

fastchunking Python library

fastchunking is a Python library that contains efficient and easy-to-use
implementations of string chunking algorithms.

It has been developed as part of the work [LS17] at CISPA, Saarland University.

Contents

	Installation

	Usage and Overview

	fastchunking package

	Performance

	Testing

Indices and tables

	Index

	Module Index

	Search Page

Installation

Run:

$ pip install fastchunking

Note

For performance reasons, parts of this library are implemented in C++.
Installation from a source distribution, thus, requires availability of a
correctly configured C++ compiler.

Usage and Overview

fastchunking provides efficient implementations for different string chunking
algorithms, e.g., static chunking (SC) and content-defined chunking (CDC).

Static Chunking (SC)

Static chunking splits a message into fixed-size chunks.

	Let us consider a random example message that shall be chunked:

	>>> import os
>>> message = os.urandom(1024*1024)

	Static chunking is trivial when chunking a single message:

	>>> import fastchunking
>>> sc = fastchunking.SC()
>>> chunker = sc.create_chunker(chunk_size=4096)
>>> chunker.next_chunk_boundaries(message)
[4096, 8192, 12288, ...]

	A large message can also be chunked in fragments, though:

	>>> chunker = sc.create_chunker(chunk_size=4096)
>>> chunker.next_chunk_boundaries(message[:10240])
[4096, 8192]
>>> chunker.next_chunk_boundaries(message[10240:])
[2048, 6144, 10240, ...]

Content-Defined Chunking (CDC)

fastchunking supports content-defined chunking, i.e., chunking of messages
into fragments of variable lengths.

Currently, a chunking strategy based on Rabin-Karp rolling hashes is supported.

As a rolling hash computation on plain-Python strings is incredibly slow with
any interpreter, most of the computation is performed by a C++ extension which
is based on the ngramhashing library by Daniel Lemire, see:
https://github.com/lemire/rollinghashcpp

	Let us consider a random message that should be chunked:

	>>> import os
>>> message = os.urandom(1024*1024)

When using static chunking, we have to specify a rolling hash window size (here:
48 bytes) and an optional seed value that affects the pseudo-random distribution
of the generated chunk boundaries.

	Despite that, usage is similar to static chunking:

	>>> import fastchunking
>>> cdc = fastchunking.RabinKarpCDC(window_size=48, seed=0)
>>> chunker = cdc.create_chunker(chunk_size=4096)
>>> chunker.next_chunk_boundaries(message)
[7475L, 10451L, 12253L, 13880L, 15329L, 19808L, ...]

	Chunking in fragments is straightforward:

	>>> chunker = cdc.create_chunker(chunk_size=4096)
>>> chunker.next_chunk_boundaries(message[:10240])
[7475L]
>>> chunker.next_chunk_boundaries(message[10240:])
[211L, 2013L, 3640L, 5089L, 9568L, ...]

Multi-Level Chunking (ML-*)

Multiple chunkers of the same type (but with different chunk sizes) can be
efficiently used in parallel, e.g., to perform multi-level chunking [LS17].

	Again, let us consider a random message that should be chunked:

	>>> import os
>>> message = os.urandom(1024*1024)

	Usage of multi-level-chunking, e.g., ML-CDC, is easy:

	>>> import fastchunking
>>> cdc = fastchunking.RabinKarpCDC(window_size=48, seed=0)
>>> chunk_sizes = [1024, 2048, 4096]
>>> chunker = cdc.create_multilevel_chunker(chunk_sizes)
>>> chunker.next_chunk_boundaries_with_levels(message)
[(1049L, 2L), (1511L, 1L), (1893L, 2L), (2880L, 1L), (2886L, 0L),
(3701L, 0L), (4617L, 0L), (5809L, 2L), (5843L, 0L), ...]

The second value in each tuple indicates the highest chunk size that leads to
a boundary. Here, the first boundary is a boundary created by the chunker with
index 2, i.e., the chunker with 4096 bytes target chunk size.

Note

Only the highest index is output if multiple chunkers yield the same
boundary.

Warning

Chunk sizes have to be passed in correct order, i.e., from lowest to highest
value.

	References:

	
	LS17

	Dominik Leibenger and Christoph Sorge (2017). sec-cs: Getting the
Most out of Untrusted Cloud Storage. In Proceedings of the 42nd IEEE
Conference on Local Computer Networks (LCN 2017), 2017.
(Preprint: arXiv:1606.03368 [http://arxiv.org/abs/1606.03368])

fastchunking package

Performance

Computation costs for static chunking are barely measurable: As chunking does
not depend on the actual message but only its length, computation costs are
essentially limited to a single xrange call.

Content-defined chunking, however, is expensive: The algorithm has to compute
hash values for rolling hash window contents at every byte position of the
message that is to be chunked. To minimize costs, fastchunking works as follows:

	The message (fragment) is passed in its entirety to the C++ extension.

	Chunking is performed within the C++ extension.

	The resulting list of chunk boundaries is communicated back to Python and
converted into a Python list.

Based on a 100 MiB random content, the author measured the following throughput
on an Intel Core i7-4600U in a single, non-representative test run:

	chunk size

	throughput

	64 bytes

	49 MiB/s

	128 bytes

	57 MiB/s

	256 bytes

	62 MiB/s

	512 bytes

	63 MiB/s

	1024 bytes

	67 MiB/s

	2048 bytes

	68 MiB/s

	4096 bytes

	70 MiB/s

	8192 bytes

	71 MiB/s

	16384 bytes

	71 MiB/s

	32768 bytes

	71 MiB/s

Testing

fastchunking uses tox for testing, so simply run:

$ tox

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 fastchunking Python library

 		
 Installation

 		
 Usage and Overview

 		
 Static Chunking (SC)

 		
 Content-Defined Chunking (CDC)

 		
 Multi-Level Chunking (ML-*)

 		
 fastchunking package

 		
 Performance

 		
 Testing

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

