows to get Kerberos ticket by

kinit <user>Q@TU-CHEMNITZ.DE

and during its validity password-less login from anywhere

ssh tyche

source /LOCAL/opt/fenics-2017.2.0/fenics.conf

to prepare environment for using FEniCS. Now fire up interactive Python 3 interpreter:

python3

You should see something like:

Python 3.6.5 (default, Apr 1 2018, 05:46:30)

[GCC 7.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

Now type:

>>> from dolfin import =

>>> import matplotlib.pyplot as plt

>>>

>>> mesh = UnitSquareMesh (13, 8)

>>> plot (mesh)

[<matplotlib.lines.Line2D object at 0x7fe0003d65c0>, <matplotlib.lines.Line2D_,
—object at 0x7fe0003d6748>]

>>> plt.show/()

Hint: Click on >>> in the right top corner of the code snippet to make the code copyable.

https://www.tu-chemnitz.de/urz/security/ssh.html/

A graphical plot of the mesh should appear. If any of the steps above failed, you’re not correctly set up to use
FEniCS. If everything went fine, close the plot window and hit ~D to quit the interpreter.

3.2 Run and modify Poisson demo

Task 1

Get the Poisson demo from FEniCS install dir and run it:

mkdir -p work/fenics/poisson

cd work/fenics/poisson

cp /LOCAL/opt/fenics-2017.2.0/share/dolfin/demo/documented/poisson/python/demo_
—poisson.py

python3 demo_poisson.py

You should see some console output and a plot of the solution.

Now login to tyche from another terminal window and open the demo file using your favourite editor (if you
don’t have any you can use gedit, nano,...):

cd work/fenics/poisson
<editor> demo_poisson.py

Task 2

Now add keyword argument warp="'mode ' to the plot function call by applying the following diff:

Plot solution

import matplotlib.pyplot as plt
-plot (u)
+plot (u, mode='warp')

plt.show ()

and run the demo again by python3 demo_poisson.py.

Hint

Constant, Expression, and similar are clickable links leading to their documentation.

Open Poisson demo documentation on the FEniCS website. Notice that the doc page is generated from the demo
file. Go quickly through the docpage while paying attention to

¢ definition of weak formulation through forms a and L,

e usage of Constant and Expression classes.

Task 3
Modify the code to solve the following problem instead:
—Au+cu=f inQ,
u=up onlp,

ou __
I = onI'y

https://docs.python.org/3/tutorial/controlflow.html#tut-keywordargs
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/common/plotting/plot.html#dolfin.common.plotting.plot
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/constant/Constant.html#dolfin.functions.constant.Constant
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/expression/Expression.html#dolfin.functions.expression.Expression
https://fenics.readthedocs.io/projects/dolfin/en/2017.2.0/demos/poisson/python/demo_poisson.py.html
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/constant/Constant.html#dolfin.functions.constant.Constant
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/expression/Expression.html#dolfin.functions.expression.Expression

with
92(071)27 FD:{($,y),1':1,0<y<1}, 1_\N:aQ\FDa (1)
c=6, flx,y) ==z, up(z,y)=y, g(z,y)=sin(bz)exp(y). (2)

3.3 Semilinear Poisson equation

Task 4
Derive weak formulation for the following semilinear Poisson problem:
—Au+ud+u=f inQ,
g—z =g ondf))
with

Q=(0,1)% flzy) == glz,y) =sin(5z)exp(y). ©))

Notice that the weak formulation has the form
Find u € H'(2) such that
F(u;v) =0 forallv € H'(Q)

with certain F' depending on u in nonlinear fashion but being linear in test functions v. One can find the solution
iteratively by the Newton method:

1. Choose ug € HY(Q2),
2. Fork=1,2,...do
(a) Find du € H'(Q) such that

F
g—u(uk;v, du) = —F(ug;v) forallv € H'(Q),)

(b) Set ugi1 = up + ou.
(c) Check certain convergence criterion and eventually stop iterating.

Here Jacobian %—5 (u; v, du) is Gateaux derivative of F'. It is generally nonlinear in w, but linear in v and du. Hence
with fixed uy, € H'(Q) the left-hand side and the right-hand side of (5) are a bilinear and linear form respectively
and (5) is just ordinary linear problem.

Task 5

Modify the previous code to adapt it to problem (3), (4). Define F' by filing the gaps in the following code:

u = Function (V)

v = TestFunction (V)
f = Expression(...)
g = Expression(...)

If in doubts, peek into Nonlinear Poisson demo documentation.

Look into documentation of solve function, read section Solving nonlinear variational problems. Now you
should be able to call the so1lve function to obtain the solution.

https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative
https://fenics.readthedocs.io/projects/dolfin/en/2017.2.0/demos/nonlinear-poisson/python/demo_nonlinear-poisson.py.html
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/solving/solve.html#dolfin.fem.solving.solve
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/solving/solve.html#dolfin.fem.solving.solve

3.4 Nonlinear Dirichlet problem

Task 6
Modify the code to solve the following Dirichlet problem:
—div(cVu) +10u® +u=f inQ,
w=up onof
with

Q=(0,1)% = f(z,y) =100z, up(z,y)=y, clz,y) =15+ 3@ +37).

Hint: Supply instance of SubDomain class to DirichletBC. How do you tell SubDomain to define 92?
What do you fill in?

class Boundary (SubDomain) :
def inside(self, x, on_boundary):
return ...

on_boundary argument evaluates to True on boundary facets, False otherwise.

3.5 Variational formulation

For u € H' () consider functional

Bw) = [(3IVul+ Jut + 42— fuyde— [guds.
Q o0

Convince yourself that minimization of F' over H!((2) is equivalent to problem (3).

Task 7
By filling the following code:

u = Function (V)
f = Expression(...)
Expression(...)

E= ...

define F(u) for data (4). Remember that functionals (zero-forms) do not have any test and trial functions.

Obtain F(u;v) := 2 (u;v) using derivative:

’F = derivative (E, u)

and run the solver like in 7ask 5. Check you get the same solution.

3.6 Yet another nonlinearity

Consider quasilinear equation in divergence form

—div(AVu) +u = f inQ,
Sat= =0 on 99, (6)

A=[L+u? 00 1+4?] inQ

https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/SubDomain.html#dolfin.cpp.mesh.SubDomain
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/bcs/DirichletBC.html#dolfin.fem.bcs.DirichletBC
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/SubDomain.html#dolfin.cpp.mesh.SubDomain
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/formmanipulations/derivative.html#dolfin.fem.formmanipulations.derivative

with data

92(071)27 f(x,y)z%(w—i—y)

)

Task 8

Derive weak formulation for the problem (6).

Solve the problem (6), (7) using FEniCS. Employ as_mat rix function to define A:

u = Function (V)
v = TestFunction (V)

A = as_matrix((
(o) o)y,
(cvey o)y,

)
F = inner (Axgrad(u), grad(v))xdx +

3.7 Reference solution

Show/Hide Code

Download Code

from dolfin import =«
import matplotlib.pyplot as plt

def solve_task3(V):
"""Return solution of Task 3 on space V"""

Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x, on_boundary) :
return on_boundary and x[0] > 1.0 - DOLFIN_EPS

Define boundary condition
uD = Expression("x[1]", degree=1)
bc = DirichletBC(V, uD, boundary)

Define variational problem

= TrialFunction (V)

= TestFunction (V)

= Expression("x[0]", degree=1)

Expression("sin (5+x[0])*exp(x[1])", degree=3)
= inner (grad(u), grad(v))x*dx + 6xuxvxdx

= fxv+dx + gxv*ds

HoQ g o
Il

Compute solution
u = Function (V)
solve(a == L, u, bc)
return u

def solve_task5(V):

"""Return solution of Task 5 on space V"""

Define variational problem

(continues on next page)

https://fenics.readthedocs.io/projects/ufl/en/2017.2.0.post0/api-doc/ufl.html#ufl.tensors.as_matrix

(continued from previous page)

def

def

def

u = Function (V)

v = TestFunction (V)

f = Expression("x[0]", degree=1)

g = Expression("sin (5+xx[0])*exp(x[1])", degree=3)

F = inner(grad(u), grad(v))*dx + (ux*3 + u)*v+dx — fxvrdx — gxvxds

Compute solution
solve (F == 0, u)

return u

solve_task6 (V) :
"""Return solution of Task 6 on space V"""

Define Dirichlet boundary
class Boundary (SubDomain) :
def inside(self, x, on_boundary):
return on_boundary

Define boundary condition
boundary = Boundary ()

uD = Expression("x[1]", degree=1)
bc = DirichletBC(V, uD, boundary)

Define variational problem
= Function (V)
= TestFunction (V)

= Expression("100xx[0]", degree=1)
= c*inner (grad(u), grad(v))xdx + (LlO0xux*3 + u)xvrxdx -

H Hh Q< & %
Il

Compute solution
solve (F == 0, u, bc)

return u

solve_task7(V):
"""Return solution of Task 7 on space V"""

Define variational problem

Function (V)

Expression("x[0]", degree=1)

Expression("sin (5+x[0])*exp(x[1])", degree=3)

(grad(u) «+«2/2 + u*+4/4 + u*x+2/2 — f+u)+dx - g*uxds
derivative (E, u)

Qo
Il

Compute solution
solve (F == 0, u)

return u

solve_task8 (V) :
"""Return solution of Task 8 on space V"""

Define variational problem

= Function (V)

TestFunction (V)

Expression("0.5% (x[0] + x[1])", degree=1l)

o< e s

Expression("0.1 + 0.5x(x[0]*x[0] + x[1]xx[1])", degree=2)

frvrdx

(continues on next page)

(continued from previous page)

A = as_matrix((
(0.1 + u*=*2, 0y,
(0, 1 + uxx2),
)

)
F = inner (Axgrad(u), grad(v))*dx + uxvsdx - fxvxdx

Compute solution
solve(F == 0, u)

return u

if name == '_ _main

Create mesh and define function space
mesh = UnitSquareMesh (32, 32)
V = FunctionSpace (mesh, "Lagrange", 1)

Solve all problems
u3 = solve_task3 (V)

ub = solve_task5 (V)
u6 = solve_task6 (V)
u7 = solve_task7 (V)
u8 = solve_task8 (V)

Compare solution which should be same

err = (grad(u7 — ub)**x2 + (u7 — ub)*x2)xdx
err = assemble (err)
print (" | |u7 - ub||_H1 =", err)

Plot all solutions into separate figures
plt.figure ()
plot (u3, title='u3', mode="warp")

plt.figure ()
plot (u5, title='u5', mode="warp")

plt.figure ()
plot (u6, title='u6', mode="warp")

plt.figure ()
plot (u7, title='u7', mode="warp")

plt.figure ()
plot (u8, title='u8', mode="warp")

Display all plots
plt.show ()

4 Heat equation

Goals

Learn how to deal with time-dependent problems. Solve heat equation by #-scheme. Solve wave equation with
central differences. Plot some nice figures.

We will be interested in solving heat equation:
u —Au = f inQ x (0,7),
g—fl:g on 92 x (0,7,
u = ug on Q2 x {0}

using -scheme discretization in time and arbitrary FE discretization in space with given data f, g, ug. #-scheme
time-discrete heat equation reads:

Ait (u"+1 - u”) AU — (1 —) AU = Of (tpir) + (1 — O)f(t,) inQ, n=012,...
G = g(tn) ondQ, n=012... ©
u® = ugp in Q

for a certain sequence 0 =ty < t; < t9 < ... < T. Special cases are:

explicit Euler scheme,
Crank-Nicolson scheme,
implicit Euler scheme.

DD D
I
o O

Task 1

Test (8) by functions from H!(2) and derive a weak formulation of §-scheme for heat equation.

4.1 First steps

Consider data

Q=(0,1)2,

T =2,

/=0, ©)
g=0,

uo(z,y) = x.

Task 2

Write FEniCS code implementing problem (8), (9), assuming general 0, and arbitrary but fixed A¢. In particular
assume:

from dolfin import =«

mesh = UnitSquareMesh (32, 32)
V = FunctionSpace (mesh, "Lagrange", 1)

theta = Constant (0.5)
dt = Constant (0.1)

Proceed step-by-step.
1. Define all relevant data from (9). Use Constant or Expression classes to define f, g, ug.

2. Define a finite element function for holding solution at a particular time step:

u_n = Function (V)

and arguments of linear and bilinear forms:

https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/constant/Constant.html#dolfin.functions.constant.Constant
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/expression/Expression.html#dolfin.functions.expression.Expression

u, v = TrialFunction(V), TestFunction (V)

3. Define bilinear and linear forms describing Galerkin descretization of the weak formulation derived
in 7usk 1 on the space V.

You can conveniently mix bilinear and linear terms into a single expression:

’F = 1/dt*(u — u_n)*vxdx +

and separate bilinear and linear part using 1hs, rhs:

’a, L = lhs(F), rhs(F)

Tip: Itis good to execute your code every once in a while, even when it is not doing anything useful so far,
e.g., does not have time-stepping yet. You will catch the bugs early and fix them easily.

4. Prepare for the beggining of time-stepping. Assume u0 is an Expression or Constant. You can
use Function.interpolate () or interpolate():

u_n.interpolate (u0)
or
u_n = interpolate (ul, V)

5. Implement time-stepping. Write a control flow statement (for example a while loop) which executes the
solver for problem a == L repeatedly while updating what needed.

Hint: Note that a single Funct ion object is needed to implement the time-stepping. The function can be
used to hold the value of u,, and then be updated by calling solve (...).

6. Run with different values of 6 = 1, %, 0.

As a first indicator of correctness of the implementation you can drop into the loop lines like:

energy = assemble (u_n+dx)
print ("Energy =", energy)

Are you observing expected value?

4.2 Data IO, plotting

There are several possibilities for visualization of data.
XDMF output and Paraview

One possibility is to use IO facilities of FEniCS and visualize using external software, for example Paraview.

Note: This approach allows to separate

* actual computation, which can happen in headless HPC environment, for example big parallel clusters of
thousands of CPU cores,

¢ and visualization, which many times needs human interaction.

One can used XDMF'F'1ile to store data:

https://fenics.readthedocs.io/projects/ufl/en/2017.2.0.post0/api-doc/ufl.html#ufl.lhs
https://fenics.readthedocs.io/projects/ufl/en/2017.2.0.post0/api-doc/ufl.html#ufl.rhs
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/function/Function.html#dolfin.cpp.function.Function.interpolate
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/interpolation/interpolate.html#dolfin.fem.interpolation.interpolate
https://docs.python.org/3/tutorial/introduction.html#tut-firststeps
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/io/XDMFFile.html#dolfin.cpp.io.XDMFFile

Open file for XDMF IO
f = XDMFFile('solution.xdmf")

while t < T:
Compute time step
perform_timestep(u_n, t, dt)

t += dt

Save the result to file at time t
f.write(u_n, t)

Then you can open Paraview by shell command

paraview &

and visualize the file solution.xdmf.
Matplotlib — native plotting in Python
Another possibility is to use Python plotting library Matplotlib.

Note: Matplotlib is Python native plotting library, which is programmable and supports
* interactive use from Python interpreters, including popular shells like Jupyter,
* high-quality vector output suitable for scientific publishing.

FEniCS plot (obj, #*xkwargs) function implements plotting using Matplotlib for several different types of
obj, for instance Function, Expression, Mesh, MeshFunction. As Matplotlib is highly programmable
and customizable, FEniCS plot () is typically accompanied by some native matplotlib commands. Mimimal
example of interaction of FEniCS and matplotlib:

from dolfin import =
import matplotlib.pyplot as plt

mesh = UnitSquareMesh (64, 64)

plot (mesh)
plt.savefig('mesh_64_64.pdf") # Render to PDF
plt.show () # Render into interactive window

Add something along the lines of:

import matplotlib.pyplot as plt

Open a plot window
fig = plt.figure()
fig.show ()

while t < T:

Compute time step
perform_timestep(u_n, t, dt)
t += dt

Update plot to current time step
fig.clear ()

p = plot(u_n, mode="warp")
fig.colorbar (p)

fig.gca() .set_zlim((0, 2))
fig.canvas.draw ()

https://matplotlib.org/
https://matplotlib.org/
https://jupyter.org/

Warning: Matplotlib’s interactive capabalities aparently depend on used Matplotlib backend. In particular
updating the contents of the plot window seems to work fine with TkAgg backend. Issue shell command

export MPLBACKEND=tkagg

to choose TkAggq in the current shell session.

Task 3

Implement at least one of the aforementioned ways to plot your solutions in time. Check that your solution of 7ask
2 looks reasonable.

4.3 Nonhomogeneous Neumann BC

Consider (8), (9) but now with nonhomogeneous Neumann data

g=1lon{z =0},

10
g = 0 elsewhere. (19)

Task 3
1. Derive weak formulation describing (8), (9), (10).
2. Define surface measure supported on the left boundary of the unit square mesh by following steps:
(a) subclass SubDomain,
(b) define MeshFunction,
(c) mark the mesh function using SubDomain.mark method,

(d) define integration Measure.

Hint:
Show/Hide Code

Define instance of SubDomain class
class Left (SubDomain) :
def inside(self, x, on_boundary):
return on_boundary and near (x[0], 0)
left = Left()

Define and mark mesh function on facets
facets = MeshFunction('size_t', mesh, mesh.topology () .dim()-1)
left.mark (facets, 1)

Define exterior facet measure where facets==1
ds_left = Measure("ds", mesh, subdomain_data=facets, subdomain_id=1)

3. Using the surface measure, modify the implementation from 7ask 2 to incorporate boundary condition (10).

4. Run the code with § = 1 and check that the results look as expected.

https://matplotlib.org/faq/usage_faq.html#what-is-a-backend
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/SubDomain.html#dolfin.cpp.mesh.SubDomain
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/MeshFunction.html#dolfin.cpp.mesh.MeshFunction
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/SubDomain.html#dolfin.cpp.mesh.SubDomain.mark
https://fenics.readthedocs.io/projects/ufl/en/2017.2.0.post0/api-doc/ufl.html#ufl.Measure

4.4 Time-dependent BC

Consider time-dependent data
f (1' ’ t) =2-t,

(2.1) = t z=0,0 (11)
IV =9 otherwise.

Task 4

Modify solution of the previous task to use data (11).

Hint: You can use Constant.assign () or Expression.<param> = <value> to change existing
Constant or Expression. Look for User defined parameters in Expression documentation.

Now consider different time-dependent data
f(z,t) =0,

g(a, 1) = { max(O,%) z=20,0 (12)

otherwise.

Task 5

Modify solution of the previous task to use data (12).

4.5 Adaptive time-stepping
Consider solution of low precision generated by timestep At:
1
(! =) = 08 = (L= 0)Au" = 0f (tns1) + (1= 0)f (t) (13)

and solution of high precision computed by two timesteps of a half size:

1 n n n n
(g = ") = 02U = (1=) A" = 0f (tuy1/2) + (1= 0)f(tn),

At/2
. (14)
n n+1/2 n n+1/2
K7z (e — i) = 08 — (L=)AL = 0 (1) + (1=)f b).
By Richardson extrapolation one can estimate the error of discretization (in time) by quantity:
n+1 n+1
o ||uh;gh —upos 220 (15)
' 2r —1
where
2
p=4q =31 (16)
otherwise
is a theoretical order of accuracy of the #-scheme. Given a tolerance Tol set the new timestep to
1
Tol\ »
Ar = (” ") At (a7
n

Here 0 < p < 1 is a chosen safety factor. That asymptotically ensures that the error (or at least the estimator)
committed with the new time step is p-multiple of the tolerance.

Now consider an algorithm:

https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/function/Constant.html#dolfin.cpp.function.Constant.assign
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/expression/Expression.html#dolfin.functions.expression.Expression
https://en.wikipedia.org/wiki/Richardson_extrapolation

1. compute uj;t ! and upity
2. compute 7
3. compute At*
4. if n < Tol:
untl = uﬁ;'g'ﬁ
n+=1

5. update timestep At := At*

Task 6

Solve (8), (9)1,2,5, (12) using the adaptive strategy described above.

Hint: You will need more than one Function and perform assignments between them. Having

Functions £, g on the same space you can perform assignment f := g by

f.vector()[:] = g.vector()

4.6 Wave equation

Now consider problem

Uy — Au = f
u=20

u(-,t) = ug
ug(+, t) = vo

This problem can be discretized in time as

1
(At)?

The iteration can be bootstrapped by

in Q2 x (0,7),
on 992 x (0,7),
in Q,

in Q.

(u”+1 — "+ u"_l) — AWM) = F(E7).

ub = u + A,

(18)

19)

Task 7

Implement solver for problem (18) by discretizing in time with (19). Solve the problem with data

=0,
u®(z,y) = max(0,1 — 4r(x,y))
v(x,y) =0,

T =5,

Q=(0,1)%

Visualize the result.

where 7(z,y) = dist((z,y), (3, 15));

4.7 Reference solution

Note: The reference solution follows the DRY principle. Hands-on participants are not expected to write such a
structured code during the session.

Attention: For on-the-fly plotting, TkAgg Matplotlib backend has been tested. You can enforce its selection
by a shell command

export MPLBACKEND=tkagg ‘

Note that the the plotting is the bottleneck of the code. The code runs much faster without plots which can be
ensured by

’DQLFII\;NQ?L@T:l MPLBACKEND=template python3 heat.py ‘

We leave as an exercise to add XDMF output for plotting in Paraview.

Show/Hide Code

Download Code

from dolfin import =«
import matplotlib.pyplot as plt

def create_timestep_solver (get_data, dsN, theta, u_old, u_new):
"""Prepare timestep solver by theta-scheme for given
function get_data (t) returning data (f(t), g(t)), given
solution u_old at time t and unknown u_new at time t + dt.
Return a solve function taking (t, dt).

mmn

Initialize coefficients
f_n, g_n = get_data(0)
f_npl, g_npl = get_data(0)
idt = Constant (0)

Extract function space
V = u_new. function_space ()

Prepare weak formulation

u, v = TrialFunction(V), TestFunction (V)

theta = Constant (theta)

F = (idt*(u - u_old) »v*dx
+ inner (grad(thetaxu + (l-theta)xu_old), grad(v)) ~dx
— (thetaxf_npl + (l-theta)*f_n)x*vxdx
- (thetaxg_npl + (l-theta)*g_n) *v*dsN

a, L = 1lhs(F), rhs(F)

def solve_ (t, dt):
"""Update problem data to interval (t, t+dt) and
run the solver"""

Update coefficients to current t, dt
get_data(t, (f_n, g_n))

get_data (t+dt, (f_npl, g_npl))
idt.assign (1/dt)

Push log level

(continues on next page)

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://matplotlib.org/faq/usage_faq.html#what-is-a-backend

(continued from previous page)

def

def

old_level get_log_level ()
warning LogLevel .WARNING if cpp.__version___ >
set_log_level (warning)

Run the solver
solve(a == L, u_new)

Pop log level
set_log_level (old_level)

return solve_

timestepping (V, dsN, theta, T, dt, u_0, get_data):
"""Perform timestepping using theta-scheme with
final time T, timestep dt, initial datum u_0 and
function get_data (t) returning (£f(t), g(t))"""

Initialize solution function
u Function (V)

Prepare solver for computing time step
solver create_timestep_solver (get_data,

dsN, theta, u,
Set initial condition
u.interpolate (u_0)

Open plot window
fig init_plot ()

Print table header

print("{:10s} | {:10s} | {:10s}".format ("t", "dt",
Perform timestepping
t =0

while t < T:

Report some numbers
energy assemble (uxdx)
print (" {:10.4f} | {:10.4f}

[:#10.4g}" . format (t,

Perform time step
solver (t, dt)
t += dt

Update plot

update_plot (fig, u)

timestepping_adaptive(V, dsN, theta, T, tol, u_0,
"""pPerform adaptive timestepping using theta-scheme with
final time T, tolerance tol, initial datum u_0 and
function get_data (t) returning (f£(t), g(t))"""

Initialize needed functions

u_n = Function (V)
u_npl_low = Function (V)
u_npl_high = Function (V)

Prepare solvers for computing tentative time steps
solver_low = create_timestep_solver (get_data, dsN, theta,

'2017.2.0"

dt,

else WARNING

u)

"energy"))

energy))

get_data) :

u_n, u_npl_low)

(continues on next page)

(continued from previous page)

def

def

solver_high_1 = create_timestep_solver (get_data, dsN, theta, u_n,

u_npl_high)

solver_high_2 = create_timestep_solver (get_data, dsN, theta, u_npl_high, u_npl_
—high)

Initial time step; the value does not really matter
dt = T/2

Set initial conditions
u_n.interpolate (u_0)

Open plot window
fig = init_plot ()

Print table header
print ("{:10s} | {:10s} | {:10s}".format ("t", "dt", "energy"))

Perform timestepping
t =20
while t < T:

Report some numbers
energy = assemble (u_n*dx)
print (" (:10.4f) | {:10.4f) | {:#10.4g}".format (t, dt, energy))

Compute tentative time steps
solver_low(t, dt)
solver_high_1(t, dt/2)
solver_high_2 (t+dt, dt/2)

Compute error estimate and new timestep
est = compute_est (theta, u_npl_low, u_npl_high)
dt_new = compute_new_dt (theta, est, tol, dt)

if est > tol:
Tolerance not met; repeat the step with new timestep
dt = dt_new
continue

Move to next time step
u_n.vector()[:] = u_npl_high.vector()
t += dt

dt = dt_new

Update plot
update_plot (fig, u_n)

compute_est (theta, u_L, u_H):

"""Return error estimate by Richardson extrapolation"""
p = 2 if theta == 0.5 else 1

est = sqgrt (assemble ((u_L - u_H)*#2+dx)) / (2+xp - 1)
return est

compute_new_dt (theta, est, tol, dt):
"""Return new time step"""

p = 2 if theta == 0.5 else 1

rho = 0.9

dt_new = dt * (rho * tol / est)xx*(1/p)
return dt_new

(continues on next page)

(continued from previous page)

def

def

def

def

def

def

def

init_plot () :

"""Open plot window and return its figure object"""
fig = plt.figure()

fig.show ()

return fig

update_plot (fig, u, zlims=(0, 2)):
"""plot u in 3D warp mode with colorbar into figure fig;
use zlims as limits on z-axis"""
fig.clear()
p = plot (u, mode="warp")
if p is None:

return
fig.colorbar (p)
fig.gca() .set_zlim(zlims)
fig.canvas.draw ()

create_function_space() :

"""Return (arbitrary) H"1 conforming function space on
unit square domain"""

mesh = UnitSquareMesh (32, 32)

V = FunctionSpace (mesh, "p", 1)
return V

create_surface_measure_left (mesh) :
""N"Return surface measure on the left boundary of unit
square"""
class Left (SubDomain) :

def inside(self, x, on_boundary):

return on_boundary and near (x[0], 0)

facets = MeshFunction('size_t', mesh, mesh.topology().dim()-1)
Left () .mark (facets, 1)

ds_left = Measure("ds", mesh, subdomain_data=facets, subdomain_id=1)

return ds_left

get_data_2(t, result=None) :

"""Create or update data for Task 2"""

f, g = result or (Constant (0), Constant (0))
f.assign (0)

g.assign(0)

return £, g

get_data_3(t, result=None) :

"""Create or update data for Task 3"""

f, g = result or (Constant (0), Constant (0))
f.assign (1)

g.assign(0)

return f, g

get_data_4 (t, result=None) :

"""Create or update data for Task 4"""

f, g = result or (Constant (0), Constant (0))
f.assign(2-t)

g.assign(t)

(continues on next page)

(continued from previous page)

return f, g

def get_data_5(t, result=None):
"""Create or update data for Task 5 and Task 6"""
f, g = result or (Constant (0), Constant (0))
f.assign (0)
g.assign (max (0, 1-t)/2)
return f, g

if name_ == '_ _main__ ':
Common data
V = create_function_space ()

ds_left = create_surface_measure_left (V.mesh())
T = 2
u_0 = Expression("x[0]", degree=1)

Run all problems

theta = 1
print ("Task 2, theta =", theta)
dt = 0.1

timestepping (V, ds_left, theta, T, dt, u_0, get_data_2)

theta = 1/2
print ("Task 2, theta =", theta)
dt = 0.1

timestepping(V, ds_left, theta, T, dt, u_0, get_data_2)

theta = 0
print ("Task 2, theta =", theta)
dt = 0.1

timestepping (V, ds_left, theta, T, dt, u_0, get_data_2)

theta = 1
print ("Task 3, theta =", theta)
dt = 0.1

timestepping (V, ds_left, theta, T, dt, u_0, get_data_3)

theta = 1
print ("Task 4, theta =", theta)
dt = 0.1

timestepping (V, ds_left, theta, T, dt, u_0, get_data_4)

theta = 1
print ("Task 5, theta =", theta)
dt = 0.1

timestepping (V, ds_left, theta, T, dt, u_0, get_data_5)

theta = 1
print ("Task 6, theta =", theta)
tol = 1le-3

timestepping_adaptive (V, ds_left, theta, T, tol, u_0,

theta = 1/2

print ("Task 6, theta =", theta)

tol = 1le-3

timestepping_adaptive (V, ds_left, theta, T, tol, u_0,

Hold plots before quitting
plt.show ()

get_data_Db)

get_data_b)

5 Navier-Stokes equations

Goals

Learn how to deal with mixed finite elements. Remember how fragile can numerical solutions be. Reproduce
some cool physics — Kdrman vortex street.

5.1 Stokes flow around cylinder

Solve the following linear system of PDEs

—vAu+Vp=0 in €2,
divu =0 in €2,
u=20 onI'p, 20)
u = uN on 'y,
l/g—z —pn=20 on 'y

using FE discretization with data

Q = (0,2.2) x (0,0.41) — Bo.o5 ((0.2,0.2)),
I'n = {z = 2.2} = (green),
FIN = {33 = 00}‘ = (red)7

I'p =900 \ (FN U PIN) = (black), 21
_ [(4Uy(0.41 —y)
UIN = (0412 70)

v=0.001, U=03

where Bg(z) is a disc of radius R and center z

T
021 |-
i, 0.41

02"
i

Task 1

Write the weak formulation of the problem and a spatial discretization by a mixed finite element method.

Task 2

Build a mesh, prepare a mesh function marking I'ty, I'y and I'p and plot it to check its correctness.

Hint: Use the FEniCS meshing tool mshr, see mshr documentation.

from dolfin import =«
import mshr

Discretization parameters

(continues on next page)

http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark1_re20.html
https://bitbucket.org/benjamik/mshr/wiki/API

(continued from previous page)

N_circle = 16
N_bulk = 64

Define domain
center = Point (0.2, 0.2)

radius = 0.05

L = 2.2

W = 0.41

geometry = mshr.Rectangle (Point (0.0, 0.0), Point (L, W)) \

-mshr.Circle(center, radius, N_circle)

Build mesh
mesh = mshr.generate_mesh (geometry, N_bulk)

Hint: Try yet another way to mark the boundaries by direct access to the mesh entities by vertices (mesh),
facets (mesh), cells (mesh) mesh-entity iterators:

Construct facet markers
bndry = MeshFunction("size_t", mesh, mesh.topology().dim()-1)
for £ in facets (mesh):

mp = f.midpoint ()

if near(mp([0], 0.0): # inflow
bndry[f] = 1

elif near (mp[0], L): # outflow
bndry[f] = 2

elif near (mp[l], 0.0) or near (mp[l], W): # walls
bndry[f] = 3

elif mp.distance (center) <= radius: # cylinder
bndry[f] = 5

Dump facet markers to file to plot in Paraview
with XDMFFile ('facets.xdmf') as f:
f.write (bndry)

Task 3

Construct the mixed finite element space and the bilinear and linear forms together with appropriate
DirichletBC object.

Hint: Use for example the stable Taylor-Hood finite elements:

Build function spaces (Taylor-Hood)

P2 = VectorElement ("P", mesh.ufl_cell(), 2)
P1 FiniteElement ("P", mesh.ufl_cell(), 1)
TH = MixedElement ([P2, P1])

W = FunctionSpace (mesh, TH)

Hint: To define Dirichlet BC on subspace use the W. sub () method:

bc_walls = DirichletBC(W.sub(0), (0, 0), bndry, 3)

Hint: To build the forms use:

https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/vertices.html#dolfin.cpp.mesh.vertices
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/facets.html#dolfin.cpp.mesh.facets
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/cpp/mesh/cells.html#dolfin.cpp.mesh.cells
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/bcs/DirichletBC.html#dolfin.fem.bcs.DirichletBC
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/functionspace/FunctionSpace.html#dolfin.functions.functionspace.FunctionSpace.sub

Define trial and test functions
u, p = TrialFunctions (W)
v, g TestFunctions (W)

Then you can define forms on mixed space using u, p, v, g as usual.

5.2 Steady Navier-Stokes flow

Task 4

Modify the problem into the Navier-Stokes equations given by
—vAu+u-Vu+Vp=0 in{Q (22)

together with (20)3—(20)5. Compute the DFG-flow around cylinder benchmark 2D-1, laminar case, Re=20 given
by (22), (20)2—(20)s5, (21).

Hint: As usual get rid of TrialFunctions in favour of nonlinear dependence on Function. You can split
aFunction on a mixed space into components:

w = Function (W)
u, p = split (w)

F = nuxinner (grad(u), grad(v))x*dx + ...

Task 5

Add computation of lift and drag coefficients Cp, Cf, and pressure difference pqig as defined on the DFG 2D-1
website.

Hint: Use assemble function to evaluate the lift and drag functionals.

Use either Function.split () or Function.sub () to extract pressure p from solution w for evaluation.
Evaluate the pressure p at point a = Point (234, 567) bycallingp (a).

Task 6

Check computed pressure difference and lift/drag coefficents against the reference. Investigate if/how the lift
coefficent is sensitive to changes in the discretization parameters — conduct a convergence study.

5.3 Karman vortex street

Task 7

Consider evolutionary Navier-Stokes equations

uy —vAu+u-Vu+ Vp=0. (23)

http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark1_re20.html
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark1_re20.html
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark1_re20.html
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/assembling/assemble.html#dolfin.fem.assembling.assemble
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/function/Function.html#dolfin.functions.function.Function.split
https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/functions/function/Function.html#dolfin.functions.function.Function.sub

Prepare temporal discretization using the Crank-Nicolson scheme to compute a solution of (23), (20)2—(20)5, (21)
on time interval (0, 8) but use

U=1

instead of (21)gp. Plot the transient solution.

5.4 Reference solution

Note: You can run FEniCS codes in parallel (using MPI) by

mpirun -n <np> python3 <yourscript>.py

where for <np> substitute number of processors to use.

To benefit from parallism you can run the unsteady Navier-Stokes part of the code below on, say, eight cores:

mpirun -n 8 python3 -c"import dfg; dfg.task_7()"

Show/Hide Code

Download Code

from dolfin import =«
import mshr
import matplotlib.pyplot as plt

def build_space(N_circle, N_bulk, u_in):
"""Prepare data for DGF benchmark. Return function
space, list of boundary conditions and surface measure
on the cylinder."""

Define domain

center = Point (0.2, 0.2)

radius = 0.05

L =2.2

W = 0.41

geometry = mshr.Rectangle (Point (0.0, 0.0), Point (L, W)) \
— mshr.Circle (center, radius, N_circle)

Build mesh
mesh = mshr.generate_mesh (geometry, N_bulk)

Construct facet markers
bndry = MeshFunction("size_t", mesh, mesh.topology().dim()-1)
for f in facets (mesh):
mp = f.midpoint ()
if near(mp[0], 0.0): # inflow
bndry[f] = 1
elif near (mp[0]

, L): # outflow
bndry[f] = 2

elif near (mp[l], 0.0) or near (mp[l], W): # walls
bndry[f] = 3

elif mp.distance (center) <= radius: # cylinder
bndry[f] = 5

Build function spaces (Taylor-Hood)

(continues on next page)

(continued from previous page)

def

def

def

P2 = VectorElement ("P", mesh.ufl_cell(), 2)
Pl FiniteElement ("P", mesh.ufl_cell(), 1)
TH MixedElement ([P2, P11])
W = FunctionSpace (mesh, TH)

Prepare Dirichlet boundary conditions

bc_walls = DirichletBC (W.sub(0), (0, 0), bndry, 3)
bc_cylinder = DirichletBC(W.sub(0), (0, 0), bndry, 5)
bc_in = DirichletBC(W.sub(0), u_in, bndry, 1)

bcs = [bc_cylinder, bc_walls, bc_in]

Prepare surface measure on cylinder
ds_circle = Measure("ds", subdomain_data=bndry, subdomain_id=5)

return W, bcs, ds_circle

solve_stokes (W, nu, bcs):
""r"sSolve steady Stokes and return the solution"""

Define variational forms

u, p = TrialFunctions (W)

v, q = TestFunctions (W)

a = nusinner (grad(u), grad(v))xdx - pxdiv(v)+dx — gxdiv (u)*dx
L = inner (Constant ((0, 0)), v)+*dx

Solve the problem
w = Function (W)
solve(a == L, w, bcs)

return w

solve_navier_stokes (W, nu, bcs):
"""Solve steady Navier-Stokes and return the solution"""

Define variational forms

v, g = TestFunctions (W)

w = Function (W)

u, p = split (w)

F = nuxinner (grad(u), grad(v))*dx + dot (dot (grad(u), u), v)*dx \
- p*xdiv(v)*dx - gxdiv(u) *dx

Solve the problem
solve (F == 0, w, bcs)

return w

solve_unsteady_navier_stokes (W, nu, bcs, T, dt, theta):
"""Solver unsteady Navier-Stokes and write results

to file"""

Current and old solution

w = Function (W)

u, p = split(w)

w_old = Function (W)
u_old, p_old = split (w_old)

Define variational forms

(continues on next page)

(continued from previous page)

def

def

v, g = TestFunctions (W)
F = (Constant (l/dt)*dot (u - u_old, wv)
+ Constant (theta) *nuxinner (grad(u), grad(v))
+ Constant (theta) xdot (dot (grad (u), u), v)
+ Constant (1-theta) *nuxinner (grad(u), grad(v))
+ Constant (1-theta) xdot (dot (grad (u_old), u_old), v)
- p*xdiv(v)
- gxdiv (u)
) +dx
J = derivative (F, w)

Create solver

problem = NonlinearVariationalProblem(F, w, bcs, J)

solver = NonlinearVariationalSolver (problem)
solver.parameters|['newton_solver']['linear_ solver'] = 'mumps'

f = XDMFFile ('velocity_unteady_navier_ stokes.xdmf')
u, p = w.split()

Perform time-stepping

t =0

while t < T:
w_old.vector () [:] = w.vector ()
solver.solve ()
t += dt

f.write(u, t)

save_and_plot (w, name) :
""r"Saves and plots provided solution using the given
name mmwmn

u, p = w.split()

Store to file

with XDMFFile("results_{/}/u.xdmf".format (name)) as f:
f.write (u)

with XDMFFile ("results_{/}/p.xdmf".format (name)) as f:
f.write (p)

Plot

plt.figure ()

pl = plot(u, title='velocity {}'.format (name))
plt.colorbar (pl)

plt.figure ()

pl = plot (p, mode='warp', title='pressure {}'.format (name))
plt.colorbar (pl)

postprocess (w, nu, ds_circle):
"""Return 1lift, drag and the pressure difference"""

u, p = w.split()

Report drag and 1ift

n = FacetNormal (w.function_space () .mesh())
force = —-px*n + nuxdot (grad(u), n)

F_D = assemble(—-force[0]+ds_circle)

F_L = assemble(-force[l]xds_circle)

U_mean = 0.2

(continues on next page)

(continued from previous page)

def

def

= 0.1
D = 2/ (U_mean**2+L) *F_D
L = 2/ (U_mean*+2+L) *F_L

Q O

Report pressure difference
a_l = Point (0.15, 0.2)
a_2 = Point (0.25, 0.2)

try:

p_diff = p(a_l) - p(a_2)
except RuntimeError:

p_diff = 0

return C_D, C_L, p_diff

tasks_1_2_3_4():
"""Solve and plot alongside Stokes and Navier-Stokes"""

Problem data

u_in = Expression (("4.0+Uxx[1]1*(0.41 — x[1])/(0.41«0.41)", "0.0™),
degree=2, U=0.3)

nu = Constant (0.001)

Discretization parameters
N_circle = 16
N_bulk = 64

Prepare function space, BCs and measure on circle
W, bcs, ds_circle = build_space(N_circle, N_bulk, u_in)

Solve Stokes
w = solve_stokes (W, nu, bcs)
save_and_plot (w, 'stokes')

Solve Navier-Stokes
w = solve_navier_stokes (W, nu, bcs)
save_and_plot (w, 'navier-stokes')

Open and hold plot windows
plt.show ()

tasks_5_6¢():
"""Run convergence analysis of drag and 1ift"""

Problem data

u_in = Expression (("4.0+Uxx[1]*(0.41 — x[1])/(0.41%x0.41)", "0.0™),
degree=2, U=0.3)

nu = Constant (0.001)

Push log levelo to silence DOLFIN

old_level = get_log_level()

warning = LogLevel .WARNING if cpp._ _version__ > '2017.2.0"' else WARNING
set_log_level (warning)

fmt_header = "{:10s} | {:10s} | {(:10s} | {:10s} | {:10s} | {:10s}"
fmt_row = "{:10d} | {(:10d} | {:10d} | {(:10.4f} | {(:10.4f} | {:10.6f}"

Print table header
print (fmt_header.format ("N_bulk", "N_circle", "#dofs", "C_D", "C_L", "p_diff"))

(continues on next page)

(continued from previous page)

Solve on series of meshes
for N_bulk in [32, 64, 128]:
for N_circle in [N_bulk, 2xN_bulk, 4+N_bulk]:

Prepare function space, BCs and measure on circle

W, bcs, ds_circle = build_space (N_circle, N_bulk,

Solve Navier-Stokes
w = solve_navier_stokes (W, nu, bcs)

Compute drag, 1lift
C_D, C_L, p_diff = postprocess(w, nu, ds_circle)

u_in)

print (fmt_row. format (N_bulk, N_circle, W.dim(), C_D, C_L, p_diff))

Pop log level
set_log_level (old_level)

def task_7():
"""Solve unsteady Navier-Stokes to resolve
Karman vortex street and save to file"""

Problem data

u_in = Expression (("4.0+Uxx[1]%(0.41 — x[1])/(0.41%x0.41)",
degree=2, U=1)

nu = Constant (0.001)

T = 8

Discretization parameters
N_circle = 16

N_bulk = 64

theta = 1/2

dt = 0.2

Prepare function space, BCs and measure on circle
W, bcs, ds_circle = build_space(N_circle, N_bulk, u_in)

Solve unsteady Navier—-Stokes
solve_unsteady_navier_stokes (W, nu, bcs, T, dt, theta)

if _ name_ == "_ _main__ ":
tasks_1_2_3_4()
tasks_5_6()

task_7()

"0.0"),

6 Hyperelasticity

Find approximate solution to following non-linear system of PDEs

u=v in Q x (0,7),
vy = div(JTF~) in Q x (0,7),
2 0 . incompressible case — p/A inQ x (0,7),
compressible case
u=v=_0 onT'p x (0,7),
JTF Tn=g onI'y x (0,7),
JTF~"n=0 on 9N\ (I'p UTx) x (0,T),
u=v= on 2 x {0}
where
F=1+ Vu,
J =detF,
B=FF',

T = —pl+ u(B 1)

using #-scheme discretization in time and arbitrary discretization in space with data

Q- (0,20) x (0,1) in2Dlego brick 10 x 2 x 1H
~ |in3D

I — {r =0} in2D{x = infxecqx}
in 3D

Iy — {{x =20} in2D{x = supyeqx}

in 3D
T =5,
_Jur-T [OIOOt] in 2DJF~ T {00100:&}
in 3D
_FE
F=sa+oy
. . EV
5= 00 incompressible CaSe 77y (1=20)
compressible case
E =105,
1/2 incompressible case0.3
V=
compressible case

Mesh file of lego brick 1ego_beam. xml. Within shell download by

Task 1

Discretize the equation in time using the Crank-Nicolson scheme and derive a variational formulation of the
problem. Consider discretization using P1/P1/P1 mixed element.

Task 2
Build 2D mesh:

mesh = RectangleMesh (Point (x0, y0), Point(xl, yl), 100, 5, 'crossed')

Prepare facet function marking I'y and I'p and plot it to check its correctness.

Hint: You can get coordinates of I'p by something like x0 = mesh.coordinates () [:, 0].min()
for lego mesh. Analogically for I'y.

Task 3

Define Cauchy stress and variational formulation of the problem.

Hint: Get geometric dimension by gdim = mesh.geometry () .dim () to be able to write the code inde-
pendently of the dimension.

Task 4
Prepare a solver and write simple time-stepping loop. Use time step At = %.

Prepare a solver by:

problem = NonlinearVariationalProblem(F, w, bcs=bcs, J=J)
solver = NonlinearVariationalSolver (problem)
solver.parameters|['newton_solver']['relative_tolerance'] = le-6
solver.parameters|['newton_solver']['linear_solver'] = 'mumps'

to increase the tolerance reasonably and employ powerful sparse direct solver MUMPS.

Prepare nice plotting of displacement by:

plot (u, mode="displacement")

Manipulate the plot how shown in the Matplotlib note.

Task 4
Solve the compressible 2D problem.

Solve the incompressible 2D problem.

Task 5
Solve the 3D compressible problem. Use time step At = %

Load mesh by:

mesh = Mesh('lego_beam.xml")

Use the following optimization:

Limit quadrature degree
dx = dx(degree=4)
ds ds (degree=4)

You can also try to run the 3D problem in parallel:

Disable plotting
export MPLBACKEND=template
export DOLFIN_NOPLOT=1

Run the code on <np> processors
mpirun -n <np> python <script>.py

Task 6

Plot computed displacement v in Paraview using Warp by vector filter.

6.1 Reference solution

Show/Hide Code

Download Code

from dolfin import =«
import matplotlib.pyplot as plt
import os

def solve_elasticity (facet_function, E, nu, dt, T_end, output_dir):
""rsolves elasticity problem with Young modulus E, Poisson ration nu,
timestep dt, until T _end and with output data going to output_dir.
Geometry 1is defined by facet_function which also defines rest boundary
by marker 1 and traction boundary by marker 2."""

Get mesh and prepare boundary measure

mesh = facet_function.mesh ()

gdim = mesh.geometry () .dim()

dx = Measure ("dx")

ds = Measure ("ds", subdomain_data=facet_function, subdomain_id=2)

Limit quadrature degree
dx = dx(degree=4)
ds = ds(degree=4)

Build function space

element_v = VectorElement ("P", mesh.ufl_cell(), 1)

element_s = FiniteElement ("P", mesh.ufl_cell(), 1)
mixed_element = MixedElement ([element_v, element_v, element_s])
W = FunctionSpace (mesh, mixed_element)

info ("Num DOFs {/}".format (W.dim()))

Prepare BCs

bcO0 = DirichletBC(W.sub(0), gdimx(0,), facet_function, 1)
bcl = DirichletBC(W.sub (1), gdimx(0,), facet_function, 1)
bcs = [bc0, bcl]

Define constitutive law

def stress(u, p):
"""Returns 1st Piola-Kirchhoff stress and (local) mass balance
for given u, p."""

mu = Constant (E/(2.0x(1.0 + nu)))

F =1 + grad(u)

J det (F)

B=F « F.T

(continues on next page)

(continued from previous page)

T = -p*xI + mux(B-I) # Cauchy stress
S = JxT*inv(F).T # 1st Piola-Kirchhoff stress
if nu == 0.5:
Incompressible
pp = J-1.0
else:

Compressible
Ilmbd = Constant (E+xnu/((1.0 + nu)* (1.0 — 2.0%nu)))
pp = 1.0/1lmbdxp + (JxJ-1.0)

return S, pp

Timestepping theta-method parameters
g = Constant (0.5)
dt = Constant (dt)

Unknowns, values at previous step and test functions
w = Function (W)

u, v, p = split (w)

w0 = Function (W)

u0, v0, p0 = split(w0)

_u, _v, _p = TestFunctions (W)

I = Identity(W.mesh() .geometry () .dim())

Balance of momentum
S, pp = stress(u, p)
S0, pp0 = stress(ul, p0)
Fl = (1.0/dt)*inner (u-ul, _u)*dx \
- (gxinner (v, _u)xdx + (1.0-qg)+*inner(v0, _u)xdx)
F2a = inner (S, grad(_v))*dx + pp*_p*dx
F2b = inner (S0, grad(_v))*dx + ppOx_p*dx
F2 = (1.0/dt)*inner (v-v0, _v)+*dx + g+«F2a + (1.0-qg)*F2b

Traction at boundary

F =1 + grad(u)

bF_magnitude = Constant (0.0)

bF_direction = {2: Constant((0.0, 1.0)), 3: Constant((0.0, 0.0,
bF = det (F) xdot (inv (F) .T, bF_magnitudexbF_direction)

FF = inner (bF, _v) *ds

Whole system and its Jacobian
F =Fl + F2 + FF
J = derivative (F, w)

Initialize solver

problem = NonlinearVariationalProblem(F, w, bcs=bcs, J=J)
solver = NonlinearVariationalSolver (problem)
solver.parameters|['newton_solver']['relative_tolerance'] = le-6
solver.parameters|['newton_solver']['linear_solver'] = 'mumps'

Extract solution components
u, v, p = w.split()

u.rename ("u", "displacement")
v.rename ("v", "velocity")
p.rename ("p", "pressure'")

Create files for storing solution

vfile = XDMFFile (os.path.join (output_dir, "velo.xdmf"))
ufile = XDMFFile (os.path.join (output_dir, "disp.xdmf"))
pfile = XDMFFile (os.path.join (output_dir, "pres.xdmf"))

1.0)) } [gdim]

(continues on next page)

(continued from previous page)

def

Prepare plot window
fig = plt.figure()
fig.show ()

Time—-stepping loop
t =0
while t <= T_end:
t += float (dt)
info("Time: {}".format (t))

Increase traction
bF_magnitude.assign (100.0xt)

Prepare to solve and solve
wO.assign (w)
solver.solve ()

Store solution to files and plot
ufile.write(u, t)

vfile.write(v, t)

pfile.write(p, t)

fig.clear()

plot (u, mode="displacement")
fig.canvas.draw()

Close files
vfile.close ()
ufile.close()
pfile.close()

geometry_2d(length) :
"""Prepares 2D geometry. Returns facet function with 1, 2 on parts of
the boundary."""

n=>5

x0 = 0.0

x1l = x0 + length
yOo = 0.0

yl =1.0

mesh = RectangleMesh (Point (x0, y0), Point(xl, yl), int ((x1-x0)#*n), int ((yl-

—y0)*n), 'crossed'")

def

boundary_parts = MeshFunction('size_t', mesh, mesh.topology().dim()-1)
left = AutoSubDomain (lambda x: near (x[0], x0))

right = AutoSubDomain (lambda x: near (x[0], x1))

left .mark (boundary_parts, 1)

right .mark (boundary_parts, 2)

return boundary_parts

geometry_3d() :

"""pPrepares 3D geometry. Returns facet function with 1, 2 on parts of
the boundary."""

mesh = Mesh('lego_beam.xml")

gdim = mesh.geometry () .dim()

x0 = mesh.coordinates () [:, 0].min ()

x1 = mesh.coordinates () [:, 0] .max()
boundary_parts = MeshFunction('size_t', mesh, mesh.topology () .dim()-1)
left = AutoSubDomain (lambda x: near (x[0], x0))

right = AutoSubDomain (lambda x: near(x[0], x1))
left .mark (boundary_parts, 1)
right .mark (boundary_parts, 2)

(continues on next page)

(continued from previous page)

return boundary_parts

if name == '__main__ ':

parameters|['std_out_all_processes'] = False

solve_elasticity (geometry_2d(20.0), le5, 0.3, 0.25, 5.0, 'results_ 2d_comp')
solve_elasticity(geometry_2d(20.0), 1le5, 0.5, 0.25, 'results_2d_incomp')
solve_elasticity (geometry_2d(80.0), le5, 0.3, 0.25, 5.0, 'results_2d_long_comp

[€)]
o
~

")

solve_elasticity (geometry_3d(), le5, 0.3, 0.50, 5.0, 'results_3d_comp')

7 Eigenfunctions of Laplacian and Helmholtz equation

7.1 Wave equation with time-harmonic forcing

Let’s have wave equation with special right-hand side

wy — Aw = f ™! inQ x (0,7),

(24)
w=0 on 9 x (0,T)
with f € L?(Q). Assuming ansatz
w(t,z) = u(z)e™"
we observe that v has to fulfill
—Au—wiu=f in Q,
(25)
u=20 on 0f).
Task 1
Try solving (25) in FEniCS with data
Q=(0,1) x (0,1),
w = V5, (26)

f=r+y

on series of refined meshes. Observe behavior of solution energy || Vul|2 with refinement. Is there a convergence
or not?

Define eigenspace of Laplacian (with zero BC) corresponding to w? as
E,: := {u € H}(Q): —Au = w? }

E,> # {0} if and only if w? is an eigenvalue. Note that F,,- is finite-dimensional. Now define P, as L2-
orthogonal projection onto E2. It is not difficult to check that the function

teiwt

21w

w(t,r) = (P2 f)(z) + e“tu(z) (27)

solves (24) provided u fulfills

—Au—w?u=(1-Pyp)f in §,

28
u=20 on 0f). (28)

Note that problem (28) has a solution which is uniquely determined up to arbitrary function from E2.

Task 2

Construct basis of F_ 2 by numerically solving the corresponding eigenproblem with data (26).

Hint: Having forms a, m and boundary condition bc representing eigenvalue problem

—Au = \u in 2,
u=20 on 0f2.

assemble matrices A, B using function assemble_system

A = assemble_system(a, zero_form, bc)
B = assemble (m)

Then the eigenvectors solving
Ax = A\Bx

with)\ close to target 1ambd can be found by:

eigensolver = SLEPcEigenSolver (as_backend_type (A), as_backend_type (B))

eigensolver.parameters|['problem type'] = 'gen_hermitian'
eigensolver.parameters|['spectrum'] = 'target real'
eigensolver.parameters|['spectral shift'] = lambd
eigensolver.parameters|['spectral_ transform'] = 'shift-and-invert'
eigensolver.parameters|['tolerance'] = le-6
#eigensolver.parameters|['verbose'] = True # for debugging

eigensolver.solve (number_of_requested_eigenpairs)

eig = Function (V)

eig_vec = eig.vector()

space = []

for j in range (eigensolver.get_number_converged()) :
r, ¢, rx, cx = eigensolver.get_eigenpair (j)
eig_vec[:] = rx
plot (eig, title='Eigenvector to eigenvalue 2¢g'%r)
plt.show ()

Task 4

Implement projection F,2. Use it to solve problem (28) with data (26).

Task 5

Construct the solution w(t,) of the wave equations (24) using formula (27). Plot temporal evolution of its real
and imaginary part.

7.2 Mesh generation by Gmsh

Task 6

https://fenicsproject.org/docs/dolfin/2017.2.0/python/programmers-reference/fem/assembling/assemble_system.html#dolfin.fem.assembling.assemble_system

Modify a Gmsh demo to mesh a half ball
{(z,y,2), 22 +y* +2° < 1,y > 0}

using the following code:

wget https://gitlab.onelab.info/gmsh/gmsh/blob/
—ad0ab3d5c310e7048ffa6e032ccd4e8f0108aal2/demos/api/boolean.py
source /LOCAL/opt/gmsh-4.0.0/gmsh.conf

python3 boolean.py

meshio-convert -p -o xdmf-xml boolean.msh boolean.xdmf

paraview boolean.xdmf &

<edit> boolean.py

python3 boolean.py
meshio-convert -p -o xdmf-xml boolean.msh boolean.xdmf

If in a need peek into

>>> import gmsh
>>> help (gmsh.model.occ.addSphere)

Task 7

Find E_,» with w? =~ 70 on the half ball. Plot the eigenfunctions in Paraview.

Hint: Use Glyph filter, Sphere glyph type, decrease the scale factor to ca. 0.025.

Use C1lip filter. Drag the clip surface by mouse, hit A1t +A to refresh.

7.3 Reference solution

Show/Hide Code

Download Code

from dolfin import =
import matplotlib.pyplot as plt

def solve_helmholtz(V, lambd, f):
"""Solve Helmholtz problem

-\Delta u - lambd u = f 1in \Omega
u =0 on \partial\Omega

and return u.

mmn

bc = DirichletBC(V, 0, lambda x, on_boundary: on_pboundary)
u, v = TrialFunction(V), TestFunction (V)

a = inner(grad(u), grad(v))xdx - Constant (lambd) xuxrv+dx

L = fxv+dx

u = Function (V)

solve(a == L, u, bc)

return u

(continues on next page)

(continued from previous page)

def build_laplacian_eigenspace (V, lambd, maxdim, tol):

"""For given space V finds eigenspace of Laplacian
(with zero Dirichlet BC) corresponding to eigenvalues
close to lambd by given tolerance tol. Return 1list
with basis functions of the space.

mmn

Assemble Laplacian A and mass matrix B
bc = DirichletBC(V, 0, lambda x, on_boundary: on_boundary)
u, v = TrialFunction(V), TestFunction (V)

a = inner(grad(u), grad(v))xdx
L_dummy = Constant (0) xvxdx

m = uxvxdx

A, _ = assemble_system(a, L_dummy, bc)
B = assemble (m)

Prepare eigensolver for

#

A x = lambda B x

eigensolver = SLEPcEigenSolver (as_backend_type (A), as_backend_type (B))
eigensolver.parameters['problem type'] = 'gen_hermitian’'
eigensolver.parameters|['spectrum'] = 'target real'
eigensolver.parameters|['spectral shift'] = float (lambd)
eigensolver.parameters|['spectral transform'] = 'shift-and-invert'
eigensolver.parameters|['tolerance'] = le-6
#eigensolver.parameters|['verbose'] = True # for debugging

Solve for given number of eigenpairs
eigensolver.solve (maxdim)

Iterate over converged eigenpairs
space = []
for j in range (eigensolver.get_number_converged()) :

Get eigenpair
r, ¢, rx, cx = eigensolver.get_eigenpair (j)

Check that eigenvalue is real
assert near(c/r, 0, le-6)

Consider found eigenvalues close to the target eigenvalue
if near(r, lambd, tolxlambd):
print ('Found eigenfunction with eigenvalue {} close to target {}
'within tolerance {}'.format (r, lambd, tol))

Store the eigenfunction
eig = Function (V)
eig.vector()[:] = rx
space.append (eiqg)

Check that we got whole eigenspace, i.e., last eigenvalue is different one
assert not near(r, lambd, tol), "Possibly don't have whole eigenspace!"

Report
print ('Eigenspace for {} has dimension {}'.format (lambd, len (space)))

return space

(continues on next page)

(continued from previous page)

def orthogonalize (A):
"rrpr2-orthogonalize a list of Functions living on the same
function space. Modify the functions in-place.
Use classical Gramm—-Schmidt algorithm for brevity.

For numerical stability modified Gramm-Schmidt would be better.
mrmamn

Set of single function is orthogonal
if len(hd) <= 1:
return

Orthogonalize overything but the last function
orthogonalize (A[:-1])

Orthogonalize the last function to the previous ones

f = A[-1]
for v in A[:-1]:

r = assemble (inner (f, v)=*dx) / assemble (inner (v, v)*dx)
assert f.function_space() == v.function_space ()
f.vector () .axpy(-r, v.vector())

def task_1¢():

Problem data
f = Expression('x[0] + x[1]"', degree=1l)
omega2 = 5xpixx2

Iterate over refined meshes
ndofs, energies = [], []
for n in (2xxi for i in range (2, 7)):

mesh = UnitSquareMesh (n, n)
V = FunctionSpace (mesh, "Lagrange", 1)
u = solve_helmholtz (V, omega2, f)

Store energy to check convergence
ndofs.append (u. function_space () .dim())
energies.append (norm(u, norm_type='H10"))

Plot energies against number dofs
plt.plot (ndofs, energies, 'o-'")
plt.xlabel ('"dimension")

plt.ylabel ('energy')

plt.show ()

def tasks_2 3 4():
Problem data
f = Expression('x[0] + x[1]', degree=1)
omegaz2 = S5xpix«*2
Iterate over refined meshes
ndofs, energies = [], []

for n in (2++i for i in range(2, 7)):

mesh = UnitSquareMesh (n, n)
V = FunctionSpace (mesh, "Lagrange", 1)

Build eingenspace of omegal

(continues on next page)

(continued from previous page)

def

eigenspace = build_laplacian_eigenspace (V, omegaZ2,

Orthogonalize f to the eigenspace
f_perp = project(f, V)
orthogonalize (eigenspace+[f_perp])

Find particular solution with orthogonalized rhs
u = solve_helmholtz (V, omega2, f_perp)

Store energy to check convergence
ndofs.append (u. function_space () .dim())
energies.append (norm(u, norm_type='H10'"))

Plot energies against number dofs
plt.plot (ndofs, energies, 'o-'")
plt.xlabel ('dimension')

plt.ylabel ('energy')

plt.show ()

Create and save w(t, x) for plotting in Paraview
omega = omegal*x*0.5

Pf = project(f - f_perp, V)

T_per = 2+pi/omega

create_and_save_w(omega, Pf, u, 20+«T_per, 0.1xT_per)

create_and_save_w(omega, Pf, u, T, dt):
"""Create and save w(t, x) on (0, T) with time

resolution dt
mmwn

Extract common function space
V = u.function_space ()
assert V == Pf.function_space ()

w = Function (V)
Pf_vec = Pf.vector()

u_vec u.vector ()
w_vec = w.vector ()

f = XDMFFile ('w.xdmf")

f.parameters|['rewrite_function_mesh'] = False
f.parameters|'functions_share_mesh'] = True
def cl(t):

10,

0.1)

return txsin (omegaxt)/ (2+xomega), -txcos(omegax*t)/ (2+omega)

def c2(t):
return cos (omegaxt), sin(omegaxt)

t =0

while t < T:
cl_real, cl_imag = cl(t)
c2_real, c2_imag = c2(t)

Store real part
w.vector () .zero ()
w.vector () .axpy (cl_real, Pf_vec)
w.vector () .axpy (c2_real, u_vec)
w.rename ('w_real', 'w_real')

(continues on next page)

(continued from previous page)

if

.rename ('w_imag', 'w_imag")

f.write(w, t)

Store imaginary part
w.vector () .zero ()
w.vector () .axpy (cl_imag, Pf_vec)
w.vector () .axpy (c2_imag, u_vec)
%

f

t += dt

f.close()

task_1()
tasks_2_3_4/()

.write(w, t)

name == '__ _main :

8 Heat equation in moving media

Find approximate solution to following linear PDE

using f-scheme discretization in time and arbitrary FE discretization in space with data

Q=(0,1)?

T=10

I'n = {z =0}

Pp = {z=1}U{y =0}
=0.1

K =0.01

b= (_(y_%)7x_

F=Xp,,5(2.3])

1

2

us +b-Vu—div(KVu) = f

)

U = uUup
ou _
on — 9
U = Ug

uo(x) = (1= 25dist (x, [3, 3])) X5, 5 ([2.4])

uD:0

in Q x (0,7),
in Qp x (0,7),
onT'yx x (0,7,
on Q x {0}

where x x is a characteristic function of set X, Br(z) is a ball of radius R and center z and dist(p, q) is Euclidian
distance between points p, q.

Task 1

Discretize the equation in time and write variational formulation of the problem.

Task 2

Build mesh, prepare facet function marking I'y and I'p and plot it to check its correctness.

Hint: You can follow the procedure from subdomains-poisson demo. (Follow a construction of boundaries
object therein.)

mesh = UnitSquareMesh (10, 10, 'crossed')

Create boundary markers

tdim = mesh.topology () .dim()

boundary_parts = MeshFunction('size_t', mesh, tdim-1)
left = AutoSubDomain (lambda x: near (x[0], 0.0))
right = AutoSubDomain (lambda x: near(x[0], 1.0))
bottom = AutoSubDomain (lambda x: near(x[1], 0.0))
left .mark (boundary_parts, 1)

right .mark (boundary_parts, 2)

bottom.mark (boundary_parts, 2)

Task 3

Define expressions b, f, ug and plot them.

Hint: According to your personal taste, get hint at Expression class documentation or any documented
demo. Use any kind of expression you wish (subclassing Python Expression, oneline C++, subclassing C++
Expression).

python Expression subclass
class B (Expression) :
def eval (self, wvalue, x):
vx = x[0] - 0.5
vy = x[1] - 0.5
value[0] -vy
value[l] = vvx
def value_shape (self):
return (2,)

b =B()

oneline C++
b = Expression(("—-(x[1] - 0.5)", "x[0] = 0.5"))

Task 4

Use facet markers from Task 2 to define DirichletBC object and Measure for integration along I'y.

Hint: See UFL class Measure

dsN = Measure ("ds", subdomain_id=1, subdomain_data=boundary_parts)

Task 5

Now proceed to variational formulation and time-stepping loop. Write bilinear and linear form representing PDE.
How is solution at previous time-step represented therein?

https://fenicsproject.org/docs/dolfin/2018.1.0/python/demos/subdomains-poisson/documentation.html#implementation
https://fenicsproject.org/docs/dolfin/2018.1.0/python/demos/subdomains-poisson/documentation.html
https://fenicsproject.org/docs/dolfin/2018.1.0/python/demos.html
https://fenicsproject.org/docs/dolfin/2018.1.0/python/demos.html
https://fenics.readthedocs.io/projects/ufl/en/stable/api-doc/ufl.html#ufl.classes.Measure

Hint: Use LinearVariationalProblem and LinearVariationalSolver classes so that solve
method of an instance of the latter is called every time-step while nothing else is touched excepted updating value
of solution from previous time-step figuring in variational form. You can use for instance Function.assign
method to do that.

Task 5

Add solution output for external visualisation, like Paraview.

Hint:

Create file for storing results
f = XDMFFile ("results/u.xdmf")

u.rename ("u", "temperature™)
f.write(u, t)

8.1 Reference solution

Show/Hide Code

Download Code

from dolfin import =«
import matplotlib.pyplot as plt

Create mesh and build function space
mesh = UnitSquareMesh (40, 40, 'crossed')
V = FunctionSpace (mesh, "Lagrange", 1)

Create boundary markers

tdim = mesh.topology () .dim{()

boundary_parts = MeshFunction('size_t', mesh, tdim-1)
left = AutoSubDomain (lambda x: near (x[0], 0.0))
right = AutoSubDomain (lambda x: near(x[0], 1.0))
bottom = AutoSubDomain (lambda x: near(x[1], 0.0))
left .mark (boundary_parts, 1)

right .mark (boundary_parts, 2)

bottom.mark (boundary_parts, 2)

Initial condition and right-hand side

ic = Expression("""pow(x[0] - 0.25, 2) + pow(x[1l] - 0.25, 2) < 0.2%x0.2
? =25.0 * ((pow(x[0] - 0.25, 2) + pow(x[1l] - 0.25, 2)) - 0.2%0.
—2)
0.0""", degree=1)
f = Expression("""pow (x[0] - 0.75, 2) + pow(x[1l] - 0.75, 2) < 0.2%x0.2
2 1.0

0.0""", degree=1)

Equation coefficients

= Constant (le-2) # thermal conductivity

Constant (0.01) # Neumann heat flux

Expression(("-(x[1] - 0.5)", "x[0] - 0.5"), degree=1l) # convecting velocity

O Q N %
I

(continues on next page)

(continued from previous page)

Define boundary measure on Neumann part of boundary
dsN = Measure ("ds", subdomain_id=1, subdomain_data=boundary_parts)

Define steady part of the equation
def operator(u, v):
return (Kxinner (grad(u), grad(v)) - fxv + dot (b, grad(u))*v)*dx — Kxg+xv+dsN

Define trial and test function and solution at previous time-step
u = TrialFunction (V)

v TestFunction (V)

u0 = Function (V)

Time-stepping parameters

t_end = 10

dt = 0.1

theta = Constant (0.5) # Crank-Nicolson scheme

Define time discretized equation
F = (1.0/dt)*inner (u-ul, v)+dx + thetaxoperator(u, v) + (l.0-theta)+operator (ul, v)

Define boundary condition
bc = DirichletBC(V, Constant (0.0), boundary_parts, 2)

Prepare solution function and solver

u = Function (V)

problem = LinearVariationalProblem(lhs (F), rhs(F), u, bc)
solver = LinearVariationalSolver (problem)

Prepare initial condition
ul.interpolate (ic)

Create file for storing results
f = XDMFFile("results/u.xdmf™)

Time-stepping

= 0.0

.rename ("u", "temperature")
.interpolate (ic)

C oot os

He

Save initial solution
f.write(u, t)

Open figure for plots
fig = plt.figure()
plt.show(block=False)

while t < t_end:

Solve the problem
solver.solve ()

Store solution to file and plot
f.write(u, t)
p = plot(u, title='Solution at t = 2g' % t)
if p is not None:

plt.colorbar (p)
fig.canvas.draw ()
plt.clf()

Move to next time step
u0.assign (u)

(continues on next page)

(continued from previous page)

t += dt

Report flux

n = FacetNormal (mesh)

flux = assemble (Kxdot (grad(u), n) xdsN)
info ('t = , flux = % (t, flux))

9 p-Laplace equation

9.1 Potential for Laplace equation

Task 1
Formulate Laplace equation

—Au=f inQ,
u=0 on0d,

as a variational problem (i.e., find potential for the equation) and solve it using FEniCS with data
* Q=10,1] x [0,1],
o f =1+ cos(2rz)sin(2my).

Use UFL function derivative to automatically obtain Galerkin formulation from the potential. Don’t assume
linearity of the PDE - solve it as nonliner (Newton will converge in 1 step).

9.2 Potential for p-Laplace equation

Task 2

Replace every occurrence of number 2 in potential for Laplace equation by p. This is called p-Laplacian for
1 <p < 4o0.

Convince yourself that resulting PDE is non-linear whenever p # 2.

Task 3
Run the algorithm from Task 1 withp = 1.1 and p = 11.

Hint: Use DOLFIN class Constant to avoid form recompilation by FFC for distinct values of p.

Do you know where is the problem? If not, compute second Gateaux derivative of the potential (which serves as
Jacobian for the Newton-Rhapson algorithm) and look at its value for v = 0.

Task 4

Add some regularization to the potential to make it non-singular/non-degenerate. (Prefer regularization without
square roots.) Find a solution of the original p-Laplace problem with p = 1.1 and p = 11 using careful approxi-
mation by regularized problem. Report mazquy, for uy, being the approximate solution.

https://fenics.readthedocs.io/projects/ufl/en/stable/api-doc/ufl.html#ufl.formoperators.derivative

Hint: For u_h Lagrange degree 1 Function the maximum matches maximal nodal value so it is u_h.
vector () .max () because nodal basis is used. Warning. This does not generally hold for higher polynomial
degrees!

9.3 Reference solution

Reference solution consists of three files — one module file:
Show/Hide File p_laplace.py

Download Code

from dolfin import =«
import matplotlib.pyplot as plt

mesh = UnitSquareMesh (40, 40)
V = FunctionSpace (mesh, 'Lagrange', 1)
f = Expression("l.+cos (2.xpi*x[0])*sin(2.xpixx[1])", degree=2)

def p_laplace(p, eps, ulO=None) :
"""Solves regularized p-Laplacian with mesh, space and right-hand side
defined above. Returns solution, regularized energy and energy."""
p = Constant (p)
eps = Constant (eps)

Initial approximation for Newton
u = u0.copy (deepcopy=True) if ul0 else Function (V)

Energy functional
E = (1./p*(eps + dot(grad(u), grad(u)))*=(0.5+p) — fxu) » dx

First Gateaux derivative
F = derivative (E, u)

Solve nonlinear problem; Newton is used by default

bc = DirichletBC(V, 0.0, lambda x,onb: onb)

solver_parameters = {'newton_solver': {'maximum_iterations': 1000}}
solve(F == 0, u, bc, solver_parameters=solver_parameters)

plt.gcf () .show()

plt.clf ()

plot (u, mode="warp", title='p-Laplace, p=%g, eps=2g'S(float (p),.
—float (eps)))

plt.gcf () .canvas.draw()

Compute energies
energy_regularized = assemble (E)
eps.assign(0.0)

energy = assemble (E)

return u, energy_regularized, energy

and two executable scripts:
Show/Hide File p_small.py

Download Code

from p_laplace import p_laplace
import numpy as np
import matplotlib.pyplot as plt

epsilons = [10.0%x%x1i for i in range(-10, -22, -2)]
energies = []
maximums [

Converge with regularization
for eps in epsilons:
result = p_laplace(l.1, eps)
u = result[0]
energies.append (result[l:])
Maxmimal nodal value (correct maximum only for P1 function)

maximums.append (u.vector () .max())
energies = np.array (energies)
Report
print (' epsilon | energy_reg | energy | u max \n',
np.concatenate((np.array([epsilons,]).T,
energies,
np.array ([maximums,]) .T,

), axis=1))

Plot energies

plt.figure ()
plt.plot (epsilons, energies[:,0], 'o-', label='energy regularized')
plt.plot (epsilons, energies([:,1], 'o-', label='energy')

plt.xscale('log"')
plt.legend(loc="upper left')
plt.show ()

Show/Hide File p_large.py

Download Code

from p_laplace import p_laplace
import numpy as np
import matplotlib.pyplot as plt

epsilons [10.0x*1 for i in np.arange(l1.0, -6.0, -0.5)]
energies = []
maximums = []

Converge with regularization,
use previous solution to start next Newton!
u = None
for eps in epsilons:
result = p_laplace(11.0, eps, u)
u = result[0]
energies.append (result[1l:])
Maxmimal nodal value (correct maximum only for P1 function)

maximums.append (u.vector () .max())
energies = np.array (energies)
Report
print (' epsilon | energy_reg | energy | u max \n',
np.concatenate((np.array([epsilons,]).T,
energies,
np.array ([maximums, 1) .T,

), axis=1))

(continues on next page)

(continued from previous page)

Plot energies

plt.

plt
plt
plt

figure ()
.plot (epsilons, energies([:,0], 'o-'
.plot (epsilons, energies([:,1], 'o-'

.xscale('log")
plt.
plt.

legend (loc="upper left'")
show ()

, label='energy regularized')
, label='energy"')

	License
	Prolog
	Poisson in a hundred ways
	Heat equation
	Navier-Stokes equations
	Hyperelasticity
	Eigenfunctions of Laplacian and Helmholtz equation
	Heat equation in moving media
	p-Laplace equation

