

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
fast-furious

[image: Build Status] [https://travis-ci.org/gtesei/fast-furious]
[image: Coverage Status] [https://coveralls.io/github/gtesei/fast-furious?branch=master]
[image: License] [http://badges.mit-license.org]
[image: Badges] [https://github.com/badges/badgerbadgerbadger]

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass
up our opportunities in that critical 3%. A good programmer will
not be lulled into complacency by such reasoning, he will be wise to
look carefully at the critical code; but only after that code has been
identified.” - Donald Knuth.


1. What is it?

fast-furiuos gathers code (R, Matlab/Octave), models and meta-models I needed in my Machine Learning Lab but I didn’t found on the shelf.




2. Requirements, installation and how to use fast-furious in your scripts

fast-furious has been built in interpretable languages like R, Matlab/Octave, Python (hence, it does not require compilation) and (Mac) OSX, Windows, Linux are fully supported.


2.1 Requirements


	Octave [http://www.gnu.org/software/octave/download.html] or Matlab is mandatory for fast-furious model implementations (regularized neural networks, regularized linear and polynomial regression, regularized logistic regression). If you are using only these fast-furious models Octave or Matlab installed on your machine is the only requirement. Currently, I am working on matlab compatibility issues.


	R [http://www.r-project.org/] is mandatory for data process, feature engineering, model selection and model ensembling.







2.2 Installation

Installation is pretty easy and quick. You can choose


	to download the zip in the directory you like as fast-furious base dir and unzip


	or to use git in the directory you like as fast-furious base dir




git clone https://github.com/gtesei/fast-furious.git








2.3 Installing only fast-furious R-Package

R-Package installation is pretty easy and fast from github by using devtools::install_github. Windows user will need to install RTools [http://cran.r-project.org/bin/windows/Rtools/] first.

devtools::install_github('gtesei/fast-furious',subdir='R-package')








2.4 How to use fast-furious in your Octave/Matlab scripts

Assuming you are launching your Octave/Matlab script in fast-furious base dir, you just need to call at the begin of your script the fast-furious
menv function to set up the enviroment. Typically, your script should look like this

%% setting enviroment 
menv;

... here your stuff ...





For example, this is the code of fast-furious GO_Neural.m script located on fast-furious base dir:

%% setting enviroment 
menv;

%% load use cases and go  
README_Neural;
go();








2.5 How to use fast-furious in your R scripts

Once installed, you just need to load the package by using the R library function. E.g. this is the code sketch for tuning, training, predicting and ensembling an XGBoost model on a binary classification problem.

library(fastfurious)

##########################
## TUNE / TRAIN / PREDICT 
##########################
controlObject = caret::trainControl(method = "repeatedcv", repeats = 1, number = 4 , summaryFunction = twoClassSummary , classProbs = TRUE)
l = ff.trainAndPredict.class (Ytrain=Ytrain ,
                              Xtrain=Xtrain , 
                              Xtest=Xtest , 
                              model.label="xgbTree" , 
                              controlObject=controlObject, 
                              best.tuning = TRUE, 
                              verbose = TRUE, 
                              removePredictorsMakingIllConditionedSquareMatrix_forLinearModels = F, 
                              xgb.metric.fun = NULL, 
                              xgb.maximize = TRUE, 
                              metric.label = 'auc', 
                              xgb.foldList = NULL,
                              xgb.eta = 0.02, 
                              xgb.max_depth = 8, 
                              xgb.cv.default = FALSE)
                              
AUC.xval = max(l$model$results$ROC)
bestTune = l$model$bestTune
pred = l$pred
pred.prob = l$pred.prob
secs = l$secs 
                                 
##########################
## ENSEMB 
##########################
index = caret::createMultiFolds(y=Ytrain, controlObject$number, controlObject$repeats)
indexOut <- lapply(index, function(training, allSamples) allSamples[-unique(training)], allSamples = seq(along = Ytrain))
controlObject = trainControl(method = "repeatedcv", 
                               ## The method doesn't really matter
                               ## since we defined the resamples
                               index = index, 
                               indexOut = indexOut , 
                               summaryFunction = twoClassSummary , classProbs = TRUE)
                               
ens = ff.createEnsemble(Xtrain = Xtrain,
                        Xtest = Xtest,
                        y = Ytrain,
                        caretModelName = 'xgbTree', 
                        predTest = pred.prob,
                        bestTune = expand.grid(
                          nrounds = bestTune$early.stop ,
                          max_depth = 8 ,  
                          eta = 0.02 ),
                        removePredictorsMakingIllConditionedSquareMatrix_forLinearModels = F, 
                        controlObject = controlObject, 
                        parallelize = TRUE,
                        verbose = TRUE , 
                        regression = FALSE, 
                             
                        ### ... 
                        objective = "binary:logistic",
                        eval_metric = "auc", 
                        subsample = 0.7 , 
                        colsample_bytree = 0.6 , 
                        scale_pos_weight = 0.8 , 
                        max_delta_step = 2)
                          
ensemble_pred_train = ens$predTrain
ensemble_pred_test = ens$predTest










3. fast-furious model implementations


3.1 Regularized Neural Networks

Package neural very fast 100% vectorized implementation of backpropagation in Matlab/Octave.


	for basic use cases just run command line (fast-furious base dir)

>octave GO_Neural.m



	for binary classification problems use nnCostFunction cost function wrapped in trainNeuralNetwork. E.g. this is the code for fitting a neural neural network with 400 neurons at input layer, 25 neurons at hidden layer, 1 neuron (= binary classification) at output layer, 0.001 as regularization parameter, where trainset/testset has been already scaled and with the bias term added.

% y must a 01 vector (e.g. [1 0 1 0 0 0 0 0 1 1 0 1] )
% train_data and test_data are the train set and test set 

%% 400 neurons at input layer
%% 25 neurons at hidden layer
%% 1 neuron at output layer  
NNMeta = buildNNMeta([400 25 1]); 

%% regularization parameter 
lambda = 0.001; 

%% train on train set 
[Theta] = trainNeuralNetwork(NNMeta, Xtrain, ytrain, lambda , iter = 100, featureScaled = 1); 

%% predict on train set 
probs_train = NNPredictMulticlass(NNMeta, Theta , Xtrain , featureScaled = 1);
pred_train = (probs_train > 0.5);

%% predict on test set 
probs_test = NNPredictMulticlass(NNMeta, Theta , Xtest , featureScaled = 1);
pred_test = (probs_test > 0.5);

%% measure accuracy 
acc_train = mean(double(pred_train == ytrain)) * 100;
acc_test = mean(double(pred_test == ytest)) * 100;







	for tuning parameters on classification problems (number of neurons per layer, number of hidden layers, regularization parameter) by cross-validation use the findOptPAndHAndLambda function. E.g. this is the code for finding the best number of neurons per layer (p_opt_acc), the best number of hidden layers (h_opt_acc), the best regularization parameter (lambda_opt_acc), using cross validation on a binary classification problem with accuracy as metric on a train set (80% of data) and cross validation set (20% of data) not scaled.

% y must a 01 vector (e.g. [1 0 1 0 0 0 0 0 1 1 0 1] )
% train_data and test_data are the train set and test set 

%% scale and add bias term 
[train_data,mu,sigma] = treatContFeatures(train_data,1);
[test_data,mu,sigma] = treatContFeatures(test_data,1,1,mu,sigma);

%% split and randomize 
[Xtrain,ytrain,Xval,yval] = splitTrainValidation(train_data,ytrain,0.80,shuffle=1);

%% tuning parameters 
[p_opt_acc,h_opt_acc,lambda_opt_acc,acc_opt,tuning_grid] = findOptPAndHAndLambda(Xtrain, ytrain, Xval, yval, ...
            featureScaled = 1 , 
                h_vec = [1 2 3 4 5 6 7 8 9 10] , ...
                lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10] , ...
                verbose = 1, doPlot=1 , ...
                iter = 200 , ...
                regression = 0 , num_labels = 1 );
                  
%% train on full train set 
NNMeta = buildNNMeta([(size(train_data,2)-1) (ones(h_opt_acc,1) .* p_opt_acc)' 1]');
[Theta] = trainNeuralNetwork(NNMeta, train_data, ytrain, lambda_opt_acc , iter = 2000, featureScaled = 1);

%% predict on train set 
probs_train = NNPredictMulticlass(NNMeta, Theta , train_data , featureScaled = 1);
pred_train = (probs_train > 0.5);
acc_train = mean(double(pred_train == ytrain)) * 100;

%% predict on test set 
probs_test = NNPredictMulticlass(NNMeta, Theta , test_data , featureScaled = 1); 
pred_test = (probs_test > 0.5);







	for multiclass classification problems use nnCostFunction cost function wrapped in trainNeuralNetwork as well. E.g. this is the code for fitting a neural neural network with 400 neurons at input layer, 25 neurons at hidden layer, 5 neurons (= 5 class classification problem) at output layer, 0.001 as regularization parameter, where trainset/testset has been already scaled and with the bias term added.

% y must be 1-based and, in this case a 12345 vector, (e.g. [1 2 5 4 3 2 3 4 5 2 3 4 1 2 3 4 5] )
% train_data and test_data are the train set and test set 

%% 400 neurons at input layer
%% 25 neurons at hidden layer
%% 1 neuron at output layer  
NNMeta = buildNNMeta([400 25 1]); 

%% regularization parameter 
lambda = 0.001; 

%% train on train set 
[Theta] = trainNeuralNetwork(NNMeta, Xtrain, ytrain, lambda , iter = 100, featureScaled = 1); 

%% predict on train set 
probs_train = NNPredictMulticlass(NNMeta, Theta , Xtrain , featureScaled = 1);
pred_train = (probs_train > 0.5);

%% predict on test set 
probs_test = NNPredictMulticlass(NNMeta, Theta , Xtest , featureScaled = 1);

%% measure accuracy 
acc_train = mean(double(pred_train == ytrain)) * 100;
acc_test = mean(double(pred_test == ytest)) * 100;







	for regression problems use nnCostFunctionReg cost function wrapped in trainNeuralNetworkReg. E.g. this is the code for fitting a neural neural network with 400 neurons at input layer, 25 neurons at hidden layer, 1 neuron at output layer, 0.001 as regularization parameter, where trainset/testset has been already scaled and with the bias term added.

%% 400 neurons at input layer
%% 25 neurons at hidden layer
%% 1 neuron at output layer  
NNMeta = buildNNMeta([400 25 1]); 

%% regularization parameter 
lambda = 0.001; 

%% train on train set 
[Theta] = trainNeuralNetworkReg(NNMeta, Xtrain, ytrain, lambda , iter = 200, featureScaled = 1);

%% predict on train set 
pred_train = NNPredictReg(NNMeta, Theta , Xtrain , featureScaled = 1);

%% predict on test set 
pred_test = NNPredictReg(NNMeta, Theta , Xtest , featureScaled = 1);

%% measure RMSE 
RMSE_train = sqrt(MSE(pred_train, ytrain));
RMSE_test = sqrt(MSE(pred_test, ytest));







	for tuning parameters on regression problems (number of neurons per layer, number of hidden layers, regularization parameter) by cross-validation use the findOptPAndHAndLambda function. E.g. this is the code for finding the best number of neurons per layer (p_opt_rmse), the best number of hidden layers (h_opt_rmse), the best regularization parameter (lambda_opt_rmse), using cross validation on a regression problem with RMSE as metric on a train set (80% of data) and cross validation set (20% of data) not scaled.

%% scale and add bias term 
[train_data,mu,sigma] = treatContFeatures(train_data,1);
[test_data,mu,sigma] = treatContFeatures(test_data,1,1,mu,sigma);

%% split and randomize 
[Xtrain,ytrain,Xval,yval] = splitTrainValidation(train_data,ytrain,0.80,shuffle=1);

%% tuning parameters 
[p_opt_rmse,h_opt_rmse,lambda_opt_rmse,rmse_opt,tuning_grid] = findOptPAndHAndLambda(Xtrain, ytrain, Xval, yval, ...
            featureScaled = 1 , 
                h_vec = [1 2 3 4 5 6 7 8 9 10] , ...
                lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10] , ...
                verbose = 1, doPlot=1 , ...
                iter = 200 , ...
                regression = 1 );
                  
%% train on full train set 
NNMeta = buildNNMeta([(size(train_data,2)-1) (ones(h_opt_rmse,1) .* p_opt_rmse)' 1]');
[Theta] = trainNeuralNetworkReg(NNMeta, train_data, ytrain, lambda_opt_rmse , iter = 2000, featureScaled = 1);

%% predict on train set 
pred_train = NNPredictReg(NNMeta, Theta , Xtrain , featureScaled = 1);
RMSE_train = sqrt(MSE(pred_train, ytrain));

%% predict on test set 
pred_test = NNPredictReg(NNMeta, Theta , Xtest , featureScaled = 1);
RMSE_test = sqrt(MSE(pred_test, ytest));







	for large datasets (e.g. 80GB train set on a machine with 8GB RAM) use nnCostFunction_Buff (wrapped in trainNeuralNetwork_Buff) that is a buffered implementation of batch gradient descent, i.e. it uses all train observations in each iteration vs. one observation as stochastic gradient descent or k (k < number of observations on trainset) observations in each iteration as mini-batch gradient descent. E.g. this is the code for for fitting a neural neural network with 400 neurons at input layer, 25 neurons at hidden layer, 1 neuron (= binary classification) at output layer, 0.001 as regularization parameter, from file  foXtrain for predictors (columns from  ciX to  ceX), and from file  fytrain for labels (columns form  ciy to  cey) and buffer equals to 10000 observations (= you load in memory 10000 observations each time).

%% 400 neurons at input layer
%% 25 neurons at hidden layer
%% 1 neuron at output layer  
NNMeta = buildNNMeta([400 25 1]); 

%% regularization parameter 
lambda = 0.001; 

%% train (buffer = 10000 observations) 
%% from file <foXtrain> (columns from <ciX> to <ceX>) as train data
%% from file <fytrain> (columns form <ciy> to <cey>) as labels 
[Theta_Buff] = trainNeuralNetwork_Buff(NNMeta,foXtrain,ciX,ceX, ... 
                        fytrain,ciy,cey, ... 
                        sep=',',b=10000, ... 
                        lambda, iter = 50 , ... 
                        featureScaled = 0 , ... 
                        initialTheta = cell(0,0) );

%% predict (buffer = 10000 observations) on train set 
pred_val_bf = NNPredictMulticlass_Buff(NNMeta,foXval,ciX,ceX,Theta_Buff,10000,',',0);

%% predict (buffer = 10000 observations) on test set 
pred_train_bf = NNPredictMulticlass_Buff(NNMeta,foXtrain,ciX,ceX,Theta_Buff,10000,',',0);







	for Neural Networks with EGS (= Extended Generalized Shuffle) interconnection pattern among layers in regression problesm use nnCostFunctionRegEGS cost function wrapped in trainNeuralNetworkRegEGS function. E.g. this is the code for fitting a neural neural network with 400 neurons at input layer, 25 neurons at hidden layer, 1 neuron (= binary classification) at output layer, 0.001 as regularization parameter, where trainset/testset has been already scaled and with the bias term added.

%% 400 neurons at input layer
%% 25 neurons at hidden layer
%% 1 neuron at output layer  
NNMeta = buildNNMeta([400 25 1]); 

%% regularization parameter 
lambda = 0.001; 

%% train 
[Theta] = trainNeuralNetworkRegEGS(NNMeta, Xtrain, ytrain, lambda , iter = 300, featureScaled = 1 );

%% predict on train/test set 
pred_train = NNPredictRegEGS(NNMeta, Theta , Xtrain , featureScaled = 1);
pred_test = NNPredictRegEGS(NNMeta, Theta , Xtest , featureScaled = 1);

%% measure MSE on train/test predictions 
MSE_train = MSE(pred_train, ytrain);
MSE_test = MSE(pred_test, ytest);












3.2 Regularized Linear and Polynomial Regression

Package linear_reg very fast 100% vectorized implementation in Matlab/Octave


	for basic use cases just run command line (fast-furious base dir)

>octave GO_LinearReg.m



	for a performance comparison (=RMSE) among (fast-furiuos) Regularized Polynomial Regression, (libsvm) epsilon-SVR, (libsvm) nu-SVR, (fast-furiuos) Neural Networks on dataset solubility of AppliedPredictiveModeling [http://appliedpredictivemodeling.com/] run command line

>octave linear_reg/____testRegression.m



	for fitting a linear regression model use linearRegCostFunction wrapped in  trainLinearReg function. E.g. this is the code for fitting a regularized liner regression model with trainset/testset not scaled and with regularization parameter set to 0.001.

%% feature scaling (trainset/testset) 
[Xtrain,mu,sigma] = treatContFeatures(Xtrain,p = 1);
[Xtest,mu,sigma] = treatContFeatures(Xtest,p = 1,1,mu,sigma);

%% regularization parameter 
lambda = 0.001;

%% train 
[theta] = trainLinearReg(Xtrain, ytrain, lambda , 200 );

%% predict
pred_train =predictLinearReg(Xtrain,theta);
pred_test = predictLinearReg(Xtest,theta);

%% measure MSE
mse_train = MSE(pred_train, ytrain);
mse_test = MSE(pred_test, ytest);







	for fitting a linear regression model using the normal equation instead of batch gradient descent use the normalEqn_RegLin function. I recommend not to use the normal equation for large datasets. E.g. this is the code for fitting a regularized liner regression model using the normal equation with trainset/testset not scaled and with regularization parameter set to 0.001.

%% feature scaling (trainset/testset) 
[Xtrain,mu,sigma] = treatContFeatures(Xtrain,p = 1);
[Xtest,mu,sigma] = treatContFeatures(Xtest,p = 1,1,mu,sigma);

%% regularization parameter 
lambda = 0.001;

%% train 
[theta] = normalEqn_RegLin(Xtrain,ytrain,lambda);

%% predict 
pred_train = predictLinearReg(Xtrain,theta);
pred_test = predictLinearReg(Xtest,theta);

%% measure performance 
mse_train = MSE(pred_train, ytrain);
mse_test = MSE(pred_test, ytest);







	for fitting a polynomial regression model use linearRegCostFunction as well. Just set up the degree of the polynomial trasformation you like in the treatContFeatures function. E.g. this is the code for fitting a regularized liner regression model with trainset/testset not scaled and with regularization parameter set to 0.001 and polynomial degree 5.

%% feature scaling (trainset/testset) 
[Xtrain,mu,sigma] = treatContFeatures(Xtrain,p = 5);
[Xtest,mu,sigma] = treatContFeatures(Xtest,p = 5,1,mu,sigma);

%% regularization parameter 
lambda = 0.001;

%% train 
[theta] = trainLinearReg(Xtrain, ytrain, lambda , 200 );

%% predict
pred_train =predictLinearReg(Xtrain,theta);
pred_test = predictLinearReg(Xtest,theta);

%% measure MSE
mse_train = MSE(pred_train, ytrain);
mse_test = MSE(pred_test, ytest);







	for tuning parameters (on regression problems) (degree of polynomial trasformation, regularization parameter) by cross-validation use the findOptPAndLambdaRegLin function. E.g. this is the code for finding the best degree of polynomial trasformation (p_opt_RMSE), the best regularization parameter (lambda_opt_RMSE), using cross validation on a regression problem with RMSE as metric on a train set and test set already scaled.

[p_opt_RMSE,lambda_opt_RMSE,RMSE_opt,grid]  = ... 
      findOptPAndLambdaRegLin(solTrainX, solTrainY, solTestX, solTestY, ...
        p_vec = [1 2 3 4 5 6 7 8 9 10 12 20]' , ...
        lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]' , ...
        verbose = 1, initGrid = [] , initStart = -1 , iter=1000);
        
printf('>>>>> found min RMSE=%f  with p=%i and lambda=%f \n', RMSE_opt , p_opt_RMSE , lambda_opt_RMSE );







	for large datasets (e.g. 80GB train set on a machine with 8GB RAM) you can use the trainLinearReg_MiniBatch function that is a mini-batch gradient descent implementation, i.e. it uses k observations (k < number of observations on trainset) in each iteration. E.g. this is the code for for fitting a linear regression model with 0.001 as regularization parameter, from file  foXtrain for predictors (columns from  ciX to  ceX), and from file  fytrain for labels (columns form  ciy to  cey) and buffer equals to 100 observations (= you load in memory 100 observations each time and you use only these for complete a gradient descent iteration).

%% regularization parameter 
lambda = 0.001; 

%% train (buffer = 100 observations) 
%% from file <foXtrain> (columns from <ciX> to <ceX>) as train data
%% from file <fytrain> (columns form <ciy> to <cey>) as labels 
[theta_mb] = trainLinearReg_MiniBatch(foXtrain,ciX,ceX,fytrain,ciy,cey,lambda, b=100, sep=',' , iter=200);

%% predict 
pred_train = predictLinearReg_Buff(foXtrain,ciX,ceX,theta_mb,b=10000,sep=',');
pred_test = predictLinearReg_Buff(foXtest,ciX,ceX,theta_mb,b=10000,sep=',');


%% measure performance 
mse_train = MSE(pred_train, ytrain);
mse_test = MSE(pred_test, ytest);







	for large datasets (e.g. 80GB train set on a machine with 8GB RAM) you can use the trainLinearReg_Buff function that is a buffered implementation of gradient descent, i.e. it uses it uses all train observations in each iteration vs. one observation as stochastic gradient descent or k (k < number of observations on trainset) observations in each iteration as mini-batch gradient descent. E.g. this is the code for for fitting a linear regression model with 0.001 as regularization parameter, from file  foXtrain for predictors (columns from  ciX to  ceX), and from file  fytrain for labels (columns form  ciy to  cey) and buffer equals to 100 observations (= you load in memory 100 observations each time but you use all train observations for complete a gradient descent iteration).

%% regularization parameter 
lambda = 0.001; 

%% train (buffer = 100 observations) 
%% from file <foXtrain> (columns from <ciX> to <ceX>) as train data
%% from file <fytrain> (columns form <ciy> to <cey>) as labels 
[theta_bf] = trainLinearReg_Buff(foXtrain,ciX,ceX,fytrain,ciy,cey,lambda, b=100, sep=',' , iter=200);

%% predict 
pred_train = predictLinearReg_Buff(foXtrain,ciX,ceX,theta_bf,b=10000,sep=',');
pred_test = predictLinearReg_Buff(foXtest,ciX,ceX,theta_bf,b=10000,sep=',');

%% measure performance 
mse_train = MSE(pred_train, ytrain);
mse_test = MSE(pred_test, ytest);












3.3 Regularized Polynomial Logistic Regression

Package logistic_reg very fast 100% vectorized implementation in Matlab/Octave


	for basic use cases just run command line (fast-furious base dir)

>octave GO_LogisticReg.m



	for fitting a logistic regression model use lrCostFunction wrapped in  trainLogReg function. E.g. this is the code for fitting a regularized logistic regression model with trainset/testset not scaled and with regularization parameter set to 0.001. Note: in this code sketch insteaf of using 0.5 as probability threshold I use the selectThreshold that select the probability threshold maximizing F1-score [https://en.wikipedia.org/wiki/F1_score].

%% feature scaling (trainset/testset) 
[Xtrain,mu,sigma] = treatContFeatures(Xtrain,p = 1);
[Xtest,mu,sigma] = treatContFeatures(Xtest,p = 1,1,mu,sigma);

%% regularization parameter 
lambda = 0.001;

%% train 
[theta] = trainLogReg(Xtrain, ytrain, lambda , iter = 200 );

%% predict probabilities  
probs_train = predictLogReg(Xtrain,theta);
probs_test = predictLogReg(Xtest,theta);

%% select threshold (instead of 0.5) on train data 
%% Note: this usually should be done by cross-validation 
thr = selectThreshold (ytrain,probs_train);

%% predict labels   
pred_train = (probs_train > thr);
pred_train = (probs_test > thr);







	for fitting a logistic polynomial regression model use lrCostFunction as well. Just set up the degree of the polynomial trasformation you like in the treatContFeatures function. E.g. this is the code for fitting a regularized logistic regression model with trainset/testset not scaled, with regularization parameter set to 0.001 and polynomial degree 10.

%% feature scaling (trainset/testset) 
[Xtrain,mu,sigma] = treatContFeatures(Xtrain,p = 10);
[Xtest,mu,sigma] = treatContFeatures(Xtest,p = 10,1,mu,sigma);

%% regularization parameter 
lambda = 0.001;

%% train 
[theta] = trainLogReg(Xtrain, ytrain, lambda , iter = 200 );

%% predict probabilities  
probs_train = predictLogReg(Xtrain,theta);
probs_test = predictLogReg(Xtest,theta);

%% select threshold (instead of 0.5) on train data 
%% Note: this usually should be done by cross-validation 
thr = selectThreshold (ytrain,probs_train);

%% predict labels   
pred_train = (probs_train > thr);
pred_train = (probs_test > thr);







	for tuning parameters (on classification problems) (degree of polynomial trasformation, regularization parameter) by cross-validation use the findOptPAndLambdaRegLog function. E.g. this is the code for finding the best degree of polynomial trasformation, the best regularization parameter, using cross validation on a train set and cross-validation set already scaled. Best parameters are found for metrics F1-score [https://en.wikipedia.org/wiki/F1_score], precision [https://en.wikipedia.org/wiki/Precision_and_recall], recall [https://en.wikipedia.org/wiki/Precision_and_recall].

[p_opt_recall,lambda_opt_recall,p_opt_accuracy,lambda_opt_accuracy,p_opt_precision,lambda_opt_precision,p_opt_F1,lambda_opt_F1,grid] = ...
  findOptPAndLambdaRegLog(Xtrain, ytrain, Xval, yval)
  
printf('>>>>> metric: F1        - found optimum with p=%i and lambda=%f \n', p_opt_F1 , lambda_opt_F1 );
printf('>>>>> metric: precision - found optimum with p=%i and lambda=%f \n', p_opt_precision , lambda_opt_precision );
printf('>>>>> metric: recall    - found optimum with p=%i and lambda=%f \n', p_opt_recall , lambda_opt_recall );














4. fast-furious R-Package

Please, refer to fast-furious R-Package PDF manual [https://github.com/gtesei/fast-furious/blob/master/fastfurious-manual.pdf].
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avito-demand-prediction

Predict demand for an online classified ad





          

      

      

    

  

    
      
          
            
  
google-ai-open-images-object-detection-track


Solutions


2st Place Solution [https://www.kaggle.com/c/google-ai-open-images-object-detection-track/discussion/64986]


	Private Leaderboard: 0.58634 vs. winner 0.58657


	Technical report for team PFDet’s 2nd place solution [https://arxiv.org/abs/1809.00778]







8th Place Solution [https://www.kaggle.com/c/google-ai-open-images-object-detection-track/discussion/65120]


	Private Leaderboard: 0.49801 vs. winner 0.58657







15th Place Solution [https://www.kaggle.com/c/google-ai-open-images-object-detection-track/discussion/65120]


	Private Leaderboard: 0.45117 vs. winner 0.58657


	Repo [https://github.com/ZFTurbo/Keras-RetinaNet-for-Open-Images-Challenge-2018]







19th Place Solution [https://www.kaggle.com/c/google-ai-open-images-object-detection-track/discussion/64734]


	Private Leaderboard: 0.42553 vs. winner 0.58657


	Repo [https://github.com/radekosmulski/yolo_open_images]







26th Place Solution [https://www.kaggle.com/c/google-ai-open-images-object-detection-track/discussion/64901]


	Private Leaderboard: 0.38 vs. winner 0.58657


	Repo [https://github.com/rabienrose/GoogleAIOpenImg2018]












          

      

      

    

  

    
      
          
            
  
tgs-salt-identification-challenge

Private Leaderboard: 0.834694 vs. winner 0.896469


Solutions


1st Place Solution [https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69291]


	Private Leaderboard: 0.896469


	Internal ref (in case original link is removed)







9th Place Solution [https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69053]


	Private Leaderboard: 0.892245 vs. winner 0.896469


	Repo with code [https://github.com/tugstugi/pytorch-saltnet]


	Internal ref (in case original link is removed)







11th Place Solution [https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69093]


	Private Leaderboard: 0.891518 vs. winner 0.896469


	Internal ref (in case original link is removed)







14th Place Solution [https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69664]

Private Leaderboard: 0.891060 vs. winner 0.896469









          

      

      

    

  

    
      
          
            
  
11th place solution writeup [0.891518 vs. winner 0.896469]

@alexisrozhkov’s pipeline

Model: UNet-like architecture

Backbone: SE ResNeXt-50, pretrained on ImageNet

Decoder features (inspired by Heng’s helpful posts and discussions):

Spatial and Channel Squeeze Excitation gating
Hypercolumns
Deep supervision (zero/nonzero mask)
Tile size adaptation:

Pad 101 -> 128
Mode - replicate (reflect was worse, reflect horizontally+replicate vertically was same, random selection as an augmentation didn’t improve as well, although more tests needed to be made)
Augmentations:

Random invert (unexpected, but visually it doesn’t change input dramatically. Also tried mean subtraction and derivative instead of raw input, but these didn’t work well)
Random cutout (even more unexpected, but some papers indicate that it’s helpful for segmentation, because implicitly it causes model to learn “inpainting” input tiles)
Random gamma-correction (makes sense, since tiles seem to be postprocessed in a way that changes brightness)
Random fixed-size crop
Random horizontal flip
Optimizer (inspired by Peter’s writeups):

SGD: momentum 0.9, weight decay 0.0001
Batch size: 16
Starting LR determined using procedure similar to LR find from fast.ai course - 5e-2
LR schedule - cosine annealing from maximum LR, cycle length - 50 epochs, 10 cycles per experiment
Best snapshots according to metric were saved independently for each cycle, final solution uses 2 best cycles per fold
Loss:

Since I used deep supervision it’s a combination of 3 losses - classification loss, pure segmentation loss (using output from an earlier layer, empty samples excluded), total loss (segmentation loss over all samples)
Classification loss - BCE
Segmentation losses - BCE + Lavasz Hinge*0.5
Segmentation loss was evaluated after cropping masks and predictions back to 101 - this seems to “fix” cases where a few-pixel corner mask was predicted on a padded mask with imperfect alignment, but was cropped afterwards, resulting in 0 metric per sample.
Cross-validation

5-fold random split
Tried depth, area and “type”-based stratification, but it seemed to degrade result
Didn’t have enough time to synchronize folds with Ivan to allow cross-validation of ensemble results
@sawseen’s pipeline

Model: Modified Unet

Backbone: SE-ResNeXt-50, pretrained on ImageNet

Decoder features:

Dilated convolutions with dilation from 1 to 5
Hypercolumns
ASP_OC_Module before last Convolution layer
Deep supervision (zero/nonzero mask, nonzero mask segmentation)
Dropout
Tile size adaptation

Replication up to 128
Augmentations:

Random Rotation up to 10 degree
Random Crop and Scale
Random Horizontal flip
Optimizer:

SGD: momentum = 0.9, weight decay = 0.0001
Batch size: 16
Lr schedule. Pretrain for 32 epochs with lr = 0.01. Then SGDR was applied for 4 cycles with cosine annealing: lr from 0.01 to 0.0001. Each cycle lasts for 64 epochs.
Loss:

Segmentation loss
Pretrain: 0.1 * BCE loss + 0.9 * lovasz loss (Elu + 1)
SGDR cycles: 0.9 * BCE loss + 0.1 * lovasz loss (Elu + 1)
Optimization loss = 0.05 * BCE(zero/nonzero mask classification) + 4 * 0.12 * segmentation loss per deep supervised nonzero masks + 1.0 * result segmentation loss
Cross-validation:

5 fold without stratification. For each fold 2 best snapshots were chosen for result predictions
Ensembling

Each of us trained multiple models (5 folds x 2 best cycles), which were used to predict masks. These 10 predictions were averaged per fold, and then a threshold was applied. Ivan chose a more conservative value of 0.5 for each fold, Alexey was more adventurous and selected a threshold that was resulting in a best metric - even though it might lead to overfitting to validation set. Then ranges were aligned and predictions were averaged again; resulting predictions were thresholded and used for submission.

Postprocessing

Few days before competition deadline we’ve decided to arrange predictions according to publicly shared csv for mosaics. This was the “eureka” moment of the competition - ground truth annotation immediately became clear, and we started to look for ways to “help” the network solve the task better, taking the annotation specifics into account.

Unlike some other teams, we think that ground truth annotation made sense. It seems that the way the data was acquired makes it hard to get reasonable measurements underneath the salt domes, and also it seems that salt only forms a cap and doesn’t take the whole volume under this cap (I hope that people with domain expertise will correct if that’s a wrong assumption). In this case it wasn’t physically-sound to label block underneath salt as salt (because probably they were not). Next question is why to label the salt dome thickness this particular way? Our hypothesis is that it’s hard to make this prediction given tiles without boundary, so they were marked as “not containing salt”, and the rest of tiles were marked properly. Probably the tile size was chosen to match the expected thickness of the salt dome, but it’s just a guess.

Surprisingly, it turned out that our networks were already doing a very reasonable job in most cases and were just lacking enough context - a “bird’s eye view” should’ve been able to fix that. 2 days before the deadline we realized a way to do this - pass the tile ids along the pipeline and then apply post-processing heuristics using tile neighbor information to improve consistency of result, even though it was a bit risky (different depth values for neighboring samples probably imply that tiles were taken from different “slices” of a scan volume, so not necessarily they had aligned ground truth values).

We have used both ground truth and predicted masks to construct few rules to improve the segmentation results:

For almost-vertical ground truth tiles (the ones with last 30 rows same, but not fully covered) - extrapolate last row downwards till the end of mosaic
For “caps” in ground truth tiles (the ones with fully-covered last row) - zero all tiles below
For tiles vertically “sandwiched” between predicted or ground truth masks - replace mask with last row of tile above, if it will cause increase of mask area (ideally it should’ve been a trapezoid from last row of tile above to first row of tile below, but didn’t have time to do that, and potential score gain is small)
For tiles below predicted “caps” - do the same as for ground truth case
For tiles below almost-vertical predicted tiles - extract downward.
It is interesting that although these heuristics improved public lb score significantly, the effect on private lb score was negligible (~0.1 increase vs 0.001). Some rules didn’t make a difference on public lb, but deteriorated result on private lb significantly (last described rule caused 0.003 drop on private lb).

Another observation - seems that for majority of teams private lb score is higher than public nonetheless. It leads us to hypothesize that public/private split wasn’t random and was cherry-picked to meet organizers’ demands in a better way. One hypothesis for why private lb score was usually higher than public - organizers excluded few-pixel masks (which were hard to predict, incurred high penalty and probably weren’t important from business standpoint) from private set.

Anyway - thanks to organizers for interesting contest with a “plot twist”, to Heng, Peter and other people on Kaggle forum and ods.ai community that sparked enlightening discussions, and to all participants for making it a very competitive experience!





          

      

      

    

  

    
      
          
            
  
1rst place solution writeup [0.896469]

First of all, I’d like to congratulate and thank my teammate phalanx for his great contribution and effort! Also, thanks to organizers for this competition and to Heng and Peter for their insightful forum posts.

It is my first problem in image segmentation, just 3 months ago I knew nothing about segmentation. So, this 1st place is a tremendous bonus for all the knowledge and experience we’ve gained. I guess, it’s a good example for novices: if you work hard, you could achieve high results even with little background.

Local Validation
We created 5 common folds stratified by depth. Score on local validation had pretty solid correlation with the LB.

1st Stage Training
Each of us developed single model based on training data:

My model
Input: 101 -> resize to 192 -> pad to 224

Encoder: ResNeXt50 pretrained on ImageNet

Decoder: conv3x3 + BN, Upsampling, scSE

Training overview:

Optimizer: RMSprop. Batch size: 24

Loss: BCE+Dice. Reduce LR on plateau starting from 0.0001
Loss: Lovasz. Reduce LR on plateau starting from 0.00005
Loss: Lovasz. 4 snapshots with cosine annealing LR, 80 epochs each, LR starting from 0.0001
phalanx model
It was ResNet34 (architecture is similar to resnet_34_pad_128 described below) with input: 101 -> resize to 202 -> pad to 256

5-fold ResNeXt50 had 0.864 Public LB (0.878 Private LB)
5-fold ResNet34 had 0.863 (0.880 Private)
Their ensemble scored 0.867 (0.885 Private)
2nd Stage Training
Based on the ensemble from the 1st stage, we created a set of confident pseudolabels. The confidence was measured as percentage of confident pixel predictions (probability < 0.2 or probability > 0.8).

Then, again, we had 2 models:

My ResNeXt50 was pretrained on confident pseudolabels; and 5 folds were trained on top of them. 0.871 (0.890 Private)
phalanx added 1580 pseudolabels to each of 5 folds and trained the model from scratch. 0.861 (0.883 Private)
Their ensemble scored 0.870 (0.891 Private)
3rd Stage Training
We took all the pseudolabels from the 2nd stage ensemble, and phalanx trained 2 models:

resnet_34_pad_128
Input: 101 -> pad to 128

Encoder: ResNet34 + scSE (conv7x7 -> conv3x3 and remove first max pooling)

Center Block: Feature Pyramid Attention (remove 7x7)

Decoder: conv3x3, transposed convolution, scSE + hyper columns

Loss: Lovasz

resnet_34_resize_128
Input: 101 -> resize to 128

Encoder: ResNet34 + scSE (remove first max pooling)

Center Block: conv3x3, Global Convolutional Network

Decoder: Global Attention Upsample (implemented like senet -> like scSE, conv3x3 -> GCN) + deep supervision

Loss: BCE for classification and Lovasz for segmentation

Training overview:

Optimizer: SGD. Batch size: 32.

Pretrain on pseudolabels for 150 epochs (50 epochs per cycle with cosine annealing, LR 0.01 -> 0.001)
Finetune on train data. 5 folds, 4 snapshots with cosine annealing LR, 50 epochs each, LR 0.01 -> 0.001
resnet_34_pad_128 had 0.874 (0.895 Private)
resnet_34_resize_128 had 0.872 (0.892 Private)
Final Model
Final model is a blend of ResNeXt50 from the 2nd stage and resnet_34_pad_128 from the 3rd stage with horizontal flip TTA: 0.876 Public LB (0.896 Private LB).

Augmentations
We were using pretty similar list of augmentations. My augmentations were based on the great albumentations library:

HorizontalFlip(p=0.5)
RandomBrightness(p=0.2,limit=0.2)
RandomContrast(p=0.1,limit=0.2)
ShiftScaleRotate(shift_limit=0.1625, scale_limit=0.6, rotate_limit=0, p=0.7)
Postprocessing
We developed postrpocessing based on jigsaw mosaics. Here is an idea:

Find all vertical and half-vertical (bottom half of the image is vertical) images in train data
All test images below them in mosaics get the same mask
Only one test image above them get the same mask, and only if its depth in mosaic >= 3
Unfortunately, it gave huge boost on Public LB and no boost on Private:

0.876 -> 0.884 on Public LB and 0.896 -> 0.896 on Private LB

GPU resources
I had only single 1080
phalanx had single 1080Ti and got another one only during the last week of competition
Frameworks
I was using Keras. Special thanks to qubvel for his great repo with segmentation zoo in Keras
phalanx was using PyTorch





          

      

      

    

  

    
      
          
            
  UNet for segmenting salt deposits from seismic images with PyTorch.


General

We, tugstugi [https://github.com/tugstugi] and xuyuan [https://github.com/xuyuan], have participated
in the Kaggle competition TGS Salt Identification Challenge [https://www.kaggle.com/c/tgs-salt-identification-challenge]
and reached the 9-th place. This repository contains a simplified and cleaned up version of our team’s code partially based
on the ideas of Heng Cherkeng’s discussion [https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/65933]
on the Kaggle discussion board.

We have used a single UNet model with a SENet154 encoder which has a single fold score of 0.882.
With 10 folds using reflective padding and another 10 folds with resizing, we got 0.890.
The final private LB score 0.892 was achieved by post processing on the model’s output.




Features


	single UNet [https://arxiv.org/abs/1505.04597] model with a Squeeze-and-Excitation network [https://arxiv.org/abs/1709.01507] encoder


	no ensembling, no pseudo labeling


	object context [https://arxiv.org/abs/1809.00916] in the decoders and in the base


	symmetric extension of the Lovasz hinge loss [https://arxiv.org/abs/1705.08790] function (+0.02 private LB improvement):




def symmetric_lovasz(outputs, targets):
    return (lovasz_hinge(outputs, targets) + lovasz_hinge(-outputs, 1 - targets)) / 2








Training


	Download and extract the dataset [https://www.kaggle.com/c/tgs-salt-identification-challenge/data]


	copy train.csv into datasets/


	copy train images and masks into datasets/train/


	copy test images into datasets/test/






	Train SENet154-Unet for 250 epochs on 2x P100: python train.py --vtf --pretrained imagenet --loss-on-center --batch-size 32 --optim adamw --learning-rate 5e-4 --lr-scheduler noam --basenet senet154 --max-epochs 250 --data-fold fold0 --log-dir runs/fold0 --resume runs/fold0/checkpoints/last-checkpoint-fold0.pth


	tensorboard logs, checkpoints and models are saved under runs/


	start tensorboard with tensorboard --logdir runs


	training log of a LB0.883 model is provided under runs/lb0.883_fold0/






	Do SWA [https://arxiv.org/abs/1803.05407] on the best loss, accuracy and kaggle metrics models: python swa.py --input runs/fold0/models --output fold0_swa.pth


	Create a Kaggle submission: python test.py --tta fold0_swa.pth --output-prefix fold0


	a submission file fold0-submission.csv should be created now
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