

    
      
          
            
  
Welcome to Fauxmo’s documentation!

Contents:



	Readme

	Modules overview

	fauxmo package

	fauxmo.plugins package

	Credits

	Changelog

	Contributing

	protocol_notes.md








Indices and tables


	Index


	Module Index








          

      

      

    

  

    
      
          
            
  
Fauxmo README

master: [image: ../_images/fauxmo.svg]master branch build status [https://travis-ci.org/n8henrie/fauxmo/branches]
dev: [image: ../_images/fauxmo1.svg]dev branch build status [https://travis-ci.org/n8henrie/fauxmo/branches]

Python 3 module that emulates Belkin WeMo devices for use with the Amazon Echo.

Originally forked from https://github.com/makermusings/fauxmo, unforked to
enable GitHub code search (which currently doesn’t work in a fork), and because
the libraries have diverged substantially.


	Documentation: fauxmo.readthedocs.org [https://fauxmo.readthedocs.org]





Introduction

The Amazon Echo is able to control certain types of home automation devices by
voice. Fauxmo provides emulated Belkin Wemo devices that the Echo can turn on
and off by voice, locally, and with minimal lag time. Currently these Fauxmo
devices can be configured to make requests to an HTTP server or to a Home
Assistant [https://home-assistant.io] instance via its Python
API [https://home-assistant.io/developers/python_api/] and only require a JSON
config file for setup.

As of version v0.4.0, Fauxmo uses several API features and f-strings that
require Python 3.6+. I highly recommend looking into
pyenv [https://github.com/pyenv/pyenv] if you’re currently on an older Python
version and willing to upgrade. Otherwise, check out the FAQ section at the
bottom for tips on installing an older Fauxmo version (though note that I will
not be continuing development or support for older versions).

For what it’s worth, if you’re concerned about installing pyenv on a
low-resource machine like the Raspberry Pi, I encourage you to review my
notes [https://n8henrie.com/2018/02/pyenv-size-and-python-36-speed-installation-time-on-raspberry-pi/]
on the size and time required to install Python 3.6 with pyenv on a Raspberry
Pi and the nontrivial improvement in speed (with a simple pystone benchmark)
using an optimized pyenv-installed 3.6 as compared to the default Raspbian
3.5.3.




Terminology

faux (\ˈfō\): imitation

WeMo: Belkin home automation product with which the Amazon Echo can interface

Fauxmo (\ˈfō-mō\): Python 3 module that emulates Belkin WeMo devices for use
with the Amazon Echo.

Fauxmo has a server component that helps register “devices” with the Echo (which
may be referred to as the Fauxmo server or Fauxmo core). These devices are then
exposed individually, each requiring its own port, and may be referred to as a
Fauxmo device or a Fauxmo instance. The Echo interacts with each Fauxmo device
as if it were a separate WeMo device.




Usage

Installation into a venv is highly recommended, especially since it’s baked
into the recent Python versions that Fauxmo requires.

Additionally, please ensure you’re using a recent version of pip (>= 9.0.1)
prior to installation: pip install --upgrade pip


Simple install: From PyPI


	python3 -m venv .venv


	source ./.venv/bin/activate


	python3 -m pip install fauxmo


	Make a config.json based on
config-sample.json [https://github.com/n8henrie/fauxmo/blob/master/config-sample.json]


	fauxmo -c config.json [-v]







Simple install of dev branch from GitHub

This is a good strategy for testing features in development – for actually
contributing to development, clone the repo as per below)


	python3 -m venv .venv


	source ./.venv/bin/activate


	pip install [-e] git+https://github.com/n8henrie/fauxmo.git@dev







Install for development from GitHub


	git clone https://github.com/n8henrie/fauxmo.git


	cd fauxmo


	python3 -m venv .venv


	source ./.venv/bin/activate


	pip install -e .[dev]


	cp config-sample.json config.json


	Edit config.json


	fauxmo [-v]







Set up the Echo


	Open the Amazon Alexa webapp to the Smart
Home [http://alexa.amazon.com/#smart-home] page


	With Fauxmo running, click “Discover devices” (or tell Alexa to “find
connected devices”)


	Ensure that your Fauxmo devices were discovered and appear with their
names in the web interface


	Test: “Alexa, turn on [the kitchen light]”







Set Fauxmo to run automatically in the background

NB: As discussed in #20 [https://github.com/n8henrie/fauxmo/issues/20], the
example files in extras/ are not included when you install from PyPI*
(using pip). If you want to use them, you either need to clone the repo or
you can download them individually using tools like wget or curl by
navigating to the file in your web browser, clicking the Raw button, and
using the resulting URL in your address bar.

* As of Fauxmo v0.4.0 extras/ has been added to MANIFEST.in and may be
included somewhere depending on installation from the .tar.gz vs whl
format – if you can’t find them, you should probably just get the files
manually as described above.


systemd (e.g. Raspbian Jessie)


	Recommended: add an unprivileged user to run Fauxmo: sudo useradd -r -s /bin/false fauxmo


	NB: Fauxmo may require root privileges if you’re using ports below 1024






	sudo cp extras/fauxmo.service /etc/systemd/system/fauxmo.service


	Edit the paths in /etc/systemd/system/fauxmo.service


	sudo systemctl enable fauxmo.service


	sudo systemctl start fauxmo.service







launchd (OS X)


	cp extras/com.n8henrie.fauxmo.plist ~/Library/LaunchAgents/com.n8henrie.fauxmo.plist


	Edit the paths in ~/Library/LaunchAgents/com.n8henrie.fauxmo.plist


	You can remove the StandardOutPath and StandardErrorPath sections if
desired






	launchctl load ~/Library/LaunchAgents/com.n8henrie.fauxmo.plist


	launchctl start com.n8henrie.fauxmo











Plugins

Plugins are small user-extendible classes that allow users to easily make their
own actions for Fauxmo to run by way of Alexa commands. They were previously
called Handlers and may be referred to as such in places in the code and
documentation.

Fauxmo v0.4.0 implements a new and breaking change in the way Handlers were
implemented in previous versions, which requires modification of the
config.json file (as described below).

A few plugins and the ABC from which the plugins are required to inherit may
be included and installed by default in the fauxmo.plugins package. Any
pre-installed plugins, like the rest of the core Fauxmo code, have no third
party dependencies.

So far, the pre-installed plugins include:


	fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin [https://github.com/n8henrie/fauxmo/blob/master/src/fauxmo/plugins/simplehttpplugin.py]


	fauxmo.plugins.commandlineplugin.CommandLinePlugin [https://github.com/n8henrie/fauxmo/blob/master/src/fauxmo/plugins/commandlineplugin.py]


	fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin [https://github.com/n8henrie/fauxmo/blob/master/src/fauxmo/plugins/homeassistantplugin.py]




SimpleHTTPPlugin responds to Alexa’s on and off commands by making
requests to URL endpoints by way of
urllib [https://docs.python.org/3/library/urllib.html]. Example uses cases
relevant to the IOT community might be a Flask server served from localhost
that provides a nice web interface for toggling switches, whose endpoints could
be added as the on_cmd and off_cmd args to a SimpleHTTPPlugin instance
to allow activation by way of Alexa -> Fauxmo.

As of Fauxmo v0.4.5, the FauxmoPlugin abstract base class (and therefore all
derivate Fauxmo plugins) requires a get_state method, which tells Alexa a
device’s state. If you don’t have a way to determine devices state, you can
just have your get_state method return "unknown", but please review the
notes on get_state below.

Also, see details regarding plugin configuration in each class’s docstring,
which I intend to continue as a convention for Fauxmo plugins. Users hoping to
make more complicated requests may be interested in looking at RESTAPIPlugin
in the fauxmo-plugins repository [https://github.com/n8henrie/fauxmo-plugins], which uses Requests
for a much friendlier API.


User plugins

Users can easily create their own plugins, which is the motivation behind most
of the changes in Fauxmo v0.4.0.

To get started:


	Decide on a name for your plugin class. I highly recommend something
descriptive, CamelCase and a Plugin suffix, e.g. FooSwitcherPlugin.


	I strongly recommend naming your module the same as the plugin, but in all
lower case, e.g. fooswitcherplugin.py.


	Note the path to your plugin, which will need to be included in your
config.json as path (absolute path recommended, ~ for homedir is
okay).


	Write your class, which must at minimum:


	inherit from fauxmo.plugins.FauxmoPlugin.


	provide the methods on(), off(), and get_state().


	Please note that unless the Echo has a way to determine the device
state, it will likely respond that your “device is not responding”
after you turn a device on (or in some cases off, or both), but it
should still be able to switch the device.


	If you want to ignore the actual device’s state and just return the
last successful action as the current state (e.g. if device.on()
succeeded then return "on"), your plugin can return
super().get_state() as its get_state() method. Some of the
included plugins can be configured to have this behavior using a
use_fake_state flag in their configuration (please look at the
documentation and source code of the plugins for further details).
Note that this means it won’t update to reflect state changes that
occur outside of Fauxmo (e.g. manually flipping a switch, or toggling
with a different program), whereas a proper get_state
implementation may be able to do so.










	Any required settings will be read from your config.json and passed into
your plugin as kwargs at initialization, see below.




In addition to the above, if you intend to share your plugin with others, I
strongly recommend that you:


	Include generous documentation as a module level docstring.


	Note specific versions of any dependencies in that docstring.


	Because these user plugins are kind of “side-loaded,” you will need to
manually install their dependencies into the appropriate environment, so
it’s important to let other users know exactly what versions you use.








Be aware, when fauxmo loads a plugin, it will add the directory
containing the plugin to the Python path, so any other Python modules in this
directory might be loaded by unscrupulous code. This behavior was adopted in
part to facilitate installing any plugin dependencies in a way that will be
available for import (e.g. cd "$MYPLUGINPATH"; pip install -t $MYPLUGINDEPS).




Notable plugin examples

NB: You may need to manually install additional dependencies for these to
work – look for the dependencies in the module level docstring.


	https://github.com/n8henrie/fauxmo-plugins


	RESTAPIPlugin


	Trigger HTTP requests with your Echo.


	Similar to SimpleHTTPPlugin, but uses
Requests [https://github.com/kennethreitz/requests] for a simpler
API and easier modification.






	MQTTPlugin


	Trigger MQTT events with your Echo






	User contributions of interesting plugins are more than welcome!













Configuration

I recommend that you copy and modify
config-sample.json [https://github.com/n8henrie/fauxmo/blob/master/config-sample.json].
Fauxmo will use whatever config file you specify with -c or will search for
config.json in the current directory, ~/.fauxmo/, and /etc/fauxmo/ (in
that order). The minimal configuration settings are:


	FAUXMO: General Fauxmo settings


	ip_address: Optional[str] - Manually set the server’s IP address.
Recommended value: "auto".






	PLUGINS: Top level key for your plugins, values should be a dictionary of
(likely CamelCase) class names, spelled identically to the plugin class, with
each plugin’s settings as a subdictionary.


	ExamplePlugin: Your plugin class name here, case sensitive.


	path: The absolute path to the Python file in which the plugin
class is defined (please see the section on user plugins above).
Required for user plugins / plugins not pre-installed in the
fauxmo.plugins subpackage.


	example_var1: For convenience and to avoid redundancy, your plugin
class can optionally use config variables at this level that
will be shared for all DEVICES listed in the next section (e.g. an
api key that would be shared for all devices of this plugin type).
If provided, your plugin class must consume this variable in a custom
__init__.


	DEVICES: List of devices that will employ ExamplePlugin


	name: Optional[str] – Name for this device. Optional in the
sense that you can leave it out of the config as long as you set
it in your plugin code as the _name attribute, but it does need
to be set somewhere. If you omit it from config you will also
need to override the __init__ method, which expects a name
kwarg.


	port: Optional[int] – Port that Echo will use connect to
device. Should be different for each device, Fauxmo will attempt
to set automatically if absent from config. NB: Like name, you
can choose to set manually in your plugin code by overriding the
_port attribute (and the __init__ method, which expects a
port kwarg otherwise).


	example_var2: Config variables for individual Fauxmo devices
can go here if needed (e.g. the URL that should be triggered when
a device is activated). Again, your plugin class will need to
consume them in a custom __init__.
















Each user plugin should describe its required configuration in its module-level
docstring. The only required config variables for all plugins is DEVICES,
which is a List[dict] of configuration variables for each device of that
plugin type. Under DEVICES it is a good idea to set a fixed, high, free
port for each device, but if you don’t set one, Fauxmo will try to pick a
reasonable port automatically (though it will change for each run).

Please see
config-sample [https://github.com/n8henrie/fauxmo/blob/master/config-sample.json]
for a more concrete idea of the structure of the config file, using the
built-in SimpleHTTPPlugin for demonstration purposes. Below is a description
of the kwargs that SimpleHTTPPlugin accepts.


	name: What you want to call the device (how to activate by
Echo)


	port: Port the Fauxmo device will run on


	on_cmd: str – URL that should be requested to turn device on.


	off_cmd: str – URL that should be requested to turn device off.


	state_cmd: str – URL that should be requested to query device state


	method / state_method: Optional[str] = GET – GET, POST, PUT, etc.


	headers: Optional[dict]  – Extra headers


	on_data / off_data / state_data: Optional[dict] – POST data


	state_response_on / state_response_off: str – If this string is in
contained in the response from state_cmd, then the devices is on or
off, respectively


	user / password: Optional[str] – Enables HTTP authentication (basic or
digest only)


	use_fake_state: Optional[bool] – If True, override the plugin’s
get_state method to return the latest successful action as the device
state. NB: The proper json boolean value for Python’s True is true, not
True or "true".







Security

I am not a technology professional and make no promises regarding the security
of this software. Specifically, plugins such as CommandLinePlugin execute
arbitrary code from your configuration without any validation. If your
configuration can be tampered with, you’re in for a bad time.

That said, if your configuration can be tampered with (i.e. someone already has
write access on your machine), then you likely have bigger problems.

Regardless, a few reasonable precautions that I recommend:


	run fauxmo in a virtulaenv, even without any dependencies


	run fauxmo as a dedicated unprivileged user with its own group


	remove write access from the fauxmo user and group for your config file and
any plugin files (perhaps chmod 0640 config.json; chown me:fauxmo config.json)


	consider using a firewall like ufw, but don’t forget that you’ll need to
open up ports for upnp (1900, UDP) and ports for all your devices that
you’ve configured (in config.json).




For example, if I had 4 echo devices at 192.168.1.5, 192.168.1.10,
192.168.1.15, and 192.168.1.20, and Fauxmo was configured with devices at each
of port 12345-12350, to configure ufw I might run something like:

$ for ip in 5 10 15 20; do
    sudo ufw allow \
        from 192.168.1."$ip" \
        to any \
        port 1900 \
        proto udp \
        comment "fauxmo upnp"
    sudo ufw allow \
        from 192.168.1."$ip" \
        to any \
        port 12345:12350 \
        proto tcp \
        comment "fauxmo devices"
done





You use Fauxmo at your own risk, with or without user plugins.




Troubleshooting / FAQ

Your first step in troubleshooting should probably be to “forget all devices”
(which as been removed from the iOS app but is still available at
alexa.amazon.com [https://alexa.amazon.com]), re-discover devices, and make
sure to refresh your device list (e.g. pull down on the “devices” tab in the
iOS app, or just close out the app completely and re-open).


	How can I increase my logging verbosity?


	-v[vv]


	-vv (logging.INFO) is a good place to start when debugging






	How can I ensure my config is valid JSON?


	python -m json.tool < config.json


	Use jsonlint or one of numerous online tools






	How can I install an older / specific version of Fauxmo?


	Install from a tag:


	pip install git+git://github.com/n8henrie/fauxmo.git@v0.1.11






	Install from a specific commit:


	pip install git+git://github.com/n8henrie/fauxmo.git@d877c513ad45cbbbd77b1b83e7a2f03bf0004856










	Where can I get more information on how the Echo interacts with devices like
Fauxmo?


	Check out
protocol_notes.md [https://github.com/n8henrie/fauxmo/blob/master/protocol_notes]






	Does Fauxmo work with non-Echo emulators like Alexa AVS or Echoism.io?


	Apparently not. [https://github.com/n8henrie/fauxmo/issues/22]






	How do I find my Echo firmware version?


	https://alexa.amazon.com -> Settings -> [Device Name] -> Device Software Version









Installing Python 3.7 with pyenv [https://github.com/pyenv/pyenv]

sudo install -o $(whoami) -g $(whoami) -d /opt/pyenv
git clone https://github.com/pyenv/pyenv /opt/pyenv
cat <<'EOF' >> ~/.bashrc
export PYENV_ROOT="/opt/pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"
EOF
source ~/.bashrc
pyenv install 3.7.3





You can then install Fauxmo into Python 3.7 in a few ways, including:

# Install with pip
"$(pyenv root)"/versions/3.7.3/bin/python3.7 -m pip install fauxmo

# Show full path to Fauxmo console script
pyenv which fauxmo

# Run with included console script
fauxmo -c /path/to/config.json -vvv

# I recommend using the full path for use in start scripts (e.g. systemd, cron)
"$(pyenv root)"/versions/3.7.3/bin/fauxmo -c /path/to/config.json -vvv

# Alternatively, this also works (after `pip install`)
"$(pyenv root)"/versions/3.7.3/bin/python3.7 -m fauxmo.cli -c config.json -vvv










Buy Me a Coffee

☕️ [https://n8henrie.com/donate]




Acknowledgements / Reading List


	Tremendous thanks to @makermusings for the original version of
Fauxmo [https://github.com/makermusings/fauxmo]!


	Also thanks to @DoWhileGeek for commits towards Python 3 compatibility






	http://www.makermusings.com/2015/07/13/amazon-echo-and-home-automation


	http://www.makermusings.com/2015/07/18/virtual-wemo-code-for-amazon-echo


	http://hackaday.com/2015/07/16/how-to-make-amazon-echo-control-fake-wemo-devices


	https://developer.amazon.com/appsandservices/solutions/alexa/alexa-skills-kit


	https://en.wikipedia.org/wiki/Universal_Plug_and_Play


	http://www.makermusings.com/2015/07/19/home-automation-with-amazon-echo-apps-part-1


	http://www.makermusings.com/2015/08/22/home-automation-with-amazon-echo-apps-part-2


	https://www.rilhia.com/tutorials/using-upnp-enabled-devices-talend-belkin-wemo-switch










          

      

      

    

  

    
      
          
            
  
fauxmo



	fauxmo package
	Subpackages
	fauxmo.plugins package
	Submodules

	fauxmo.plugins.commandlineplugin module

	fauxmo.plugins.homeassistantplugin module

	fauxmo.plugins.simplehttpplugin module

	Module contents









	Submodules

	fauxmo.cli module

	fauxmo.fauxmo module

	fauxmo.protocols module

	fauxmo.utils module

	Module contents













          

      

      

    

  

    
      
          
            
  
fauxmo package


Subpackages



	fauxmo.plugins package
	Submodules

	fauxmo.plugins.commandlineplugin module
	}





	fauxmo.plugins.homeassistantplugin module
	}





	fauxmo.plugins.simplehttpplugin module

	Module contents












Submodules




fauxmo.cli module

cli.py :: Argparse based CLI for fauxmo.

Provides console_script via argparse.


	
fauxmo.cli.cli() → None

	Parse command line options, provide entry point for console scripts.








fauxmo.fauxmo module

fauxmo.py :: Main server code for Fauxmo.

Emulates a Belkin Wemo for interaction with an Amazon Echo. See README.md at
<https://github.com/n8henrie/fauxmo>.


	
fauxmo.fauxmo.main(config_path_str: str = None, verbosity: int = 20) → None

	Run the main fauxmo process.

Spawns a UDP server to handle the Echo’s UPnP / SSDP device discovery
process as well as multiple TCP servers to respond to the Echo’s device
setup requests and handle its process for turning devices on and off.


	Parameters

	
	config_path_str – Path to config file. If not given will search for
config.json in cwd, ~/.fauxmo/, and
/etc/fauxmo/.


	verbosity – Logging verbosity, defaults to 20















fauxmo.protocols module

protocols.py :: Provide asyncio protocols for UPnP and SSDP discovery.


	
class fauxmo.protocols.Fauxmo(name: str, plugin: fauxmo.plugins.FauxmoPlugin)

	Bases: asyncio.protocols.Protocol

Mimics a WeMo switch on the network.

Aysncio protocol intended for use with BaseEventLoop.create_server.


	
NEWLINE = '\r\n'

	




	
__init__(name: str, plugin: fauxmo.plugins.FauxmoPlugin) → None

	Initialize a Fauxmo device.


	Parameters

	
	name – How you want to call the device, e.g. “bedroom light”


	plugin – Fauxmo plugin













	
static add_http_headers(xml: str) → str

	Add HTTP headers to an XML body.


	Parameters

	xml – XML body that needs HTTP headers










	
connection_made(transport: asyncio.transports.BaseTransport) → None

	Accept an incoming TCP connection.


	Parameters

	transport – Passed in asyncio.Transport










	
data_received(data: bytes) → None

	Decode incoming data.


	Parameters

	data – Incoming message, either setup request or action request










	
handle_action(msg: str) → None

	Execute on, off, or get_state method of plugin.


	Parameters

	msg – Body of the Echo’s HTTP request to trigger an action










	
handle_event() → None

	Respond to request for eventservice.xml.






	
handle_metainfo() → None

	Respond to request for metadata.






	
handle_setup() → None

	Create a response to the Echo’s setup request.










	
class fauxmo.protocols.SSDPServer(devices: Iterable[dict] = None)

	Bases: asyncio.protocols.DatagramProtocol

UDP server that responds to the Echo’s SSDP / UPnP requests.


	
__init__(devices: Iterable[dict] = None) → None

	Initialize an SSDPServer instance.


	Parameters

	devices – Iterable of devices to advertise when the Echo’s SSDP
search request is received.










	
add_device(name: str, ip_address: str, port: int) → None

	Keep track of a list of devices for logging and shutdown.


	Parameters

	
	name – Device name


	ip_address – IP address of device


	port – Port of device













	
connection_lost(exc: Exception) → None

	Handle lost connections.


	Parameters

	exc – Exception type










	
connection_made(transport: asyncio.transports.BaseTransport) → None

	Set transport attribute to incoming transport.


	Parameters

	transport – Incoming asyncio.DatagramTransport










	
datagram_received(data: Union[bytes, str], addr: Tuple[str, int]) → None

	Check incoming UDP data for requests for Wemo devices.


	Parameters

	
	data – Incoming data content


	addr – Address sending data













	
respond_to_search(addr: Tuple[str, int], discover_pattern: str, mx: float = 0.0) → None

	Build and send an appropriate response to an SSDP search request.


	Parameters

	addr – Address sending search request
















fauxmo.utils module

utils.py :: Holds utility functions for Fauxmo.


	
fauxmo.utils.get_local_ip(ip_address: str = None) → str

	Attempt to get the local network-connected IP address.


	Parameters

	ip_address – Either desired ip address or string or “auto”



	Returns

	Current IP address as string










	
fauxmo.utils.get_unused_port() → int

	Temporarily binds a socket to an unused system assigned port.


	Returns

	Port number










	
fauxmo.utils.make_serial(name: str) → str

	Create a persistent UUID from the device name.

Returns a suitable UUID derived from name. Should remain static for a
given name.


	Parameters

	name – Friendly device name (e.g. “living room light”)



	Returns

	Persistent UUID as string










	
fauxmo.utils.make_udp_sock() → socket.socket

	Make a suitable udp socket to listen for device discovery requests.

I would love to get rid of this function and just use the built-in
options to create_datagram_endpoint (e.g. allow_broadcast with
appropriate local and remote addresses), but having no luck. Would be
thrilled if someone can figure this out in a better way than this or
<https://github.com/n8henrie/fauxmo/blob/c5419b3f61311e5386387e136d26dd8d4a55518c/src/fauxmo/protocols.py#L149>.


	Returns

	Socket suitable for responding to multicast requests










	
fauxmo.utils.module_from_file(modname: str, path_str: str) → module

	Load a module into modname from a file path.


	Parameters

	
	modname – The desired module name


	path_str – Path to the file






	Returns

	Module read in from path_str












Module contents

fauxmo :: Emulated Belkin Wemo devices for use with the Amazon Echo.







          

      

      

    

  

    
      
          
            
  
fauxmo.plugins package


Submodules




fauxmo.plugins.commandlineplugin module

Fauxmo plugin that runs a command on the local machine.

Runs a shlex`ed command using `subprocess.run, keeping the default of
shell=False. This is probaby frought with security concerns, which is why
this plugin is not included by default in fauxmo.plugins. By installing or
using it, you acknowledge that it could run commands from your config.json that
could lead to data compromise, corruption, loss, etc. Consider making your
config.json read-only. If there are parts of this you don’t understand, you
should probably not use this plugin.

If the command runs with a return code of 0, Alexa should respond prompty
“Okay” or something that indicates it seems to have worked. If the command has
a return code of anything other than 0, Alexa stalls for several seconds and
subsequently reports that there was a problem (which should notify the user
that something didn’t go as planned).

Note that subprocess.run as implemented in this plugin doesn’t handle complex
commands with pipes, redirection, or multiple statements joined by &&, ||,
;, etc., so you can’t just use e.g. “command that sometimes fails || true”
to avoid the delay and Alexa’s response. If you really want to handle more
complex commands, consider using this plugin as a template for another one
using os.system instead of subprocess.run, but realize that this comes with
substantial security risks that exceed my ability to explain.

Example config:
```
{



	“FAUXMO”: {

	“ip_address”: “auto”





},
“PLUGINS”: {



	“CommandLinePlugin”: {

	“path”: “/path/to/commandlineplugin.py”,
“DEVICES”: [



	{

	“name”: “output stuff to a file”,
“port”: 49915,
“on_cmd”: “touch testfile.txt”,
“off_cmd”: “rm testfile.txt”,
“state_cmd”: “ls testfile.txt”





},
{


“name”: “command with fake state”,
“port”: 49916,
“on_cmd”: “touch testfile.txt”,
“off_cmd”: “rm testfile.txt”,
“use_fake_state”: true




}




]





}




}





}


	
class fauxmo.plugins.commandlineplugin.CommandLinePlugin(name: str, port: int, on_cmd: str, off_cmd: str, state_cmd: str = None, use_fake_state: bool = False)

	Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo Plugin for running commands on the local machine.


	
__init__(name: str, port: int, on_cmd: str, off_cmd: str, state_cmd: str = None, use_fake_state: bool = False) → None

	Initialize a CommandLinePlugin instance.


	Parameters

	
	name – Name for this Fauxmo device


	port – Port on which to run a specific CommandLinePlugin instance


	on_cmd – Command to be called when turning device on


	off_cmd – Command to be called when turning device off


	state_cmd – Command to check device state (return code 0 == on)


	use_fake_state – If True, override get_state to return the
latest action as the device state. NB: The proper
json boolean value for Python’s True is true,
not True or “true”.













	
get_state() → str

	Get device state.

NB: Return code of 0 (i.e. ran without error) indicates “on” state,
otherwise will be off. making it easier to have something like ls
path/to/pidfile suggest on. Many command line switches may not
actually have a “state” per se (just an arbitary command you want to
run), in which case you could just put “false” as the command, which
should always return “off”.


	Returns

	“on” or “off” if state_cmd is defined, “unknown” if undefined










	
off() → bool

	Run off command.


	Returns

	True if command seems to have run without error.










	
on() → bool

	Run on command.


	Returns

	True if command seems to have run without error.










	
run_cmd(cmd: str) → bool

	Partialmethod to run command.


	Parameters

	cmd – Command to be run



	Returns

	True if command seems to have run without error


















fauxmo.plugins.homeassistantplugin module

Fauxmo plugin to interact with Home Assistant devices.

One simple way to find your entity_id is to use curl and pipe to grep or jq.
Note that modern versions of home-assistant require you to create and include a
long-lived access token, which you can generate in the web interface at the
/profile endpoint.


curl –silent –header “Authorization: Bearer YourTokenHere”             http://IP:PORT/api/states | jq




NB: This is just a special case of the RESTAPIPlugin (or even SimpleHTTPPlugin,
see config-sample.json in the main Fauxmo repo), but it makes config
substantially easier by not having to redundantly specify headers and
endpoints.

Install to Fauxmo by downloading or cloning and including in your Fauxmo
config. One easy way to make a long-lived access token is by using the frontend
and going to the /profile endpoint, scroll to the bottom. Documentation on
the long-lived tokens is available at
https://developers.home-assistant.io/docs/en/auth_api.html#long-lived-access-token

Example config:
```
{



	“FAUXMO”: {

	“ip_address”: “auto”





},
“PLUGINS”: {



	“HomeAssistantPlugin”: {

	“ha_host”: “192.168.0.50”,
“ha_port”: 8123,
“ha_protocol”: “http”,
“ha_token”: “abc123”,
“path”: “/path/to/homeassistantplugin.py”,
“DEVICES”: [



	{

	“name”: “example Home Assistant device 1”,
“port”: 12345,
“entity_id”: “switch.my_fake_switch”





},
{


“name”: “example Home Assistant device 2”,
“port”: 12346,
“entity_id”: “cover.my_fake_cover”




}




]





}




}





}


	
class fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin(name: str, port: int, entity_id: str, ha_host: str, ha_port: int = 8123, ha_protocol: str = 'http', ha_token: str = None)

	Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo plugin for HomeAssistant REST API.

Allows users to specify Home Assistant services in their config.json and
toggle these with the Echo.


	
__init__(name: str, port: int, entity_id: str, ha_host: str, ha_port: int = 8123, ha_protocol: str = 'http', ha_token: str = None) → None

	Initialize a HomeAssistantPlugin instance.


	Parameters

	
	ha_token – Long-lived HomeAssistant token


	entity_id – entity_id used by HomeAssistant


	ha_host – Host running HomeAssistant


	ha_port – Port number for HomeAssistant access


	ha_protocol – http or https













	
get_state() → str

	Query the state of the Home Assistant device.

Returns: Device state as reported by HomeAssistant






	
off() → bool

	Turn the Home Assistant device off.

Returns: Whether the device seems to have been turned off.






	
on() → bool

	Turn the Home Assistant device on.

Returns: Whether the device seems to have been turned on.






	
send(signal: str) → bool

	Send signal as determined by service_map.


	Parameters

	signal – the signal the service should recongize










	
service_map = {'cover': {'off': 'close_cover', 'off_state': 'closed', 'on': 'open_cover', 'on_state': 'open'}, 'homeassistant': {'off': 'turn_off', 'on': 'turn_on'}, 'light': {'off': 'turn_off', 'on': 'turn_on'}, 'media_player': {'off': 'turn_off', 'on': 'turn_on'}, 'switch': {'off': 'turn_off', 'on': 'turn_on'}}

	












fauxmo.plugins.simplehttpplugin module

simplehttpplugin.py :: Fauxmo plugin for simple HTTP requests.

Fauxmo plugin that makes simple HTTP requests in its on and off methods.
Comes pre-installed in Fauxmo as an example for user plugins.

For more complicated requests (e.g. authentication, sending JSON), check out
RESTAPIPlugin in https://github.com/n8henrie/fauxmo-plugins/, which takes
advantage of Requests’ rich API.


	
class fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin(*, headers: dict = None, method: str = 'GET', name: str, off_cmd: str, off_data: Union[Mapping[KT, VT_co], str] = None, on_cmd: str, on_data: Union[Mapping[KT, VT_co], str] = None, state_cmd: str = None, state_data: Union[Mapping[KT, VT_co], str] = None, state_method: str = 'GET', state_response_off: str = None, state_response_on: str = None, password: str = None, port: int, use_fake_state: bool = False, user: str = None)

	Bases: fauxmo.plugins.FauxmoPlugin

Plugin for interacting with HTTP devices.

The Fauxmo class expects plguins to be instances of objects that inherit
from FauxmoPlugin and have on() and off() methods that return True on
success and False otherwise. This class takes a mix of url, method, header,
body, and auth data and makes REST calls to a device.

This is probably less flexible than using Requests but doesn’t add any
non-stdlib dependencies. For an example using Requests, see the
fauxmo-plugins repo.

The implementation of the get_state() method is admittedly sloppy, trying
to be somewhat generic to cover a broad range of devices that may have
a state that can be queried by either GET or POST request (sometimes
differing from the method required to turn on or off), and whose response
often contains the state. For example, if state is returned by a GET
request to localhost:8765/state with <p>Device is running</p> or
<p>Device is not running</p>, you could use those strings as
state_command_on and state_command_off, respectively.


	
__init__(*, headers: dict = None, method: str = 'GET', name: str, off_cmd: str, off_data: Union[Mapping[KT, VT_co], str] = None, on_cmd: str, on_data: Union[Mapping[KT, VT_co], str] = None, state_cmd: str = None, state_data: Union[Mapping[KT, VT_co], str] = None, state_method: str = 'GET', state_response_off: str = None, state_response_on: str = None, password: str = None, port: int, use_fake_state: bool = False, user: str = None) → None

	Initialize a SimpleHTTPPlugin instance.


	Keyword Arguments

	
	headers – Additional headers for both on() and off()


	method – HTTP method to be used for both on() and off()


	name – Name of the device


	off_cmd – URL to be called when turning device off


	off_data – Optional POST data to turn device off


	on_cmd – URL to be called when turning device on


	on_data – Optional POST data to turn device on


	state_cmd – URL to be called to determine device state


	state_data – Optional POST data to query device state


	state_method – HTTP method to be used for get_state()


	state_response_off – If this string is in the response to state_cmd,
the device is off.


	password – Password for HTTP authentication (basic or digest only)


	port – Port that this device will run on


	use_fake_state – If True, override get_state to return the
latest action as the device state. NB: The proper
json boolean value for Python’s True is true,
not True or “true”.


	user – Username for HTTP authentication (basic or digest only)













	
get_state() → str

	Get device state.


	Returns

	“on”, “off”, or “unknown”










	
off() → bool

	Turn device off by calling self.off_cmd with self.off_data.


	Returns

	True if the request seems to have been sent successfully










	
on() → bool

	Turn device on by calling self.on_cmd with self.on_data.


	Returns

	True if the request seems to have been sent successfully










	
set_state(cmd: str, data: bytes) → bool

	Call HTTP method, for use by functools.partialmethod.


	Parameters

	
	cmd – Either “on_cmd” or “off_cmd”, for getattr(self, cmd)


	data – Either “on_data” or “off_data”, for getattr(self, data)






	Returns

	Boolean indicating whether it state was set successfully
















Module contents

fauxmo.plugins :: Provide ABC for Fauxmo plugins.


	
class fauxmo.plugins.FauxmoPlugin(*, name: str, port: int)

	Bases: abc.ABC

Provide ABC for Fauxmo plugins.

This will become the plugin attribute of a Fauxmo instance. Its on
and off methods will be called when Alexa turns something on or off.

All keys (other than the list of DEVICES) from the config will be passed
into FauxmoPlugin as kwargs at initialization, which should let users do
some interesting things. However, that means users employing custom config
keys will need to override __init__ and either set the name and
“private” _port attributes manually or pass the appropriate args to
super().__init__().


	
__init__(*, name: str, port: int) → None

	Initialize FauxmoPlugin.


	Keyword Arguments

	
	name – Required, device name


	port – Required, port that the Fauxmo associated with this plugin
should run on








Note about port: if not given in config, it will be set to an
apparently free port in fauxmo.fauxmo before FauxmoPlugin
initialization. This attribute serves no default purpose in the
FauxmoPlugin but is passed in to be accessible by user code (i.e. for
logging / debugging). Alternatively, one could accept and throw away
the passed in port value and generate their own port in a plugin,
since the Fauxmo device determines its port from the plugin’s instance
attribute.

The _latest_action attribute stores the most recent successful
action, which is set by the __getattribute__ hackery for successful
.on() and .off() commands.






	
close() → None

	Run when shutting down; allows plugin to clean up state.






	
get_state() → str

	Run function when Alexa requests device state.

Should return “on” or “off” if it can be determined, or “unknown” if
there is no mechanism for determining the device state, in which case
Alexa will complain that the device is not responding.

If state cannot be determined, a plugin can opt into this
implementation, which falls back on the _latest_action attribute.
It is intentionally left as an abstract method so that plugins cannot
omit a get_state method completely, which could lead to unexpected
behavior; instead, they should explicitly return super().get_state().






	
latest_action

	Return latest action in read-only manner.

Must be a function instead of e.g. property because it overrides
get_state, and therefore must be callable.






	
name

	Return name attribute in read-only manner.






	
off() → bool

	Run function when Alexa turns this Fauxmo device off.






	
on() → bool

	Run function when Alexa turns this Fauxmo device on.






	
port

	Return port attribute in read-only manner.















          

      

      

    

  

    
      
          
            
  
fauxmo package


Subpackages



	fauxmo.plugins package
	Submodules

	fauxmo.plugins.commandlineplugin module
	}





	fauxmo.plugins.homeassistantplugin module
	}





	fauxmo.plugins.simplehttpplugin module

	Module contents












Submodules




fauxmo.cli module

cli.py :: Argparse based CLI for fauxmo.

Provides console_script via argparse.


	
fauxmo.cli.cli() → None

	Parse command line options, provide entry point for console scripts.








fauxmo.fauxmo module

fauxmo.py :: Main server code for Fauxmo.

Emulates a Belkin Wemo for interaction with an Amazon Echo. See README.md at
<https://github.com/n8henrie/fauxmo>.


	
fauxmo.fauxmo.main(config_path_str: str = None, verbosity: int = 20) → None

	Run the main fauxmo process.

Spawns a UDP server to handle the Echo’s UPnP / SSDP device discovery
process as well as multiple TCP servers to respond to the Echo’s device
setup requests and handle its process for turning devices on and off.


	Parameters

	
	config_path_str – Path to config file. If not given will search for
config.json in cwd, ~/.fauxmo/, and
/etc/fauxmo/.


	verbosity – Logging verbosity, defaults to 20















fauxmo.protocols module

protocols.py :: Provide asyncio protocols for UPnP and SSDP discovery.


	
class fauxmo.protocols.Fauxmo(name: str, plugin: fauxmo.plugins.FauxmoPlugin)

	Bases: asyncio.protocols.Protocol

Mimics a WeMo switch on the network.

Aysncio protocol intended for use with BaseEventLoop.create_server.


	
NEWLINE = '\r\n'

	




	
__init__(name: str, plugin: fauxmo.plugins.FauxmoPlugin) → None

	Initialize a Fauxmo device.


	Parameters

	
	name – How you want to call the device, e.g. “bedroom light”


	plugin – Fauxmo plugin













	
static add_http_headers(xml: str) → str

	Add HTTP headers to an XML body.


	Parameters

	xml – XML body that needs HTTP headers










	
connection_made(transport: asyncio.transports.BaseTransport) → None

	Accept an incoming TCP connection.


	Parameters

	transport – Passed in asyncio.Transport










	
data_received(data: bytes) → None

	Decode incoming data.


	Parameters

	data – Incoming message, either setup request or action request










	
handle_action(msg: str) → None

	Execute on, off, or get_state method of plugin.


	Parameters

	msg – Body of the Echo’s HTTP request to trigger an action










	
handle_event() → None

	Respond to request for eventservice.xml.






	
handle_metainfo() → None

	Respond to request for metadata.






	
handle_setup() → None

	Create a response to the Echo’s setup request.










	
class fauxmo.protocols.SSDPServer(devices: Iterable[dict] = None)

	Bases: asyncio.protocols.DatagramProtocol

UDP server that responds to the Echo’s SSDP / UPnP requests.


	
__init__(devices: Iterable[dict] = None) → None

	Initialize an SSDPServer instance.


	Parameters

	devices – Iterable of devices to advertise when the Echo’s SSDP
search request is received.










	
add_device(name: str, ip_address: str, port: int) → None

	Keep track of a list of devices for logging and shutdown.


	Parameters

	
	name – Device name


	ip_address – IP address of device


	port – Port of device













	
connection_lost(exc: Exception) → None

	Handle lost connections.


	Parameters

	exc – Exception type










	
connection_made(transport: asyncio.transports.BaseTransport) → None

	Set transport attribute to incoming transport.


	Parameters

	transport – Incoming asyncio.DatagramTransport










	
datagram_received(data: Union[bytes, str], addr: Tuple[str, int]) → None

	Check incoming UDP data for requests for Wemo devices.


	Parameters

	
	data – Incoming data content


	addr – Address sending data













	
respond_to_search(addr: Tuple[str, int], discover_pattern: str, mx: float = 0.0) → None

	Build and send an appropriate response to an SSDP search request.


	Parameters

	addr – Address sending search request
















fauxmo.utils module

utils.py :: Holds utility functions for Fauxmo.


	
fauxmo.utils.get_local_ip(ip_address: str = None) → str

	Attempt to get the local network-connected IP address.


	Parameters

	ip_address – Either desired ip address or string or “auto”



	Returns

	Current IP address as string










	
fauxmo.utils.get_unused_port() → int

	Temporarily binds a socket to an unused system assigned port.


	Returns

	Port number










	
fauxmo.utils.make_serial(name: str) → str

	Create a persistent UUID from the device name.

Returns a suitable UUID derived from name. Should remain static for a
given name.


	Parameters

	name – Friendly device name (e.g. “living room light”)



	Returns

	Persistent UUID as string










	
fauxmo.utils.make_udp_sock() → socket.socket

	Make a suitable udp socket to listen for device discovery requests.

I would love to get rid of this function and just use the built-in
options to create_datagram_endpoint (e.g. allow_broadcast with
appropriate local and remote addresses), but having no luck. Would be
thrilled if someone can figure this out in a better way than this or
<https://github.com/n8henrie/fauxmo/blob/c5419b3f61311e5386387e136d26dd8d4a55518c/src/fauxmo/protocols.py#L149>.


	Returns

	Socket suitable for responding to multicast requests










	
fauxmo.utils.module_from_file(modname: str, path_str: str) → module

	Load a module into modname from a file path.


	Parameters

	
	modname – The desired module name


	path_str – Path to the file






	Returns

	Module read in from path_str












Module contents

fauxmo :: Emulated Belkin Wemo devices for use with the Amazon Echo.







          

      

      

    

  

    
      
          
            
  
fauxmo.plugins package


Submodules




fauxmo.plugins.commandlineplugin module

Fauxmo plugin that runs a command on the local machine.

Runs a shlex`ed command using `subprocess.run, keeping the default of
shell=False. This is probaby frought with security concerns, which is why
this plugin is not included by default in fauxmo.plugins. By installing or
using it, you acknowledge that it could run commands from your config.json that
could lead to data compromise, corruption, loss, etc. Consider making your
config.json read-only. If there are parts of this you don’t understand, you
should probably not use this plugin.

If the command runs with a return code of 0, Alexa should respond prompty
“Okay” or something that indicates it seems to have worked. If the command has
a return code of anything other than 0, Alexa stalls for several seconds and
subsequently reports that there was a problem (which should notify the user
that something didn’t go as planned).

Note that subprocess.run as implemented in this plugin doesn’t handle complex
commands with pipes, redirection, or multiple statements joined by &&, ||,
;, etc., so you can’t just use e.g. “command that sometimes fails || true”
to avoid the delay and Alexa’s response. If you really want to handle more
complex commands, consider using this plugin as a template for another one
using os.system instead of subprocess.run, but realize that this comes with
substantial security risks that exceed my ability to explain.

Example config:
```
{



	“FAUXMO”: {

	“ip_address”: “auto”





},
“PLUGINS”: {



	“CommandLinePlugin”: {

	“path”: “/path/to/commandlineplugin.py”,
“DEVICES”: [



	{

	“name”: “output stuff to a file”,
“port”: 49915,
“on_cmd”: “touch testfile.txt”,
“off_cmd”: “rm testfile.txt”,
“state_cmd”: “ls testfile.txt”





},
{


“name”: “command with fake state”,
“port”: 49916,
“on_cmd”: “touch testfile.txt”,
“off_cmd”: “rm testfile.txt”,
“use_fake_state”: true




}




]





}




}





}


	
class fauxmo.plugins.commandlineplugin.CommandLinePlugin(name: str, port: int, on_cmd: str, off_cmd: str, state_cmd: str = None, use_fake_state: bool = False)

	Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo Plugin for running commands on the local machine.


	
__init__(name: str, port: int, on_cmd: str, off_cmd: str, state_cmd: str = None, use_fake_state: bool = False) → None

	Initialize a CommandLinePlugin instance.


	Parameters

	
	name – Name for this Fauxmo device


	port – Port on which to run a specific CommandLinePlugin instance


	on_cmd – Command to be called when turning device on


	off_cmd – Command to be called when turning device off


	state_cmd – Command to check device state (return code 0 == on)


	use_fake_state – If True, override get_state to return the
latest action as the device state. NB: The proper
json boolean value for Python’s True is true,
not True or “true”.













	
get_state() → str

	Get device state.

NB: Return code of 0 (i.e. ran without error) indicates “on” state,
otherwise will be off. making it easier to have something like ls
path/to/pidfile suggest on. Many command line switches may not
actually have a “state” per se (just an arbitary command you want to
run), in which case you could just put “false” as the command, which
should always return “off”.


	Returns

	“on” or “off” if state_cmd is defined, “unknown” if undefined










	
off() → bool

	Run off command.


	Returns

	True if command seems to have run without error.










	
on() → bool

	Run on command.


	Returns

	True if command seems to have run without error.










	
run_cmd(cmd: str) → bool

	Partialmethod to run command.


	Parameters

	cmd – Command to be run



	Returns

	True if command seems to have run without error


















fauxmo.plugins.homeassistantplugin module

Fauxmo plugin to interact with Home Assistant devices.

One simple way to find your entity_id is to use curl and pipe to grep or jq.
Note that modern versions of home-assistant require you to create and include a
long-lived access token, which you can generate in the web interface at the
/profile endpoint.


curl –silent –header “Authorization: Bearer YourTokenHere”             http://IP:PORT/api/states | jq




NB: This is just a special case of the RESTAPIPlugin (or even SimpleHTTPPlugin,
see config-sample.json in the main Fauxmo repo), but it makes config
substantially easier by not having to redundantly specify headers and
endpoints.

Install to Fauxmo by downloading or cloning and including in your Fauxmo
config. One easy way to make a long-lived access token is by using the frontend
and going to the /profile endpoint, scroll to the bottom. Documentation on
the long-lived tokens is available at
https://developers.home-assistant.io/docs/en/auth_api.html#long-lived-access-token

Example config:
```
{



	“FAUXMO”: {

	“ip_address”: “auto”





},
“PLUGINS”: {



	“HomeAssistantPlugin”: {

	“ha_host”: “192.168.0.50”,
“ha_port”: 8123,
“ha_protocol”: “http”,
“ha_token”: “abc123”,
“path”: “/path/to/homeassistantplugin.py”,
“DEVICES”: [



	{

	“name”: “example Home Assistant device 1”,
“port”: 12345,
“entity_id”: “switch.my_fake_switch”





},
{


“name”: “example Home Assistant device 2”,
“port”: 12346,
“entity_id”: “cover.my_fake_cover”




}




]





}




}





}


	
class fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin(name: str, port: int, entity_id: str, ha_host: str, ha_port: int = 8123, ha_protocol: str = 'http', ha_token: str = None)

	Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo plugin for HomeAssistant REST API.

Allows users to specify Home Assistant services in their config.json and
toggle these with the Echo.


	
__init__(name: str, port: int, entity_id: str, ha_host: str, ha_port: int = 8123, ha_protocol: str = 'http', ha_token: str = None) → None

	Initialize a HomeAssistantPlugin instance.


	Parameters

	
	ha_token – Long-lived HomeAssistant token


	entity_id – entity_id used by HomeAssistant


	ha_host – Host running HomeAssistant


	ha_port – Port number for HomeAssistant access


	ha_protocol – http or https













	
get_state() → str

	Query the state of the Home Assistant device.

Returns: Device state as reported by HomeAssistant






	
off() → bool

	Turn the Home Assistant device off.

Returns: Whether the device seems to have been turned off.






	
on() → bool

	Turn the Home Assistant device on.

Returns: Whether the device seems to have been turned on.






	
send(signal: str) → bool

	Send signal as determined by service_map.


	Parameters

	signal – the signal the service should recongize










	
service_map = {'cover': {'off': 'close_cover', 'off_state': 'closed', 'on': 'open_cover', 'on_state': 'open'}, 'homeassistant': {'off': 'turn_off', 'on': 'turn_on'}, 'light': {'off': 'turn_off', 'on': 'turn_on'}, 'media_player': {'off': 'turn_off', 'on': 'turn_on'}, 'switch': {'off': 'turn_off', 'on': 'turn_on'}}

	












fauxmo.plugins.simplehttpplugin module

simplehttpplugin.py :: Fauxmo plugin for simple HTTP requests.

Fauxmo plugin that makes simple HTTP requests in its on and off methods.
Comes pre-installed in Fauxmo as an example for user plugins.

For more complicated requests (e.g. authentication, sending JSON), check out
RESTAPIPlugin in https://github.com/n8henrie/fauxmo-plugins/, which takes
advantage of Requests’ rich API.


	
class fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin(*, headers: dict = None, method: str = 'GET', name: str, off_cmd: str, off_data: Union[Mapping[KT, VT_co], str] = None, on_cmd: str, on_data: Union[Mapping[KT, VT_co], str] = None, state_cmd: str = None, state_data: Union[Mapping[KT, VT_co], str] = None, state_method: str = 'GET', state_response_off: str = None, state_response_on: str = None, password: str = None, port: int, use_fake_state: bool = False, user: str = None)

	Bases: fauxmo.plugins.FauxmoPlugin

Plugin for interacting with HTTP devices.

The Fauxmo class expects plguins to be instances of objects that inherit
from FauxmoPlugin and have on() and off() methods that return True on
success and False otherwise. This class takes a mix of url, method, header,
body, and auth data and makes REST calls to a device.

This is probably less flexible than using Requests but doesn’t add any
non-stdlib dependencies. For an example using Requests, see the
fauxmo-plugins repo.

The implementation of the get_state() method is admittedly sloppy, trying
to be somewhat generic to cover a broad range of devices that may have
a state that can be queried by either GET or POST request (sometimes
differing from the method required to turn on or off), and whose response
often contains the state. For example, if state is returned by a GET
request to localhost:8765/state with <p>Device is running</p> or
<p>Device is not running</p>, you could use those strings as
state_command_on and state_command_off, respectively.


	
__init__(*, headers: dict = None, method: str = 'GET', name: str, off_cmd: str, off_data: Union[Mapping[KT, VT_co], str] = None, on_cmd: str, on_data: Union[Mapping[KT, VT_co], str] = None, state_cmd: str = None, state_data: Union[Mapping[KT, VT_co], str] = None, state_method: str = 'GET', state_response_off: str = None, state_response_on: str = None, password: str = None, port: int, use_fake_state: bool = False, user: str = None) → None

	Initialize a SimpleHTTPPlugin instance.


	Keyword Arguments

	
	headers – Additional headers for both on() and off()


	method – HTTP method to be used for both on() and off()


	name – Name of the device


	off_cmd – URL to be called when turning device off


	off_data – Optional POST data to turn device off


	on_cmd – URL to be called when turning device on


	on_data – Optional POST data to turn device on


	state_cmd – URL to be called to determine device state


	state_data – Optional POST data to query device state


	state_method – HTTP method to be used for get_state()


	state_response_off – If this string is in the response to state_cmd,
the device is off.


	password – Password for HTTP authentication (basic or digest only)


	port – Port that this device will run on


	use_fake_state – If True, override get_state to return the
latest action as the device state. NB: The proper
json boolean value for Python’s True is true,
not True or “true”.


	user – Username for HTTP authentication (basic or digest only)













	
get_state() → str

	Get device state.


	Returns

	“on”, “off”, or “unknown”










	
off() → bool

	Turn device off by calling self.off_cmd with self.off_data.


	Returns

	True if the request seems to have been sent successfully










	
on() → bool

	Turn device on by calling self.on_cmd with self.on_data.


	Returns

	True if the request seems to have been sent successfully










	
set_state(cmd: str, data: bytes) → bool

	Call HTTP method, for use by functools.partialmethod.


	Parameters

	
	cmd – Either “on_cmd” or “off_cmd”, for getattr(self, cmd)


	data – Either “on_data” or “off_data”, for getattr(self, data)






	Returns

	Boolean indicating whether it state was set successfully
















Module contents

fauxmo.plugins :: Provide ABC for Fauxmo plugins.


	
class fauxmo.plugins.FauxmoPlugin(*, name: str, port: int)

	Bases: abc.ABC

Provide ABC for Fauxmo plugins.

This will become the plugin attribute of a Fauxmo instance. Its on
and off methods will be called when Alexa turns something on or off.

All keys (other than the list of DEVICES) from the config will be passed
into FauxmoPlugin as kwargs at initialization, which should let users do
some interesting things. However, that means users employing custom config
keys will need to override __init__ and either set the name and
“private” _port attributes manually or pass the appropriate args to
super().__init__().


	
__init__(*, name: str, port: int) → None

	Initialize FauxmoPlugin.


	Keyword Arguments

	
	name – Required, device name


	port – Required, port that the Fauxmo associated with this plugin
should run on








Note about port: if not given in config, it will be set to an
apparently free port in fauxmo.fauxmo before FauxmoPlugin
initialization. This attribute serves no default purpose in the
FauxmoPlugin but is passed in to be accessible by user code (i.e. for
logging / debugging). Alternatively, one could accept and throw away
the passed in port value and generate their own port in a plugin,
since the Fauxmo device determines its port from the plugin’s instance
attribute.

The _latest_action attribute stores the most recent successful
action, which is set by the __getattribute__ hackery for successful
.on() and .off() commands.






	
close() → None

	Run when shutting down; allows plugin to clean up state.






	
get_state() → str

	Run function when Alexa requests device state.

Should return “on” or “off” if it can be determined, or “unknown” if
there is no mechanism for determining the device state, in which case
Alexa will complain that the device is not responding.

If state cannot be determined, a plugin can opt into this
implementation, which falls back on the _latest_action attribute.
It is intentionally left as an abstract method so that plugins cannot
omit a get_state method completely, which could lead to unexpected
behavior; instead, they should explicitly return super().get_state().






	
latest_action

	Return latest action in read-only manner.

Must be a function instead of e.g. property because it overrides
get_state, and therefore must be callable.






	
name

	Return name attribute in read-only manner.






	
off() → bool

	Run function when Alexa turns this Fauxmo device off.






	
on() → bool

	Run function when Alexa turns this Fauxmo device on.






	
port

	Return port attribute in read-only manner.















          

      

      

    

  

    
      
          
            
  
fauxmo.plugins package


Submodules




fauxmo.plugins.commandlineplugin module

Fauxmo plugin that runs a command on the local machine.

Runs a shlex`ed command using `subprocess.run, keeping the default of
shell=False. This is probaby frought with security concerns, which is why
this plugin is not included by default in fauxmo.plugins. By installing or
using it, you acknowledge that it could run commands from your config.json that
could lead to data compromise, corruption, loss, etc. Consider making your
config.json read-only. If there are parts of this you don’t understand, you
should probably not use this plugin.

If the command runs with a return code of 0, Alexa should respond prompty
“Okay” or something that indicates it seems to have worked. If the command has
a return code of anything other than 0, Alexa stalls for several seconds and
subsequently reports that there was a problem (which should notify the user
that something didn’t go as planned).

Note that subprocess.run as implemented in this plugin doesn’t handle complex
commands with pipes, redirection, or multiple statements joined by &&, ||,
;, etc., so you can’t just use e.g. “command that sometimes fails || true”
to avoid the delay and Alexa’s response. If you really want to handle more
complex commands, consider using this plugin as a template for another one
using os.system instead of subprocess.run, but realize that this comes with
substantial security risks that exceed my ability to explain.

Example config:
```
{



	“FAUXMO”: {

	“ip_address”: “auto”





},
“PLUGINS”: {



	“CommandLinePlugin”: {

	“path”: “/path/to/commandlineplugin.py”,
“DEVICES”: [



	{

	“name”: “output stuff to a file”,
“port”: 49915,
“on_cmd”: “touch testfile.txt”,
“off_cmd”: “rm testfile.txt”,
“state_cmd”: “ls testfile.txt”





},
{


“name”: “command with fake state”,
“port”: 49916,
“on_cmd”: “touch testfile.txt”,
“off_cmd”: “rm testfile.txt”,
“use_fake_state”: true




}




]





}




}





}


	
class fauxmo.plugins.commandlineplugin.CommandLinePlugin(name: str, port: int, on_cmd: str, off_cmd: str, state_cmd: str = None, use_fake_state: bool = False)

	Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo Plugin for running commands on the local machine.


	
__init__(name: str, port: int, on_cmd: str, off_cmd: str, state_cmd: str = None, use_fake_state: bool = False) → None

	Initialize a CommandLinePlugin instance.


	Parameters

	
	name – Name for this Fauxmo device


	port – Port on which to run a specific CommandLinePlugin instance


	on_cmd – Command to be called when turning device on


	off_cmd – Command to be called when turning device off


	state_cmd – Command to check device state (return code 0 == on)


	use_fake_state – If True, override get_state to return the
latest action as the device state. NB: The proper
json boolean value for Python’s True is true,
not True or “true”.













	
get_state() → str

	Get device state.

NB: Return code of 0 (i.e. ran without error) indicates “on” state,
otherwise will be off. making it easier to have something like ls
path/to/pidfile suggest on. Many command line switches may not
actually have a “state” per se (just an arbitary command you want to
run), in which case you could just put “false” as the command, which
should always return “off”.


	Returns

	“on” or “off” if state_cmd is defined, “unknown” if undefined










	
off() → bool

	Run off command.


	Returns

	True if command seems to have run without error.










	
on() → bool

	Run on command.


	Returns

	True if command seems to have run without error.










	
run_cmd(cmd: str) → bool

	Partialmethod to run command.


	Parameters

	cmd – Command to be run



	Returns

	True if command seems to have run without error


















fauxmo.plugins.homeassistantplugin module

Fauxmo plugin to interact with Home Assistant devices.

One simple way to find your entity_id is to use curl and pipe to grep or jq.
Note that modern versions of home-assistant require you to create and include a
long-lived access token, which you can generate in the web interface at the
/profile endpoint.


curl –silent –header “Authorization: Bearer YourTokenHere”             http://IP:PORT/api/states | jq




NB: This is just a special case of the RESTAPIPlugin (or even SimpleHTTPPlugin,
see config-sample.json in the main Fauxmo repo), but it makes config
substantially easier by not having to redundantly specify headers and
endpoints.

Install to Fauxmo by downloading or cloning and including in your Fauxmo
config. One easy way to make a long-lived access token is by using the frontend
and going to the /profile endpoint, scroll to the bottom. Documentation on
the long-lived tokens is available at
https://developers.home-assistant.io/docs/en/auth_api.html#long-lived-access-token

Example config:
```
{



	“FAUXMO”: {

	“ip_address”: “auto”





},
“PLUGINS”: {



	“HomeAssistantPlugin”: {

	“ha_host”: “192.168.0.50”,
“ha_port”: 8123,
“ha_protocol”: “http”,
“ha_token”: “abc123”,
“path”: “/path/to/homeassistantplugin.py”,
“DEVICES”: [



	{

	“name”: “example Home Assistant device 1”,
“port”: 12345,
“entity_id”: “switch.my_fake_switch”





},
{


“name”: “example Home Assistant device 2”,
“port”: 12346,
“entity_id”: “cover.my_fake_cover”




}




]





}




}





}


	
class fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin(name: str, port: int, entity_id: str, ha_host: str, ha_port: int = 8123, ha_protocol: str = 'http', ha_token: str = None)

	Bases: fauxmo.plugins.FauxmoPlugin

Fauxmo plugin for HomeAssistant REST API.

Allows users to specify Home Assistant services in their config.json and
toggle these with the Echo.


	
__init__(name: str, port: int, entity_id: str, ha_host: str, ha_port: int = 8123, ha_protocol: str = 'http', ha_token: str = None) → None

	Initialize a HomeAssistantPlugin instance.


	Parameters

	
	ha_token – Long-lived HomeAssistant token


	entity_id – entity_id used by HomeAssistant


	ha_host – Host running HomeAssistant


	ha_port – Port number for HomeAssistant access


	ha_protocol – http or https













	
get_state() → str

	Query the state of the Home Assistant device.

Returns: Device state as reported by HomeAssistant






	
off() → bool

	Turn the Home Assistant device off.

Returns: Whether the device seems to have been turned off.






	
on() → bool

	Turn the Home Assistant device on.

Returns: Whether the device seems to have been turned on.






	
send(signal: str) → bool

	Send signal as determined by service_map.


	Parameters

	signal – the signal the service should recongize










	
service_map = {'cover': {'off': 'close_cover', 'off_state': 'closed', 'on': 'open_cover', 'on_state': 'open'}, 'homeassistant': {'off': 'turn_off', 'on': 'turn_on'}, 'light': {'off': 'turn_off', 'on': 'turn_on'}, 'media_player': {'off': 'turn_off', 'on': 'turn_on'}, 'switch': {'off': 'turn_off', 'on': 'turn_on'}}

	












fauxmo.plugins.simplehttpplugin module

simplehttpplugin.py :: Fauxmo plugin for simple HTTP requests.

Fauxmo plugin that makes simple HTTP requests in its on and off methods.
Comes pre-installed in Fauxmo as an example for user plugins.

For more complicated requests (e.g. authentication, sending JSON), check out
RESTAPIPlugin in https://github.com/n8henrie/fauxmo-plugins/, which takes
advantage of Requests’ rich API.


	
class fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin(*, headers: dict = None, method: str = 'GET', name: str, off_cmd: str, off_data: Union[Mapping[KT, VT_co], str] = None, on_cmd: str, on_data: Union[Mapping[KT, VT_co], str] = None, state_cmd: str = None, state_data: Union[Mapping[KT, VT_co], str] = None, state_method: str = 'GET', state_response_off: str = None, state_response_on: str = None, password: str = None, port: int, use_fake_state: bool = False, user: str = None)

	Bases: fauxmo.plugins.FauxmoPlugin

Plugin for interacting with HTTP devices.

The Fauxmo class expects plguins to be instances of objects that inherit
from FauxmoPlugin and have on() and off() methods that return True on
success and False otherwise. This class takes a mix of url, method, header,
body, and auth data and makes REST calls to a device.

This is probably less flexible than using Requests but doesn’t add any
non-stdlib dependencies. For an example using Requests, see the
fauxmo-plugins repo.

The implementation of the get_state() method is admittedly sloppy, trying
to be somewhat generic to cover a broad range of devices that may have
a state that can be queried by either GET or POST request (sometimes
differing from the method required to turn on or off), and whose response
often contains the state. For example, if state is returned by a GET
request to localhost:8765/state with <p>Device is running</p> or
<p>Device is not running</p>, you could use those strings as
state_command_on and state_command_off, respectively.


	
__init__(*, headers: dict = None, method: str = 'GET', name: str, off_cmd: str, off_data: Union[Mapping[KT, VT_co], str] = None, on_cmd: str, on_data: Union[Mapping[KT, VT_co], str] = None, state_cmd: str = None, state_data: Union[Mapping[KT, VT_co], str] = None, state_method: str = 'GET', state_response_off: str = None, state_response_on: str = None, password: str = None, port: int, use_fake_state: bool = False, user: str = None) → None

	Initialize a SimpleHTTPPlugin instance.


	Keyword Arguments

	
	headers – Additional headers for both on() and off()


	method – HTTP method to be used for both on() and off()


	name – Name of the device


	off_cmd – URL to be called when turning device off


	off_data – Optional POST data to turn device off


	on_cmd – URL to be called when turning device on


	on_data – Optional POST data to turn device on


	state_cmd – URL to be called to determine device state


	state_data – Optional POST data to query device state


	state_method – HTTP method to be used for get_state()


	state_response_off – If this string is in the response to state_cmd,
the device is off.


	password – Password for HTTP authentication (basic or digest only)


	port – Port that this device will run on


	use_fake_state – If True, override get_state to return the
latest action as the device state. NB: The proper
json boolean value for Python’s True is true,
not True or “true”.


	user – Username for HTTP authentication (basic or digest only)













	
get_state() → str

	Get device state.


	Returns

	“on”, “off”, or “unknown”










	
off() → bool

	Turn device off by calling self.off_cmd with self.off_data.


	Returns

	True if the request seems to have been sent successfully










	
on() → bool

	Turn device on by calling self.on_cmd with self.on_data.


	Returns

	True if the request seems to have been sent successfully










	
set_state(cmd: str, data: bytes) → bool

	Call HTTP method, for use by functools.partialmethod.


	Parameters

	
	cmd – Either “on_cmd” or “off_cmd”, for getattr(self, cmd)


	data – Either “on_data” or “off_data”, for getattr(self, data)






	Returns

	Boolean indicating whether it state was set successfully
















Module contents

fauxmo.plugins :: Provide ABC for Fauxmo plugins.


	
class fauxmo.plugins.FauxmoPlugin(*, name: str, port: int)

	Bases: abc.ABC

Provide ABC for Fauxmo plugins.

This will become the plugin attribute of a Fauxmo instance. Its on
and off methods will be called when Alexa turns something on or off.

All keys (other than the list of DEVICES) from the config will be passed
into FauxmoPlugin as kwargs at initialization, which should let users do
some interesting things. However, that means users employing custom config
keys will need to override __init__ and either set the name and
“private” _port attributes manually or pass the appropriate args to
super().__init__().


	
__init__(*, name: str, port: int) → None

	Initialize FauxmoPlugin.


	Keyword Arguments

	
	name – Required, device name


	port – Required, port that the Fauxmo associated with this plugin
should run on








Note about port: if not given in config, it will be set to an
apparently free port in fauxmo.fauxmo before FauxmoPlugin
initialization. This attribute serves no default purpose in the
FauxmoPlugin but is passed in to be accessible by user code (i.e. for
logging / debugging). Alternatively, one could accept and throw away
the passed in port value and generate their own port in a plugin,
since the Fauxmo device determines its port from the plugin’s instance
attribute.

The _latest_action attribute stores the most recent successful
action, which is set by the __getattribute__ hackery for successful
.on() and .off() commands.






	
close() → None

	Run when shutting down; allows plugin to clean up state.






	
get_state() → str

	Run function when Alexa requests device state.

Should return “on” or “off” if it can be determined, or “unknown” if
there is no mechanism for determining the device state, in which case
Alexa will complain that the device is not responding.

If state cannot be determined, a plugin can opt into this
implementation, which falls back on the _latest_action attribute.
It is intentionally left as an abstract method so that plugins cannot
omit a get_state method completely, which could lead to unexpected
behavior; instead, they should explicitly return super().get_state().






	
latest_action

	Return latest action in read-only manner.

Must be a function instead of e.g. property because it overrides
get_state, and therefore must be callable.






	
name

	Return name attribute in read-only manner.






	
off() → bool

	Run function when Alexa turns this Fauxmo device off.






	
on() → bool

	Run function when Alexa turns this Fauxmo device on.






	
port

	Return port attribute in read-only manner.















          

      

      

    

  

    
      
          
            
  
Credits


Development Lead


	Nathan Henrie nate@n8henrie.com







Contributors


	Originally based on work by Maker Musings [https://github.com/makermusings]










          

      

      

    

  

    
      
          
            
  
Changelog [https://keepachangelog.com]

Will not contain minor changes – feel free to look through git log for
more detail.


v0.5.0 :: 20191212


	Add py38 support


	Add use_fake_state option to accommodate situations that state can’t be
properly determined (thanks @johngo7470)


	Bugfix: fix unexpected behavior with a switch’s state logic was true for both
on and off


	Migrated HomeAssistantPlugin and CommandLinePlugin from fauxmo-plugins repo


	Update tests, pytest fixtures, and add some mocks







v0.4.9 :: 20190527


	Add py37 support (including Travis workaround)


	Fix bug in content-length calculation (thanks @tim15)


	Replace find_unused_port with local function (thanks @schneideradam)


	Use black for formatting


	Update config-sample.txt for changes in HomeAssistant
API [https://developers.home-assistant.io/docs/en/external_api_rest.html]







v0.4.8 :: 20180804


	Add .close() method to FauxmoPlugins, allowing for cleanup (thanks
@howdypierce [https://github.com/howdypierce])
discussion [https://github.com/n8henrie/fauxmo/issues/58], e907245


	Append plugins directory to sys.path for more convenient loading of
additional modules (thanks @howdypierce [https://github.com/howdypierce])
discussion [https://github.com/n8henrie/fauxmo/issues/58], 03f2101


	Add HTTP headers to /eventservice.xml and /metainfoservice.xml endpoints
5a53268







v0.4.7 :: 20180512


	Minor dev-side changes


	Use pipenv for dev dependency management






	Add utf-8 to readme parsing (5 days ago) (thanks
@hestela [https://github.com/n8henrie/fauxmo/commits?author=hestela]!)
49d2c57


	Change newline to \r\n in HTTP responses (thanks
@GlennPegden2 [https://github.com/GlennPegden2]) 239bc79


	Match MAN: case insensitive (thanks @wingett [https://github.com/wingett])
8307096


	Add GetBinaryState and GetFriendlyName commands including test cases (thanks
@howdypierce [https://github.com/howdypierce]!) 71392de


	Make comparison of the “SOAPACTION” header case-insensitive, per UPnP spec
(thanks @howdypierce [https://github.com/howdypierce]!) a5cdf82


	Add fallback for determining IP address when DNS resolution is a problem
(thanks @howdypierce [https://github.com/howdypierce]!) c2d7f13


	Bugfix: ~/.fauxmo/ not being read as a location for config file (thanks
@howdypierce [https://github.com/howdypierce]!) c322c9b







v0.4.6 :: 20180212


	Mostly changes to try to fix compatibility with newer generation Echos / Echo
Plus, see #38







v0.4.5 :: 20171114


	Support new GetBinaryState command (fixes n8henrie/fauxmo#31)







v0.4.3 :: 20170914


	Add --version to cli


	Add python_requires specifier to setup.py


	Bind to specific address in make_udp_sock (fauxmo.utils), seems to fix
some intermittent failing tests on MacOS.







v0.4.2 :: 20170601


	Add additional linters to tests


	Set reuseaddr and reuseport before binding socket







v0.4.0 :: 20170402


	Rename handlers to plugins


	Add interface for user plugins


	Add type hints


	Require Python 3.6


	Eliminate third party dependencies


	Make sure to close connection when plugin commands fail / return False







v0.3.3 :: 20160722


	Added compatibility for rollershutter to handlers.hass


	Changed handlers.hass to send values from a dict to make addition of new
services easier in the future







v0.3.2 :: 20160419


	Update SSDPServer to setsockopt to permit receiving multicast broadcasts


	sock kwarg to create_datagram_endpoint no longer necessary, restoring
functionality to Python 3.4.0 - 3.4.3 (closes #6)


	make_udp_sock() no longer necessary, removed from fauxmo.utils


	Tox and Travis configs switched to use Python 3.4.2 instead of 3.4.4 (since
3.4.2 is the latest available in the default Raspbian Jessie repos)







v0.3.1 :: 20160415


	Don’t decode the UDP multicast broadcasts (hopefully fixes #7)


	They might not be from the Echo and might cause a UnicodeDecodeError


	Just search the bytes instead






	Tests updated for this minor change







v0.3.0 :: 20160409


	Fauxmo now uses asyncio and requires Python >= 3.4.4


	Extensive changes to codebase


	Handler classes renamed for PEP8 (capitalization)


	Moved some general purpose functions to fauxmo.utils module


	Both the UDP and TCP servers are now in fauxmo.protocols


	Added some rudimentary pytest [http://pytest.org/latest] tests including tox [http://tox.readthedocs.org/en/latest] and Travis [https://travis-ci.org/] support


	Updated documentation on several classes







v0.2.0 :: 20160324


	Add additional HTTP verbs and options to RestApiHandler and Indigo sample
to config


	NB: Breaking change: json config variable now needs to be either
on_json or off_json






	Make RestApiHandler DRYer with functools.partialmethod


	Add SO_REUSEPORT to upnp.py to make life easier on OS X







v0.1.11 :: 20160129


	Consolidate logger to __init__.py and import from there in other modules







v0.1.8 :: 20160129


	Add the ability to manually specify the host IP address for cases when the
auto detection isn’t working (https://github.com/n8henrie/fauxmo/issues/1)


	Deprecated the DEBUG setting in config.json. Just use -vvv from now on.







v0.1.6 :: 20160105


	Fix for Linux not returning local IP


	restored method I had removed from Maker Musings original / pre-fork
version not knowing it would introduce a bug where Linux returned
127.0.1.1 as local IP address











v0.1.4 :: 20150104


	Fix default verbosity bug introduced in 1.1.3







v0.1.0 :: 20151231


	Continue to convert to python3 code


	Pulled in a few PRs by @DoWhileGeek [https://github.com/DoWhileGeek] working
towards python3 compatibility and improved devices naming with dictionary


	Renamed a fair number of classes


	Added kwargs to several class and function calls for clarity


	Renamed several variables for clarity


	Got rid of a few empty methods


	Import devices from config.json and include a sample


	Support POST, headers, and json data in the RestApiHandler


	Change old debug function to use logging module


	Got rid of some unused dependencies


	Moved license (MIT) info to LICENSE


	Added argparse for future console scripts entry point


	Added Home Assistant API handler class


	Use “string”.format() instead of percent


	Lots of other minor refactoring










          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/n8henrie/fauxmo/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in
troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is
open to whoever wants to work on it.




Implement Features

Look through the GitHub issues for features. Anything tagged with
“feature” is open to whoever wants to implement it.




Write Documentation

Fauxmo could always use more documentation, whether as part of the official
fauxmo docs, in docstrings, or even on the web in blog posts, articles, and
such.




Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/n8henrie/fauxmo/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to
implement.


	Remember that this is a volunteer-driven project, and that
contributions are welcome :)







Create a new Plugin

Please refer to https://github.com/n8henrie/fauxmo-plugins






Get Started!

Ready to contribute? Here’s how to set up fauxmo
for local development.


	Start by making an issue to serve as a reference point for discussion
regarding the change being proposed.


	Fork the fauxmo repo on GitHub.


	Clone your fork locally:

```shell_session
$ git clone git@github.com:your_name_here/fauxmo.git
```







	Install your local copy into a virtualenv. Assuming you have
python >= 3.6 installed, this is how you set up your fork for
local development:

```shell_session
$ cd fauxmo
$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -e .[dev]
```







	Create a branch for local development:

```shell_session
$ git checkout -b name-of-your-bugfix-or-feature
```





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass all tests
configured for each Python version with tox:

```shell_session
$ tox
```







	Commit your changes and push your branch to GitHub:

```shell_session
$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature
```







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	Pull requests of any substance should reference an issue used for
discussion regarding the change being considered.


	The style should pass tox -e lint, including docstrings, type hints, and
black --line-length=79 --target-version=py37 for overall formatting.


	The pull request should include tests if I am using tests in the repo.


	If the pull request adds functionality, the docs should be updated.
Put your new functionality into a function with a docstring, and add
the feature to the list in README.md


	The pull request should work for Python 3.7. If I have included a
.travis.yml file in the repo, check
https://travis-ci.org/n8henrie/fauxmo/pull_requests and make sure that
the tests pass for all supported Python versions.







Tips

To run a subset of tests: pytest tests/test_your_test.py







          

      

      

    

  

    
      
          
            
  
protocol_notes.md

Details on the Echo’s interaction with Fauxmo, and how to examine it for
debugging.

Tons of information gathered by @makermusings, I strongly recommend you start
by reading these:


	https://github.com/makermusings/fauxmo/blob/master/protocol_notes.txt


	http://www.makermusings.com/2015/07/13/amazon-echo-and-home-automation




In summary:


	User tells Echo to “find connected devices” or clicks corresponding button
in webapp


	Echo broadcasts “device search” to 239.255.255.250:1900 (UDP)


	Fauxmo response includes LOCATION of setup.xml endpoint for each
“device” in config (UDP)


	Echo requests setup.xml endpoint at above LOCATION (HTTP) for each
device


	Fauxmo responds with setup information for each device (HTTP)


	Alexa verbally announces any discovered devices (really wish I could mute
this – set volume to 1 beforehand if I’ll be doing it a bunch), and they
also show up in the webapp




Once you understand the basic model of interaction, the next step in debugging
is to inspect the actual requests and responses.

The following commands require some tools you might not have by default; you
can get them with: sudo apt-get install tcpdump tshark nmap. Doesn’t
matter what you choose regarding the wireshark question you’ll get during
installation; just read the warning and make a good decision. On OSX, use
homebrew [http://brew.sh] to install the same.

First, get the IP address of your Echo. If you don’t know it:

# Assuming your local subnet is 192.168.27.*
sudo nmap -sP 192.168.27.1/24 | grep -i -B 2 amazon





You should get Nmap scan report for 192.168.27.XXX – your Echo IP address.
For the examples below, I’ll use 192.168.27.100 as the Echo IP address, and
192.168.27.31 as the Pi’s IP address (31 as in 3.14, easier to remember).

Next, we’ll check out the info being sent to and from the Echo and Fauxmo. In
one window, run Fauxmo in verbose mode. In a second window, run the commands
below, and check their output when you tell the Echo to find connected devices.

To get an overview of what’s going on, start with tshark:

sudo tshark -f "host 192.168.27.100" -Y "udp"

# Alternatively, only show the Echo's SEARCH requests:
sudo tshark -f "host 192.168.27.100" -Y "udp contains SEARCH"

# Only show the Fauxmo responses (note still using the Echo's IP):
sudo tshark -f "host 192.168.27.100" -Y "udp contains LOCATION"





Example output for the first command, showing a few sets of SSDP SEARCH sent by
the Echo followed by 4 responses by Fauxmo (1 for each device in sample
config).

Capturing on 'eth0'
  1   0.000000 192.168.27.100 -> 239.255.255.250 SSDP 149 M-SEARCH * HTTP/1.1
  2   0.046414 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
  3   0.064351 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
  4   0.082011 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
  5   0.101093 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
  6   0.104016 192.168.27.100 -> 239.255.255.250 SSDP 149 M-SEARCH * HTTP/1.1
  7   0.151414 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
  8   0.171049 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
  9   0.191602 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
 10   0.199882 192.168.27.31 -> 192.168.27.100 SSDP 428 HTTP/1.1 200 OK
 11   0.231841 192.168.27.100 -> 239.255.255.250 SSDP 164 M-SEARCH * HTTP/1.1
 12   0.333406 192.168.27.100 -> 239.255.255.250 SSDP 164 M-SEARCH * HTTP/1.1





To get a raw look at all the info, use tcpdump. I’ve cleaned up a bunch of
garbage in the below output, but you should still be able to recognize each of
the critical components.

sudo tcpdump -s 0 -i eth0 -A host 192.168.27.100





This should show a ton of detailed info, including all responses sent to / from
the Echo. Replace etho with your network interface (check with ip link) and
192.168.27.100 with your Echo’s IP address.

The output should start with several of the Echo’s UDP based discovery
requests, where you can recognize the UDP protocol being sent from the Echo
192.168.27.100 to the network’s multicast broadcast 239.255.255.250.1900,
something like:

15:48:39.268125 IP 192.168.27.100.50000 > 239.255.255.250.1900: UDP, length 122
M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: "ssdp:discover"
MX: 15
ST: urn:Belkin:device:**





Below that, you should see Fauxmo’s responses, also UDP, one for each device in
the config. This response provides the Echo with the LOCATION of the device’s
setup.xml.

15:48:39.513741 IP 192.168.27.31.1900 > 192.168.27.100.50000: UDP, length 386
HTTP/1.1 200 OK
CACHE-CONTROL: max-age=86400
DATE: Sun, 24 Apr 2016 21:48:39 GMT
EXT:
LOCATION: http://192.168.27.31:12340/setup.xml
OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
01-NLS: c66d1ad0-707e-495e-a21a-1d640eed4547
SERVER: Unspecified, UPnP/1.0, Unspecified
ST: urn:Belkin:device:**
USN: uuid:Socket-1_0-2d4ac336-8683-3660-992a-d056b5382a8d::urn:Belkin:device:**





Somewhere below that, you’ll see the Echo request each device’s setup.xml
(based on the LOCATION from the prior step), this time TCP instead of UDP.

15:48:39.761878 IP 192.168.27.100.39720 > 192.168.27.31.12341: Flags [P.], seq 1:68, ack 1, win 274, options [nop,nop,TS val 619246756 ecr 140303456], length 67
GET /setup.xml HTTP/1.1
Host: 192.168.27.31:12341
Accept: */*





And somewhere below that, Fauxmo’s setup response, for each device in the
config, also TCP:

15:48:39.808164 IP 192.168.27.31.12342 > 192.168.27.100.59999: Flags [P.], seq 1:608, ack 68, win 453, options [nop,nop,TS val 140303462 ecr 619246754], length 607
HTTP/1.1 200 OK
CONTENT-LENGTH: 375
CONTENT-TYPE: text/xml
DATE: Sun, 24 Apr 2016 21:48:39 GMT
LAST-MODIFIED: Sat, 01 Jan 2000 00:01:15 GMT
SERVER: Unspecified, UPnP/1.0, Unspecified
X-User-Agent: Fauxmo
CONNECTION: close

<?xml version="1.0"?>
<root>
<device>
<deviceType>urn:Fauxmo:device:controllee:1</deviceType>
<friendlyName>fake hass switch by REST API</friendlyName>
<manufacturer>Belkin International Inc.</manufacturer>
<modelName>Emulated Socket</modelName>
<modelNumber>3.1415</modelNumber>
<UDN>uuid:Socket-1_0-cbc4bc63-e0e2-3a78-8a9f-f0ff7e419b79</UDN>
</device>
</root>





Then, to get a really close look at a request, well go back to tshark. For
example, we can add the -V flag to get a ton more info, and add -c 1
(count) to limit to capturing a single packet, and further refine the capture
filter by specifying that we only want to look at packets sent from the Pi
to the Echo.

sudo tshark -f "src 192.168.27.31 and dst 192.168.27.100" -c 1 -V





At the bottom, you should find the Hypertext Transfer Protocol section
contains the same setup.xml response we found in the tcpdump output above.

You can also send requests from another device on the network to check out
Fauxmo’s responses and ensure that they’re getting through the network. For
example, to simulate the Echo’s device search, run the following from another
device on the network, in two different windows:

# Seems to work with `nc.traditional` on Raspberry Pi, not yet working for me on OSX
# Window 1: Listen for response on port 12345 (should show up once second command is sent)
nc.traditional -l -u -p 12345

# Window 2: Send simulated UDP broadcast device search (from port 12345)
echo -e '"ssdp:discover"urn:Belkin:device:**' | nc.traditional -b -u -p 12345 239.255.255.250 1900





To request a device’s setup.xml, using the device’s port from config.json:

# Send a request for the `setup.xml` of a device from the sample config
curl -v 192.168.27.31:12340/setup.xml





The above commands may seem a little complicated if you’re unfamiliar, but
they’re immensely powerful and indispensable for debugging these tricky network
issues.  If you’re not already familiar with them, learning the basics will
serve you well in your IoT endeavors!

To verify that Fauxmo is working properly, check for a few things:


	Is the Pi consistently seeing the Echo’s M-SEARCH requests?


	Is Fauxmo consistently replying with the LOCATION responses?


	Is the Echo then requesting the setup.xml (for each device)?


	Is Fauxmo consistently replying with the setup info?




If you can confirm that things seem to be working through number 4, then it
would seem that Fauxmo is working properly, and the issue would seem to be
elsewhere.


On and Off Commands

One way to examine exactly what the Echo sends to one of your connected Fauxmo
devices (i.e. one that already works as expected) is to first stop Fauxmo
(to free up the port), then use netcat to listen to that port while you trigger
the command. E.g. for a Fauxmo device configured to use port 12345, run
nc.traditional -l 12345 and then tell the Echo to “turn on [device name]”.
The Echo will notify you that the command failed, obviously, because Fauxmo
isn’t running, but you should be able to see exactly what the Echo sent.

These are the requests that the Echo sends to Fauxmo when you ask it to turn a
device…


On

POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*
Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>1</BinaryState>
</u:SetBinaryState>
</s:Body>
</s:Envelope>








Off

POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*
Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>0</BinaryState>
</u:SetBinaryState>
</s:Body>
</s:Envelope>





Several similar terms can be used instead of On and Off, e.g. Open and
Close; the response looks identical. This Reddit
post [https://www.reddit.com/r/amazonecho/comments/4gaf05/discovery_a_lot_more_smart_home_action_phrases/]
has a good number more that work. NB: the Dim commands in the post don’t seem
to work (likely incompatible with Wemo devices, so the Echo doesn’t even try to
send them).

As of sometime around 20171030, it will also now send a GetBinaryState
action when viewing a device, which can be
problematic [https://github.com/n8henrie/fauxmo/issues/31] for earlier versions
of Fauxmo (prior to v0.4.5).

POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*
Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#GetBinaryState"
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:GetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>1</BinaryState>
</u:GetBinaryState>
</s:Body>
</s:Envelope>





I think I have a good idea what the Fauxmo response should look like, thanks to
help from:


	u/romanpet [https://www.reddit.com/r/homeautomation/comments/79wrl7/can_anybody_with_an_echo_a_wemo_and_wireshark/dp6akcc/]


	https://github.com/go-home-iot/belkin/blob/7b62ec854e9510f4857bb9eceeb8fef3d8b55fb4/device.go




POST /upnp/control/basicevent1 HTTP/1.1
Host: 192.168.27.31:12345
Accept: */*
Content-type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:basicevent:1#GetBinaryState"
Content-Length: 299

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:GetBinaryStateResponse xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>0</BinaryState>
</u:GetBinaryStateResponse>
</s:Body>
</s:Envelope>













          

      

      

    

  

    
      
          
            

   Python Module Index


   
   f
   


   
     		 	

     		
       f	

     
       	[image: -]
       	
       fauxmo	
       

     
       	
       	   
       fauxmo.cli	
       

     
       	
       	   
       fauxmo.fauxmo	
       

     
       	
       	   
       fauxmo.plugins	
       

     
       	
       	   
       fauxmo.plugins.commandlineplugin	
       

     
       	
       	   
       fauxmo.plugins.homeassistantplugin	
       

     
       	
       	   
       fauxmo.plugins.simplehttpplugin	
       

     
       	
       	   
       fauxmo.protocols	
       

     
       	
       	   
       fauxmo.utils	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | D
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 


_


  	
      	__init__() (fauxmo.plugins.commandlineplugin.CommandLinePlugin method)

      
        	(fauxmo.plugins.FauxmoPlugin method)


        	(fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin method)


        	(fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin method)


        	(fauxmo.protocols.Fauxmo method)


        	(fauxmo.protocols.SSDPServer method)


      


  





A


  	
      	add_device() (fauxmo.protocols.SSDPServer method)


  

  	
      	add_http_headers() (fauxmo.protocols.Fauxmo static method)


  





C


  	
      	cli() (in module fauxmo.cli)


      	close() (fauxmo.plugins.FauxmoPlugin method)


      	CommandLinePlugin (class in fauxmo.plugins.commandlineplugin)


  

  	
      	connection_lost() (fauxmo.protocols.SSDPServer method)


      	connection_made() (fauxmo.protocols.Fauxmo method)

      
        	(fauxmo.protocols.SSDPServer method)


      


  





D


  	
      	data_received() (fauxmo.protocols.Fauxmo method)


  

  	
      	datagram_received() (fauxmo.protocols.SSDPServer method)


  





F


  	
      	Fauxmo (class in fauxmo.protocols)


      	fauxmo (module)


      	fauxmo.cli (module)


      	fauxmo.fauxmo (module)


      	fauxmo.plugins (module)


  

  	
      	fauxmo.plugins.commandlineplugin (module)


      	fauxmo.plugins.homeassistantplugin (module)


      	fauxmo.plugins.simplehttpplugin (module)


      	fauxmo.protocols (module)


      	fauxmo.utils (module)


      	FauxmoPlugin (class in fauxmo.plugins)


  





G


  	
      	get_local_ip() (in module fauxmo.utils)


      	get_state() (fauxmo.plugins.commandlineplugin.CommandLinePlugin method)

      
        	(fauxmo.plugins.FauxmoPlugin method)


        	(fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin method)


        	(fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin method)


      


  

  	
      	get_unused_port() (in module fauxmo.utils)


  





H


  	
      	handle_action() (fauxmo.protocols.Fauxmo method)


      	handle_event() (fauxmo.protocols.Fauxmo method)


  

  	
      	handle_metainfo() (fauxmo.protocols.Fauxmo method)


      	handle_setup() (fauxmo.protocols.Fauxmo method)


      	HomeAssistantPlugin (class in fauxmo.plugins.homeassistantplugin)


  





L


  	
      	latest_action (fauxmo.plugins.FauxmoPlugin attribute)


  





M


  	
      	main() (in module fauxmo.fauxmo)


      	make_serial() (in module fauxmo.utils)


  

  	
      	make_udp_sock() (in module fauxmo.utils)


      	module_from_file() (in module fauxmo.utils)


  





N


  	
      	name (fauxmo.plugins.FauxmoPlugin attribute)


  

  	
      	NEWLINE (fauxmo.protocols.Fauxmo attribute)


  





O


  	
      	off() (fauxmo.plugins.commandlineplugin.CommandLinePlugin method)

      
        	(fauxmo.plugins.FauxmoPlugin method)


        	(fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin method)


        	(fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin method)


      


  

  	
      	on() (fauxmo.plugins.commandlineplugin.CommandLinePlugin method)

      
        	(fauxmo.plugins.FauxmoPlugin method)


        	(fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin method)


        	(fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin method)


      


  





P


  	
      	port (fauxmo.plugins.FauxmoPlugin attribute)


  





R


  	
      	respond_to_search() (fauxmo.protocols.SSDPServer method)


  

  	
      	run_cmd() (fauxmo.plugins.commandlineplugin.CommandLinePlugin method)


  





S


  	
      	send() (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin method)


      	service_map (fauxmo.plugins.homeassistantplugin.HomeAssistantPlugin attribute)


  

  	
      	set_state() (fauxmo.plugins.simplehttpplugin.SimpleHTTPPlugin method)


      	SimpleHTTPPlugin (class in fauxmo.plugins.simplehttpplugin)


      	SSDPServer (class in fauxmo.protocols)


  







          

      

      

    

  _static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





_static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Fauxmo’s documentation!
        


        		
          Readme
          
            		
              Introduction
            


            		
              Terminology
            


            		
              Usage
              
                		
                  Simple install: From PyPI
                


                		
                  Simple install of dev branch from GitHub
                


                		
                  Install for development from GitHub
                


                		
                  Set up the Echo
                


                		
                  Set Fauxmo to run automatically in the background
                


              


            


            		
              Plugins
              
                		
                  User plugins
                


                		
                  Notable plugin examples
                


              


            


            		
              Configuration
            


            		
              Security
            


            		
              Troubleshooting / FAQ
              
                		
                  Installing Python 3.7 with pyenv
                


              


            


            		
              Buy Me a Coffee
            


            		
              Acknowledgements / Reading List
            


          


        


        		
          Modules overview
          
            		
              fauxmo package
              
                		
                  Subpackages
                


                		
                  Submodules
                


                		
                  fauxmo.cli module
                


                		
                  fauxmo.fauxmo module
                


                		
                  fauxmo.protocols module
                


                		
                  fauxmo.utils module
                


                		
                  Module contents
                


              


            


          


        


        		
          fauxmo package
          
            		
              Subpackages
              
                		
                  fauxmo.plugins package
                


              


            


            		
              Submodules
            


            		
              fauxmo.cli module
            


            		
              fauxmo.fauxmo module
            


            		
              fauxmo.protocols module
            


            		
              fauxmo.utils module
            


            		
              Module contents
            


          


        


        		
          fauxmo.plugins package
          
            		
              Submodules
            


            		
              fauxmo.plugins.commandlineplugin module
              
                		
                  }
                


              


            


            		
              fauxmo.plugins.homeassistantplugin module
              
                		
                  }
                


              


            


            		
              fauxmo.plugins.simplehttpplugin module
            


            		
              Module contents
            


          


        


        		
          Credits
          
            		
              Development Lead
            


            		
              Contributors
            


          


        


        		
          Changelog
          
            		
              v0.5.0 :: 20191212
            


            		
              v0.4.9 :: 20190527
            


            		
              v0.4.8 :: 20180804
            


            		
              v0.4.7 :: 20180512
            


            		
              v0.4.6 :: 20180212
            


            		
              v0.4.5 :: 20171114
            


            		
              v0.4.3 :: 20170914
            


            		
              v0.4.2 :: 20170601
            


            		
              v0.4.0 :: 20170402
            


            		
              v0.3.3 :: 20160722
            


            		
              v0.3.2 :: 20160419
            


            		
              v0.3.1 :: 20160415
            


            		
              v0.3.0 :: 20160409
            


            		
              v0.2.0 :: 20160324
            


            		
              v0.1.11 :: 20160129
            


            		
              v0.1.8 :: 20160129
            


            		
              v0.1.6 :: 20160105
            


            		
              v0.1.4 :: 20150104
            


            		
              v0.1.0 :: 20151231
            


          


        


        		
          Contributing
          
            		
              Types of Contributions
              
                		
                  Report Bugs
                


                		
                  Fix Bugs
                


                		
                  Implement Features
                


                		
                  Write Documentation
                


                		
                  Submit Feedback
                


                		
                  Create a new Plugin
                


              


            


            		
              Get Started!
            


            		
              Pull Request Guidelines
            


            		
              Tips
            


          


        


        		
          protocol_notes.md
          
            		
              On and Off Commands
              
                		
                  On
                


                		
                  Off
                


              


            


          


        


      


    
  

_static/up.png





