

 Navigation

 	
 index

 	
 next |

 	Farango 0.1.0 documentation

Farango

DISCLAIMER: This document is a work in progress. It’s content may change
at any given moment and should not be built upon.

Language goals

	Be distributed out of the box. Concurrency and distribution should be
easy to do.

	As a result, the language would benefit from immutable data
structures

	Functional languages are best fit candidates for these kind of
tasks

	Be fast. If the benefits of distributed calculations are outdone
by poor optimisation, this would be useless.

	Be safe and high-level. The programmer should work on a theoric machine,
and as such, the language should abstract away the inner work.

	Expressions
	Binary Operators

	Unary operators

	Operator precedence

	User defined operators

	Callables
	Declaration

	Invokation

	Purity

	Functions

	Coroutines

	Tasks

	Control Flow

 Copyright 2015, FLIHABI.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Farango 0.1.0 documentation

Expressions

Everything in Farango has a value – there are no statements, only
expressions.

Binary Operators

Binary operators are operators taking two parameters. Invoking an operator
can be done with two possible syntaxes:

	Operator-like: <expr> <op> <expr>

	Function-like: (<op>)(<expr>, <expr>)

The language shall natively provide the following operators:

	Operator
	Description

	*
	Multiplication

	/
	Division

	%
	Modulo

	+
	Addition / Union

	-
	Subtraction

	==
	Equal

	!=
	Not equal

	>
	Greater than

	<
	Less than

	>=
	Equal or greater than

	<=
	Equal or less than

	<=>
	Compare

	&&
	Logical AND

	||
	Logical OR

	>>
	Bitwise right shift

	<<
	Bitwise left shift

	^
	Bitwise XOR

	|
	Bitwise OR

	&
	Bitwise AND

Unary operators

Unary operators, unlike binary operators, only take one parameter.

The language shall natively provide the following operators:

	Operator
	Description

	!
	Logical not

	~
	Bitwise not

	-
	Minus

	+
	Plus

	++expr
	Pre-increment

	--expr
	Pre-decrement

	expr++
	Post-increment

	expr--
	Post-decrement

Operator precedence

Operators in an expression have evaluation priority: this is called
precedence. An operator takes precedence over an other operator if it
is evaluated before the other. As an example, * takes precedence over
+, because a + b * c can be expanded to a + (b * c), and not
(a + b) * c.

Below is a table of operators sorted from high precedence (top) to low
precedence (bottom):

	Operator
	Precedence

	Postfix
	expr++ expr--

	Unary
	++expr --expr +expr -expr ~ !

	User-defined
	

	Multiplicative
	* / %

	Additive
	+ -

	Shift
	<< >>

	Relational
	< > <= >= <=>

	Equality
	== !=

	Bitwise AND
	&

	Bitwise XOR
	^

	Bitwise OR
	|

	Logical AND
	&&

	Logical OR
	||

	Assignment
	= += -= *= /= %= &= ^= |= <<= >>=

User defined operators

User may define or overload operators by declaring a function with the
operator symbol enclosed in parenthesis as identifier:

fun (<>)(lhs, rhs) = {
 lhs != rhs
}

Here we declare the binary operator <> as an alias of !=.
Alternatively, one could implement the operator as:

(<>) = (!=)

There are no requirements on the purity of user-defined operators, but
programmers should aspire to make their operators pure.

There are also no requirements on operators laws, with some exceptions on
default operator overloads:

	+, *, ^, |, &, == and != shall be
associative and commutative.

	All comparison operators shall be transitive.

 Copyright 2015, FLIHABI.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Farango 0.1.0 documentation

Callables

A callable is an object that, given a set of inputs known as parameters
produce one output known as the return value through a sequence of
computations.

Declaration

A callable can be declared with the following syntax:

fun <identifier>(<param0>, <param1>, [...], <paramN>) = <expression>

where <identifier> is the name which the callable shall be refered to
in the module, <param0> through <paramN> are the identifiers of each
parameter, and <expression> is the expression that shall be evaluated
when the callable is invoked.

Invokation

Callable invokation is done by specifying its identifier, then the list of
its parameters enclosed in parenthesis:

<identifier>(<param0>, <param1>, [...], <paramN>)

Purity

A callable is called pure when it has no side-effects, and when given a set
of parameters, two invokations does produce the same return value.

A common example of pure callables are the arithmetic operators.

Functions

Functions are the default (and most used) kind of callables. It has an
internal context that is the parameters and local variables, and is
destroyed when a return value is produced.

Coroutines

Coroutines are the second kind of callables, and can be inferred from the
usage of the yield control flow keyword. They are much like functions,
except that the internal context of the function is not discarded when a return
value is produced. Instead, the context is saved, and the coroutine shall
resume when it is invoked again later.

Tasks

Tasks are the final kind of callables, and they express a way to make
asynchronous tasks units that can be passed on different execution
environments. Tasks can be inferred from the usage of the offer
control flow keyword, and much like functions, their execution context is
destroyed after a return value has been offered.

Control Flow

In addition to the standard control flow statements, the following
statements are provided to change the control flow in any callable:

	return <expr>: returns the value of the given expression in a function.
Execution of the current function stops.

	yield <expr>: yields the value of the given expression in a coroutine.
Execution resumes after this point when the coroutine is called again.

	offer <expr>: offers the value of the given expression in a task to the
underlying task manager. Execution of the current function stops.

 Copyright 2015, FLIHABI.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Farango 0.1.0 documentation

Index

 Copyright 2015, FLIHABI.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Farango 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, FLIHABI.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

