

About

Facture is a Python framework for creating structured, portable and high-performance Web APIs.
It’s built on top of Sanic and uses the blazing fast uvloop implementation of the asyncio event loop.

General

	Compatibility

	Installing

	License

Configuration

	Environment

	Instance

	File

Core

	Application

	Manager

Jetpack

	Usage

	Controller
	Routing

	Transformation

	Schemas

	Services
	BaseService

	DatabaseService
	Example

	API

	Models
	Example

	HttpClientService
	Example

	API

Compatibility

Python 3.6+

Installing

$ pip install facture

License

BSD 2-Clause License

Copyright (c) 2019, Robert Wikman <rbw@vault13.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Environment

Instance

File

Application

At a minimum, the facture.Application needs to be created with at least one Jetpack.
Additional parameters can be provided to further customize the instance; see the docs below for more info.

API

Note

The facture.Application and facture.Application.run() can be configured using the environment and files as well.

Read more about this in the Configuration section.

Example

import facture
import jet_apispec
import jet_guestbook

Create application
app = facture.Application(
 path='/api',
 packages=[
 ('/guestbook', jet_guestbook),
 ('/packages', jet_apispec)
]
)

Start server
app.run(host='192.168.0.1')

Manager

Usage

Jetpacks are used for grouping, labeling and making components ready for registration
with an Application.

API

Important

The Jetpack’s __init__.py file must have a __version__ variable set to be successfully registered with an Application.

Example

from facture import Jetpack
from jet_guestbook import service
from .service import VisitService, VisitorService
from .model import VisitModel, VisitorModel
from .controller import Controller

__version__ = '0.1.0'

export = Jetpack(
 controller=Controller,
 services=[VisitService, VisitorService],
 models=[VisitModel, VisitorModel],
 name='guestbook',
 description='Example guestbook package'
)

Controller

The Jetpack Controller class inherits from ControllerBase and is registered
with the Application upon server start.

API

Example

from facture.controller import ControllerBase

class Controller(ControllerBase):
 async def on_ready(self):
 self.log.debug(f'Controller ready at path: {self.pkg.path}')

 async def on_request(self, request):
 self.log.debug(f'Request received: {request}')

Note

Continue reading about Routing to see how handlers can be added.

Routing

Routing is implemented using one or more handlers decorated with a @route.
Used without the @input_load decorator, the entire request object is passed to the handler.

API

Example

from sanic.response import HTTPResponse
from facture.controller import ControllerBase, route

class Controller(ControllerBase):
 async def on_request(self, request):
 self.log.debug(f'Request received: {request}')

 @route('/<name>', 'GET'):
 async def greet(self, request, name):
 return HTTPResponse({'msg': f'hello {name} from {request.ip}')

Note

Continue reading about Transformation to see how request/response data can be manipulated.

Transformation

Request and response transformation is performed when a request reaches @input_load,
and upon handler return in @output_dump. These two decorators provides a declarative way of defining
what comes in and what goes out of a route handler.

API

Example of request/response transformation

from facture.controller import ControllerBase, route
from facture.schema import ParamsSchema
from .visit import svc_visit
from .visit.schemas import Visit

class Controller(ControllerBase):
 async def on_request(self, request):
 self.log.debug(f'Request received: {request}')

 @route('/', 'GET')
 @input_load(query=ParamsSchema) # Transform and validate the query string
 @output_dump(Visit, many=True) # Dump many `Visit`s
 async def visits_get(self, query):
 # Call the service layer and dump the result as a JSON string
 return await svc_visit.get_many(**query)

 @route('/<visit_id>', 'PUT') # Perform an update operation
 @input_load(body=Visit) # Transform and validate the JSON payload
 @output_dump(Visit) # Dump one `Visit`
 async def visit_update(self, remote_addr, body, visit_id):
 # Call the service layer and dump the result as a JSON string
 return await svc_visit.visit_update(remote_addr, visit_id, body)

Schemas

Schemas are used in transformation decorators to perform object serialization and generating HTTP API documentation.

Example

from facture.schema import fields, Schema

class Visit(Schema):
 id = fields.Integer()
 visited_on = fields.String(attribute='created_on')
 message = fields.String()
 name = fields.String()

 class Meta:
 dump_only = ['id', 'visited_on']
 load_only = ['visit_id', 'visitor_id']

class VisitNew(Schema):
 message = fields.String(required=True)
 name = fields.String(required=True)

See also

Check out the
Marshmallow API docs [https://marshmallow.readthedocs.io/en/latest/api_reference.html]
for more info on how to work with schemas.

Services

Facture provides a set of built-in service classes, or Mixins if you will -
used to extend a Package’s service layer with extra features such as database and HTTP access.

Note

Create a PR or Issue if you want a Service Layer component added or updated.

	BaseService

	DatabaseService
	Example

	API

	Models

	HttpClientService
	Example

	API

BaseService

This Service implements the singleton pattern and is directly or indirectly
used by all types of Facture services.

API

DatabaseService

The built-in DatabaseService inherits from BaseService and
provides an interface for interacting with MySQL and PostgreSQL databases using the
peewee-async manager [https://peewee-async.readthedocs.io/en/latest/peewee_async/api.html#manager].

Example

from facture.service import DatabaseService
from facture.exceptions import FactureException

from jet_guestbook.model import VisitModel

class VisitService(DatabaseService):
 __model__ = VisitModel

 async def get_authored(self, visit_id, remote_addr):
 visit = await self.get_by_pk(visit_id)
 if visit.visitor.ip_addr != remote_addr:
 raise FactureException('Not allowed from your IP', 403)

 return visit

 async def visit_count(self, ip_addr):
 return await self.count(VisitModel.visitor.ip_addr == ip_addr)

API

Important

The __model__ class attribute must be set for Services implementing the DatabaseService.

Models

Models are implemented using Peewee.Model [http://docs.peewee-orm.com/en/latest/peewee/models.html].

Example

from datetime import datetime
from peewee import Model, ForeignKeyField, CharField, DateTimeField
from .visitor import VisitorModel

class VisitModel(Model):
 class Meta:
 table_name = 'visit'

 created_on = DateTimeField(default=datetime.now)
 message = CharField(null=False)
 visitor = ForeignKeyField(VisitorModel)

 @classmethod
 def extended(cls, *fields):
 return cls.select(VisitModel, VisitorModel, *fields).join(VisitorModel)

HttpClientService

The built-in HttpClientService provides
an interface for interacting with HTTP servers.

Example

from facture.service import HttpClientService, DatabaseService

from .model import EntryModel

class EntryService(HttpClientService, DatabaseService):
 __model__ = EntryModel

 def __init__(self):
 self.backup_url = 'https://192.168.1.10'

 async def entry_add(self, entry_new):
 entry = await self.create(entry_new)

 self.log.info(f'sending a copy to {self.backup_url}')
 await self.http_post(self.backup_url, entry_new)

 return entry

API

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 About

 		
 Compatibility

 		
 Installing

 		
 License

 		
 Environment

 		
 Instance

 		
 File

 		
 Application

 		
 Manager

 		
 Usage

 		
 Controller

 		
 Routing

 		
 Transformation

 		
 Schemas

 		
 Services

 		
 BaseService

 		
 DatabaseService

 		
 Example

 		
 API

 		
 Models

 		
 HttpClientService

 		
 Example

 		
 API

_static/ajax-loader.gif

