
FEBOL Documentation
Release 0.1

Louis Dressel

Nov 22, 2018

Contents:

1 Basic Types 1
1.1 Search Domain . 1
1.2 LocTuple . 1
1.3 Pose . 1
1.4 Action . 1

2 Vehicle 3

3 Sensors 5
3.1 BearingOnly . 5
3.2 DirOmni . 5
3.3 FOV . 5
3.4 Custom Sensors . 5

4 Filters 7
4.1 Discrete Filter . 7
4.2 Particle Filter . 8
4.3 Extended Kalman Fiter . 8
4.4 Unscented Kalman Fiter . 8
4.5 Gaussian Fiter . 8
4.6 Custom Filters . 9

5 Policies 11
5.1 RandomPolicy . 11
5.2 GreedyPolicy . 11
5.3 CirclePolicy . 11
5.4 Custom Policy . 12

6 Simulations 13
6.1 Quick Simulations . 13
6.2 Simulations with SimUnit . 13
6.3 Batch Simulations . 13
6.4 Parallel Simulations . 14
6.5 Under the Hood . 14

7 SimUnit 15
7.1 Cost Model . 15

i

7.2 Termination Condition . 16

8 Visualizatons 19
8.1 Visualize Function . 19
8.2 Creating GIFs . 19

9 Things to change and modify 21

10 Indices and tables 23

ii

CHAPTER 1

Basic Types

1.1 Search Domain

puts target at (tx, ty)
m = SearchDomain(side_length, tx, ty)

puts target at random location within the square domain
m = SearchDomain(side_length)

1.2 LocTuple

const LocTuple = NTuple{2, Float64}

1.3 Pose

const Pose = NTuple{3, Float64}

1.4 Action

const Action = NTuple{3, Float64}

1

FEBOL Documentation, Release 0.1

2 Chapter 1. Basic Types

CHAPTER 2

Vehicle

Each instance of Vehicle has the following fields:

x::Float64
y::Float64
heading::Float64 # east of north (degrees)
max_step::Float64 # max distance vehicle can go per unit time (meters)
sensor::Sensor

There are several constructors. Below is the default:

v = Vehicle(x::Real, y::Real, h::Real, ms::Real, s::Sensor)

If you just give it a starting location, heading is set to 0, max_step is set to 2.0, and the sensor is defaulted to
BearingOnly(10.0) (a bearing-only sensor with noise std deviation of 10 deg).

v = Vehicle(x::Real, y::Real)

Alternatively, you can pass the sensor in as well, with the omitted variables as above:

v = Vehicle(x::Real, y::Real, s::Sensor)

3

FEBOL Documentation, Release 0.1

4 Chapter 2. Vehicle

CHAPTER 3

Sensors

The abstract Sensor type describes the sensing model of the vehicle. Originally, the only sensor type was bearing
only, but this has been expanded to consider other sensing modalities.

3.1 BearingOnly

BearingOnly(noise_sigma)

3.2 DirOmni

The DirOmni sensor combines a directional antenna with an omni-directional antenna.

3.3 FOV

The FOV sensor is a “field-of-view” sensor. The observed value 1 suggests the source is in the vehicle’s field of view,
and 0 suggests the source is not.

region_probs = [(60.0,0.9), (120.0, 0.5), (180.0,0.1)]
sensor = FOV(region_probs)
v = Vehicle(50,50, sensor)

3.4 Custom Sensors

You can make your own sensors.

5

FEBOL Documentation, Release 0.1

NewSensor <: Sensor

You must implement the observe function, which returns an observation (of type Float64).

observe(tx::LocTuple, s::NewSensor, p::Pose)

If you want the particle filter to work, you need to define an observation model.

O(s::NewSensor, theta::LocTuple, p::Pose, o::Float64)

If you want the discrete filter to work, you need to define a discretized version, and a function that converts an
observation (Float64) into a discretized version (Int)

obs2bin(o::Float64, s::NewSensor) # returns an int
O(s::NewSensor, theta::LocTuple, p::Pose, o::Int)

6 Chapter 3. Sensors

CHAPTER 4

Filters

A filter is something that maintains a belief over the search space and updates it given new observations and vehicle
locations.

Note that each filter maintains a belief, which is a questionable design decision. In reality, a belief is something
separate, fed into a filter to be updated. However, the belief representation (discrete, Gaussian, etc) depends heavily
on the filtering being applied. In short, it just seems easier to maintain a single filter type rather than worry about a
separate belief.

Note that each filter has its own sensor, even though the vehicle also has a sensor. The filtering updates use the filter’s
sensor, and the observations actually received come from the vehicle’s sensor. This distinction allows you to test the
effect of unmodeled sensor noise. In this case, the vehicle’s sensor might have noise that is not accounted for in the
filter’s model, which can affect localization.

4.1 Discrete Filter

The discrete filter type, DF, has the following fields

b::Matrix{Float64} # the actual discrete belief
n::Int64 # number of cells per side
cell_size::Float64 # width of each cell, in meters
sensor<:Sensor # sensor model used in filtering
obs_list # list of observations

The matrix b is the probability distribution over possible target locations. The weight in a cell is the probability that
the target is in that cell.

The obs_list field exists for greedy control based on mutual information. Computing mutual information requires
integrating over possible observations. However, if you are using a different controller you can ignore this field.

The constructor for a discrete filter is

DF(m::SearchDomain, n::Int, s::Sensor, obs_list=0:0)

where n is the number of cells per side.

7

FEBOL Documentation, Release 0.1

4.2 Particle Filter

The particle filter is based on ParticleFilters.jl. Its constructor is

PF(m::Model, n::Int, obs_list)

The Model type contains information that is used in the particle filter update. The type and constructors are

struct Model{V <: Vehicle, S <: Sensor, M <: MotionModel}
x::V
sensor::S
motion_model::M

end
Model(x::Vehicle) = Model(x, x.sensor)
Model(x::Vehicle, s::Sensor) = Model(x, s, NoMotion())

4.3 Extended Kalman Fiter

EKF(m::SearchDomain)

4.4 Unscented Kalman Fiter

UKF(m::SearchDomain)

4.5 Gaussian Fiter

The GaussianFilter abstract type is a child of AbstractFilter and a parent of EKF and UKF. I’ve thought
about calling this KalmanFilter instead, but that could be ambiguous—someone could think this refers to a specific
KF, rather than an abstract type.

The GaussianFilter abstract type covers utilities that both EKF and UKF use. The most important of these is the
Initializer abstract type. Each EKF and UKF instance contains an Initializer subtype that determines how
the filter estimate should be initialized.

The default initializer is a NaiveInitializer sets the estimate to be the center of the search domain and uses a
large initial covariance.

Another initializer is the LSInitializer, or least squares initializer. After taking min_obs_num observations,
this initializer sets the mean to the point in the search domain yielding the smallest sum of least square differences be-
tween observed and expected observations. The code below shows how to initialize an instance of LSInitializer
and modify some of its important fields:

lsi = LSInitializer(m::SearchDomain)
lsi.Sigma = 1e3*eye(2)
lsi.min_obs_num = 5

8 Chapter 4. Filters

FEBOL Documentation, Release 0.1

4.6 Custom Filters

The code below is a template for creating your own filter type. You must extend the AbstractFilter type and
implement the following functions.

type CustomFilter <: AbstractFilter
end

function update!(f::CustomFilter, p::Pose, o::Float64)
update the belief in the filter.

end

function centroid(f::CustomFilter)
return the centroid of the filter's belief

end

function entropy(f::CustomFilter)
return the entropy of the filter's belief

end

function reset!(f::CustomFilter)
reset the filter to a uniform prior

end

4.6. Custom Filters 9

FEBOL Documentation, Release 0.1

10 Chapter 4. Filters

CHAPTER 5

Policies

5.1 RandomPolicy

A RandomPolicy simply moves the vehicle in a random direction.

RandomPolicy()

5.2 GreedyPolicy

A GreedyPolicy moves the agent in the direction that minimizes the expected entropy after moving.

GreedyPolicy(x::Vehicle, n::Int)

The integer n denotes how many actions should be considered. If n=6, then the agent considers the expected entropy
given 6 different directions, spaced an even 60 degrees apart.

5.3 CirclePolicy

A CirclePolicy moves the agent perpendicularly to the last recorded bearing measurement, which ends up draw-
ing a circle around the source. The constructor is as follows:

CirclePolicy()

The CirclePolicy implicitly assumes that the sensor is of BearingOnly type.

11

FEBOL Documentation, Release 0.1

5.4 Custom Policy

You can create your own policies by extending the abstract Policy class and implementing the action function.
Below is an example. Remember that to extend FEBOL’s action function, you must import it instead of just relying
on using:

using FEBOL
import FEBOL.action

type CustomPolicy <: Policy
end

function action(m::SearchDomain, x::Vehicle, o::Float64, f::AbstractFilter,
→˓p::CustomPolicy)

your policy code
must return action (2-tuple of Float64s)

end

Feel free to take advantage of the normalize function to ensure your action’s norm is equal to the maximum distance
the vehicle can take per time step:

normalize(a::Action, x::Vehicle)

12 Chapter 5. Policies

CHAPTER 6

Simulations

6.1 Quick Simulations

If you’ve just implemented a sensor, filter, or policy, you might want to run it through a quick simulation to make sure
everything works. You can simply call

simulate(m, x, f, p, n_steps=10)

where m is a SearchDomain, x is a Vehicle, f is a filter, and p is a policy. If everything works, no error will be thrown.

6.2 Simulations with SimUnit

To specify costs and termination conditions, use the SimUnit type.

simulate(m::SearchDomain, su::SimUnit)

This returns the total cost of the simulated run (a float).

6.3 Batch Simulations

To evaluate a SimUnit over the course of various simulations, you can provide a number of simulations, n_sims, to
simulate:

simulate(m::SearchDomain, su::SimUnit, n_sims::Int)

At the beginning of each simulation, the target is started in a random location. The return value is a vector of cost
values. This vector is of length n_sims and has one cost per simulation.

If we want to compare different filters and policies, we can provide a vector of SimUnits to simulate:

13

FEBOL Documentation, Release 0.1

simulate(m::SearchDomain, vsu::Vector{SimUnit}, n_sims::Int)

A total of n_sims simulations is run per SimUnit. Once a new (random) target location is selected, all SimUnits are
run once. The return value is a matrix with one row for each simulation and one column for each sim unit. In each
simulation (a row), each simulation unit is tested with the same target location. The values in this matrix correspond
to the total cost/reward accumulated druing the simulations.

6.4 Parallel Simulations

To devote n cores to running simulations, you must start Julia with the following command

julia -p n

To run simulations in parallel, use the parsim function, which takes the same arguments as the simulate function
for batch simulations:

parsim(m::SearchDomain, su::SimUnit, n_sims::Int)
parsim(m::SearchDomain, vsu::Vector{SimUnit}, n_sims::Int)

6.5 Under the Hood

14 Chapter 6. Simulations

CHAPTER 7

SimUnit

The SimUnit type stores most of the things needed to run a simulation. This includes the filter, policy, cost model,
and termination condition. The cost model and termination condition are discussed in more detail later on this page.

A SimUnit has the following fields:

type SimUnit
x::Vehicle
f::AbstractFilter
p::Policy
cm::CostModel
tc::TerminationCondition

end

Below are the constructors for the SimUnit type. At a minimum, it needs a vehicle, filter, and policy. If no cost
model is provided, it defaults to ConstantCost(1.0). If no termination condition is provided, it defaults to
StepThreshold(10).

SimUnit(x, f, p) # default termination and cost
SimUnit(x, f, p, tc) # default cost
SimUnit(x, f, p, tc, cm) # fully defined

7.1 Cost Model

The abstract CostModel type handles how costs are applied throughout the simulations. Two cost models are
provided:

To define your own cost model, you must extend the abstract CostModel type and implement the
get_action_cost function.

type CustomCost <: CostModel
whatever fields you need for get_action_cost

end

(continues on next page)

15

FEBOL Documentation, Release 0.1

(continued from previous page)

function get_action_cost(a::Action, cm::CostModel)
return a Float64 describing cost

end

For an example, let’s examine the ConstantCost model, which applies the same cost at each step. This cost might
represent the time each step takes. Therefore, a simulated trajectory’s cost would simulate how much time it took. The
ConstantCost model is defined as follows,

type ConstantCost <: CostModel
value::Float64

end

function get_action_cost(a::Action, cc::ConstantCost)
return cc.value

end

The MoveAndRotateCost is a more complex example.

type MoveAndRotateCost <: CostModel
speed::Float64
time_per_rotation::Float64

end

function get_action_cost(a::Action, marc::MoveAndRotateCost)
dx = a[1]
dy = a[2]
dist = sqrt(dx*dx + dy*dy)
return (dist / marc.speed) + marc.time_per_rotation

end

7.2 Termination Condition

The abstract TerminationCondition type determines when an individual simulation should be terminated.

To define your own termination condition, you must extend the abstract TerminationCondition type and im-
plement the is_complete function.

type CustomTC <: TerminationCondition
whatever fields you need

end

function is_complete(f::AbstractFilter, ctc::CustomTC, step_count::Int)
return true if termination condition reached, false if not

end

The step_count argument is passed in by the thing. (Clarify if it starts at one or zero.) You can define the
is_complete function for a specific kind of filter if you only plan on using one filter.

The StepThreshold is provided. It terminates after a specified number of steps has been simulated.

type StepThreshold <: TerminationCondition
value::Int

end
function is_complete(f::DF, st::StepThreshold, step_count::Int)

(continues on next page)

16 Chapter 7. SimUnit

FEBOL Documentation, Release 0.1

(continued from previous page)

ret_val = false
if step_count >= st.value

ret_val = true
end
return ret_val

end

The MaxNormThreshold termination condition is also provided. The implementation is below

type MaxNormThreshold <: TerminationCondition
value::Float64

end

function is_complete(f::DF, mnt::MaxNormThreshold, ::Int)
ret_val = false
if maximum(f.b) > mnt.value

ret_val = true
end
return ret_val

end

7.2. Termination Condition 17

FEBOL Documentation, Release 0.1

18 Chapter 7. SimUnit

CHAPTER 8

Visualizatons

Recall that visualizations require the FEBOLPlots.jl package. To install this package, you must call the following in
Julia:

Pkg.clone("https://github.com/dressel/FEBOLPlots.jl.git")

Once the package has been installed, you must include the statement using FEBOLPLots whenever using one of
its functions. The most useful functions will be visualize and gif.

8.1 Visualize Function

The visualize function allows you to plot out several steps. A simple version can be called with

visualize(m, x, f, p, n_steps=10; pause_time=0.3)

where m is a SearchDomain, x is a Vehicle, f is a filter, and p is a policy.

A different version allows you to pass in SimUnit:

visualize(m::SearchDomain, su::SimUnit; pause_time=0.3)

8.2 Creating GIFs

gif(m, x, f, p, num_steps)

gif(m::SearchDomain, x::Vehicle, f::AbstractFilter, p::Policy, num_steps::Int=10,
→˓filename="out.gif"; seconds_per_step=0.5, show_mean=false, show_cov=false, show_
→˓path=false)

19

FEBOL Documentation, Release 0.1

20 Chapter 8. Visualizatons

CHAPTER 9

Things to change and modify

• Rename this to be more general

• Add an altitude to Vehicle

• filter should have its own noise model

21

FEBOL Documentation, Release 0.1

22 Chapter 9. Things to change and modify

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

23

	Basic Types
	Search Domain
	LocTuple
	Pose
	Action

	Vehicle
	Sensors
	BearingOnly
	DirOmni
	FOV
	Custom Sensors

	Filters
	Discrete Filter
	Particle Filter
	Extended Kalman Fiter
	Unscented Kalman Fiter
	Gaussian Fiter
	Custom Filters

	Policies
	RandomPolicy
	GreedyPolicy
	CirclePolicy
	Custom Policy

	Simulations
	Quick Simulations
	Simulations with SimUnit
	Batch Simulations
	Parallel Simulations
	Under the Hood

	SimUnit
	Cost Model
	Termination Condition

	Visualizatons
	Visualize Function
	Creating GIFs

	Things to change and modify
	Indices and tables

