
fabricdocs Documentation
Release 1.0

rameshthoomu

Feb 15, 2017

Key Concepts

1 Overview 3

2 Why Hyperledger Fabric? 5

3 Hyperledger Fabric Glossary 7
3.1 Blockchain Network . 7
3.2 Permissioned Network . 7
3.3 Peer . 7
3.4 Member . 7
3.5 Transaction . 7
3.6 End User . 8
3.7 Ordering Service . 8
3.8 Consensus . 8
3.9 Orderer . 8
3.10 Endorser . 8
3.11 Committer . 8
3.12 Bootstrap . 8
3.13 Block . 9
3.14 System chain . 9
3.15 Channel . 9
3.16 Multi-channel . 9
3.17 Configuration Block . 9
3.18 Genesis Block . 9
3.19 Ledger . 10
3.20 Dynamic membership . 10
3.21 Query/Non-Key Value Query . 10
3.22 Gossip Protocol . 10
3.23 System Chaincode . 10
3.24 Lifecycle System Chaincode . 10
3.25 Configuration System Chaincode . 10
3.26 Endorsement System Chaincode . 11
3.27 Validation System Chaincode . 11
3.28 Policy . 11
3.29 Endorsement policy . 11
3.30 Proposal . 11
3.31 Deploy . 11
3.32 Invoke . 12
3.33 Membership Services . 12

i

3.34 Membership Service Provider . 12
3.35 Initialize . 12
3.36 appshim . 12
3.37 osshim . 13
3.38 Hyperledger Fabric Client SDK . 13
3.39 Chaincode . 13

4 Transaction Data Model 15

5 Security Model 17

6 Multichannel 19

7 Smart Contracts 21

8 Consensus 23

9 Getting Started with v1.0 Hyperledger Fabric - App Developers 25
9.1 Prerequisites and setup . 25
9.2 Curl the source code to create network entities . 26
9.3 Using Docker . 26
9.4 Commands . 26
9.5 Use Docker to spawn network entities & create/join a channel . 26
9.6 Curl the application source code and SDK modules . 27
9.7 Use node SDK to register/enroll user and deploy/invoke/query . 28
9.8 Manually create and join peers to a new channel . 28
9.9 Use cli to deploy, invoke and query . 29
9.10 Creating your initial channel through the cli . 29
9.11 Troubleshooting (optional) . 30
9.12 Clean up . 31
9.13 Helpful Docker tips . 31

10 What’s Included? 33

11 Prerequisites and setup 35

12 Curl the source code to create network entities 37

13 Using Docker 39

14 Commands 41

15 Use Docker to spawn network entities & create/join a channel 43

16 Curl the application source code and SDK modules 45

17 Use node SDK to register/enroll user, followed by deploy/invoke 47

18 Manually create and join peers to a new channel 49

19 Use cli to deploy, invoke and query 51

20 Creating your initial channel through the cli 53

21 Troubleshooting (optional) 55

22 Clean up 57

ii

23 Helpful Docker tips 59

24 Node SDK 61

25 Java SDK 63

26 Python SDK 65

27 Marbles 67

28 Art Auction 69

29 Commercial Paper 71

30 Car Lease 73

31 What is chaincode? 75
31.1 Chaincode interfaces . 75
31.2 Dependencies . 75
31.3 Chaincode APIs . 75
31.4 Response . 76
31.5 Command Line Interfaces . 77
31.6 Deploy a chaincode . 78

32 Learn to write chaincode 79

33 Docker Compose 81

34 Sample Application 83

35 Videos 85

36 Administration and operations 87

37 Debugging & Logging 89

38 Logging Control 91
38.1 Overview . 91
38.2 peer . 91
38.3 Go chaincodes . 92

39 Recipe Book 95

40 Starting a network 97

41 Architecture 99

42 Architecture Deep Dive 101
42.1 Table of contents . 101
42.2 1. System architecture . 102
42.3 2. Basic workflow of transaction endorsement . 105
42.4 3. Endorsement policies . 109
42.5 4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning) 110

43 Endorsement policies 113
43.1 Endorsement policy design . 113
43.2 Endorsement policy syntax in the CLI . 113

iii

43.3 Specifying endorsement policies for a chaincode . 114
43.4 Future enhancements . 114

44 Ordering Service 115

45 Pluggable Ordering implementations 117

46 Ledger 119

47 Gossip protocol 121

48 Fabric CA User’s Guide 123

49 Getting Started 125
49.1 Prerequisites . 125
49.2 Install . 125
49.3 The Fabric CA CLI . 125

50 Fabric CA Server 127

51 Appendix 135
51.1 Postgres SSL Configuration . 135
51.2 MySQL SSL Configuration . 135

52 Components 137

53 Transaction Flow 139

54 Endorsing Peer 141

55 Committing Peer 143

56 Troubleshooting 145

57 Chaincode (Smart Contracts and Digital Assets) 147

58 Confidentiality 149
58.1 How is the confidentiality of transactions and business logic achieved? 149

59 Consensus Algorithm 151

60 Identity Management (Membership Service) 153

61 Usage 155

62 Releases 157

63 Contributions Welcome! 159
63.1 Getting a Linux Foundation account . 159
63.2 Getting help . 159
63.3 Requirements and Use Cases . 159
63.4 Reporting bugs . 160
63.5 Fixing issues and working stories . 160
63.6 Working with a local clone and Gerrit . 160
63.7 What makes a good change request? . 160
63.8 Coding guidelines . 161
63.9 Communication . 161

iv

63.10 Maintainers . 161
63.11 Legal stuff . 162

64 Requesting a Linux Foundation Account 163
64.1 Creating a Linux Foundation ID . 163
64.2 Configuring Gerrit to Use SSH . 163
64.3 Checking Out the Source Code . 164

65 Maintainers 165

66 Using Jira to understand current work items 167

67 Setting up the development environment 169
67.1 Overview . 169
67.2 Prerequisites . 169
67.3 pip, behave and docker-compose . 170
67.4 Steps . 170
67.5 Building the fabric . 171
67.6 Notes . 171

68 Building the fabric 173
68.1 Running the unit tests . 173
68.2 Running Node.js Unit Tests . 173
68.3 Running Behave BDD Tests . 173

69 Building outside of Vagrant 175
69.1 Building on Z . 175
69.2 Building on Power Platform . 175

70 Configuration 177

71 Logging 179

72 Working with Gerrit 181
72.1 Git-review . 181
72.2 Sandbox project . 181
72.3 Getting deeper into Gerrit . 181
72.4 Working with a local clone of the repository . 181
72.5 Submitting a Change . 182
72.6 Adding reviewers . 183
72.7 Reviewing Using Gerrit . 183
72.8 Viewing Pending Changes . 184

73 Submitting a Change to Gerrit 185
73.1 Change Requirements . 185

74 Reviewing a Change 187

75 Gerrit Recommended Practices 189
75.1 Browsing the Git Tree . 189
75.2 Watching a Project . 189
75.3 Commit Messages . 189
75.4 Avoid Pushing Untested Work to a Gerrit Server . 190
75.5 Keeping Track of Changes . 190
75.6 Topic branches . 190
75.7 Creating a Cover Letter for a Topic . 190

v

75.8 Finding Available Topics . 191
75.9 Downloading or Checking Out a Change . 191
75.10 Using Draft Branches . 191
75.11 Using Sandbox Branches . 192
75.12 Updating the Version of a Change . 192
75.13 Rebasing . 193
75.14 Rebasing During a Pull . 193
75.15 Getting Better Logs from Git . 194

76 Testing 195

77 Coding guidelines 197
77.1 Coding Golang . 197

78 Generating gRPC code 199

79 Adding or updating Go packages 201

80 Still Have Questions? 203

81 Quality 205

82 Incubation Notice 207

83 License 209

vi

fabricdocs Documentation, Release 1.0

Warning: This build of the docs is from the “master” branch and Release “1.0“

Key Concepts 1

fabricdocs Documentation, Release 1.0

2 Key Concepts

CHAPTER 1

Overview

Hyperledger Fabric is a robust and flexible blockchain network architecture that provides enterprise-ready security,
scalability, confidentiality and performance. Its unique implementation of distributed ledger technology ensures data
integrity and consistency, while delivering accountability, transparency and efficiency. As a permissioned network,
the fabric delivers a trusted blockchain network, where members are assured that all transactions can be detected and
traced by authorized regulators and auditors.

Hyperledger Fabric separates chaincode execution from transaction ordering, which limits the required levels of trust
and verification across nodes, optimizing network scalability and performance. Private channels provide multi- lat-
eral transactions with the high degree of privacy and confidentiality required for competing businesses and regulated
industries to coexist on a common network. The fabric incorporates a modular approach to blockchain, enabling net-
work designers to plug in their preferred implementations for components such as ordering, identity management and
encryption.

In total, Hyperledger Fabric delivers a uniquely comprehensive, elastic and extensible architecture, distinguishing it
from the alternative blockchain solutions. Planning for the future of enterprise blockchain requires building on a
fully-vetted, open architecture; Hyperledger Fabric is your starting point.

Attention: The Hyperledger Fabric project team is continually working to improve the security, performance and
robustness of the released software, and frequently publishes updates. To stay current as the project progresses,
please see the Communication and Still Have Questions? topics. Your participation in Linux Foundation projects is
welcomed and encouraged!

3

fabricdocs Documentation, Release 1.0

4 Chapter 1. Overview

CHAPTER 2

Why Hyperledger Fabric?

The Hyperledger Fabric project is delivering a blockchain platform designed to allow the exchange of an asset or
the state of an asset to be consented upon, maintained, and viewed by all parties in a permissioned group. A key
characteristic of Hyperledger Fabric is that the asset is defined digitally, with all participants simply agreeing on its
representation/characterization. As such, Hyperledger Fabric can support a broad range of asset types; ranging from
the tangible (real estate and hardware) to the intangible (contracts and intellectual property).

The technology is based on a standard blockchain concept - a shared, replicated ledger. However, Hyperledger Fabric
is based on a Hyperledger Fabric Glossary, meaning all participants are required to be authenticated in order to
participate and transact on the blockchain. Moreover, these identities can be used to govern certain levels of access
control (e.g. this user can read the ledger, but cannot exchange or transfer assets). This dependence on identity is a
great advantage in that varying consensus algorithms (e.g. byzantine or crash fault tolerant) can be implemented in
place of the more compute-intensive Proof-of-Work and Proof-of-Stake varieties. As a result, permissioned networks
tend to provide higher transaction throughput rates and performance.

Once an organization is granted access to the blockchain network Hyperledger Fabric Glossary, it then has the ability
to create and maintain a private channel Hyperledger Fabric Glossary with other specified members. For example,
let’s assume there are four organizations trading jewels. They may decide to use Hyperledger Fabric because they
trust each other, but not to an unconditional extent. They can all agree on the business logic for trading the jewels,
and can all maintain a global ledger to view the current state of their jewel market (call this the consortium channel).
Additionally, two or more of these organizations might decide to form an alternate private blockchain for a certain
exchange that they want to keep confidential (e.g. price X for quantity Y of asset Z). They can perform this trade
without affecting their broader consortium channel, or, if desired, this private channel can broadcast some level of
reference data to their consortium channel.

This is powerful! This provides for great flexibility and potent capabilities, along with the interoperability of multiple
blockchain ledgers within one consortium. This is the first of its kind and allows organizations to curate Hyperledger
Fabric to support the myriad use cases for different businesses and industries. Hyperledger Fabric has already been
successfully implemented in the banking, finance, and retail industries.

We welcome you to the Hyperledger Fabric community and are keen to learn of your architectural and business
requirements, and help determine how Hyperledger Fabric can be leveraged to support your use cases.

5

fabricdocs Documentation, Release 1.0

6 Chapter 2. Why Hyperledger Fabric?

CHAPTER 3

Hyperledger Fabric Glossary

Note: This glossary is structured to prioritize new terms and features specific to architecture. It makes the assumption
that one already possesses a working familiarity with the basic tenets of blockchain.

3.1 Blockchain Network

A blockchain network consists of, at minimum, one peer (responsible for endorsing and committing transactions)
leveraging an ordering service, and a membership services component (certificate authority) that distributes and re-
vokes cryptographic certificates representative of user identities and permissions.

3.2 Permissioned Network

A blockchain network where any entity (node) is required to maintain a member identity on the network. End users
must be authorized and authenticated in order to use the network.

3.3 Peer

Peer is a component that executes, and maintains a ledger of, transactions. There are two roles for a peer – endorser
and committer. The architecture has been designed such that a peer is always a committer, but not necessarily always
an endorser. Peers play no role in the ordering of transactions.

3.4 Member

A Member is a participant (such as a company or organization) that operates components - Peers, Orderers, and
applications - in the blockchain network. A member is identified by its CA certificate (i.e. a unique enrollment). A
Member’s peer will be leveraged by end users in order to perform transaction operations on specific channels.

3.5 Transaction

Refers to an operation in which an authorized end user performs read/write operations against the ledger. There are
three unique types of transactions - deploy, invoke, and query.

7

fabricdocs Documentation, Release 1.0

3.6 End User

An end user is someone who would interact with the blockchain through a set of published APIs (i.e. the hfc SDK).
You can have an admin user who will typically grant permissions to the Member’s components, and a client user,
who, upon proper authentication through the admin user, will drive chaincode applications (deploy, invoke, query) on
various channels. In the case of self-executing transactions, the application itself can also be thought of as the end
user.

3.7 Ordering Service

A centralized or decentralized service that orders transactions in a block. You can select different implementations
of the “ordering” function - e.g “solo” for simplicity and testing, Kafka for crash fault tolerance, or sBFT/PBFT for
byzantine fault tolerance. You can also develop your own protocol to plug into the service.

3.8 Consensus

A broader term overarching the entire transactional flow, which serves to generate an agreement on the order and to
confirm the correctness of the set of transactions constituting a block.

3.9 Orderer

One of the network entities that form the ordering service. A collection of ordering service nodes (OSNs) will order
transactions into blocks according to the network’s chosen ordering implementation. In the case of “solo”, only one
OSN is required. Transactions are “broadcast” to orderers, and then “delivered” as blocks to the appropriate channel.

3.10 Endorser

A specific peer role, where the Endorser peer is responsible for simulating transactions, and in turn preventing unstable
or non-deterministic transactions from passing through the network. A transaction is sent to an endorser in the form
of a transaction proposal. All endorsing peers are also committing peers (i.e. they write to the ledger).

3.11 Committer

A specific peer role, where the Committing peer appends the validated transactions to the channel-specific ledger. A
peer can act as both an endorser and committer, but in more regulated circumstances might only serve as a committer.

3.12 Bootstrap

The initial setup of a network. There is the bootstrap of a peer network, during which policies, system chaincodes,
and cryptographic materials (certs) are disseminated amongst participants, and the bootstrap of an ordering network.
The bootstrap of the ordering network must precede the bootstrap of the peer network, as a peer network is contingent
upon the presence of an ordering service. A network need only be “bootstrapped” once.

8 Chapter 3. Hyperledger Fabric Glossary

fabricdocs Documentation, Release 1.0

3.13 Block

A batch of ordered transactions, potentially containing ones of an invalid nature, that is delivered to the peers for
validation and committal.

3.14 System chain

Contains a configuration block defining the network at a system level.
The system chain lives within the ordering service, and similar to a channel, has an initial configuration containing
information such as: root certificates for participating organizations and ordering service nodes, policies, listening
address for OSN, and configuration details. Any change to the overall network (e.g. a new org joining or a new OSN
being added) will result in a new configuration block being added to the system chain.

The system chain can be thought of as the common binding for a channel or group of channels. For instance, a
collection of financial institutions may form a consortium (represented through the system chain), and then proceed to
create channels relative to their aligned and varying business agendas.

3.15 Channel

A Channel is formed as an offshoot of the system chain; and best thought of as a “topic” for peers to subscribe to, or
rather, a subset of a broader blockchain network. A peer may subscribe on various channels and can only access the
transactions on the subscribed channels. Each channel will have a unique ledger, thus accommodating confidentiality
and execution of multilateral contracts.

3.16 Multi-channel

The fabric will allow for multiple channels with a designated ledger per channel. This capability allows for multilateral
contracts where only the restricted participants on the channel will submit, endorse, order, or commit transactions on
that channel. As such, a single peer can maintain multiple ledgers without compromising privacy and confidentiality.

3.17 Configuration Block

Contains the configuration data defining members and policies for a system chain or channel(s). Any changes to the
channel(s) or overall network (e.g. a new member successfully joining) will result in a new configuration block being
appended to the appropriate chain. This block will contain the contents of the genesis block, plus the delta. The policy
to alter or edit a channel-level configuration block is defined through the Configuration System Chaincode (CSCC).

3.18 Genesis Block

The configuration block that initializes a blockchain network or channel, and also serves as the first block on a chain.

3.13. Block 9

fabricdocs Documentation, Release 1.0

3.19 Ledger

An append-only transaction log managed by peers. Ledger keeps the log of ordered transaction batches. There are
two denotations for ledger; peer and validated. The peer ledger contains all batched transactions coming out of the
ordering service, some of which may in fact be invalid. The validated ledger will contain fully endorsed and validated
transaction blocks. In other words, transactions in the validated ledger have passed the entire gamut of “consensus” -
i.e. they have been endorsed, ordered, and validated.

3.20 Dynamic membership

he fabric will allow for endorsers and committers to come and go based on membership, and the blockchain network
will continue to operate. Dynamic membership is critical when businesses grow and members need to be added or
removed for various reasons.

3.21 Query/Non-Key Value Query

using couchDB 2.0 you now have the capability to leverage an API to perform more complex queries against combina-
tions of variables, including time ranges, transaction types, users, etc. This feature allows for auditors and regulators
to aggregate and mine large chunks of data.

3.22 Gossip Protocol

A communication protocol used among peers in a channel, to maintain their network and to elect Leaders, through
which funnels all communications with the Ordering Service. Gossip allows for data dissemination, therein providing
support for scalability due to the fact that not all peers are required to execute transactions and communicate with the
ordering service.

3.23 System Chaincode

System Chaincode (SCC) is a chaincode built with the peer and run in the same process as the peer. SCC is responsible
for broader configurations of fabric behavior, such as timing and naming services.

3.24 Lifecycle System Chaincode

Lifecycle System Chaincode (LSCC) is a system chaincode that handles deployment, upgrade and termination trans-
actions for user chaincodes.

3.25 Configuration System Chaincode

Configuration System Chaincode (CSCC) is a “management” system chaincode that handles configuration requests to
alter an aspect of a channel (e.g. add a new member). The CSCC will interrogate the channel’s policies to determine
if a new configuration block can be created.

10 Chapter 3. Hyperledger Fabric Glossary

fabricdocs Documentation, Release 1.0

3.26 Endorsement System Chaincode

Endorsement System Chaincode (ESCC) is a system chaincode that andles the endorsement policy for specific pieces
of chaincode deployed on a network, and defines the necessary parameters (percentage or combination of signatures
from endorsing peers) for a transaction proposal to receive a successful proposal response (i.e. endorsement). De-
ployments and invocations of user chaincodes both require a corresponding ESCC, which is defined at the time of the
deployment transaction proposal for the user chaincode.

3.27 Validation System Chaincode

Validation System Chaincode (VSCC) Handles the validation policy for specific pieces of chaincode deployed on a
network. Deployments and invocations of user chaincodes both require a corresponding VSCC, which is defined
at the time of the deployment transaction proposal for the user chaincode. VSCC validates the specified level of
“endorsement” (i.e. endorsement policy) in order to prevent malicious or faulty behavior from the client.

3.28 Policy

There are policies for endorsement, validation, block committal, chaincode management and network/channel man-
agement. Policies are defined through system chaincodes, and contain the requisite specifications for a network action
to succeed. For example, an endorsement policy may require that 100% of endorsers achieve the same result upon
transaction simulation.

3.29 Endorsement policy

A blockchain network must establish rules that govern the endorsement (or not) of proposed, simulated transactions.
This endorsement policy could require that a transaction be endorsed by a minimum number of endorsing peers, a
minimum percentage of endorsing peers, or by all endorsing peers that are assigned to a specific chaincode application.
Policies can be curated based on the application and the desired level of resilience against misbehavior (deliberate or
not) by the endorsing peers. A distinct endorsement policy for deploy transactions, which install new chaincode, is
also required.

3.30 Proposal

A transaction request sent from a client or admin user to one or more peers in a network; examples include deploy,
invoke, query, or configuration request.

3.31 Deploy

Refers to the function through which chaincode applications are deployed on chain . A deploy is first sent from the
client SDK or CLI to a Lifecycle System Chaincode in the form of a proposal.

3.26. Endorsement System Chaincode 11

fabricdocs Documentation, Release 1.0

3.32 Invoke

Used to call chaincode functions. Invocations are captured as transaction proposals, which then pass through a
modular flow of endorsement, ordering, validation, committal. The structure of invoke is a function and an array of
arguments.

3.33 Membership Services

Membership Services manages user identities on a permissioned blockchain network; this function is implemented
through the fabric-ca component. fabric-ca is comprised of a client and server, and handles the distribution
and revocation of enrollment materials (certificates), which serve to identify and authenticate users on a network.

The in-line MembershipSrvc code (MSP) runs on the peers themselves, and is used by the peer when authenticat-
ing transaction processing results, and by the client to verify/authenticate transactions. Membership Services provides
a distinction of roles by combining elements of Public Key Infrastructure (PKI) and decentralization (consensus). By
contrast, non-permissioned networks do not provide member-specific authority or a distinction of roles.

A permissioned blockchain requires entities to register for long-term identity credentials (Enrollment Certificates),
which can be distinguished according to entity type. For users, an Enrollment Certificate authorizes the Transaction
Certificate Authority (TCA) to issue pseudonymous credentials; these certificates authorize transactions submitted by
the user. Transaction certificates persist on the blockchain, and enable authorized auditors to associate, and identify
the transacting parties for otherwise un-linkable transactions.

3.34 Membership Service Provider

The Membership Service Provider (MSP) refers to an abstract component of the system that provides (anonymous)
credentials to clients, and peers for them to participate in a Hyperledger/fabric network. Clients use these credentials
to authenticate their transactions, and peers use these credentials to authenticate transaction processing results (en-
dorsements). While strongly connected to the transaction processing components of the systems, this interface aims to
have membership services components defined, in such a way that alternate implementations of this can be smoothly
plugged in without modifying the core of transaction processing components of the system.

3.35 Initialize

A chaincode method to define the assets and parameters in a piece of chaincode prior to issuing deploys and invoca-
tions. As the name implies, this function should be used to do any initialization to the chaincode, such as configure
the initial state of a key/value pair on the ledger.

3.36 appshim

An application client used by ordering service nodes to process “broadcast” messages arriving from clients or peers.
This shim allows the ordering service to perform membership-related functionality checks. In other words, is a peer or
client properly authorized to perform the requested function (e.g. upgrade chaincode or reconfigure channel settings).

12 Chapter 3. Hyperledger Fabric Glossary

fabricdocs Documentation, Release 1.0

3.37 osshim

An ordering service client used by the application to process ordering service messages (i.e. “deliver” messages) that
are advertised within a channel.

3.38 Hyperledger Fabric Client SDK

Provides a powerful set of APIs and contains myriad “methods” or “calls” that expose the capabilities and functional-
ities in the Hyperledger Fabric code base. For example, addMember , removeMember . The Fabric SDK comes
in multiple flavors - Node.js, Java, and Python, for starters - thus, allowing developers to write application code in any
of those programming languages.

3.39 Chaincode

Embedded logic that encodes the rules for specific types of network transactions. Developers write chaincode applica-
tions, which are then deployed onto a chain by an appropriately authorized member. End users then invoke chaincode
through a client-side application that interfaces with a network peer. Chaincode runs network transactions, which if
validated, are appended to the shared ledger and modify world state.

3.37. osshim 13

fabricdocs Documentation, Release 1.0

14 Chapter 3. Hyperledger Fabric Glossary

CHAPTER 4

Transaction Data Model

...coming soon

15

fabricdocs Documentation, Release 1.0

16 Chapter 4. Transaction Data Model

CHAPTER 5

Security Model

[WIP] Hyperledger Fabric allows for different organizations and participants in a common network to utilize their own
certificate authority, and as a byproduct, implement varying cryptographic algorithms for signing/verifying/identity
attestation. This is done through an MSP process running on both the ordering service and channel levels.

Membership service provider (MSP): A set of cryptographic mechanisms and protocols for issuing and validating
certificates and identities throughout the blockchain network. Identities issued in the scope of a membership service
provider can be evaluated within that membership service provider’s rules validation policies.

17

fabricdocs Documentation, Release 1.0

18 Chapter 5. Security Model

CHAPTER 6

Multichannel

The fabric will allow for multiple channels with a designated ledger per channel (data segregation). This capability
allows for multilateral contracts where only the restricted participants on the channel will submit, endorse, order, or
commit transactions on that channel. As such, a single peer can maintain multiple ledgers without compromising
privacy and confidentiality.

Refer to the multichannel design document for more detailed explanation on the mechanics and architecture.

19

https://docs.google.com/document/d/1eRNxxQ0P8yp4Wh__Vi6ddaN_vhN2RQHP-IruHNUwyhc/edit#heading=h.hml58k6zw29h

fabricdocs Documentation, Release 1.0

20 Chapter 6. Multichannel

CHAPTER 7

Smart Contracts

[WIP] Referred to as “chaincode” in Hyperledger Fabric.

Self-executing logic that encodes the rules for specific types of network transactions. Chaincode (currently written
in Go or Java) is installed and instantiated onto a channel’s peers by an appropriately authorized member. End users
then invoke chaincode through a client-side application that interfaces with a network peer. Chaincode runs network
transactions, which if validated, are appended to the shared ledger and modify world state.

21

fabricdocs Documentation, Release 1.0

22 Chapter 7. Smart Contracts

CHAPTER 8

Consensus

[WIP] Not to be conflated with the ordering process. Consensus in v1 architecture is a broader term overarching the
entire transactional flow, which serves to generate an agreement on the order and to confirm the correctness of the set
of transactions constituting a block.

It is achieved as a byproduct of the various steps and verifications that occur during a transaction’s lifecycle from
proposal to commitment. More information on the high-level data flows is available here.

23

https://jira.hyperledger.org/browse/FAB-37

fabricdocs Documentation, Release 1.0

24 Chapter 8. Consensus

CHAPTER 9

Getting Started with v1.0 Hyperledger Fabric - App Developers

This document demonstrates an example using the Hyperledger Fabric V1.0 architecture. The scenario will include
the creation and joining of channels, client side authentication, and the deployment and invocation of chaincode. CLI
will be used for the creation and joining of the channel and the node SDK will be used for the client authentication,
and chaincode functions utilizing the channel.

Docker Compose will be used to create a consortium of three organizations, each running an endorsing/committing
peer, as well as a “solo” orderer and a Certificate Authority (CA). The cryptographic material, based on standard PKI
implementation, has been pre-generated and is included in the sfhackfest.tar.gz in order to expedite the flow.
The CA, responsible for issuing, revoking and maintaining the crypto material represents one of the organizations and
is needed by the client (node SDK) for authentication. In an enterprise scenario, each organization might have their
own CA, with more complex security measures implemented - e.g. cross-signing certificates, etc.

The network will be generated automatically upon execution of docker-compose up , and the APIs for create
channel and join channel will be explained and demonstrated; as such, a user can go through the steps to manually
generate their own network and channel, or quickly jump to the application development phase.

9.1 Prerequisites and setup

• Docker - v1.13 or higher

• Docker Compose - v1.8 or higher

• Node.js & npm - node v6.9.5 and npm v3.10.10 If you already have node on your machine, use the node website
to install v6.9.5 or issue the following command in your terminal:

nvm install v6.9.5

then execute the following to see your versions:

should be 6.9.5
node -v

AND

should be 3.10.10
npm -v

25

https://www.docker.com/products/overview
https://docs.docker.com/compose/overview/
https://nodejs.org/en/download/

fabricdocs Documentation, Release 1.0

9.2 Curl the source code to create network entities

• Download the cURL tool if not already installed.

• Determine a location on your local machine where you want to place the Fabric artifacts and application code.

mkdir -p <my_dev_workspace>/hackfest
cd <my_dev_workspace>/hackfest

Next, execute the following command:

curl -L https://raw.githubusercontent.com/hyperledger/fabric/master/examples/
→˓sfhackfest/sfhackfest.tar.gz -o sfhackfest.tar.gz 2> /dev/null; tar -xvf
→˓sfhackfest.tar.gz

This command pulls and extracts all of the necessary artifacts to set up your network - Docker
Compose script, channel generate/join script, crypto material for identity attestation, etc. In the
/src/github.com/example_cc directory you will find the chaincode that will be deployed.

Your directory should contain the following:

JDoe-mbp: JohnDoe$ pwd
/Users/JohnDoe
JDoe-mbp: JohnDoe$ ls
sfhackfest.tar.gz channel_test.sh src
ccenv docker-compose-gettingstarted.yml tmp

9.3 Using Docker

You do not need to manually pull any images. The images for - fabric-peer , fabric-orderer , fabric-ca
, and cli are specified in the .yml file and will automatically download, extract, and run when you execute the
docker-compose command.

9.4 Commands

The channel commands are:

• create - create and name a channel in the orderer and get back a genesis block for the channel. The
genesis block is named in accordance with the channel name.

• join - use the genesis block from the create command to issue a join request to a peer.

9.5 Use Docker to spawn network entities & create/join a channel

Ensure the hyperledger/fabric-ccenv image is tagged as latest:

docker-compose -f docker-compose-gettingstarted.yml build

Create network entities, create channel, join peers to channel:

docker-compose -f docker-compose-gettingstarted.yml up -d

26 Chapter 9. Getting Started with v1.0 Hyperledger Fabric - App Developers

https://curl.haxx.se/download.html

fabricdocs Documentation, Release 1.0

Behind the scenes this started six containers (3 peers, a “solo” orderer, cli and CA) in detached mode. A script
- channel_test.sh - embedded within the docker-compose-gettingstarted.yml issued the create
channel and join channel commands within the CLI container. In the end, you are left with a network and a channel
containing three peers - peer0, peer1, peer2.

View your containers:

if you have no other containers running, you will see six
docker ps

Ensure the channel has been created and peers have successfully joined:

docker exec -it cli bash

You should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

To view results for channel creation/join:

more results.txt

You’re looking for:

SUCCESSFUL CHANNEL CREATION
SUCCESSFUL JOIN CHANNEL on PEER0
SUCCESSFUL JOIN CHANNEL on PEER1
SUCCESSFUL JOIN CHANNEL on PEER2

To view genesis block:

more myc1.block

Exit the cli container:

exit

9.6 Curl the application source code and SDK modules

• Prior to issuing the command, make sure you are in the same working directory where you curled the network
code. AND make sure you have exited the cli container.

• Execute the following command:

curl -OOOOOO https://raw.githubusercontent.com/hyperledger/fabric-sdk-node/v1.0-
→˓alpha/examples/balance-transfer/{config.json,deploy.js,helper.js,invoke.
→˓js,query.js,package.json}

This command pulls the javascript code for issuing your deploy, invoke and query calls. It also retrieves dependencies
for the node SDK modules.

• Install the node modules:

You may be prompted for your root password at one or more times during this
→˓process.
npm install

9.6. Curl the application source code and SDK modules 27

fabricdocs Documentation, Release 1.0

You now have all of the necessary prerequisites and Fabric artifacts.

9.7 Use node SDK to register/enroll user and deploy/invoke/query

The individual javascript programs will exercise the SDK APIs to register and enroll the client with the provisioned
Certificate Authority. Once the client is properly authenticated, the programs will demonstrate basic chaincode func-
tionalities - deploy, invoke, and query. Make sure you are in the working directory where you pulled the source code
before proceeding.

Upon success of each node program, you will receive a “200” response in the terminal.

Register/enroll & deploy chaincode (Linux or OSX):

Deploy initializes key value pairs of "a","100" & "b","200".
GOPATH=$PWD node deploy.js

Register/enroll & deploy chaincode (Windows):

Deploy initializes key value pairs of "a","100" & "b","200".
SET GOPATH=%cd%
node deploy.js

Issue an invoke. Move units 100 from “a” to “b”:

node invoke.js

Query against key value “b”:

this should return a value of 300
node query.js

Explore the various node.js programs, along with example_cc.go to better understand the SDK and APIs.

9.8 Manually create and join peers to a new channel

Use the cli container to manually exercise the create channel and join channel APIs.

Channel - myc1 already exists, so let’s create a new channel named myc2 .

Exec into the cli container:

docker exec -it cli bash

If successful, you should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

Send createChannel API to Ordering Service:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

This will return a genesis block - myc2.block - that you can issue join commands with. Next, send a joinChannel
API to peer0 and pass in the genesis block as an argument. The channel is defined within the genesis block:

28 Chapter 9. Getting Started with v1.0 Hyperledger Fabric - App Developers

fabricdocs Documentation, Release 1.0

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer
→˓channel join -b myc2.block

To join the other peers to the channel, simply reissue the above command with peer1 or peer2 specified. For
example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer1:7051 peer
→˓channel join -b myc2.block

Once the peers have all joined the channel, you are able to issues queries against any peer without having to deploy
chaincode to each of them.

9.9 Use cli to deploy, invoke and query

Run the deploy command. This command is deploying a chaincode named mycc to peer0 on the Channel ID myc2
. The constructor message is initializing a and b with values of 100 and 200 respectively.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer
→˓chaincode deploy -C myc2 -n mycc -p github.com/hyperledger/fabric/examples -c '{
→˓"Args":["init","a","100","b","200"]}'

Run the invoke command. This invocation is moving 10 units from a to b .

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer
→˓chaincode invoke -C myc2 -n mycc -c '{"function":"invoke","Args":["move","a","b","10
→˓"]}'

Run the query command. The invocation transferred 10 units from a to b , therefore a query against a should return
the value 90.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer
→˓chaincode query -C myc2 -n mycc -c '{"function":"invoke","Args":["query","a"]}'

You can issue an exit command at any time to exit the cli container.

9.10 Creating your initial channel through the cli

If you want to manually create the initial channel through the cli container, you will need to edit the Docker
Compose file. Use an editor to open docker-compose-gettingstarted.yml and comment out the
channel_test.sh command in your cli image. Simply place a # to the left of the command. (Recall that
this script is executing the create and join channel APIs when you run docker-compose up) For example:

cli:
container_name: cli
<CONTENT REMOVED FOR BREVITY>
working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: sh -c './channel_test.sh; sleep 1000'
command: /bin/sh

Then use the cli commands from the prior two sections.

9.9. Use cli to deploy, invoke and query 29

fabricdocs Documentation, Release 1.0

9.11 Troubleshooting (optional)

If you have existing containers running, you may receive an error indicating that a port is already occupied. If this
occurs, you will need to kill the container that is using said port.

If a file cannot be located, make sure your curl commands executed successfully and make sure you are in the directory
where you pulled the source code.

If you are receiving timeout or GRPC communication errors, make sure you have the correct version of Docker
installed - v1.13.0. Then try restarting your failing docker process. For example:

docker stop peer0

Then:

docker start peer0

Another approach to GRPC and DNS errors (peer failing to resolve with orderer and vice versa) is to hardcode the IP
addresses for each. You will know if there is a DNS issue, because a more results.txt command within the cli
container will display something similar to:

ERROR CREATING CHANNEL
PEER0 ERROR JOINING CHANNEL

Issue a docker inspect <container_name> to ascertain the IP address. For example:

docker inspect peer0 | grep IPAddress

AND

docker inspect orderer | grep IPAddress

Take these values and hard code them into your cli commands. For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=172.21.0.2:7050 peer channel create -c myc1

AND THEN

CORE_PEER_COMMITTER_LEDGER_ORDERER=<IP_ADDRESS> CORE_PEER_ADDRESS=<IP_ADDRESS> peer
→˓channel join -b myc1.block

If you are seeing errors while using the node SDK, make sure you have the correct versions of node.js and npm
installed on your machine. You want node v6.9.5 and npm v3.10.10.

If you ran through the automated channel create/join process (i.e. did not comment out channel_test.sh in the
docker-compose-gettingstarted.yml), then channel - myc1 - and genesis block - myc1.block - have
already been created and exist on your machine. As a result, if you proceed to execute the manual steps in your cli
container:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc1

Then you will run into an error similar to:

<EXACT_TIMESTAMP> UTC [msp] Sign -> DEBU 064 Sign: digest:
→˓5ABA6805B3CDBAF16C6D0DCD6DC439F92793D55C82DB130206E35791BCF18E5F
Error: Got unexpected status: BAD_REQUEST
Usage:

peer channel create [flags]

30 Chapter 9. Getting Started with v1.0 Hyperledger Fabric - App Developers

fabricdocs Documentation, Release 1.0

This occurs because you are attempting to create a channel named myc1 , and this channel already exists! There are
two options. Try issuing the peer channel create command with a different channel name - myc2 . For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

Then join:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer
→˓channel join -b myc2.block

If you do choose to create a new channel, and want to run deploy/invoke/query with the node.js programs, you also
need to edit the “channelID” parameter in the config.json file to match the new channel’s name. For example:

{
"chainName":"fabric-client1",
"chaincodeID":"mycc",
"channelID":"myc2",
"goPath":"../../test/fixtures",
"chaincodePath":"github.com/example_cc",

OR, if you want your channel called - myc1 -, remove your docker containers and then follow the same commands
in the Manually create and join peers to a new channel section.

9.12 Clean up

Shut down your containers:

docker-compose -f docker-compose-gettingstarted.yml down

9.13 Helpful Docker tips

Remove a specific docker container:

docker rm <containerID>

Force removal:

docker rm -f <containerID>

Remove all docker containers:

docker rm -f $(docker ps -aq)

This will merely kill docker containers (i.e. stop the process). You will not lose any images.

Remove an image:

docker rmi <imageID>

Forcibly remove:

docker rmi -f <imageID>

9.12. Clean up 31

fabricdocs Documentation, Release 1.0

Remove all images:

docker rmi -f $(docker images -q)

32 Chapter 9. Getting Started with v1.0 Hyperledger Fabric - App Developers

CHAPTER 10

What’s Included?

This section demonstrates an example using the Hyperledger Fabric V1.0 architecture. The scenario will include the
creation and joining of channels, client side authentication, and the deployment and invocation of chaincode. CLI will
be used for the creation and joining of the channel and the node SDK will be used for the client authentication, and
chaincode functions utilizing the channel.

Docker Compose will be used to create a consortium of three organizations, each running an endorsing/committing
peer, as well as a “solo” orderer and a Certificate Authority (CA). The cryptographic material, based on standard PKI
implementation, has been pre-generated and is included in the sfhackfest.tar.gz in order to expedite the flow.
The CA, responsible for issuing, revoking and maintaining the crypto material, represents one of the organizations and
is needed by the client (node SDK) for authentication. In an enterprise scenario, each organization might have their
own CA, with more complex security measures implemented - e.g. cross-signing certificates, etc.

The network will be generated automatically upon execution of docker-compose up , and the APIs for create
channel and join channel will be explained and demonstrated; as such, a user can go through the steps to manually
generate their own network and channel, or quickly jump to the application development phase.

It is recommended to run through this section in the order it is laid out - node program first, followed by the CLI
approach.

33

fabricdocs Documentation, Release 1.0

34 Chapter 10. What’s Included?

CHAPTER 11

Prerequisites and setup

• Docker - v1.13 or higher

• Docker Compose - v1.8 or higher

• Node.js & npm - node v6.9.5 and npm v3.10.10 If you already have node on your machine, use the node website
to install v6.9.5 or issue the following command in your terminal:

nvm install v6.9.5

then execute the following to see your versions:

should be 6.9.5
node -v

AND

should be 3.10.10
npm -v

35

https://www.docker.com/products/overview
https://docs.docker.com/compose/overview/
https://nodejs.org/en/download/

fabricdocs Documentation, Release 1.0

36 Chapter 11. Prerequisites and setup

CHAPTER 12

Curl the source code to create network entities

• Download the cURL tool if not already installed.

• Determine a location on your local machine where you want to place the Fabric artifacts and application code.

mkdir -p <my_dev_workspace>/hackfest
cd <my_dev_workspace>/hackfest

Next, execute the following command:

curl -L https://raw.githubusercontent.com/hyperledger/fabric/master/examples/
→˓sfhackfest/sfhackfest.tar.gz -o sfhackfest.tar.gz 2> /dev/null; tar -xvf
→˓sfhackfest.tar.gz

This command pulls and extracts all of the necessary artifacts to set up your network - Docker
Compose script, channel generate/join script, crypto material for identity attestation, etc. In the
/src/github.com/example_cc directory you will find the chaincode that will be deployed.

Your directory should contain the following:

JDoe-mbp: JohnDoe$ pwd
/Users/JohnDoe
JDoe-mbp: JohnDoe$ ls
sfhackfest.tar.gz channel_test.sh src
ccenv docker-compose-gettingstarted.yml tmp

37

https://curl.haxx.se/download.html

fabricdocs Documentation, Release 1.0

38 Chapter 12. Curl the source code to create network entities

CHAPTER 13

Using Docker

You do not need to manually pull any images. The images for - fabric-peer , fabric-orderer , fabric-ca
, and cli are specified in the .yml file and will automatically download, extract, and run when you execute the
docker-compose command.

39

fabricdocs Documentation, Release 1.0

40 Chapter 13. Using Docker

CHAPTER 14

Commands

The channel commands are:

• create - create and name a channel in the orderer and get back a genesis block for the channel. The
genesis block is named in accordance with the channel name.

• join - use the genesis block from the create command to issue a join request to a peer.

41

fabricdocs Documentation, Release 1.0

42 Chapter 14. Commands

CHAPTER 15

Use Docker to spawn network entities & create/join a channel

Ensure the hyperledger/fabric-ccenv image is tagged as latest:

docker-compose -f docker-compose-gettingstarted.yml build

Create network entities, create channel, join peers to channel:

docker-compose -f docker-compose-gettingstarted.yml up -d

Behind the scenes this started six containers (3 peers, a “solo” orderer, cli and CA) in detached mode. A script
- channel_test.sh - embedded within the docker-compose-gettingstarted.yml issued the create
channel and join channel commands within the CLI container. In the end, you are left with a network and a channel
containing three peers - peer0, peer1, peer2.

View your containers:

if you have no other containers running, you will see six
docker ps

Ensure the channel has been created and peers have successfully joined:

docker exec -it cli bash

You should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

To view results for channel creation/join:

more results.txt

You’re looking for:

SUCCESSFUL CHANNEL CREATION
SUCCESSFUL JOIN CHANNEL on PEER0
SUCCESSFUL JOIN CHANNEL on PEER1
SUCCESSFUL JOIN CHANNEL on PEER2

To view genesis block:

more myc1.block

Exit the cli container:

43

fabricdocs Documentation, Release 1.0

exit

44 Chapter 15. Use Docker to spawn network entities & create/join a channel

CHAPTER 16

Curl the application source code and SDK modules

• Prior to issuing the command, make sure you are in the same working directory where you curled the network
code. AND make sure you have exited the cli container.

• Execute the following command:

curl -OOOOOO https://raw.githubusercontent.com/hyperledger/fabric-sdk-node/v1.0-
→˓alpha/examples/balance-transfer/{config.json,deploy.js,helper.js,invoke.
→˓js,query.js,package.json}

This command pulls the javascript code for issuing your deploy, invoke and query calls. It also retrieves dependencies
for the node SDK modules.

• Install the node modules:

You may be prompted for your root password at one or more times during this
→˓process.
npm install

You now have all of the necessary prerequisites and Fabric artifacts.

45

fabricdocs Documentation, Release 1.0

46 Chapter 16. Curl the application source code and SDK modules

CHAPTER 17

Use node SDK to register/enroll user, followed by deploy/invoke

The individual javascript programs will exercise the SDK APIs to register and enroll the client with the provisioned
Certificate Authority. Once the client is properly authenticated, the programs will demonstrate basic chaincode func-
tionalities - deploy, invoke, and query. Make sure you are in the working directory where you pulled the source code
before proceeding.

Upon success of each node program, you will receive a “200” response in the terminal.

Register/enroll & deploy chaincode (Linux or OSX):

Deploy initializes key value pairs of "a","100" & "b","200".
GOPATH=$PWD node deploy.js

Register/enroll & deploy chaincode (Windows):

Deploy initializes key value pairs of "a","100" & "b","200".
SET GOPATH=%cd%
node deploy.js

Issue an invoke. Move units 100 from “a” to “b”:

node invoke.js

Query against key value “b”:

this should return a value of 300
node query.js

Explore the various node.js programs, along with example_cc.go to better understand the SDK and APIs.

47

fabricdocs Documentation, Release 1.0

48 Chapter 17. Use node SDK to register/enroll user, followed by deploy/invoke

CHAPTER 18

Manually create and join peers to a new channel

Use the cli container to manually exercise the create channel and join channel APIs.

Channel - myc1 already exists, so let’s create a new channel named myc2 .

Exec into the cli container:

docker exec -it cli bash

If successful, you should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

Send createChannel API to Ordering Service:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

This will return a genesis block - myc2.block - that you can issue join commands with. Next, send a joinChannel
API to peer0 and pass in the genesis block as an argument. The channel is defined within the genesis block:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer
→˓channel join -b myc2.block

To join the other peers to the channel, simply reissue the above command with peer1 or peer2 specified. For
example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer1:7051 peer
→˓channel join -b myc2.block

Once the peers have all joined the channel, you are able to issues queries against any peer without having to deploy
chaincode to each of them.

49

fabricdocs Documentation, Release 1.0

50 Chapter 18. Manually create and join peers to a new channel

CHAPTER 19

Use cli to deploy, invoke and query

Run the deploy command. This command is deploying a chaincode named mycc to peer0 on the Channel ID myc2
. The constructor message is initializing a and b with values of 100 and 200 respectively.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer
→˓chaincode deploy -C myc2 -n mycc -p github.com/hyperledger/fabric/examples -c '{
→˓"Args":["init","a","100","b","200"]}'

Run the invoke command. This invocation is moving 10 units from a to b .

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer
→˓chaincode invoke -C myc2 -n mycc -c '{"function":"invoke","Args":["move","a","b","10
→˓"]}'

Run the query command. The invocation transferred 10 units from a to b , therefore a query against a should return
the value 90.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer
→˓chaincode query -C myc2 -n mycc -c '{"function":"invoke","Args":["query","a"]}'

You can issue an exit command at any time to exit the cli container.

51

fabricdocs Documentation, Release 1.0

52 Chapter 19. Use cli to deploy, invoke and query

CHAPTER 20

Creating your initial channel through the cli

If you want to manually create the initial channel through the cli container, you will need to edit the Docker
Compose file. Use an editor to open docker-compose-gettingstarted.yml and comment out the
channel_test.sh command in your cli image. Simply place a # to the left of the command. (Recall that
this script is executing the create and join channel APIs when you run docker-compose up) For example:

cli:
container_name: cli
<CONTENT REMOVED FOR BREVITY>
working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: sh -c './channel_test.sh; sleep 1000'
command: /bin/sh

Then use the cli commands from above.

53

fabricdocs Documentation, Release 1.0

54 Chapter 20. Creating your initial channel through the cli

CHAPTER 21

Troubleshooting (optional)

If you have existing containers running, you may receive an error indicating that a port is already occupied. If this
occurs, you will need to kill the container that is using said port.

If a file cannot be located, make sure your curl commands executed successfully and make sure you are in the directory
where you pulled the source code.

If you are receiving timeout or GRPC communication errors, make sure you have the correct version of Docker
installed - v1.13.0. Then try restarting your failing docker process. For example:

docker stop peer0

Then:

docker start peer0

Another approach to GRPC and DNS errors (peer failing to resolve with orderer and vice versa) is to hardcode the IP
addresses for each. You will know if there is a DNS issue, because a more results.txt command within the cli
container will display something similar to:

ERROR CREATING CHANNEL
PEER0 ERROR JOINING CHANNEL

Issue a docker inspect <container_name> to ascertain the IP address. For example:

docker inspect peer0 | grep IPAddress

AND

docker inspect orderer | grep IPAddress

Take these values and hard code them into your cli commands. For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=172.21.0.2:7050 peer channel create -c myc1

AND THEN

CORE_PEER_COMMITTER_LEDGER_ORDERER=<IP_ADDRESS> CORE_PEER_ADDRESS=<IP_ADDRESS> peer
→˓channel join -b myc1.block

If you are seeing errors while using the node SDK, make sure you have the correct versions of node.js and npm
installed on your machine. You want node v6.9.5 and npm v3.10.10.

55

fabricdocs Documentation, Release 1.0

If you ran through the automated channel create/join process (i.e. did not comment out channel_test.sh in the
docker-compose-gettingstarted.yml), then channel - myc1 - and genesis block - myc1.block - have
already been created and exist on your machine. As a result, if you proceed to execute the manual steps in your cli
container:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc1

Then you will run into an error similar to:

<EXACT_TIMESTAMP> UTC [msp] Sign -> DEBU 064 Sign: digest:
→˓5ABA6805B3CDBAF16C6D0DCD6DC439F92793D55C82DB130206E35791BCF18E5F
Error: Got unexpected status: BAD_REQUEST
Usage:

peer channel create [flags]

This occurs because you are attempting to create a channel named myc1 , and this channel already exists! There are
two options. Try issuing the peer channel create command with a different channel name - myc2 . For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

Then join:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer
→˓channel join -b myc2.block

If you do choose to create a new channel, and want to run deploy/invoke/query with the node.js programs, you also
need to edit the “channelID” parameter in the config.json file to match the new channel’s name. For example:

{
"chainName":"fabric-client1",
"chaincodeID":"mycc",
"channelID":"myc2",
"goPath":"../../test/fixtures",
"chaincodePath":"github.com/example_cc",

OR, if you want your channel called - myc1 -, remove your docker containers and then follow the same commands
in the Manually create and join peers to a new channel section.

56 Chapter 21. Troubleshooting (optional)

CHAPTER 22

Clean up

Shut down your containers:

docker-compose -f docker-compose-gettingstarted.yml down

57

fabricdocs Documentation, Release 1.0

58 Chapter 22. Clean up

CHAPTER 23

Helpful Docker tips

Remove a specific docker container:

docker rm <containerID>

Force removal:

docker rm -f <containerID>

Remove all docker containers:

docker rm -f $(docker ps -aq)

This will merely kill docker containers (i.e. stop the process). You will not lose any images.

Remove an image:

docker rmi <imageID>

Forcibly remove:

docker rmi -f <imageID>

Remove all images:

docker rmi -f $(docker images -q)

59

fabricdocs Documentation, Release 1.0

60 Chapter 23. Helpful Docker tips

CHAPTER 24

Node SDK

[WIP] ...coming soon

In the meantime, refer to the Hyperledger Fabric SDK design doc for more details on the APIs and specifications.

OR

Refer to the fabric-sdk-node repository in the Hyperledger community.

61

https://docs.google.com/document/d/1R5RtIBMW9fZpli37E5Li5_Q9ve3BnQ4q3gWmGZj6Sv4/edit#heading=h.z6ne0og04bp5
https://github.com/hyperledger/fabric-sdk-node

fabricdocs Documentation, Release 1.0

62 Chapter 24. Node SDK

CHAPTER 25

Java SDK

[WIP] ...coming soon

In the meantime, refer to the Hyperledger Fabric SDK design doc for more details on the APIs and specifications.

OR

Refer to the fabric-sdk-java repository in the Hyperledger community.

63

https://docs.google.com/document/d/1R5RtIBMW9fZpli37E5Li5_Q9ve3BnQ4q3gWmGZj6Sv4/edit#heading=h.z6ne0og04bp5
https://github.com/hyperledger/fabric-sdk-java

fabricdocs Documentation, Release 1.0

64 Chapter 25. Java SDK

CHAPTER 26

Python SDK

[WIP] ...coming soon

In the meantime, refer to the Hyperledger Fabric SDK design doc for more details on the APIs and specifications.

OR

Refer to the fabric-sdk-py repository in the Hyperledger community.

65

https://docs.google.com/document/d/1R5RtIBMW9fZpli37E5Li5_Q9ve3BnQ4q3gWmGZj6Sv4/edit#heading=h.z6ne0og04bp5
https://github.com/hyperledger/fabric-sdk-py

fabricdocs Documentation, Release 1.0

66 Chapter 26. Python SDK

CHAPTER 27

Marbles

[WIP] ...coming soon

The marbles chaincode application demonstrates the ability to create assets (marbles) with unique attributes - size,
color, owner, etc... and trade these assets with fellow participants in a blockchain network. It is not yet stable with v1
codebase.

Learn more about the marbles chaincode and client-side application here

67

https://github.com/IBM-Blockchain/marbles

fabricdocs Documentation, Release 1.0

68 Chapter 27. Marbles

CHAPTER 28

Art Auction

[WIP] ...coming soon

Shows the provenance, attestation, and ownership of a piece of artwork and the ensuing interaction of the various
stakeholders. Not yet stable with v1 codebase.

Learn more about the components here

Learn more about the client-side application here

69

https://github.com/ITPeople-Blockchain/auction
https://github.com/ITPeople-Blockchain/auction-app

fabricdocs Documentation, Release 1.0

70 Chapter 28. Art Auction

CHAPTER 29

Commercial Paper

[WIP] ...coming soon

Web application demonstrating a commercial trading network and the issuance and maturation of trades. Not yet stable
with v1 codebase.

Learn more about the application and underlying chaincode here

71

https://github.com/IBM-Blockchain/cp-web

fabricdocs Documentation, Release 1.0

72 Chapter 29. Commercial Paper

CHAPTER 30

Car Lease

[WIP] ...coming soon

Uses the blockchain to record the lifecycle of a vehicle from materials provenance, manufacture, buyer, all the way to
scrap yard. Not yet stable with v1 codebase.

Learn more about the application and underlying chaincode here

73

https://github.com/IBM-Blockchain/car-lease-demo

fabricdocs Documentation, Release 1.0

74 Chapter 30. Car Lease

CHAPTER 31

What is chaincode?

Chaincode is a piece of code that is written in one of the supported languages such as Go or Java. It is installed and
instantiated through an SDK or CLI onto a network of Hyperledger Fabric peer nodes, enabling interaction with that
network’s shared ledger.

There are three aspects to chaincode development: * The interfaces that the chaincode should implement * APIs the
chaincode can use to interact with the Fabric * A chaincode response

31.1 Chaincode interfaces

A chaincode implements the Chaincode Interface that supports two methods: * Init * Invoke

31.1.1 Init()

Init is called when you first deploy your chaincode. As the name implies, this function is used to do any initialization
your chaincode needs.

31.1.2 Invoke()

Invoke is called when you want to call chaincode functions to do real work (i.e. read and write to the ledger). Invoca-
tions are captured as transactions, which get grouped into blocks on the chain. When you need to update or query the
ledger, you do so by invoking your chaincode.

31.2 Dependencies

The import statement lists a few dependencies for the chaincode to compile successfully. * fmt – contains Println for
debugging/logging. * errors – standard go error format. * shim – contains the definitions for the chaincode interface
and the chaincode stub, which you are required to interact with the ledger.

31.3 Chaincode APIs

When the Init or Invoke function of a chaincode is called, the fabric passes the stub
shim.ChaincodeStubInterface parameter and the chaincode returns a pb.Response . This stub
can be used to call APIs to access to the ledger services, transaction context, or to invoke other chaincodes.

75

https://github.com/hyperledger/fabric/tree/master/core/chaincode/shim

fabricdocs Documentation, Release 1.0

The current APIs are defined in the shim package, and can be generated with the following command:

godoc github.com/hyperledger/fabric/core/chaincode/shim

However, it also includes functions from chaincode.pb.go (protobuffer functions) that are not intended as public APIs.
The best practice is to look at the function definitions in chaincode.go and and the examples directory.

31.4 Response

The chaincode response comes in the form of a protobuffer.

message Response {

// A status code that should follow the HTTP status codes.
int32 status = 1;

// A message associated with the response code.
string message = 2;

// A payload that can be used to include metadata with this response.
bytes payload = 3;

}

The chaincode will also return events. Message events and chaincode events.

messageEvent {

oneof Event {

//Register consumer sent event
Register register = 1;

//producer events common.
Block block = 2;
ChaincodeEvent chaincodeEvent = 3;
Rejection rejection = 4;

//Unregister consumer sent events
Unregister unregister = 5;

}

}

messageChaincodeEvent {

string chaincodeID = 1;
string txID = 2;
string eventName = 3;
bytes payload = 4;

}

Once developed and deployed, there are two ways to interact with the chaincode - through an SDK or the CLI. The
steps for CLI are described below. For SDK interaction, refer to the balance transfer samples. Note: This SDK

76 Chapter 31. What is chaincode?

https://github.com/hyperledger/fabric/tree/master/examples/chaincode/go
https://github.com/hyperledger/fabric-sdk-node/tree/master/examples/balance-transfer

fabricdocs Documentation, Release 1.0

interaction is covered in the Getting Started section.

31.5 Command Line Interfaces

To view the currently available CLI commands, execute the following:

this assumes that you have correctly set the GOPATH variable and cloned the Fabric
→˓codebase into that path
cd /opt/gopath/src/github.com/hyperledger/fabric
build /bin/peer

You will see output similar to the example below. (NOTE: rootcommand below is hardcoded in main.go. Currently,
the build will create a peer executable file).

Usage:
peer [flags]
peer [command]

Available Commands:
version Print fabric peer version.
node node specific commands.
channel channel specific commands.
chaincode chaincode specific commands.
logging logging specific commands

Flags:
--logging-level string: Default logging level and overrides, see core.yaml for

→˓full syntax
--test.coverprofile string: Done (default “coverage.cov)
-v, --version: Display current version of fabric peer server

Use "peer [command] --help" for more information about a command.

The peer command supports several subcommands and flags, as shown above. To facilitate its use in scripted
applications, the peer command always produces a non-zero return code in the event of command failure. Upon
success, many of the subcommands produce a result on stdout as shown in the table below:

Command

stdout result in the event of success

version

String form of peer.version defined in core.yaml

node start

N/A

node status

String form of StatusCode

node stop

String form of StatusCode

chaincode deploy

The chaincode container name (hash) required for subsequent chaincode invoke and chaincode query commands

31.5. Command Line Interfaces 77

fabricdocs Documentation, Release 1.0

chaincode invoke

The transaction ID (UUID)

chaincode query

By default, the query result is formatted as a printable

channel create

Create a chain

channel join

Adds a peer to the chain

Command line options support writing this value as raw bytes (-r, –raw) or formatted as the hexadecimal representation
of the raw bytes (-x, –hex). If the query response is empty then nothing is output.

31.6 Deploy a chaincode

[WIP] - the CLI commands need to be refactored based on the new deployment model. Channel Create and Channel
Join will remain the same.

78 Chapter 31. What is chaincode?

CHAPTER 32

Learn to write chaincode

[WIP] ...coming soon

Teaches a developer how to write chaincode functions and implement the necessary interfaces to create generic assets.

In the meantime, visit the learn chaincode repo here to familiarize yourself with high level concepts and go code.

79

https://github.com/IBM-Blockchain/learn-chaincode

fabricdocs Documentation, Release 1.0

80 Chapter 32. Learn to write chaincode

CHAPTER 33

Docker Compose

[WIP] ...coming soon

This section will explain how to use Docker Compose to stand up the necessary components for a blockchain network.
The various environment variables correlated to each image will be explained, and different configurations will be
outlined.

81

fabricdocs Documentation, Release 1.0

82 Chapter 33. Docker Compose

CHAPTER 34

Sample Application

[WIP] ...coming soon

In the meantime, refer to the Asset transfer through SDK topic.

83

fabricdocs Documentation, Release 1.0

84 Chapter 34. Sample Application

CHAPTER 35

Videos

Refer to the Hyperledger Fabric libary on youtube. The collection contains developers demonstrating various v1
features and components such as: ledger, channels, gossip, SDK, chaincode, MSP, and more...

85

https://www.youtube.com/channel/UCCFdgCWH_1vCndMPVqQlwZw

fabricdocs Documentation, Release 1.0

86 Chapter 35. Videos

CHAPTER 36

Administration and operations

[WIP] ...coming soon

87

fabricdocs Documentation, Release 1.0

88 Chapter 36. Administration and operations

CHAPTER 37

Debugging & Logging

[WIP] ...coming soon

89

fabricdocs Documentation, Release 1.0

90 Chapter 37. Debugging & Logging

CHAPTER 38

Logging Control

38.1 Overview

Logging in the peer application and in the shim interface to chaincodes is programmed using facilities provided
by the github.com/op/go-logging package. This package supports

• Logging control based on the severity of the message

• Logging control based on the software module generating the message

• Different pretty-printing options based on the severity of the message

All logs are currently directed to stderr , and the pretty-printing is currently fixed. However global and module-
level control of logging by severity is provided for both users and developers. There are currently no formalized rules
for the types of information provided at each severity level, however when submitting bug reports the developers may
want to see full logs down to the DEBUG level.

In pretty-printed logs the logging level is indicated both by color and by a 4-character code, e.g, “ERRO” for ERROR,
“DEBU” for DEBUG, etc. In the logging context a module is an arbitrary name (string) given by developers to
groups of related messages. In the pretty-printed example below, the logging modules “peer”, “rest” and “main” are
generating logs.

16:47:09.634 [peer] GetLocalAddress -> INFO 033 Auto detected peer address: 9.3.158.
→˓178:7051
16:47:09.635 [rest] StartOpenchainRESTServer -> INFO 035 Initializing the REST
→˓service...
16:47:09.635 [main] serve -> INFO 036 Starting peer with id=name:"vp1" , network
→˓id=dev, address=9.3.158.178:7051, discovery.rootnode=, validator=true

An arbitrary number of logging modules can be created at runtime, therefore there is no “master list” of modules, and
logging control constructs can not check whether logging modules actually do or will exist. Also note that the logging
module system does not understand hierarchy or wildcarding: You may see module names like “foo/bar” in the code,
but the logging system only sees a flat string. It doesn’t understand that “foo/bar” is related to “foo” in any way, or
that “foo/*” might indicate all “submodules” of foo.

38.2 peer

The logging level of the peer command can be controlled from the command line for each invocation using the
--logging-level flag, for example

91

fabricdocs Documentation, Release 1.0

peer node start --logging-level=debug

The default logging level for each individual peer subcommand can also be set in the core.yaml file. For example
the key logging.node sets the default level for the node subcommmand. Comments in the file also explain how
the logging level can be overridden in various ways by using environment varaibles.

Logging severity levels are specified using case-insensitive strings chosen from

CRITICAL | ERROR | WARNING | NOTICE | INFO | DEBUG

The full logging level specification for the peer is of the form

[<module>[,<module>...]=]<level>[:[<module>[,<module>...]=]<level>...]

A logging level by itself is taken as the overall default. Otherwise, overrides for individual or groups of modules can
be specified using the

<module>[,<module>...]=<level>

syntax. Examples of specifications (valid for all of --logging-level , environment variable and core.yaml set-
tings):

info - Set default to INFO
warning:main,db=debug:chaincode=info - Default WARNING; Override for
→˓main,db,chaincode
chaincode=info:main=debug:db=debug:warning - Same as above

38.3 Go chaincodes

The standard mechanism to log within a chaincode application is to integrate with the logging transport exposed to
each chaincode instance via the peer. The chaincode shim package provides APIs that allow a chaincode to create
and manage logging objects whose logs will be formatted and interleaved consistently with the shim logs.

As independently executed programs, user-provided chaincodes may technically also produce output on stdout/stderr.
While naturally useful for “devmode”, these channels are normally disabled on a production network to mitigate abuse
from broken or malicious code. However, it is possible to enable this output even for peer-managed containers (e.g.
“netmode”) on a per-peer basis via the CORE_VM_DOCKER_ATTACHSTDOUT=true configuration option.

Once enabled, each chaincode will receive its own logging channel keyed by its container-id. Any output written to
either stdout or stderr will be integrated with the peer’s log on a per-line basis. It is not recommended to enable this
for production.

38.3.1 API

NewLogger(name string) *ChaincodeLogger - Create a logging object for use by a chaincode

(c *ChaincodeLogger) SetLevel(level LoggingLevel) - Set the logging level of the logger

(c *ChaincodeLogger) IsEnabledFor(level LoggingLevel) bool - Return true if logs will be
generated at the given level

LogLevel(levelString string) (LoggingLevel,error) - Convert a string to a LoggingLevel

A LoggingLevel is a member of the enumeration

92 Chapter 38. Logging Control

https://github.com/hyperledger/fabric/blob/master/peer/core.yaml
https://github.com/hyperledger/fabric/blob/master/peer/core.yaml

fabricdocs Documentation, Release 1.0

LogDebug, LogInfo, LogNotice, LogWarning, LogError, LogCritical

which can be used directly, or generated by passing a case-insensitive version of the strings

DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL

to the LogLevel API.

Formatted logging at various severity levels is provided by the functions

(c *ChaincodeLogger) Debug(args ...interface{})
(c *ChaincodeLogger) Info(args ...interface{})
(c *ChaincodeLogger) Notice(args ...interface{})
(c *ChaincodeLogger) Warning(args ...interface{})
(c *ChaincodeLogger) Error(args ...interface{})
(c *ChaincodeLogger) Critical(args ...interface{})

(c *ChaincodeLogger) Debugf(format string, args ...interface{})
(c *ChaincodeLogger) Infof(format string, args ...interface{})
(c *ChaincodeLogger) Noticef(format string, args ...interface{})
(c *ChaincodeLogger) Warningf(format string, args ...interface{})
(c *ChaincodeLogger) Errorf(format string, args ...interface{})
(c *ChaincodeLogger) Criticalf(format string, args ...interface{})

The f forms of the logging APIs provide for precise control over the formatting of the logs. The non-f forms of the
APIs currently insert a space between the printed representations of the arguments, and arbitrarily choose the formats
to use.

In the current implementation, the logs produced by the shim and a ChaincodeLogger are timestamped, marked
with the logger name and severity level, and written to stderr . Note that logging level control is currently based
on the name provided when the ChaincodeLogger is created. To avoid ambiguities, all ChaincodeLogger
should be given unique names other than “shim”. The logger name will appear in all log messages created by the
logger. The shim logs as “shim”.

Go language chaincodes can also control the logging level of the chaincode shim interface through the
SetLoggingLevel API.

SetLoggingLevel(LoggingLevel level) - Control the logging level of the shim

The default logging level for the shim is LogDebug .

Below is a simple example of how a chaincode might create a private logging object logging at the LogInfo level,
and also control the amount of logging provided by the shim based on an environment variable.

var logger = shim.NewLogger("myChaincode")

func main() {

logger.SetLevel(shim.LogInfo)

logLevel, _ := shim.LogLevel(os.Getenv("SHIM_LOGGING_LEVEL"))
shim.SetLoggingLevel(logLevel)
...

}

38.3. Go chaincodes 93

fabricdocs Documentation, Release 1.0

94 Chapter 38. Logging Control

CHAPTER 39

Recipe Book

[WIP] ...coming soon

Intended to contain best practices and configurations for MSP, networks, ordering service, channels, ACL, stress,
policies, chaincode development, functions, etc...

95

fabricdocs Documentation, Release 1.0

96 Chapter 39. Recipe Book

CHAPTER 40

Starting a network

[WIP] ...coming soon

Intended to contain the recommended steps for generating prerequisite cryptographic material and then bootstrapping
an ordering service (i.e. overall network) with participating organizations, ordering node certificates, load balancing,
configuration, policies, etc...

97

fabricdocs Documentation, Release 1.0

98 Chapter 40. Starting a network

CHAPTER 41

Architecture

Hyperledger Fabric is a unique implementation of distributed ledger technology (DLT) that ensures data integrity and
consistency while delivering accountability, transparency, and efficiencies unmatched by other blockchain or DLT
technology.

Hyperledger Fabric implements a specific type of permissioned blockchain network on which members can track,
exchange and interact with digitized assets using transactions that are governed by smart contracts - what we call
chaincode - in a secure and robust manner while enabling participants in the network to interact in a manner that
ensures that their transactions and data can be restricted to an identified subset of network participants - something we
call a channel.

The blockchain network supports the ability for members to establish shared ledgers that contain the source of truth
about those digitized assets, and recorded transactions, that is replicated in a secure manner only to the set of nodes
participating in that channel.

The Hyperledger Fabric architecture is comprised of the following components: peer nodes, ordering nodes and the
clients applications that are likely leveraging one of the language-specific Fabric SDKs. These components have
identities derived from certificate authorities. Hyperledger Fabric also offers a certificate authority service, fabric-ca
but, you may substitute that with your own.

All peer nodes maintain the ledger/state by committing transactions. In that role, the peer is called a committer. Some
peers are also responsible for simulating transactions by executing chaincodes (smart contracts) and endorsing the
result. In that role the peer is called an endorser. A peer may be an endorser for certain types of transactions and just
a ledger maintainer (committer) for others.

The orderers consent on the order of transactions in a block to be committed to the ledger. In common blockchain
architectures (including earlier versions of the Hyperledger Fabric) the roles played by the peer and orderer nodes
were unified (cf. validating peer in Hyperledger Fabric v0.6). The orderers also play a fundamental role in the creation
and management of channels.

Two or more participants may create and join a channel, and begin to interact. Among other things, the policies
governing the channel membership and chaincode lifecycle are specified at the time of channel creation. Initially, the
members in a channel agree on the terms of the chaincode that will govern the transactions. When consensus is reached
on the proposal to deploy a given chaincode (as governed by the life cycle policy for the channel), it is committed to
the ledger.

Once the chaincode is deployed to the peer nodes in the channel, end users with the right privileges can propose
transactions on the channel by using one of the language-specific client SDKs to invoke functions on the deployed
chaincode.

The proposed transactions are sent to endorsers that execute the chaincode (also called “simulated the transaction”).
On successful execution, endorse the result using the peer’s identity and return the result to the client that initiated the
proposal.

99

fabricdocs Documentation, Release 1.0

The client application ensures that the results from the endorsers are consistent and signed by the appropriate endorsers,
according to the endorsement policy for that chaincode and, if so, the application then sends the transaction, comprised
of the result and endorsements, to the ordering service.

Ordering nodes order the transactions - the result and endorsements received from the clients - into a block which is
then sent to the peer nodes to be committed to the ledger. The peers then validate the transaction using the endorsement
policy for the transaction’s chaincode and against the ledger for consistency of result.

Some key capabilities of Hyperledger Fabric include:

• Allows for complex query for applications that need ability to handle complex data structures.

• Implements a permissioned network, also known as a consortia network, where all members are known to each
other.

• Incorporates a modular approach to various capabilities, enabling network designers to plug in their preferred
implementations for various capabilities such as consensus (ordering), identity management, and encryption.

• Provides a flexible approach for specifying policies and pluggable mechanisms to enforce them.

• Ability to have multiple channels, isolated from one another, that allows for multi-lateral transactions amongst
select peer nodes, thereby ensuring high degrees of privacy and confidentiality required by competing businesses
and highly regulated industries on a common network.

• Network scalability and performance are achieved through separation of chaincode execution from transaction
ordering, which limits the required levels of trust and verification across nodes for optimization.

For a deeper dive into the details, please visit this document.

100 Chapter 41. Architecture

CHAPTER 42

Architecture Deep Dive

This page documents the architecture of a blockchain infrastructure with the roles of a blockchain node separated
into roles of peers (who maintain state/ledger) and orderers (who consent on the order of transactions included in the
ledger). In common blockchain architectures (including Hyperledger Fabric v0.6 and earlier) these roles are unified (cf.
validating peer in Hyperledger Fabric v0.6). The architecture also introduces endorsing peers (endorsers), as special
type of peers responsible for simulating execution and endorsing transactions (roughly corresponding to executing
transactions in HL Fabric 0.6).

The architecture has the following advantages compared to the design in which peers/orderers/endorsers are unified
(e.g., HL Fabric v0.6).

• Chaincode trust flexibility. The architecture separates trust assumptions for chaincodes (blockchain applica-
tions) from trust assumptions for ordering. In other words, the ordering service may be provided by one set of
nodes (orderers) and tolerate some of them to fail or misbehave, and the endorsers may be different for each
chaincode.

• Scalability. As the endorser nodes responsible for particular chaincode are orthogonal to the orderers, the
system may scale better than if these functions were done by the same nodes. In particular, this results when
different chaincodes specify disjoint endorsers, which introduces a partitioning of chaincodes between endorsers
and allows parallel chaincode execution (endorsement). Besides, chaincode execution, which can potentially be
costly, is removed from the critical path of the ordering service.

• Confidentiality. The architecture facilitates deployment of chaincodes that have confidentiality requirements
with respect to the content and state updates of its transactions.

• Consensus modularity. The architecture is modular and allows pluggable consensus (i.e., ordering service)
implementations.

This architecture drives the development of Hyperledger Fabric post-v0.6. As detailed below, some of its aspects are
to be included in Hyperledger Fabric v1, whereas others are postponed to post-v1 versions of Hyperledger Fabric.

42.1 Table of contents

Part I: Elements of the architecture relevant to Hyperledger Fabric v1

1. System architecture

2. Basic workflow of transaction endorsement

3. Endorsement policies

Part II: Post-v1 elements of the architecture

4. Ledger checkpointing (pruning)

101

fabricdocs Documentation, Release 1.0

42.2 1. System architecture

The blockchain is a distributed system consisting of many nodes that communicate with each other. The blockchain
runs programs called chaincode, holds state and ledger data, and executes transactions. The chaincode is the central
element as transactions are operations invoked on the chaincode. Transactions have to be “endorsed” and only endorsed
transactions may be committed and have an effect on the state. There may exist one or more special chaincodes for
management functions and parameters, collectively called system chaincodes.

42.2.1 1.1. Transactions

Transactions may be of two types:

• Deploy transactions create new chaincode and take a program as parameter. When a deploy transaction executes
successfully, the chaincode has been installed “on” the blockchain.

• Invoke transactions perform an operation in the context of previously deployed chaincode. An invoke transaction
refers to a chaincode and to one of its provided functions. When successful, the chaincode executes the specified
function - which may involve modifying the corresponding state, and returning an output.

As described later, deploy transactions are special cases of invoke transactions, where a deploy transaction that creates
new chaincode, corresponds to an invoke transaction on a system chaincode.

Remark: This document currently assumes that a transaction either creates new chaincode or invokes an operation
provided by *one already deployed chaincode. This document does not yet describe: a) optimizations for query (read-
only) transactions (included in v1), b) support for cross-chaincode transactions (post-v1 feature).*

42.2.2 1.2. Blockchain datastructures

1.2.1. State

The latest state of the blockchain (or, simply, state) is modeled as a versioned key/value store (KVS), where keys are
names and values are arbitrary blobs. These entries are manipulated by the chaincodes (applications) running on the
blockchain through put and get KVS-operations. The state is stored persistently and updates to the state are logged.
Notice that versioned KVS is adopted as state model, an implementation may use actual KVSs, but also RDBMSs or
any other solution.

More formally, state s is modeled as an element of a mapping K -> (V X N) , where:

• K is a set of keys

• V is a set of values

• N is an infinite ordered set of version numbers. Injective function next: N -> N takes an element of N
and returns the next version number.

Both V and N contain a special element \bot , which is in case of N the lowest element. Initially all keys are mapped
to (\bot,\bot) . For s(k)=(v,ver) we denote v by s(k).value , and ver by s(k).version .

KVS operations are modeled as follows:

• put(k,v) , for k\in K and v\in V , takes the blockchain state s and changes it to s' such that
s'(k)=(v,next(s(k).version)) with s'(k')=s(k') for all k'!=k .

• get(k) returns s(k) .

102 Chapter 42. Architecture Deep Dive

fabricdocs Documentation, Release 1.0

State is maintained by peers, but not by orderers and clients.

State partitioning. Keys in the KVS can be recognized from their name to belong to a particular chaincode, in the
sense that only transaction of a certain chaincode may modify the keys belonging to this chaincode. In principle, any
chaincode can read the keys belonging to other chaincodes. Support for cross-chaincode transactions, that modify the
state belonging to two or more chaincodes is a post-v1 feature.

1.2.2 Ledger

Ledger provides a verifiable history of all successful state changes (we talk about valid transactions) and unsuccessful
attempts to change state (we talk about invalid transactions), occurring during the operation of the system.

Ledger is constructed by the ordering service (see Sec 1.3.3) as a totally ordered hashchain of blocks of (valid or
invalid) transactions. The hashchain imposes the total order of blocks in a ledger and each block contains an array of
totally ordered transactions. This imposes total order across all transactions.

Ledger is kept at all peers and, optionally, at a subset of orderers. In the context of an orderer we refer to the Ledger
as to OrdererLedger , whereas in the context of a peer we refer to the ledger as to PeerLedger . PeerLedger
differs from the OrdererLedger in that peers locally maintain a bitmask that tells apart valid transactions from
invalid ones (see Section XX for more details).

Peers may prune PeerLedger as described in Section XX (post-v1 feature). Orderers maintain OrdererLedger
for fault-tolerance and availability (of the PeerLedger) and may decide to prune it at anytime, provided that
properties of the ordering service (see Sec. 1.3.3) are maintained.

The ledger allows peers to replay the history of all transactions and to reconstruct the state. Therefore, state as
described in Sec 1.2.1 is an optional datastructure.

42.2.3 1.3. Nodes

Nodes are the communication entities of the blockchain. A “node” is only a logical function in the sense that multiple
nodes of different types can run on the same physical server. What counts is how nodes are grouped in “trust domains”
and associated to logical entities that control them.

There are three types of nodes:

1. Client or submitting-client: a client that submits an actual transaction-invocation to the endorsers, and broad-
casts transaction-proposals to the ordering service.

2. Peer: a node that commits transactions and maintains the state and a copy of the ledger (see Sec, 1.2). Besides,
peers can have a special endorser role.

3. Ordering-service-node or orderer: a node running the communication service that implements a delivery
guarantee, such as atomic or total order broadcast.

The types of nodes are explained next in more detail.

1.3.1. Client

The client represents the entity that acts on behalf of an end-user. It must connect to a peer for communicating with
the blockchain. The client may connect to any peer of its choice. Clients create and thereby invoke transactions.

As detailed in Section 2, clients communicate with both peers and the ordering service.

42.2. 1. System architecture 103

fabricdocs Documentation, Release 1.0

1.3.2. Peer

A peer receives ordered state updates in the form of blocks from the ordering service and maintain the state and the
ledger.

Peers can additionally take up a special role of an endorsing peer, or an endorser. The special function of an endors-
ing peer occurs with respect to a particular chaincode and consists in endorsing a transaction before it is committed.
Every chaincode may specify an endorsement policy that may refer to a set of endorsing peers. The policy defines the
necessary and sufficient conditions for a valid transaction endorsement (typically a set of endorsers’ signatures), as de-
scribed later in Sections 2 and 3. In the special case of deploy transactions that install new chaincode the (deployment)
endorsement policy is specified as an endorsement policy of the system chaincode.

1.3.3. Ordering service nodes (Orderers)

The orderers form the ordering service, i.e., a communication fabric that provides delivery guarantees. The ordering
service can be implemented in different ways: ranging from a centralized service (used e.g., in development and
testing) to distributed protocols that target different network and node fault models.

Ordering service provides a shared communication channel to clients and peers, offering a broadcast service for mes-
sages containing transactions. Clients connect to the channel and may broadcast messages on the channel which are
then delivered to all peers. The channel supports atomic delivery of all messages, that is, message communication with
total-order delivery and (implementation specific) reliability. In other words, the channel outputs the same messages
to all connected peers and outputs them to all peers in the same logical order. This atomic communication guaran-
tee is also called total-order broadcast, atomic broadcast, or consensus in the context of distributed systems. The
communicated messages are the candidate transactions for inclusion in the blockchain state.

Partitioning (ordering service channels). Ordering service may support multiple channels similar to the topics of a
publish/subscribe (pub/sub) messaging system. Clients can connects to a given channel and can then send messages
and obtain the messages that arrive. Channels can be thought of as partitions - clients connecting to one channel
are unaware of the existence of other channels, but clients may connect to multiple channels. Even though some
ordering service implementations included with Hyperledger Fabric v1 will support multiple channels, for simplicity
of presentation, in the rest of this document, we assume ordering service consists of a single channel/topic.

Ordering service API. Peers connect to the channel provided by the ordering service, via the interface provided by
the ordering service. The ordering service API consists of two basic operations (more generally asynchronous events):

TODO add the part of the API for fetching particular blocks under client/peer specified sequence numbers.

• broadcast(blob) : a client calls this to broadcast an arbitrary message blob for dissemination over the
channel. This is also called request(blob) in the BFT context, when sending a request to a service.

• deliver(seqno,prevhash,blob) : the ordering service calls this on the peer to deliver the message
blob with the specified non-negative integer sequence number (seqno) and hash of the most recently deliv-
ered blob (prevhash). In other words, it is an output event from the ordering service. deliver() is also
sometimes called notify() in pub-sub systems or commit() in BFT systems.

Ledger and block formation. The ledger (see also Sec. 1.2.2) contains all data output by the ordering service. In a
nutshell, it is a sequence of deliver(seqno,prevhash,blob) events, which form a hash chain according to
the computation of prevhash described before.

Most of the time, for efficiency reasons, instead of outputting individual transactions (blobs), the ordering service will
group (batch) the blobs and output blocks within a single deliver event. In this case, the ordering service must
impose and convey a deterministic ordering of the blobs within each block. The number of blobs in a block may be
chosen dynamically by an ordering service implementation.

In the following, for ease of presentation, we define ordering service properties (rest of this subsection) and explain the
workflow of transaction endorsement (Section 2) assuming one blob per deliver event. These are easily extended

104 Chapter 42. Architecture Deep Dive

fabricdocs Documentation, Release 1.0

to blocks, assuming that a deliver event for a block corresponds to a sequence of individual deliver events for
each blob within a block, according to the above mentioned deterministic ordering of blobs within a blocs.

Ordering service properties

The guarantees of the ordering service (or atomic-broadcast channel) stipulate what happens to a broadcasted message
and what relations exist among delivered messages. These guarantees are as follows:

1. Safety (consistency guarantees): As long as peers are connected for sufficiently long periods of time to the
channel (they can disconnect or crash, but will restart and reconnect), they will see an identical series of delivered
(seqno,prevhash,blob) messages. This means the outputs (deliver() events) occur in the same
order on all peers and according to sequence number and carry identical content (blob and prevhash) for
the same sequence number. Note this is only a logical order, and a deliver(seqno,prevhash,blob)
on one peer is not required to occur in any real-time relation to deliver(seqno,prevhash,blob) that
outputs the same message at another peer. Put differently, given a particular seqno , no two correct peers
deliver different prevhash or blob values. Moreover, no value blob is delivered unless some client (peer)
actually called broadcast(blob) and, preferably, every broadcasted blob is only delivered once.

Furthermore, the deliver() event contains the cryptographic hash of the data in the previous deliver()
event (prevhash). When the ordering service implements atomic broadcast guarantees, prevhash is the
cryptographic hash of the parameters from the deliver() event with sequence number seqno-1 . This
establishes a hash chain across deliver() events, which is used to help verify the integrity of the ordering
service output, as discussed in Sections 4 and 5 later. In the special case of the first deliver() event,
prevhash has a default value.

2. Liveness (delivery guarantee): Liveness guarantees of the ordering service are specified by a ordering service
implementation. The exact guarantees may depend on the network and node fault model.

In principle, if the submitting client does not fail, the ordering service should guarantee that every correct peer
that connects to the ordering service eventually delivers every submitted transaction.

To summarize, the ordering service ensures the following properties:

• Agreement. For any two events at correct peers deliver(seqno,prevhash0,blob0) and
deliver(seqno,prevhash1,blob1) with the same seqno , prevhash0==prevhash1 and
blob0==blob1 ;

• Hashchain integrity. For any two events at correct peers deliver(seqno-1,prevhash0,blob0) and
deliver(seqno,prevhash,blob) , prevhash = HASH(seqno-1||prevhash0||blob0) .

• No skipping. If an ordering service outputs deliver(seqno,prevhash,blob) at a correct peer p, such
that seqno>0 , then p already delivered an event deliver(seqno-1,prevhash0,blob0) .

• No creation. Any event deliver(seqno,prevhash,blob) at a correct peer must be preceded by a
broadcast(blob) event at some (possibly distinct) peer;

• No duplication (optional, yet desirable). For any two events broadcast(blob) and
broadcast(blob') , when two events deliver(seqno0,prevhash0,blob) and
deliver(seqno1,prevhash1,blob') occur at correct peers and blob == blob' , then
seqno0==seqno1 and prevhash0==prevhash1 .

• Liveness. If a correct client invokes an event broadcast(blob) then every correct peer “eventually” issues
an event deliver(*,*,blob) , where * denotes an arbitrary value.

42.3 2. Basic workflow of transaction endorsement

In the following we outline the high-level request flow for a transaction.

42.3. 2. Basic workflow of transaction endorsement 105

fabricdocs Documentation, Release 1.0

Remark: Notice that the following protocol *does not assume that all transactions are deterministic, i.e., it allows for
non-deterministic transactions.*

42.3.1 2.1. The client creates a transaction and sends it to endorsing peers of its
choice

To invoke a transaction, the client sends a PROPOSE message to a set of endorsing peers of its choice (possibly not
at the same time - see Sections 2.1.2. and 2.3.). The set of endorsing peers for a given chaincodeID is made
available to client via peer, which in turn knows the set of endorsing peers from endorsement policy (see Section 3).
For example, the transaction could be sent to all endorsers of a given chaincodeID . That said, some endorsers
could be offline, others may object and choose not to endorse the transaction. The submitting client tries to satisfy the
policy expression with the endorsers available.

In the following, we first detail PROPOSE message format and then discuss possible patterns of interaction between
submitting client and endorsers.

42.3.2 2.1.1. PROPOSE message format

The format of a PROPOSE message is <PROPOSE,tx,[anchor]> , where tx is a mandatory and anchor
optional argument explained in the following.

• tx=<clientID,chaincodeID,txPayload,timestamp,clientSig> , where

– clientID is an ID of the submitting client,

– chaincodeID refers to the chaincode to which the transaction pertains,

– txPayload is the payload containing the submitted transaction itself,

– timestamp is a monotonically increasing (for every new transaction) integer maintained by the client,

– clientSig is signature of a client on other fields of tx .

The details of txPayload will differ between invoke transactions and deploy transactions (i.e., invoke transac-
tions referring to a deploy-specific system chaincode). For an invoke transaction, txPayload would consist
of two fields

– txPayload = <operation,metadata> , where

* operation denotes the chaincode operation (function) and arguments,

* metadata denotes attributes related to the invocation.

For a deploy transaction, txPayload would consist of three fields

– txPayload = <source,metadata,policies> , where

* source denotes the source code of the chaincode,

* metadata denotes attributes related to the chaincode and application,

* policies contains policies related to the chaincode that are accessible to all peers, such as the
endorsement policy. Note that endorsement policies are not supplied with txPayload in a deploy
transaction, but txPayload of a deploy‘ contains endorsement policy ID and its parameters (see
Section 3).

• anchor contains read version dependencies, or more specifically, key-version pairs (i.e., anchor is a subset
of KxN), that binds or “anchors” the PROPOSE request to specified versions of keys in a KVS (see Section
1.2.). If the client specifies the anchor argument, an endorser endorses a transaction only upon read version
numbers of corresponding keys in its local KVS match anchor (see Section 2.2. for more details).

106 Chapter 42. Architecture Deep Dive

fabricdocs Documentation, Release 1.0

Cryptographic hash of tx is used by all nodes as a unique transaction identifier tid (i.e., tid=HASH(tx)). The
client stores tid in memory and waits for responses from endorsing peers.

2.1.2. Message patterns

The client decides on the sequence of interaction with endorsers. For example, a client would typically send
<PROPOSE,tx> (i.e., without the anchor argument) to a single endorser, which would then produce the ver-
sion dependencies (anchor) which the client can later on use as an argument of its PROPOSE message to other
endorsers. As another example, the client could directly send <PROPOSE,tx> (without anchor) to all endorsers
of its choice. Different patterns of communication are possible and client is free to decide on those (see also Section
2.3.).

42.3.3 2.2. The endorsing peer simulates a transaction and produces an endorse-
ment signature

On reception of a <PROPOSE,tx,[anchor]> message from a client, the endorsing peer epID first verifies the
client’s signature clientSig and then simulates a transaction. If the client specifies anchor then endorsing peer
simulates the transactions only upon read version numbers (i.e., readset as defined below) of corresponding keys
in its local KVS match those version numbers specified by anchor .

Simulating a transaction involves endorsing peer tentatively executing a transaction (txPayload), by invoking the
chaincode to which the transaction refers (chaincodeID) and the copy of the state that the endorsing peer locally
holds.

As a result of the execution, the endorsing peer computes read version dependencies (readset) and state updates
(writeset), also called MVCC+postimage info in DB language.

Recall that the state consists of key/value (k/v) pairs. All k/v entries are versioned, that is, every entry contains ordered
version information, which is incremented every time when the value stored under a key is updated. The peer that
interprets the transaction records all k/v pairs accessed by the chaincode, either for reading or for writing, but the peer
does not yet update its state. More specifically:

• Given state s before an endorsing peer executes a transaction, for every key k read by the transaction, pair
(k,s(k).version) is added to readset .

• Additionally, for every key k modified by the transaction to the new value v' , pair (k,v') is added to
writeset . Alternatively, v' could be the delta of the new value to previous value (s(k).value).

If a client specifies anchor in the PROPOSE message then client specified anchor must equal readset produced
by endorsing peer when simulating the transaction.

Then, the peer forwards internally tran-proposal (and possibly tx) to the part of its (peer’s) logic that endorses
a transaction, referred to as endorsing logic. By default, endorsing logic at a peer accepts the tran-proposal and
simply signs the tran-proposal . However, endorsing logic may interpret arbitrary functionality, to, e.g., interact
with legacy systems with tran-proposal and tx as inputs to reach the decision whether to endorse a transaction
or not.

If endorsing logic decides to endorse a transaction, it sends <TRANSACTION-ENDORSED,tid,tran-proposal,epSig>
message to the submitting client(tx.clientID), where:

• tran-proposal := (epID,tid,chaincodeID,txContentBlob,readset,writeset) ,

where txContentBlob is chaincode/transaction specific information. The intention is to have
txContentBlob used as some representation of tx (e.g., txContentBlob=tx.txPayload).

• epSig is the endorsing peer’s signature on tran-proposal

42.3. 2. Basic workflow of transaction endorsement 107

fabricdocs Documentation, Release 1.0

Else, in case the endorsing logic refuses to endorse the transaction, an endorser may send a message
(TRANSACTION-INVALID,tid,REJECTED) to the submitting client.

Notice that an endorser does not change its state in this step, the updates produced by transaction simulation in the
context of endorsement do not affect the state!

42.3.4 2.3. The submitting client collects an endorsement for a transaction and
broadcasts it through ordering service

The submitting client waits until it receives “enough” messages and signatures on
(TRANSACTION-ENDORSED,tid,*,*) statements to conclude that the transaction proposal is endorsed.
As discussed in Section 2.1.2., this may involve one or more round-trips of interaction with endorsers.

The exact number of “enough” depend on the chaincode endorsement policy (see also Section 3). If the endorsement
policy is satisfied, the transaction has been endorsed; note that it is not yet committed. The collection of signed
TRANSACTION-ENDORSED messages from endorsing peers which establish that a transaction is endorsed is called
an endorsement and denoted by endorsement .

If the submitting client does not manage to collect an endorsement for a transaction proposal, it abandons this trans-
action with an option to retry later.

For transaction with a valid endorsement, we now start using the ordering service. The submitting client invokes or-
dering service using the broadcast(blob) , where blob=endorsement . If the client does not have capability
of invoking ordering service directly, it may proxy its broadcast through some peer of its choice. Such a peer must
be trusted by the client not to remove any message from the endorsement or otherwise the transaction may be
deemed invalid. Notice that, however, a proxy peer may not fabricate a valid endorsement .

42.3.5 2.4. The ordering service delivers a transactions to the peers

When an event deliver(seqno,prevhash,blob) occurs and a peer has applied all state updates for blobs
with sequence number lower than seqno , a peer does the following:

• It checks that the blob.endorsement is valid according to the policy of the chaincode
(blob.tran-proposal.chaincodeID) to which it refers.

• In a typical case, it also verifies that the dependencies (blob.endorsement.tran-proposal.readset
) have not been violated meanwhile. In more complex use cases, tran-proposal fields in endorsement may
differ and in this case endorsement policy (Section 3) specifies how the state evolves.

Verification of dependencies can be implemented in different ways, according to a consistency property or “isolation
guarantee” that is chosen for the state updates. Serializability is a default isolation guarantee, unless chaincode
endorsement policy specifies a different one. Serializability can be provided by requiring the version associated with
every key in the readset to be equal to that key’s version in the state, and rejecting transactions that do not satisfy
this requirement.

• If all these checks pass, the transaction is deemed valid or committed. In this case, the peer marks the transaction
with 1 in the bitmask of the PeerLedger , applies blob.endorsement.tran-proposal.writeset
to blockchain state (if tran-proposals are the same, otherwise endorsement policy logic defines the func-
tion that takes blob.endorsement).

• If the endorsement policy verification of blob.endorsement fails, the transaction is invalid and the peer
marks the transaction with 0 in the bitmask of the PeerLedger . It is important to note that invalid transactions
do not change the state.

Note that this is sufficient to have all (correct) peers have the same state after processing a deliver event (block)
with a given sequence number. Namely, by the guarantees of the ordering service, all correct peers will receive an
identical sequence of deliver(seqno,prevhash,blob) events. As the evaluation of the endorsement policy

108 Chapter 42. Architecture Deep Dive

fabricdocs Documentation, Release 1.0

and evaluation of version dependencies in readset are deterministic, all correct peers will also come to the same
conclusion whether a transaction contained in a blob is valid. Hence, all peers commit and apply the same sequence
of transactions and update their state in the same way.

Fig. 42.1: Illustration of the transaction flow (common-case path).

Figure 1. Illustration of one possible transaction flow (common-case path).

42.4 3. Endorsement policies

42.4.1 3.1. Endorsement policy specification

An endorsement policy, is a condition on what endorses a transaction. Blockchain peers have a pre-specified set of
endorsement policies, which are referenced by a deploy transaction that installs specific chaincode. Endorsement
policies can be parametrized, and these parameters can be specified by a deploy transaction.

To guarantee blockchain and security properties, the set of endorsement policies should be a set of proven policies
with limited set of functions in order to ensure bounded execution time (termination), determinism, performance and
security guarantees.

Dynamic addition of endorsement policies (e.g., by deploy transaction on chaincode deploy time) is very sensitive in
terms of bounded policy evaluation time (termination), determinism, performance and security guarantees. Therefore,
dynamic addition of endorsement policies is not allowed, but can be supported in future.

42.4.2 3.2. Transaction evaluation against endorsement policy

A transaction is declared valid only if it has been endorsed according to the policy. An invoke transaction for a
chaincode will first have to obtain an endorsement that satisfies the chaincode’s policy or it will not be committed.
This takes place through the interaction between the submitting client and endorsing peers as explained in Section 2.

Formally the endorsement policy is a predicate on the endorsement, and potentially further state that evaluates to TRUE
or FALSE. For deploy transactions the endorsement is obtained according to a system-wide policy (for example, from
the system chaincode).

An endorsement policy predicate refers to certain variables. Potentially it may refer to:

1. keys or identities relating to the chaincode (found in the metadata of the chaincode), for example, a set of
endorsers;

2. further metadata of the chaincode;

3. elements of the endorsement and endorsement.tran-proposal ;

4. and potentially more.

The above list is ordered by increasing expressiveness and complexity, that is, it will be relatively simple to support
policies that only refer to keys and identities of nodes.

The evaluation of an endorsement policy predicate must be deterministic. An endorsement shall be evaluated
locally by every peer such that a peer does not need to interact with other peers, yet all correct peers evaluate the
endorsement policy in the same way.

42.4. 3. Endorsement policies 109

fabricdocs Documentation, Release 1.0

42.4.3 3.3. Example endorsement policies

The predicate may contain logical expressions and evaluates to TRUE or FALSE. Typically the condition will use
digital signatures on the transaction invocation issued by endorsing peers for the chaincode.

Suppose the chaincode specifies the endorser set E = {Alice,Bob,Charlie,Dave,Eve,Frank,George}
. Some example policies:

• A valid signature from on the same tran-proposal from all members of E.

• A valid signature from any single member of E.

• Valid signatures on the same tran-proposal from endorsing peers according to the condition (Alice OR
Bob) AND (any two of: Charlie,Dave,Eve,Frank,George) .

• Valid signatures on the same tran-proposal by any 5 out of the 7 endorsers. (More generally, for chaincode
with n > 3f endorsers, valid signatures by any 2f+1 out of the n endorsers, or by any group of more than
(n+f)/2 endorsers.)

• Suppose there is an assignment of “stake” or “weights” to the endorsers, like
{Alice=49,Bob=15,Charlie=15,Dave=10,Eve=7,Frank=3,George=1} , where the total
stake is 100: The policy requires valid signatures from a set that has a majority of the stake (i.e., a group
with combined stake strictly more than 50), such as {Alice,X} with any X different from George, or
{everyone together except Alice} . And so on.

• The assignment of stake in the previous example condition could be static (fixed in the metadata of the chain-
code) or dynamic (e.g., dependent on the state of the chaincode and be modified during the execution).

• Valid signatures from (Alice OR Bob) on tran-proposal1 and valid signatures from (any two
of: Charlie,Dave,Eve,Frank,George) on tran-proposal2 , where tran-proposal1 and
tran-proposal2 differ only in their endorsing peers and state updates.

How useful these policies are will depend on the application, on the desired resilience of the solution against failures
or misbehavior of endorsers, and on various other properties.

42.5 4 (post-v1). Validated ledger and PeerLedger checkpointing
(pruning)

42.5.1 4.1. Validated ledger (VLedger)

To maintain the abstraction of a ledger that contains only valid and committed transactions (that appears in Bitcoin,
for example), peers may, in addition to state and Ledger, maintain the Validated Ledger (or VLedger). This is a hash
chain derived from the ledger by filtering out invalid transactions.

The construction of the VLedger blocks (called here vBlocks) proceeds as follows. As the PeerLedger blocks may
contain invalid transactions (i.e., transactions with invalid endorsement or with invalid version dependencies), such
transactions are filtered out by peers before a transaction from a block becomes added to a vBlock. Every peer does
this by itself (e.g., by using the bitmask associated with PeerLedger). A vBlock is defined as a block without the
invalid transactions, that have been filtered out. Such vBlocks are inherently dynamic in size and may be empty. An
illustration of vBlock construction is given in the figure below.

Figure 2. Illustration of validated ledger block (vBlock) formation from ledger (PeerLedger) blocks.

vBlocks are chained together to a hash chain by every peer. More specifically, every block of a validated ledger
contains:

• The hash of the previous vBlock.

110 Chapter 42. Architecture Deep Dive

fabricdocs Documentation, Release 1.0

• vBlock number.

• An ordered list of all valid transactions committed by the peers since the last vBlock was computed (i.e., list of
valid transactions in a corresponding block).

• The hash of the corresponding block (in PeerLedger) from which the current vBlock is derived.

All this information is concatenated and hashed by a peer, producing the hash of the vBlock in the validated ledger.

42.5.2 4.2. PeerLedger Checkpointing

The ledger contains invalid transactions, which may not necessarily be recorded forever. However, peers cannot simply
discard PeerLedger blocks and thereby prune PeerLedger once they establish the corresponding vBlocks.
Namely, in this case, if a new peer joins the network, other peers could not transfer the discarded blocks (pertaining to
PeerLedger) to the joining peer, nor convince the joining peer of the validity of their vBlocks.

To facilitate pruning of the PeerLedger , this document describes a checkpointing mechanism. This mechanism es-
tablishes the validity of the vBlocks across the peer network and allows checkpointed vBlocks to replace the discarded
PeerLedger blocks. This, in turn, reduces storage space, as there is no need to store invalid transactions. It also
reduces the work to reconstruct the state for new peers that join the network (as they do not need to establish validity
of individual transactions when reconstructing the state by replaying PeerLedger , but may simply replay the state
updates contained in the validated ledger).

4.2.1. Checkpointing protocol

Checkpointing is performed periodically by the peers every CHK blocks, where CHK is a config-
urable parameter. To initiate a checkpoint, the peers broadcast (e.g., gossip) to other peers message
<CHECKPOINT,blocknohash,blockno,stateHash,peerSig> , where blockno is the current block-
number and blocknohash is its respective hash, stateHash is the hash of the latest state (pro-
duced by e.g., a Merkle hash) upon validation of block blockno and peerSig is peer’s signature on
(CHECKPOINT,blocknohash,blockno,stateHash) , referring to the validated ledger.

A peer collects CHECKPOINT messages until it obtains enough correctly signed messages with matching blockno
, blocknohash and stateHash to establish a valid checkpoint (see Section 4.2.2.).

Upon establishing a valid checkpoint for block number blockno with blocknohash , a peer:

• if blockno>latestValidCheckpoint.blockno , then a peer assigns
latestValidCheckpoint=(blocknohash,blockno) ,

• stores the set of respective peer signatures that constitute a valid checkpoint into the set
latestValidCheckpointProof ,

• stores the state corresponding to stateHash to latestValidCheckpointedState ,

• (optionally) prunes its PeerLedger up to block number blockno (inclusive).

4.2.2. Valid checkpoints

Clearly, the checkpointing protocol raises the following questions: When can a peer prune its ‘‘PeerLedger‘‘? How
many ‘‘CHECKPOINT‘‘ messages are “sufficiently many”?. This is defined by a checkpoint validity policy, with (at
least) two possible approaches, which may also be combined:

• Local (peer-specific) checkpoint validity policy (LCVP). A local policy at a given peer p may specify a set of
peers which peer p trusts and whose CHECKPOINT messages are sufficient to establish a valid checkpoint. For
example, LCVP at peer Alice may define that Alice needs to receive CHECKPOINT message from Bob, or from
both Charlie and Dave.

42.5. 4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning) 111

fabricdocs Documentation, Release 1.0

• Global checkpoint validity policy (GCVP). A checkpoint validity policy may be specified globally. This is
similar to a local peer policy, except that it is stipulated at the system (blockchain) granularity, rather than peer
granularity. For instance, GCVP may specify that:

– each peer may trust a checkpoint if confirmed by 11 different peers.

– in a specific deployment in which every orderer is collocated with a peer in the same machine (i.e., trust do-
main) and where up to f orderers may be (Byzantine) faulty, each peer may trust a checkpoint if confirmed
by f+1 different peers collocated with orderers.

112 Chapter 42. Architecture Deep Dive

CHAPTER 43

Endorsement policies

Endorsement policies are used to instruct a peer on how to decide whether a transaction is properly endorsed. When
a peer receives a transaction, it invokes the VSCC (Validation System Chaincode) associated with the transaction’s
Chaincode as part of the transaction validation flow to determine the validity of the transaction. Recall that a trans-
action contains one or more endorsement from as many endorsing peers. VSCC is tasked to make the following
determinations: - all endorsements are valid (i.e. they are valid signatures from valid certificates over the expected
message) - there is an appropriate number of endorsements - endorsements come from the expected source(s)

Endorsement policies are a way of specifying the second and third points.

43.1 Endorsement policy design

Endorsement policies have two main components: - a principal - a threshold gate

A principal P identifies the entity whose signature is expected.

A threshold gate T takes two inputs: an integer t (the threshold) and a list of n principals or gates; this gate essentially
captures the expectation that out of those n principals or gates, t are requested to be satisfied.

For example: - T(2,'A','B','C') requests a signature from any 2 principals out of ‘A’, ‘B’ or ‘C’; -
T(1,'A',T(2,'B','C')) requests either one signature from principal A or 1 signature from B and C each.

43.2 Endorsement policy syntax in the CLI

In the CLI, a simple language is used to express policies in terms of boolean expressions over principals.

A principal is described in terms of the MSP that is tasked to validate the identity of the signer and of the role that the
signer has within that MSP. Currently, two roles are supported: member and admin. Principals are described as MSP
.ROLE , where MSP is the MSP ID that is required, and ROLE is either one of the two strings member and admin
. Examples of valid principals are 'Org0.admin' (any administrator of the Org0 MSP) or 'Org1.member'
(any member of the Org1 MSP).

The syntax of the language is:

EXPR(E[,E...])

where EXPR is either AND or OR , representing the two boolean expressions and E is either a principal (with the
syntax described above) or another nested call to EXPR .

For example: - AND('Org1.member','Org2.member','Org3.member') requests 1 signature from each
of the three principals - OR('Org1.member','Org2.member') requests 1 signature from either one of the two

113

fabricdocs Documentation, Release 1.0

principals - OR('Org1.member',AND('Org2.member','Org3.member')) requests either one signature
from a member of the Org1 MSP or 1 signature from a member of the Org2 MSP and 1 signature from a member
of the Org3 MSP.

43.3 Specifying endorsement policies for a chaincode

Using this language, a chaincode deployer can request that the endorsements for a chaincode be validated against the
specified policy. NOTE - the default policy requires one signature from a member of the DEFAULT MSP). This is
used if a policy is not specified in the CLI.

The policy can be specified at deploy time using the -P switch, followed by the policy.

For example:

peer chaincode deploy -C testchainid -n mycc -p github.com/hyperledger/fabric/
→˓examples/chaincode/go/chaincode_example02 -c '{"Args":["init","a","100","b","200"]}
→˓' -P "AND('Org1.member', 'Org2.member')"

This command deploys chaincode mycc on chain testchainid with the policy
AND('Org1.member','Org2.member') .

43.4 Future enhancements

In this section we list future enhancements for endorsement policies: - alongside the existing way of identifying
principals by their relationship with an MSP, we plan to identify principals in terms of the Organization Unit (OU)
expected in their certificates; this is useful to express policies where we request signatures from any identity displaying
a valid certificate with an OU matching the one requested in the definition of the principal. - instead of the syntax
AND(.,.) we plan to move to a more intuitive syntax . AND . - we plan to expose generalized threshold gates
in the language as well alongside AND (which is the special n -out-of-n gate) and OR (which is the special 1 -out-of-n
gate)

114 Chapter 43. Endorsement policies

CHAPTER 44

Ordering Service

[WIP] ...coming soon

This topic will outline the role and functionalities of the ordering service, and explain its place in the broader network
and in the lifecycle of a transaction.
The v1 architecture has been designed such that the ordering service is the centralized point of trust in a decentralized
network, but also such that the specific implementation of “ordering” (solo, kafka, BFT) becomes a pluggable
component.

Refer to the design document on a Kafka-based Ordering Service for more information on the default v1 implementa-
tion.

115

https://docs.google.com/document/d/1vNMaM7XhOlu9tB_10dKnlrhy5d7b1u8lSY8a-kVjCO4/edit

fabricdocs Documentation, Release 1.0

116 Chapter 44. Ordering Service

CHAPTER 45

Pluggable Ordering implementations

[WIP] ...coming soon

This topic is intended to explain how to configure an ordering service such that it implements a alternate protocol from
the default kafka-based method.

This JIRA issue outlines the proposal for a Simplified Byzantine Fault Tolerant consensus protocol - https://jira.
hyperledger.org/browse/FAB-378

117

https://jira.hyperledger.org/browse/FAB-378
https://jira.hyperledger.org/browse/FAB-378

fabricdocs Documentation, Release 1.0

118 Chapter 45. Pluggable Ordering implementations

CHAPTER 46

Ledger

[WIP] ...coming soon

The ledger exists as a peer process utilizing levelDB. It supports the high level transaction flow - read-write-set simu-
lation, endorsement, MVCC check, file-based blockchain transaction log, and state database.

v1 architecture has been designed to support various ledger implementations such as couchDB, where more complexity
with rich queries, pruning, archiving, etc... becomes possible.

For more information on the current state of ledger development, explore the corresponding JIRA issue - https://jira.
hyperledger.org/browse/FAB-758

119

https://jira.hyperledger.org/browse/FAB-758
https://jira.hyperledger.org/browse/FAB-758

fabricdocs Documentation, Release 1.0

120 Chapter 46. Ledger

CHAPTER 47

Gossip protocol

[WIP] ...coming soon

v1 architecture utilizes the well-known concept of gossip protocol. See the design doc on Gossip-based data dissemi-
nation for more details on this.

121

https://docs.google.com/document/d/157AvKxVRqgeaCTSpN86ICa5x-XihZ67bOrNMc5xLvEU/edit#heading=h.rrii36vrca54
https://docs.google.com/document/d/157AvKxVRqgeaCTSpN86ICa5x-XihZ67bOrNMc5xLvEU/edit#heading=h.rrii36vrca54

fabricdocs Documentation, Release 1.0

122 Chapter 47. Gossip protocol

CHAPTER 48

Fabric CA User’s Guide

Fabric CA is a Certificate Authority for Hyperledger Fabric.

It provides features such as:
1) registration of identities, or connects to LDAP as the user registry;
2) issuance of Enrollment Certificates (ECerts);
3) issuance of Transaction Certificates (TCerts), providing both anonymity and unlinkability when transacting on a
Hyperledger Fabric blockchain;
4) certificate renewal and revocation.

Fabric CA consists of both a server and a client component as described later in this document.

For developers interested in contributing to Fabric CA, see the Fabric CA repository for more information.

123

https://github.com/hyperledger/fabric-ca

fabricdocs Documentation, Release 1.0

124 Chapter 48. Fabric CA User’s Guide

CHAPTER 49

Getting Started

49.1 Prerequisites

• Go 1.7+ installation or later

• GOPATH environment variable is set correctly

49.2 Install

To install the fabric-ca command:

go get github.com/hyperledger/fabric-ca

49.3 The Fabric CA CLI

The following shows the fabric-ca CLI usage:

fabric-ca
fabric-ca client - client related commands
fabric-ca server - server related commands
fabric-ca cfssl - all cfssl commands

For help, type "fabric-ca client", "fabric-ca server", or "fabric-ca cfssl".

The fabric-ca server and fabric-ca client commands are discussed below.

If you would like to enable debug-level logging (for server or client), set the FABRIC_CA_DEBUG environment
variable to true .

Since fabric-ca is built on top of CFSSL, the fabric-ca cfssl commands are available but are not discussed in
this document. See CFSSL for more information.

125

https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl

fabricdocs Documentation, Release 1.0

126 Chapter 49. Getting Started

CHAPTER 50

Fabric CA Server

This section describes the fabric-ca server.

You must initialize the Fabric CA server before starting it.

The fabric-ca server’s home directory is determined as follows:
- if the FABRIC_CA_HOME environment variable is set, use its value;
- otherwise, if the HOME environment variable is set, use $HOME/fabric-ca ;
- otherwise, use ‘/var/hyperledger/fabric/dev/fabric-ca’.

For the remainder of this server section, we assume that you have set the FABRIC_CA_HOME environment variable
to $HOME/fabric-ca/server .

Initialize the Fabric CA server as follows:

fabric-ca server init CSR-JSON-FILE

The following is a sample CSR-JSON-FILE which you can customize as desired. The “CSR” stands for “Certificate
Signing Request”.

If you are going to connect to the fabric-ca server remotely over TLS, replace “localhost” in the CSR-JSON-FILE
below with the hostname where you will be running your fabric-ca server.

{
"CN": "localhost",
"key": { "algo": "ecdsa", "size": 256 },
"names": [

{
"O": "Hyperledger Fabric",
"OU": "Fabric CA",
"L": "Raleigh",
"ST": "North Carolina",
"C": "US"

}
]

}

All of the fields above pertain to the X.509 certificate which is generated by the fabric server init command
as follows:

CSR fields

127

fabricdocs Documentation, Release 1.0

• CN is the Common Name

• keys specifies the algorithm and key size as described below

• O is the organization name

• OU is the organization unit

• L is the location or city

• ST is the state

• C is the country

The fabric-ca server init command generates a self-signed X.509 certificate. It stores the certificate in the
server-cert.pem file and the key in the server-key.pem file in the Fabric CA server’s home directory.

Algorithms and key sizes

The CSR-JSON-FILE can be customized to generate X.509 certificates and keys that support both RSA and Ellip-
tic Curve (ECDSA). The following setting is an example of the implementation of Elliptic Curve Digital Signature
Algorithm (ECDSA) with curve prime256v1 and signature algorithm ecdsa-with-SHA256 :

"key": {
"algo": "ecdsa"
"size": 256

}

The choice of algorithm and key size are based on security needs.

Elliptic Curve (ECDSA) offers the following key size options:

size ASN1 OID Signature Algorithm
256 prime256v1 ecdsa-with-SHA256
384 secp384r1 ecdsa-with-SHA384
521 secp521r1 ecdsa-with-SHA512

RSA offers the following key size options:

size Modulus (bits) Signature Algorithm
2048 2048 sha256WithRSAEncryption
4096 4096 sha512WithRSAEncryption

Create a file named server-config.json as shown below in your fabric-ca server’s home directory (e.g.
$HOME/fabric-ca/server).

{
"tls_disable": false,
"ca_cert": "server-cert.pem",
"ca_key": "server-key.pem",
"driver":"sqlite3",
"data_source":"fabric-ca.db",
"user_registry": { "max_enrollments": 0 },
"tls": {

"tls_cert": "server-cert.pem",
"tls_key": "server-key.pem"

},
"users": {

"admin": {
"pass": "adminpw",
"type": "client",
"group": "bank_a",
"attrs": [

128 Chapter 50. Fabric CA Server

fabricdocs Documentation, Release 1.0

{"name":"hf.Registrar.Roles","value":"client,peer,validator,auditor"},
{"name":"hf.Registrar.DelegateRoles", "value": "client"}

]
}

},
"groups": {
"banks_and_institutions": {

"banks": ["bank_a", "bank_b", "bank_c"],
"institutions": ["institution_a"]

}
},
"signing": {

"default": {
"usages": ["cert sign"],
"expiry": "8000h",
"ca_constraint": {"is_ca": true}

}
}

}

Now you may start the Fabric CA server as follows:

cd $FABRIC_CA_HOME
fabric-ca server start -address '0.0.0.0' -config server-config.json

To cause the fabric-ca server to listen on http rather than https , set tls_disable to true in the
server-config.json file.

To limit the number of times that the same secret (or password) can be used for enrollment, set the
max_enrollments in the server-config.json file to the appropriate value. If you set the value to 1,
the fabric-ca server allows passwords to only be used once for a particular enrollment ID. If you set the value to 0, the
fabric-ca server places no limit on the number of times that a secret can be reused for enrollment. The default value is
0.

The fabric-ca server should now be listening on port 7054.

You may skip to the Fabric CA Client section if you do not want to configure the fabric-ca server to run in a cluster or
to use LDAP.

This section describes how to configure the fabric-ca server to connect to Postgres or MySQL databases. The default
database is SQLite and the default database file is fabric-ca.db in the Fabric CA’s home directory.

If you don’t care about running the fabric-ca server in a cluster, you may skip this section; otherwise, you must
configure either Postgres or MySQL as described below.

Postgres

The following sample may be added to the server-config.json file in order to connect to a Postgres database.
Be sure to customize the various values appropriately.

"driver":"postgres",
"data_source":"host=localhost port=5432 user=Username password=Password dbname=fabric-
→˓ca sslmode=verify-full",

Specifying sslmode enables SSL, and a value of verify-full means to verify that the certificate presented by the postgres
server was signed by a trusted CA and that the postgres server’s host name matches the one in the certificate.

We also need to set the TLS configuration in the fabric-ca server-config file. If the database server requires client
authentication, then a client cert and key file needs to be provided. The following should be present in the fabric-ca
server config:

129

fabricdocs Documentation, Release 1.0

"tls":{
...
"db_client":{
"ca_certfiles":["CA.pem"],
"client":[{"keyfile":"client-key.pem","certfile":"client-cert.pem"}]

}
},

ca_certfiles - The names of the trusted root certificate files.

certfile - Client certificate file.

keyfile - Client key file.

MySQL

The following sample may be added to the server-config.json file in order to connect to a MySQL database.
Be sure to customize the various values appropriately.

...
"driver":"mysql",
"data_source":"root:rootpw@tcp(localhost:3306)/fabric-ca?parseTime=true&tls=custom",
...

If connecting over TLS to the MySQL server, the tls.db_client section is also required as described in the
Postgres section above.

The fabric-ca server can be configured to read from an LDAP server.

In particular, the fabric-ca server may connect to an LDAP server to do the following:

• authenticate a user prior to enrollment, and

• retrieve a user’s attribute values which are used for authorization.

In order to configure the fabric-ca server to connect to an LDAP server, add a section of the following form to your
fabric-ca server’s configuration file:

{
"ldap": {

"url": "scheme://adminDN:pass@host[:port][/base]"
"userfilter": "filter"

}

where: * scheme is one of ldap or ldaps; * adminDN is the distinquished name of the admin user; * pass is the
password of the admin user;
* host is the hostname or IP address of the LDAP server; * port is the optional port number, where default 389
for ldap and 636 for ldaps; * base is the optional root of the LDAP tree to use for searches; * filter is a filter to
use when searching to convert a login user name to a distinquished name. For example, a value of (uid=%s)
searches for LDAP entries with the value of a uid attribute whose value is the login user name. Similarly,
(email=%s) may be used to login with an email address.

The following is a sample configuration section for the default settings for the OpenLDAP server whose docker image
is at https://github.com/osixia/docker-openldap .

"ldap": {
"url": "ldap://cn=admin,dc=example,dc=org:admin@localhost:10389/dc=example,dc=org",

130 Chapter 50. Fabric CA Server

fabricdocs Documentation, Release 1.0

"userfilter": "(uid=%s)"
},

See FABRIC_CA/testdata/testconfig-ldap.json for the complete configuration file with this section.
Also see FABRIC_CA/scripts/run-ldap-tests for a script which starts an OpenLDAP docker image, con-
figures it, runs the LDAP tests in FABRIC_CA/cli/server/ldap/ldap_test.go, and stops the OpenLDAP server.

When LDAP is configured, enrollment works as follows:

• A fabric-ca client or client SDK sends an enrollment request with a basic authorization header.

• The fabric-ca server receives the enrollment request, decodes the user/pass in the authorization header, looks
up the DN (Distinquished Name) associated with the user using the “userfilter” from the configuration file, and
then attempts an LDAP bind with the user’s password. If successful, the enrollment processing is authorized
and can proceed.

When LDAP is configured, attribute retrieval works as follows:

• A client SDK sends a request for a batch of tcerts with one or more attributes to the fabric-ca server.

• The fabric-ca server receives the tcert request and does as follows:

– extracts the enrollment ID from the token in the authorization header (after validating the token);

– does an LDAP search/query to the LDAP server, requesting all of the attribute names received in the tcert
request;

– the attribute values are placed in the tcert as normal

You may use any IP sprayer to load balance to a cluster of fabric-ca servers. This section provides an example of how
to set up Haproxy to route to a fabric-ca server cluster. Be sure to change hostname and port to reflect the settings of
your fabric-ca servers.

haproxy.conf

global
maxconn 4096
daemon

defaults
mode http
maxconn 2000
timeout connect 5000
timeout client 50000
timeout server 50000

listen http-in
bind *:7054
balance roundrobin
server server1 hostname1:port
server server2 hostname2:port
server server3 hostname3:port

Fabric CA Client

This section describes how to use the fabric-ca client.

The default fabric-ca client’s home directory is $HOME/fabric-ca , but this can be changed by setting the
FABRIC_CA_HOME environment variable.

You must create a file named client-config.json in the fabric-ca client’s home directory. The following is a sample
client-config.json file:

131

fabricdocs Documentation, Release 1.0

{
"ca_certfiles":["server-cert.pem"],
"signing": {
"default": {

"usages": ["cert sign"],
"expiry": "8000h"

}
}

}

You must also copy the server’s certificate into the client’s home directory. In the examples in this document, the
server’s certificate is at $HOME/fabric-ca/server/server-cert.pem . The file name must match the name
in the client-config.json file.

Enroll the bootstrap user

Unless the fabric-ca server is configured to use LDAP, it must be configured with at least one pre-registered bootstrap
user. In the previous server-config.json in this document, that user has an enrollment ID of admin with an enrollment
secret of adminpw.

First, create a CSR (Certificate Signing Request) JSON file similar to

the following. Customize it as desired.

{
"key": { "algo": "ecdsa", "size": 256 },
"names": [

{
"O": "Hyperledger Fabric",
"OU": "Fabric CA",
"L": "Raleigh",
"ST": "North Carolina",
"C": "US"

}
]

}

See CSR fields for a description of the fields in this file. When enrolling, the CN (Common Name) field is automatically
set to the enrollment ID which is admin in this example, so it can be omitted from the csr.json file.

The following command enrolls the admin user and stores an enrollment certificate (ECert) in the fabric-ca client’s
home directory.

export FABRIC_CA_HOME=$HOME/fabric-ca/clients/admin
fabric-ca client enroll -config client-config.json admin adminpw http://localhost:
→˓7054 csr.json

You should see a message similar to [INFO] enrollment information was successfully stored
in which indicates where the certificate and key files were stored.

The enrollment certificate is stored at $FABRIC_CA_ENROLLMENT_DIR/cert.pem by default, but a different
path can be specified by setting the FABRIC_CA_CERT_FILE environment variable.

The enrollment key is stored at $FABRIC_CA_ENROLLMENT_DIR/key.pem by default, but a different path can
be specified by setting the FABRIC_CA_KEY_FILE environment variable.

If FABRIC_CA_ENROLLMENT_DIR is not set, the value of the FABRIC_CA_HOME environment variable is used
in its place.

132 Chapter 50. Fabric CA Server

fabricdocs Documentation, Release 1.0

The user performing the register request must be currently enrolled, and must also have the proper authority to register
the type of user being registered.

In particular, the invoker’s identity must have been registered with the attribute “hf.Registrar.Roles”. This attribute
specifies the types of identities that the registrar is allowed to register.

For example, the attributes for a registrar might be as follows, indicating that this registrar identity can register peer,
application, and user identities.

"attrs": [{"name":"hf.Registrar.Roles", "value":"peer,app,user"}]

To register a new identity, you must first create a JSON file similar to the one below which defines information for the
identity being registered. This is a sample of registration information for a peer.

{
"id": "peer1",
"type": "peer",
"group": "bank_a",
"attrs": [{"name":"SomeAttrName","value":"SomeAttrValue"}]

}

The id field is the enrollment ID of the identity.

The type field is the type of the identity: orderer, peer, app, or user.

The group field must be a valid group name as found in the server-config.json file.

The attrs field is optional and is not required for a peer, but is shown here as example of how you associate attributes
with any identity.

Assuming you store the information above in a file named register.json, the following command uses the admin user’s
credentials to register the peer1 identity.

export FABRIC_CA_HOME=$HOME/fabric-ca/clients/admin
cd $FABRIC_CA_HOME
fabric-ca client register -config client-config.json register.json http://localhost:
→˓7054

The output of a successful fabric-ca client register command is a password similar to One time password:
gHIexUckKpHz . Make a note of your password to use in the following section to enroll a peer.

Now that you have successfully registered a peer identity, you may now enroll the peer given the enrollment ID and
secret (i.e. the password from the previous section).

First, create a CSR (Certificate Signing Request) JSON file similar to the one described in the Enrolling the bootstrap
user section. Name the file csr.json for the following example.

This is similar to enrolling the bootstrap user except that we also demonstrate how to use environment variables to place
the key and certificate files in a specific location. The following example shows how to place them into a Hyperledger
Fabric MSP (Membership Service Provider) directory structure. The MSP_DIR environment variable refers to the root
directory of MSP in Hyperledger Fabric and the $MSP_DIR/signcerts and $MSP_DIR/keystore directories must exist.

Also note that you must replace <secret> with the secret which was returned from the registration in the previous
section.

export FABRIC_CA_CERT_FILE=$MSP_DIR/signcerts/peer.pem
export FABRIC_CA_KEY_FILE=$MSP_DIR/keystore/key.pem
fabric-ca client enroll -config client-config.json peer1 <secret> https://localhost:
→˓7054 csr.json

133

fabricdocs Documentation, Release 1.0

The peer.pem and key.pem files should now exist at the locations specified by the environment variables.

In order to revoke a certificate or user, the calling identity must have the hf.Revoker attribute.

You may revoke a specific certificate by specifying its AKI (Authority Key Identifier) and its serial number, as shown
below.

fabric-ca client revoke -config client-config.json -aki xxx -serial yyy -reason "you
→˓'re bad" https://localhost:7054

The following command disables a user’s identity and also revokes all of the certificates associated with the identity.
All future requests received by the fabric-ca server from this identity will be rejected.

fabric-ca client revoke -config client-config.json https://localhost:7054 ENROLLMENT-
→˓ID -reason "you're really bad"

This section describes in more detail how to configure TLS for a fabric-ca client.

The following sections may be configured in the client-config.json .

{
"ca_certfiles":["CA_root_cert.pem"],
"client":[{"keyfile":"client-key.pem","certfile":"client-cert.pem"}]
}

The ca_certfiles option is the set of root certificates trusted by the client. This will typically just be the root fabric-ca
server’s certificate found in the server’s home directory in the server-cert.pem file.

The client option is required only if mutual TLS is configured on the server.

134 Chapter 50. Fabric CA Server

CHAPTER 51

Appendix

51.1 Postgres SSL Configuration

Basic instructions for configuring SSL on Postgres server: 1. In postgresql.conf, uncomment SSL and set to “on”
(SSL=on) 2. Place Certificate and Key files Postgress data directory.

Instructions for generating self-signed certificates for: https://www.postgresql.org/docs/9.1/static/ssl-tcp.html

Note: Self-signed certificates are for testing purposes and should not be used in a production environment

Postgres Server - Require Client Certificates 1. Place certificates of the certificate authorities (CAs) you trust in the
file root.crt in the Postgres data directory 2. In postgresql.conf, set “ssl_ca_file” to point to the root cert of client (CA
cert) 3. Set the clientcert parameter to 1 on the appropriate hostssl line(s) in pg_hba.conf.

For more details on configuring SSL on the Postgres server, please refer to the following Postgres documentation:
https://www.postgresql.org/docs/9.4/static/libpq-ssl.html

51.2 MySQL SSL Configuration

Basic instructions for configuring SSL on MySQL server:

1. Open or create my.cnf file for the server. Add or un-comment the lines below in [mysqld] section. These should
point to the key and certificates for the server, and the root CA cert.

Instruction on creating server and client side certs: http://dev.mysql.com/doc/refman/5.7/en/
creating-ssl-files-using-openssl.html

[mysqld] ssl-ca=ca-cert.pem ssl-cert=server-cert.pem ssl-key=server-key.pem

Can run the following query to confirm SSL has been enabled.

mysql> SHOW GLOBAL VARIABLES LIKE ‘have_%ssl’;

Should see:

+---------------+-------+ | Variable_name | Value | +---------------+-------+
| have_openssl | YES | | have_ssl | YES | +---------------+-------+

2. After the server-side SSL configuration is finished, the next step is to create a user who has a privilege to access
the MySQL server over SSL. For that, log in to the MySQL server, and type:

mysql> GRANT ALL PRIVILEGES ON . TO ‘ssluser’@’%’ IDENTIFIED BY ‘password’ REQUIRE SSL; mysql>
FLUSH PRIVILEGES;

135

https://www.postgresql.org/docs/9.1/static/ssl-tcp.html
https://www.postgresql.org/docs/9.4/static/libpq-ssl.html
http://dev.mysql.com/doc/refman/5.7/en/creating-ssl-files-using-openssl.html
http://dev.mysql.com/doc/refman/5.7/en/creating-ssl-files-using-openssl.html

fabricdocs Documentation, Release 1.0

If you want to give a specific ip address from which the user will access the server change the ‘%’ to the specific ip
address.

MySQL Server - Require Client Certificates Options for secure connections are similar to those used on the server
side.

• ssl-ca identifies the Certificate Authority (CA) certificate. This option, if used, must specify the same certificate
used by the server.

• ssl-cert identifies the client public key certificate.

• ssl-key identifies the client private key.

Suppose that you want to connect using an account that has no special encryption requirements or was created using
a GRANT statement that includes the REQUIRE SSL option. As a recommended set of secure-connection options,
start the MySQL server with at least –ssl-cert and –ssl-key, and invoke the fabric-ca server with ca_certfiles option set
in the fabric-ca server file.

To require that a client certificate also be specified, create the account using the REQUIRE X509 option. Then the
client must also specify the proper client key and certificate files or the MySQL server will reject the connection. CA
cert, client cert, and client key are all required for the fabric-ca server.

136 Chapter 51. Appendix

CHAPTER 52

Components

[WIP] ...coming soon

This topic will contain a diagram explaining the various components of a blockchain network and their corresponding
roles.

137

fabricdocs Documentation, Release 1.0

138 Chapter 52. Components

CHAPTER 53

Transaction Flow

[WIP] ...coming soon

This topic will contain a diagram (currently in progress) outlining at a high level the basic flow of a transaction(s) from
Application/SDK -> Endorsing Peers -> Back to SDK with proposal responses -> “Broadcast” to ordering service ->
“Delivered” as a block to a channel’s peers for validation and commitment (i.e. written to the shared ledger).

In the meantime, view the high level data flows and familiarize yourself with the concepts, components, and roles of
system chaincodes.

139

https://jira.hyperledger.org/browse/FAB-37

fabricdocs Documentation, Release 1.0

140 Chapter 53. Transaction Flow

CHAPTER 54

Endorsing Peer

[WIP] ...coming soon

This topic will explain the peer’s runtime and role as an endorser for a certain piece of chaincode. In the meantime,
refer to the high-level data flow.

141

https://jira.hyperledger.org/browse/FAB-37

fabricdocs Documentation, Release 1.0

142 Chapter 54. Endorsing Peer

CHAPTER 55

Committing Peer

[WIP] ...coming soon

This topic will explain the peer’s runtime and role as a committer for transactions on a channel. In the meantime, refer
to the high-level data flow.

143

https://jira.hyperledger.org/browse/FAB-37

fabricdocs Documentation, Release 1.0

144 Chapter 55. Committing Peer

CHAPTER 56

Troubleshooting

[WIP] ...coming soon

This topic is intended to solve high level bugs and then direct users to more granular FAQ topics based on their errors.

145

fabricdocs Documentation, Release 1.0

146 Chapter 56. Troubleshooting

CHAPTER 57

Chaincode (Smart Contracts and Digital Assets)

Does the fabric implementation support smart contract logic? Yes. Chaincode is the fabric’s interpretation of
the smart contract method/algorithm, with additional features.

A chaincode is programmatic code deployed on the network, where it is executed and validated by chain validators
together during the consensus process. Developers can use chaincodes to develop business contracts, asset definitions,
and collectively-managed decentralized applications.

How do I create a business contract using the fabric? There are generally two ways to develop business
contracts: the first way is to code individual contracts into standalone instances of chaincode; the second way, and
probably the more efficient way, is to use chaincode to create decentralized applications that manage the life cycle of
one or multiple types of business contracts, and let end users instantiate instances of contracts within these applications.

How do I create assets using the fabric? Users can use chaincode (for business rules) and membership service
(for digital tokens) to design assets, as well as the logic that manages them.

There are two popular approaches to defining assets in most blockchain solutions: the stateless UTXO model, where
account balances are encoded into past transaction records; and the account model, where account balances are kept
in state storage space on the ledger.

Each approach carries its own benefits and drawbacks. This blockchain fabric does not advocate either one over the
other. Instead, one of our first requirements was to ensure that both approaches can be easily implemented with tools
available in the fabric.

Which languages are supported for writing chaincode? Chaincode can be written in any programming language
and executed in containers inside the fabric context layer. We are also looking into developing a templating language
(such as Apache Velocity) that can either get compiled into chaincode or have its interpreter embedded into a chaincode
container.

The fabric’s first fully supported chaincode language is Golang, and support for JavaScript and Java is planned for
2016. Support for additional languages and the development of a fabric-specific templating language have been dis-
cussed, and more details will be released in the near future.

Does the fabric have native currency? No. However, if you really need a native currency for your chain
network, you can develop your own native currency with chaincode. One common attribute of native currency is
that some amount will get transacted (the chaincode defining that currency will get called) every time a transaction is
processed on its chain.

147

fabricdocs Documentation, Release 1.0

148 Chapter 57. Chaincode (Smart Contracts and Digital Assets)

CHAPTER 58

Confidentiality

58.1 How is the confidentiality of transactions and business logic
achieved?

The security module works in conjunction with the membership service module to provide access control service to
any data recorded and business logic deployed on a chain network.

When a code is deployed on a chain network, whether it is used to define a business contract or an asset, its creator
can put access control on it so that only transactions issued by authorized entities will be processed and validated by
chain validators.

Raw transaction records are permanently stored in the ledger. While the contents of non-confidential transactions are
open to all participants, the contents of confidential transactions are encrypted with secret keys known only to their
originators, validators, and authorized auditors. Only holders of the secret keys can interpret transaction contents.

What if none of the stakeholders of a business contract are validators? In some business scenarios, full
confidentiality of contract logic may be required – such that only contract counterparties and auditors can access and
interpret their chaincode. Under these scenarios, counter parties would need to spin off a new child chain with only
themselves as validators.

149

fabricdocs Documentation, Release 1.0

150 Chapter 58. Confidentiality

CHAPTER 59

Consensus Algorithm

Which Consensus Algorithm is used in the fabric? The fabric is built on a pluggable architecture such that
developers can configure their deployment with the consensus module that best suits their needs. The initial release
package will offer three consensus implementations for users to select from: 1) No-op (consensus ignored); and 2)
Batch PBFT.

151

fabricdocs Documentation, Release 1.0

152 Chapter 59. Consensus Algorithm

CHAPTER 60

Identity Management (Membership Service)

What is unique about the fabric’s Membership Service module? One of the things that makes the Membership
Service module stand out from the pack is our implementation of the latest advances in cryptography.

In addition to ensuring private, auditable transactions, our Membership Service module introduces the concept of
enrollment and transaction certificates. This innovation ensures that only verified owners can create asset tokens,
allowing an infinite number of transaction certificates to be issued through parent enrollment certificates while guar-
anteeing the private keys of asset tokens can be regenerated if lost.

Issuers also have the ability revoke transaction certificates or designate them to expire within a certain timeframe,
allowing greater control over the asset tokens they have issued.

Like most other modules on the fabric, you can always replace the default module with another membership service
option should the need arise.

Does its Membership Service make the fabric a centralized solution?

No. The only role of the Membership Service module is to issue digital certificates to validated entities that want to
participate in the network. It does not execute transactions nor is it aware of how or when these certificates are used in
any particular network.

However, because certificates are the way networks regulate and manage their users, the module serves a central
regulatory and organizational role.

153

fabricdocs Documentation, Release 1.0

154 Chapter 60. Identity Management (Membership Service)

CHAPTER 61

Usage

#####What are the expected performance figures for the fabric? The performance of any chain network depends on
several factors: proximity of the validating nodes, number of validators, encryption method, transaction message size,
security level set, business logic running, and the consensus algorithm deployed, among others.

The current performance goal for the fabric is to achieve 100,000 transactions per second in a standard production en-
vironment of about 15 validating nodes running in close proximity. The team is committed to continuously improving
the performance and the scalability of the system.

Do I have to own a validating node to transact on a chain network? No. You can still transact on a chain
network by owning a non-validating node (NV-node).

Although transactions initiated by NV-nodes will eventually be forwarded to their validating peers for consensus
processing, NV-nodes establish their own connections to the membership service module and can therefore package
transactions independently. This allows NV-node owners to independently register and manage certificates, a powerful
feature that empowers NV-node owners to create custom-built applications for their clients while managing their client
certificates.

In addition, NV-nodes retain full copies of the ledger, enabling local queries of the ledger data.

What does the error string “state may be inconsistent, cannot query” as a query result mean? Sometimes, a
validating peer will be out of sync with the rest of the network. Although determining this condition is not always
possible, validating peers make a best effort determination to detect it, and internally mark themselves as out of date.

When under this condition, rather than reply with out of date or potentially incorrect data, the peer will reply to
chaincode queries with the error string “state may be inconsistent, cannot query”.

In the future, more sophisticated reporting mechanisms may be introduced such as returning the stale value and a flag
that the value is stale.

155

fabricdocs Documentation, Release 1.0

156 Chapter 61. Usage

CHAPTER 62

Releases

v0.6-preview September 16, 2016

A developer preview release of the Hyperledger Fabric intended to exercise the release logistics and stabilize a set
of capabilities for developers to try out. This will be the last release under the original architecture. All subsequent
releases will deliver on the v1.0 architecture.

Key enhancements:

• 8de58ed - NodeSDK doc changes – FAB-146

• 62d866d - Add flow control to SYNC_STATE_SNAPSHOT

• 4d97069 - Adding TLS changes to SDK

• e9d3ac2 - Node-SDK: add support for fabric events(block, chaincode, transactional)

• 7ed9533 - Allow deploying Java chaincode from remote git repositories

• 4bf9b93 - Move Docker-Compose files into their own folder

• ce9fcdc - Print ChaincodeName when deploy with CLI

• 4fa1360 - Upgrade go protobuf from 3-beta to 3

• 4b13232 - Table implementation in java shim with example

• df741bc - Add support for dynamically registering a user with attributes

• 4203ea8 - Check for duplicates when adding peers to the chain

• 518f3c9 - Update docker openjdk image

• 47053cd - Add GetTxID function to Stub interface (FAB-306)

• ac182fa - Remove deprecated devops REST API

• ad4645d - Support hyperledger fabric build on ppc64le platform

• 21a4a8a - SDK now properly adding a peer with an invalid URL

• 1d8114f - Fix setting of watermark on restore from crash

• a98c59a - Upgrade go protobuff from 3-beta to 3

• 937039c - DEVENV: Provide strong feedback when provisioning fails

• d74b1c5 - Make pbft broadcast timeout configurable

• 97ed71f - Java shim/chaincode project reorg, separate java docker env

• a76dd3d - Start container with HostConfig was deprecated since v1.10 and removed since v1.12

157

https://github.com/hyperledger/fabric/tree/v0.6

fabricdocs Documentation, Release 1.0

• 8b63a26 - Add ability to unregister for events

• 3f5b2fa - Add automatic peer command detection

• 6daedfd - Re-enable sending of chaincode events

• b39c93a - Update Cobra and pflag vendor libraries

• dad7a9d - Reassign port numbers to 7050-7060 range

v0.5-developer-preview June 17, 2016

A developer preview release of the Hyperledger Fabric intended to exercise the release logistics and stabilize a set of
capabilities for developers to try out.

Key features:

Permissioned blockchain with immediate finality Chaincode (aka smart contract) execution environments Docker
container (user chaincode) In-process with peer (system chaincode) Pluggable consensus with PBFT, NOOPS (devel-
opment mode), SIEVE (prototype) Event framework supports pre-defined and custom events Client SDK (Node.js),
basic REST APIs and CLIs Known Key Bugs and work in progress

• 1895 - Client SDK interfaces may crash if wrong parameter specified

• 1901 - Slow response after a few hours of stress testing

• 1911 - Missing peer event listener on the client SDK

• 889 - The attributes in the TCert are not encrypted. This work is still on-going

158 Chapter 62. Releases

https://github.com/hyperledger-archives/fabric/tree/v0.5-developer-preview

CHAPTER 63

Contributions Welcome!

We welcome contributions to the Hyperledger Project in many forms, and there’s always plenty to do!

First things first, please review the Hyperledger Project’s Code of Conduct before participating. It is important that we
keep things civil.

63.1 Getting a Linux Foundation account

In order to participate in the development of the Hyperledger Fabric project, you will need a Linux Foundation account.
You will need to use your LF ID to access to all the Hyperledger community development tools, including Gerrit, Jira
and the Wiki (for editing, only).

63.1.1 Setting up your SSH key

For Gerrit, before you can submit any change set for review, you will need to register your public SSH key. Login to
Gerrit with your LFID, and click on your name in the upper right-hand corner of your browser window and then click
‘Settings’. In the left-hand margin, you should see a link for ‘SSH Public Keys’. Copy-n-paste your public SSH key
into the window and press ‘Add’.

63.2 Getting help

If you are looking for something to work on, or need some expert assistance in debugging a problem or working out
a fix to an issue, our community is always eager to help. We hang out on Chat, IRC (#hyperledger on freenode.net)
and the mailing lists. Most of us don’t bite :grin: and will be glad to help. The only silly question is the one you don’t
ask. Questions are in fact a great way to help improve the project as they highlight where our documentation could be
clearer.

63.3 Requirements and Use Cases

We have a Requirements WG that is documenting use cases and from those use cases deriving requirements. If you
are interested in contributing to this effort, please feel free to join the discussion in chat.

159

https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct
https://gerrit.hyperledger.org
https://jira.hyperledger.org
https://wiki.hyperledger.org/start
https://gerrit.hyperledger.org
https://help.github.com/articles/generating-an-ssh-key/
https://www.hyperledger.org/community
https://chat.hyperledger.org/channel/fabric/
http://lists.hyperledger.org/
https://wiki.hyperledger.org/groups/requirements/requirements-wg
https://chat.hyperledger.org/channel/requirements/

fabricdocs Documentation, Release 1.0

63.4 Reporting bugs

If you are a user and you find a bug, please submit an issue using JIRA. Please try to provide sufficient information
for someone else to reproduce the issue. One of the project’s maintainers should respond to your issue within 24
hours. If not, please bump the issue with a comment and request that it be reviewed. You can also post to the
#fabric-maintainers channel in chat.

63.5 Fixing issues and working stories

Review the issues list and find something that interests you. You could also check the “help-wanted” list. It is wise
to start with something relatively straight forward and achievable, and that no one is already assigned. If no one is
assigned, then assign the issue to yourself. Please be considerate and rescind the assignment if you cannot finish in a
reasonable time, or add a comment saying that you are still actively working the issue if you need a little more time.

63.6 Working with a local clone and Gerrit

We are using Gerrit to manage code contributions. If you are unfamiliar, please review this document before proceed-
ing.

After you have familiarized yourself with Gerrit , and maybe played around with the lf-sandbox project, you
should be ready to set up your local development environment.

Next, try building the project in your local development environment to ensure that everything is set up correctly.

Logging control describes how to tweak the logging levels of various components within the Fabric. Finally, every
source file needs to include a license header: modified to include a copyright statement for the principle author(s).

63.7 What makes a good change request?

• One change at a time. Not five, not three, not ten. One and only one. Why? Because it limits the blast area
of the change. If we have a regression, it is much easier to identify the culprit commit than if we have some
composite change that impacts more of the code.

• Include a link to the JIRA story for the change. Why? Because a) we want to track our velocity to better judge
what we think we can deliver and when and b) because we can justify the change more effectively. In many
cases, there should be some discussion around a proposed change and we want to link back to that from the
change itself.

• Include unit and integration tests (or changes to existing tests) with every change. This does not mean just happy
path testing, either. It also means negative testing of any defensive code that it correctly catches input errors.
When you write code, you are responsible to test it and provide the tests that demonstrate that your change does
what it claims. Why? Because without this we have no clue whether our current code base actually works.

• Unit tests should have NO external dependencies. You should be able to run unit tests in place with go test
or equivalent for the language. Any test that requires some external dependency (e.g. needs to be scripted to
run another component) needs appropriate mocking. Anything else is not unit testing, it is integration testing by
definition. Why? Because many open source developers do Test Driven Development. They place a watch on
the directory that invokes the tests automagically as the code is changed. This is far more efficient than having
to run a whole build between code changes.

160 Chapter 63. Contributions Welcome!

https://jira.hyperledger.org
https://chat.hyperledger.org/channel/fabric-maintainers
https://github.com/hyperledger/fabric/issues
https://jira.hyperledger.org/issues/?jql=project%20%3D%20Fabric%20AND%20labels%20%3D%20help-wanted
https://gerrit.hyperledger.org/r/#/admin/projects/fabric
https://gerrit.hyperledger.org/r/#/admin/projects/lf-sandbox,branches

fabricdocs Documentation, Release 1.0

• Minimize the lines of code per CR. Why? Maintainers have day jobs, too. If you send a 1,000 or 2,000 LOC
change, how long do you think it takes to review all of that code? Keep your changes to < 200-300 LOC if
possible. If you have a larger change, decompose it into multiple independent changess. If you are adding a
bunch of new functions to fulfill the requirements of a new capability, add them separately with their tests, and
then write the code that uses them to deliver the capability. Of course, there are always exceptions. If you add
a small change and then add 300 LOC of tests, you will be forgiven;-) If you need to make a change that has
broad impact or a bunch of generated code (protobufs, etc.). Again, there can be exceptions.

• Write a meaningful commit message. Include a meaningful 50 (or less) character title, followed by a blank
line, followed my a more comprehensive description of the change. Be sure to include the JIRA identifier
corresponding to the change (e.g. [FAB-1234]). This can be in the title but should also be in the body of the
commit message.

e.g.

[FAB-1234] fix foobar() panic

Fix [FAB-1234] added a check to ensure that when foobar(foo string) is called,
that there is a non-empty string argument.

Finally, be responsive. Don’t let a change request fester with review comments such that it gets to a point that it
requires a rebase. It only further delays getting it merged and adds more work for you - to remediate the merge
conflicts.

63.8 Coding guidelines

Be sure to check out the language-specific style guides before making any changes. This will ensure a smoother
review.

63.9 Communication

We use RocketChat for communication and Google Hangouts™ for screen sharing between developers. Our devel-
opment planning and prioritization is done in JIRA, and we take longer running discussions/decisions to the mailing
list.

63.10 Maintainers

The project’s maintainers are responsible for reviewing and merging all patches submitted for review and they guide
the over-all technical direction of the project within the guidelines established by the Hyperledger Project’s Technical
Steering Committee (TSC).

63.10.1 Becoming a maintainer

This project is managed under an open governance model as described in our charter. Projects or sub-projects will
be lead by a set of maintainers. New sub-projects can designate an initial set of maintainers that will be approved
by the top-level project’s existing maintainers when the project is first approved. The project’s maintainers will,
from time-to-time, consider adding or removing a maintainer. An existing maintainer can submit a change set to the
MAINTAINERS.rst file. If there are less than eight maintainers, a majority of the existing maintainers on that project
are required to merge the change set. If there are more than eight existing maintainers, then if five or more of the
maintainers concur with the proposal, the change set is then merged and the individual is added to (or alternatively,

63.8. Coding guidelines 161

https://chat.hyperledger.org/
https://jira.hyperledger.org
http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://www.hyperledger.org/about/charter

fabricdocs Documentation, Release 1.0

removed from) the maintainers group. explicit resignation, some infraction of the code of conduct or consistently
demonstrating poor judgement.

63.11 Legal stuff

Note: Each source file must include a license header for the Apache Software License 2.0. A template of that header
can be found here.

We have tried to make it as easy as possible to make contributions. This applies to how we handle the legal aspects of
contribution. We use the same approach—the Developer’s Certificate of Origin 1.1 (DCO)—that the Linux® Kernel
community uses to manage code contributions.

We simply ask that when submitting a patch for review, the developer must include a sign-off statement in the commit
message.

Here is an example Signed-off-by line, which indicates that the submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@hisdomain.com>

You can include this automatically when you commit a change to your local git repository using git commit -s .

162 Chapter 63. Contributions Welcome!

https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct
https://github.com/hyperledger/fabric/blob/master/docs/dev-setup/headers.txt
http://elinux.org/Developer_Certificate_Of_Origin

CHAPTER 64

Requesting a Linux Foundation Account

Contributions to the Fabric code base require a Linux Foundation account. Follow the steps below to create a Linux
Foundation account.

64.1 Creating a Linux Foundation ID

1. Go to the Linux Foundation ID website.

2. Select the option I need to create a Linux Foundation ID .

3. Fill out the form that appears:

4. Open your email account and look for a message with the subject line: “Validate your Linux Foundation ID
email”.

5. Open the received URL to validate your email address.

6. Verify the browser displays the message You have successfully validated your e-mail
address .

7. Access Gerrit by selecting Sign In :

8. Use your Linux Foundation ID to Sign In:

64.2 Configuring Gerrit to Use SSH

Gerrit uses SSH to interact with your Git client. A SSH private key needs to be generated on the development machine
with a matching public key on the Gerrit server.

If you already have a SSH key-pair, skip this section.

As an example, we provide the steps to generate the SSH key-pair on a Linux environment. Follow the equivalent
steps on your OS.

1. Create a key-pair, enter:

ssh-keygen -t rsa -C "John Doe john.doe@example.com"

Note: This will ask you for a password to protect the private key as it generates a unique key. Please keep this password
private, and DO NOT enter a blank password.

The generated key-pair is found in: ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub .

163

https://identity.linuxfoundation.org/

fabricdocs Documentation, Release 1.0

1. Add the private key in the id_rsa file in your key ring, e.g.:

ssh-add ~/.ssh/id_rsa

Once the key-pair has been generated, the public key must be added to Gerrit.

Follow these steps to add your public key id_rsa.pub to the Gerrit account:

1. Go to Gerrit.

2. Click on your account name in the upper right corner.

3. From the pop-up menu, select Settings .

4. On the left side menu, click on SSH Public Keys .

5. Paste the contents of your public key ~/.ssh/id_rsa.pub and click Add key .

Note: The id_rsa.pub file can be opened with any text editor. Ensure that all the contents of the file are selected,
copied and pasted into the Add SSH key window in Gerrit.

Note: The ssh key generation instructions operate on the assumtion that you are using the default naming. It is possible
to generate multiple ssh Keys and to name the resulting files differently. See the ssh-keygen documentation for details
on how to do that. Once you have generated non-default keys, you need to configure ssh to use the correct key for
Gerrit. In that case, you need to create a ~/.ssh/config file modeled after the one below.

host gerrit.hyperledger.org
HostName gerrit.hyperledger.org
IdentityFile ~/.ssh/id_rsa_hyperledger_gerrit
User <LFID>

where is your Linux Foundation ID and the value of IdentityFile is the name of the public key file you generated.

Warning: Potential Security Risk! Do not copy your private key ~/.ssh/id_rsa Use only the public
~/.ssh/id_rsa.pub .

64.3 Checking Out the Source Code

1. Ensure that SSH has been set up properly. See Configuring Gerrit to Use SSH for details.

2. Clone the repository with your Linux Foundation ID ():

git clone ssh://<LFID>@gerrit.hyperledger.org:29418/fabric fabric

You have successfully checked out a copy of the source code to your local machine.

164 Chapter 64. Requesting a Linux Foundation Account

https://gerrit.hyperledger.org/r/#/admin/projects/fabric
https://en.wikipedia.org/wiki/Ssh-keygen

CHAPTER 65

Maintainers

Name Gerrit GitHub Slack email
Binh Nguyen binhn binhn binhn binhn@us.ibm.com
Chris Ferris ChristopherFerris christo4ferris cbf chris.ferris@gmail.com
Gabor Hosszu hgabre gabre hgabor gabor@digitalasset.com
Gari Singh mastersingh24 mastersingh24 garisingh gari.r.singh@gmail.com
Greg Haskins greg.haskins ghaskins ghaskins gregory.haskins@gmail.com
Jason Yellick jyellick jyellick jyellick jyellick@us.ibm.com
Jim Zhang jimthematrix jimthematrix jzhang jim_the_matrix@hotmail.com
Jonathan Levi JonathanLevi JonathanLevi JonathanLevi jonathan@hacera.com
Sheehan Anderson sheehan srderson sheehan sranderson@gmail.com
Srinivasan Muralidharan muralisr muralisrini muralisr muralisr@us.ibm.com
Tamas Blummer TamasBlummer tamasblummer tamas tamas@digitalasset.com
Yacov Manevich yacovm yacovm yacovm yacovm@il.ibm.com

165

mailto:binhn@us.ibm.com
mailto:chris.ferris@gmail.com
mailto:gabor@digitalasset.com
mailto:gari.r.singh@gmail.com
mailto:gregory.haskins@gmail.com
mailto:jyellick@us.ibm.com
mailto:jim_the_matrix@hotmail.com
mailto:jonathan@hacera.com
mailto:sranderson@gmail.com
mailto:muralisr@us.ibm.com
mailto:tamas@digitalasset.com
mailto:yacovm@il.ibm.com

fabricdocs Documentation, Release 1.0

166 Chapter 65. Maintainers

CHAPTER 66

Using Jira to understand current work items

This document has been created to give further insight into the work in progress towards the hyperledger/fabric v1
architecture based off the community roadmap. The requirements for the roadmap are being tracked in Jira.

It was determined to organize in sprints to better track and show a prioritized order of items to be implemented based
on feedback received. We’ve done this via boards. To see these boards and the priorities click on Boards -> Manage
Boards:

Fig. 66.1: Jira boards

Now on the left side of the screen click on All boards:

Fig. 66.2: Jira boards

On this page you will see all the public (and restricted) boards that have been created. If you want to see the items
with current sprint focus, click on the boards where the column labeled Visibility is All Users and the column Board
type is labeled Scrum. For example the Board Name Consensus:

167

https://jira.hyperledger.org/

fabricdocs Documentation, Release 1.0

Fig. 66.3: Jira boards

When you click on Consensus under Board name you will be directed to a page that contains the following columns:

Fig. 66.4: Jira boards

The meanings to these columns are as follows:

• Backlog – list of items slated for the current sprint (sprints are defined in 2 week iterations), but are not currently
in progress

• In progress – are items currently being worked by someone in the community.

• In Review – waiting to be reviewed and merged in Gerritt

• Done – merged and complete in the sprint.

If you want to see all items in the backlog for a given feature set click on the stacked rows on the left navigation of the
screen:

Fig. 66.5: Jira boards

This shows you items slated for the current sprint at the top, and all items in the backlog at the bottom. Items are listed
in priority order.

If there is an item you are interested in working on, want more information or have questions, or if there is an item that
you feel needs to be in higher priority, please add comments directly to the Jira item. All feedback and help is very
much appreciated.

168 Chapter 66. Using Jira to understand current work items

CHAPTER 67

Setting up the development environment

67.1 Overview

Through the v0.6 release, the development environment utilized Vagrant running an Ubuntu image, which in turn
launched Docker containers as a means of ensuring a consistent experience for developers who might be working with
varying platforms, such as MacOSX, Windows, Linux, or whatever. Advances in Docker have enabled native support
on the most popular development platforms: MacOSX and Windows. Hence, we have reworked our build to take full
advantage of these advances. While we still maintain a Vagrant based approach that can be used for older versions of
MacOSX and Windows that Docker does not support, we strongly encourage that the non-Vagrant development setup
be used.

Note that while the Vagrant-based development setup could not be used in a cloud context, the Docker-based build
does support cloud platforms such as AWS, Azure, Google and IBM to name a few. Please follow the instructions for
Ubuntu builds, below.

67.2 Prerequisites

• Git client

• Go - 1.7 or later (for releases before v1.0, 1.6 or later)

• For MacOSX, Xcode must be installed

• Docker - 1.12 or later

• Pip

• (MacOSX) you may need to install gnutar, as MacOSX comes with bsdtar as the default, but the build uses some
gnutar flags. You can use Homebrew to install it as follows:

brew install gnu-tar --with-default-names

• (only if using Vagrant) - Vagrant - 1.7.4 or later

• (only if using Vagrant) - VirtualBox - 5.0 or later

• BIOS Enabled Virtualization - Varies based on hardware

• Note: The BIOS Enabled Virtualization may be within the CPU or Security settings of the BIOS

169

https://git-scm.com/downloads
https://golang.org/
https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://www.docker.com/products/overview
https://pip.pypa.io/en/stable/installing/
https://www.vagrantup.com/
https://www.virtualbox.org/

fabricdocs Documentation, Release 1.0

67.3 pip, behave and docker-compose

pip install --upgrade pip
pip install behave nose docker-compose
pip install -I flask==0.10.1 python-dateutil==2.2 pytz==2014.3 pyyaml==3.10
→˓couchdb==1.0 flask-cors==2.0.1 requests==2.4.3 pyOpenSSL==16.2.0 sha3==0.2.1

67.4 Steps

67.4.1 Set your GOPATH

Make sure you have properly setup your Host’s GOPATH environment variable. This allows for both building within
the Host and the VM.

67.4.2 Note to Windows users

If you are running Windows, before running any git clone commands, run the following command.

git config --get core.autocrlf

If core.autocrlf is set to true , you must set it to false by running

git config --global core.autocrlf false

If you continue with core.autocrlf set to true , the vagrant up command will fail with the error:

./setup.sh: /bin/bash^M: bad interpreter: No such file or directory

67.4.3 Cloning the Fabric project

Since the Fabric project is a Go project, you’ll need to clone the Fabric repo to your $GOPATH/src directory. If your
$GOPATH has multiple path components, then you will want to use the first one. There’s a little bit of setup needed:

cd $GOPATH/src
mkdir -p github.com/hyperledger
cd github.com/hyperledger

Recall that we are using Gerrit for source control, which has its own internal git repositories. Hence, we will need
to clone from Gerrit. For brevity, the command is as follows:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418
→˓LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note: Of course, you would want to replace LFID with your own Linux Foundation ID.

67.4.4 Boostrapping the VM using Vagrant

If you are planning on using the Vagrant developer environment, the following steps apply. Again, we recommend
against its use except for developers that are limited to older versions of MacOSX and Windows that are not
supported by Docker for Mac or Windows.

170 Chapter 67. Setting up the development environment

https://github.com/golang/go/wiki/GOPATH

fabricdocs Documentation, Release 1.0

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant up

Go get coffee... this will take a few minutes. Once complete, you should be able to ssh into the Vagrant VM just
created.

vagrant ssh

Once inside the VM, you can find the peer project under $GOPATH/src/github.com/hyperledger/fabric
. It is also mounted as /hyperledger .

67.5 Building the fabric

Once you have all the dependencies installed, and have cloned the repository, you can proceed to build and test the
fabric.

67.6 Notes

NOTE: Any time you change any of the files in your local fabric directory (under
$GOPATH/src/github.com/hyperledger/fabric), the update will be instantly available within the
VM fabric directory.

NOTE: If you intend to run the development environment behind an HTTP Proxy, you need to configure the guest
so that the provisioning process may complete. You can achieve this via the vagrant-proxyconf plugin. Install with
vagrant plugin install vagrant-proxyconf and then set the VAGRANT_HTTP_PROXY and VA-
GRANT_HTTPS_PROXY environment variables before you execute vagrant up . More details are available
here: https://github.com/tmatilai/vagrant-proxyconf/

NOTE: The first time you run this command it may take quite a while to complete (it could take 30 minutes or more
depending on your environment) and at times it may look like it’s not doing anything. As long you don’t get any error
messages just leave it alone, it’s all good, it’s just cranking.

NOTE to Windows 10 Users: There is a known problem with vagrant on Windows 10 (see mitchellh/vagrant#6754).
If the vagrant up command fails it may be because you do not have the Microsoft Visual C++ Redistributable
package installed. You can download the missing package at the following address: http://www.microsoft.com/en-us/
download/details.aspx?id=8328

67.5. Building the fabric 171

https://github.com/tmatilai/vagrant-proxyconf/
https://github.com/mitchellh/vagrant/issues/6754
http://www.microsoft.com/en-us/download/details.aspx?id=8328
http://www.microsoft.com/en-us/download/details.aspx?id=8328

fabricdocs Documentation, Release 1.0

172 Chapter 67. Setting up the development environment

CHAPTER 68

Building the fabric

The following instructions assume that you have already set up your development environment.

To build the Fabric:

cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

68.1 Running the unit tests

Use the following sequence to run all unit tests

cd $GOPATH/src/github.com/hyperledger/fabric
make unit-test

To run a specific test use the -run RE flag where RE is a regular expression that matches the test case name. To run
tests with verbose output use the -v flag. For example, to run the TestGetFoo test case, change to the directory
containing the foo_test.go and call/excecute

go test -v -run=TestGetFoo

68.2 Running Node.js Unit Tests

You must also run the Node.js unit tests to insure that the Node.js client SDK is not broken by your changes. To run
the Node.js unit tests, follow the instructions here.

68.3 Running Behave BDD Tests

Note: currently, the behave tests must be run from within in the Vagrant environment. See the devenv setup instructions
if you have not already set up your Vagrant environment.

Behave tests will setup networks of peers with different security and consensus configurations and verify that transac-
tions run properly. To run these tests

cd $GOPATH/src/github.com/hyperledger/fabric
make behave

173

https://github.com/hyperledger/fabric-sdk-node/README.md
http://pythonhosted.org/behave/

fabricdocs Documentation, Release 1.0

Some of the Behave tests run inside Docker containers. If a test fails and you want to have the logs from the Docker
containers, run the tests with this option:

cd $GOPATH/src/github.com/hyperledger/fabric/bddtests
behave -D logs=Y

174 Chapter 68. Building the fabric

CHAPTER 69

Building outside of Vagrant

It is possible to build the project and run peers outside of Vagrant. Generally speaking, one has to ‘translate’ the
vagrant setup file to the platform of your choice.

69.1 Building on Z

To make building on Z easier and faster, this script is provided (which is similar to the setup file provided for vagrant).
This script has been tested only on RHEL 7.2 and has some assumptions one might want to re-visit (firewall settings,
development as root user, etc.). It is however sufficient for development in a personally-assigned VM instance.

To get started, from a freshly installed OS:

sudo su
yum install git
mkdir -p $HOME/git/src/github.com/hyperledger
cd $HOME/git/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
source fabric/devenv/setupRHELonZ.sh

From this point, you can proceed as described above for the Vagrant development environment.

cd $GOPATH/src/github.com/hyperledger/fabric
make peer unit-test behave

69.2 Building on Power Platform

Development and build on Power (ppc64le) systems is done outside of vagrant as outlined here. For ease of setting
up the dev environment on Ubuntu, invoke this script as root. This script has been validated on Ubuntu 16.04 and
assumes certain things (like, development system has OS repositories in place, firewall setting etc) and in general can
be improvised further.

To get started on Power server installed with Ubuntu, first ensure you have properly setup your Host’s GOPATH
environment variable. Then, execute the following commands to build the fabric code:

mkdir -p $GOPATH/src/github.com/hyperledger
cd $GOPATH/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
sudo ./fabric/devenv/setupUbuntuOnPPC64le.sh

175

https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh
https://github.com/hyperledger/fabric/tree/master/devenv/setupRHELonZ.sh
https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh
https://github.com/hyperledger/fabric/tree/master/devenv/setupUbuntuOnPPC64le.sh
https://github.com/golang/go/wiki/GOPATH
https://github.com/golang/go/wiki/GOPATH

fabricdocs Documentation, Release 1.0

cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

176 Chapter 69. Building outside of Vagrant

CHAPTER 70

Configuration

Configuration utilizes the viper and cobra libraries.

There is a core.yaml file that contains the configuration for the peer process. Many of the configuration settings can
be overridden on the command line by setting ENV variables that match the configuration setting, but by prefixing
with ‘CORE_’. For example, logging level manipulation through the environment is shown below:

CORE_PEER_LOGGING_LEVEL=CRITICAL peer

177

https://github.com/spf13/viper
https://github.com/spf13/cobra

fabricdocs Documentation, Release 1.0

178 Chapter 70. Configuration

CHAPTER 71

Logging

Logging utilizes the go-logging library.

The available log levels in order of increasing verbosity are: CRITICAL | ERROR | WARNING | NOTICE | INFO |
DEBUG

See specific logging control instructions when running the peer process.

179

https://github.com/op/go-logging
https://github.com/hyperledger/fabric/blob/master/docs/Setup/logging-control.md

fabricdocs Documentation, Release 1.0

180 Chapter 71. Logging

CHAPTER 72

Working with Gerrit

Follow these instructions to collaborate on the Hyperledger Fabric Project through the Gerrit review system.

Please be sure that you are subscribed to the mailing list and of course, you can reach out on chat if you need help.

Gerrit assigns the following roles to users:

• Submitters: May submit changes for consideration, review other code changes, and make recommendations
for acceptance or rejection by voting +1 or -1, respectively.

• Maintainers: May approve or reject changes based upon feedback from reviewers voting +2 or -2, respectively.

• Builders: (e.g. Jenkins) May use the build automation infrastructure to verify the change.

Maintainers should be familiar with the review process. However, anyone is welcome to (and encouraged!) review
changes, and hence may find that document of value.

72.1 Git-review

There’s a very useful tool for working with Gerrit called git-review. This command-line tool can automate most of the
ensuing sections for you. Of course, reading the information below is also highly recommended so that you understand
what’s going on behind the scenes.

72.2 Sandbox project

We have created a sandbox project to allow developers to familiarize themselves with Gerrit and our workflows. Please
do feel free to use this project to experiment with the commands and tools, below.

72.3 Getting deeper into Gerrit

A comprehensive walk-through of Gerrit is beyond the scope of this document. There are plenty of resources available
on the Internet. A good summary can be found here. We have also provided a set of Best Practices that you may find
helpful.

72.4 Working with a local clone of the repository

To work on something, whether a new feature or a bugfix:

181

http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://chat.hyperledger.org/
https://www.mediawiki.org/wiki/Gerrit/git-review
https://gerrit.hyperledger.org/r/#/admin/projects/lf-sandbox
https://www.mediawiki.org/wiki/Gerrit/Tutorial

fabricdocs Documentation, Release 1.0

1. Open the Gerrit Projects page

2. Select the project you wish to work on.

3. Open a terminal window and clone the project locally using the Clone with git hook URL. Be sure that
ssh is also selected, as this will make authentication much simpler:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418
→˓LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note: if you are cloning the fabric project repository, you will want to clone it to the
$GOPATH/src/github.com/hyperledger directory so that it will build, and so that you can use it
with the Vagrant development environment.

4. Create a descriptively-named branch off of your cloned repository

cd fabric
git checkout -b issue-nnnn

5. Commit your code. For an in-depth discussion of creating an effective commit, please read this document.

git commit -s -a

Then input precise and readable commit msg and submit.

6. Any code changes that affect documentation should be accompanied by corresponding changes (or additions) to
the documentation and tests. This will ensure that if the merged PR is reversed, all traces of the change will be
reversed as well.

72.5 Submitting a Change

Currently, Gerrit is the only method to submit a change for review. Please review the ‘guidelines <changes.md>‘__
for making and submitting a change.

72.5.1 Use git review

Note: if you prefer, you can use the git-review tool instead of the following. e.g.

Add the following section to .git/config , and replace <USERNAME> with your gerrit id.

[remote "gerrit"]
url = ssh://<USERNAME>@gerrit.hyperledger.org:29418/fabric.git
fetch = +refs/heads/*:refs/remotes/gerrit/*

Then submit your change with git review .

$ cd <your code dir>
$ git review

When you update your patch, you can commit with git commit --amend , and then repeat the git review
command.

182 Chapter 72. Working with Gerrit

https://gerrit.hyperledger.org/r/#/admin/projects/

fabricdocs Documentation, Release 1.0

72.5.2 Not Use git review

Directions for building the source code can be found here.

When a change is ready for submission, Gerrit requires that the change be pushed to a special branch. The name of
this special branch contains a reference to the final branch where the code should reside, once accepted.

For the Hyperledger Fabric Project, the special branch is called refs/for/master .

To push the current local development branch to the gerrit server, open a terminal window at the root of your cloned
repository:

cd <your clone dir>
git push origin HEAD:refs/for/master

If the command executes correctly, the output should look similar to this:

Counting objects: 3, done.
Writing objects: 100% (3/3), 306 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Processing changes: new: 1, refs: 1, done
remote:
remote: New Changes:
remote: https://gerrit.hyperledger.org/r/6 Test commit
remote:
To ssh://LFID@gerrit.hyperledger.org:29418/fabric

* [new branch] HEAD -> refs/for/master

The gerrit server generates a link where the change can be tracked.

72.6 Adding reviewers

Optionally, you can add reviewers to your change.

To specify a list of reviewers via the command line, add %r=reviewer@project.org to your push command.
For example:

git push origin HEAD:refs/for/master%r=rev1@email.com,r=rev2@notemail.com

Alternatively, you can auto-configure GIT to add a set of reviewers if your commits will have the same reviewers all
at the time.

To add a list of default reviewers, open the :file:.git/config file in the project directory and add the following
line in the [branch “master”] section:

[branch "master"] #.... push =
HEAD:refs/for/master%r=rev1@email.com,r=rev2@notemail.com`

Make sure to use actual email addresses instead of the @email.com and @notemail.com addressses. Don’t
forget to replace origin with your git remote name.

72.7 Reviewing Using Gerrit

• Add: This button allows the change submitter to manually add names of people who should review a change;
start typing a name and the system will auto-complete based on the list of people registered and with access to

72.6. Adding reviewers 183

fabricdocs Documentation, Release 1.0

the system. They will be notified by email that you are requesting their input.

• Abandon: This button is available to the submitter only; it allows a committer to abandon a change and remove
it from the merge queue.

• Change-ID: This ID is generated by Gerrit (or system). It becomes useful when the review process determines
that your commit(s) have to be amended. You may submit a new version; and if the same Change-ID header
(and value) are present, Gerrit will remember it and present it as another version of the same change.

• Status: Currently, the example change is in review status, as indicated by “Needs Verified” in the upper-left
corner. The list of Reviewers will all emit their opinion, voting +1 if they agree to the merge, -1 if they disagree.
Gerrit users with a Maintainer role can agree to the merge or refuse it by voting +2 or -2 respectively.

Notifications are sent to the email address in your commit message’s Signed-off-by line. Visit your Gerrit dashboard,
to check the progress of your requests.

The history tab in Gerrit will show you the in-line comments and the author of the review.

72.8 Viewing Pending Changes

Find all pending changes by clicking on the All --> Changes link in the upper-left corner, or open this link.

If you collaborate in multiple projects, you may wish to limit searching to the specific branch through the search bar
in the upper-right side.

Add the filter project:fabric to limit the visible changes to only those from the Hyperledger Fabric Project.

List all current changes you submitted, or list just those changes in need of your input by clicking on My -->
Changes or open this link

184 Chapter 72. Working with Gerrit

https://gerrit.hyperledger.org/r/#/dashboard/self
https://gerrit.hyperledger.org/r/#/q/project:fabric
https://gerrit.hyperledger.org/r/#/dashboard/self

CHAPTER 73

Submitting a Change to Gerrit

Carefully review the following before submitting a change. These guidelines apply to developers that are new to open
source, as well as to experienced open source developers.

73.1 Change Requirements

This section contains guidelines for submitting code changes for review. For more information on how to submit a
change using Gerrit, please see Gerrit.

Changes are submitted as Git commits. Each commit must contain:

• a short and descriptive subject line that is 72 characters or fewer, followed by a blank line.

• a change description with your logic or reasoning for the changes, followed by a blank line

• a Signed-off-by line, followed by a colon (Signed-off-by:)

• a Change-Id identifier line, followed by a colon (Change-Id:). Gerrit won’t accept patches without this identifier.

A commit with the above details is considered well-formed.

All changes and topics sent to Gerrit must be well-formed. Informationally, commit messages must include:

• what the change does,

• why you chose that approach, and

• how you know it works – for example, which tests you ran.

Commits must build cleanly when applied in top of each other, thus avoiding breaking bisectability. Each commit
must address a single identifiable issue and must be logically self-contained.

For example: One commit fixes whitespace issues, another renames a function and a third one changes the code’s
functionality. An example commit file is illustrated below in detail:

A short description of your change with no period at the end

You can add more details here in several paragraphs, but please keep each line
width less than 80 characters. A bug fix should include the issue number.

Fix Issue # 7050.

Change-Id: IF7b6ac513b2eca5f2bab9728ebd8b7e504d3cebe1
Signed-off-by: Your Name <commit-sender@email.address>

185

fabricdocs Documentation, Release 1.0

Each commit must contain the following line at the bottom of the commit message:

Signed-off-by: Your Name <your@email.address>

The name in the Signed-off-by line and your email must match the change authorship information. Make sure your
:file:.git/config is set up correctly. Always submit the full set of changes via Gerrit.

When a change is included in the set to enable other changes, but it will not be part of the final set, please let the
reviewers know this.

186 Chapter 73. Submitting a Change to Gerrit

CHAPTER 74

Reviewing a Change

1. Click on a link for incoming or outgoing review.

2. The details of the change and its current status are loaded:

• Status: Displays the current status of the change. In the example below, the status reads: Needs Verified.

• Reply: Click on this button after reviewing to add a final review message and a score, -1, 0 or +1.

• Patch Sets: If multiple revisions of a patch exist, this button enables navigation among revisions to see the
changes. By default, the most recent revision is presented.

• Download: This button brings up another window with multiple options to download or checkout the current
changeset. The button on the right copies the line to your clipboard. You can easily paste it into your git interface
to work with the patch as you prefer.

Underneath the commit information, the files that have been changed by this patch are displayed.

3. Click on a filename to review it. Select the code base to differentiate against. The default is Base and it will
generally be what is needed.

4. The review page presents the changes made to the file. At the top of the review, the presentation shows some
general navigation options. Navigate through the patch set using the arrows on the top right corner. It is possible
to go to the previous or next file in the set or to return to the main change screen. Click on the yellow sticky pad
to add comments to the whole file.

The focus of the page is on the comparison window. The changes made are presented in green on the right versus the
base version on the left. Double click to highlight the text within the actual change to provide feedback on a specific
section of the code. Press c once the code is highlighted to add comments to that section.

5. After adding the comment, it is saved as a Draft.

6. Once you have reviewed all files and provided feedback, click the green up arrow at the top right to return to the
main change page. Click the Reply button, write some final comments, and submit your score for the patch
set. Click Post to submit the review of each reviewed file, as well as your final comment and score. Gerrit
sends an email to the change-submitter and all listed reviewers. Finally, it logs the review for future reference.
All individual comments are saved as Draft until the Post button is clicked.

187

fabricdocs Documentation, Release 1.0

188 Chapter 74. Reviewing a Change

CHAPTER 75

Gerrit Recommended Practices

This document presents some best practices to help you use Gerrit more effectively. The intent is to show how content
can be submitted easily. Use the recommended practices to reduce your troubleshooting time and improve participation
in the community.

75.1 Browsing the Git Tree

Visit Gerrit then select Projects --> List --> SELECT-PROJECT --> Branches . Select the branch
that interests you, click on gitweb located on the right-hand side. Now, gitweb loads your selection on the Git
web interface and redirects appropriately.

75.2 Watching a Project

Visit Gerrit, then select Settings , located on the top right corner. Select Watched Projects and then add any
projects that interest you.

75.3 Commit Messages

Gerrit follows the Git commit message format. Ensure the headers are at the bottom and don’t contain blank lines
between one another. The following example shows the format and content expected in a commit message:

Brief (no more than 50 chars) one line description.

Elaborate summary of the changes made referencing why (motivation), what was changed and how it was tested. Note
also any changes to documentation made to remain consistent with the code changes, wrapping text at 72 chars/line.

Jira: FAB-100
Change-Id: LONGHEXHASH
Signed-off-by: Your Name your.email@example.org
AnotherExampleHeader: An Example of another Value

The Gerrit server provides a precommit hook to autogenerate the Change-Id which is one time use.

Recommended reading: How to Write a Git Commit Message

189

https://gerrit.hyperledger.org/r/#/admin/projects/fabric
https://gerrit.hyperledger.org/r/#/admin/projects/fabric
mailto:your.email@example.org
http://chris.beams.io/posts/git-commit/

fabricdocs Documentation, Release 1.0

75.4 Avoid Pushing Untested Work to a Gerrit Server

To avoid pushing untested work to Gerrit.

Check your work at least three times before pushing your change to Gerrit. Be mindful of what information you are
publishing.

75.5 Keeping Track of Changes

• Set Gerrit to send you emails:

• Gerrit will add you to the email distribution list for a change if a developer adds you as a reviewer, or if you
comment on a specific Patch Set.

• Opening a change in Gerrit’s review interface is a quick way to follow that change.

• Watch projects in the Gerrit projects section at Gerrit , select at least New Changes, New Patch Sets, All
Comments and Submitted Changes.

Always track the projects you are working on; also see the feedback/comments mailing list to learn and help others
ramp up.

75.6 Topic branches

Topic branches are temporary branches that you push to commit a set of logically-grouped dependent commits:

To push changes from REMOTE/master tree to Gerrit for being reviewed as a topic in TopicName use the following
command as an example:

$ git push REMOTE HEAD:refs/for/master/TopicName

The topic will show up in the review :abbr:UI and in the Open Changes List . Topic branches will disappear
from the master tree when its content is merged.

75.7 Creating a Cover Letter for a Topic

You may decide whether or not you’d like the cover letter to appear in the history.

1. To make a cover letter that appears in the history, use this command:

git commit --allow-empty

Edit the commit message, this message then becomes the cover letter. The command used doesn’t change any files in
the source tree.

2. To make a cover letter that doesn’t appear in the history follow these steps:

• Put the empty commit at the end of your commits list so it can be ignored
without having to rebase.

• Now add your commits

git commit ...
git commit ...
git commit ...

190 Chapter 75. Gerrit Recommended Practices

fabricdocs Documentation, Release 1.0

• Finally, push the commits to a topic branch. The following command is an example:

git push REMOTE HEAD:refs/for/master/TopicName

If you already have commits but you want to set a cover letter, create an empty commit for the cover letter and move
the commit so it becomes the last commit on the list. Use the following command as an example:

git rebase -i HEAD~#Commits

Be careful to uncomment the commit before moving it. #Commits is the sum of the commits plus your new cover
letter.

75.8 Finding Available Topics

$ ssh -p 29418 gerrit.hyperledger.org gerrit query \ status:open project:fabric
→˓branch:master \
| grep topic: | sort -u

• ‘gerrit.hyperledger.org <>‘__ Is the current URL where the project is hosted.

• status Indicates the topic’s current status: open , merged, abandoned, draft, merge conflict.

• project Refers to the current name of the project, in this case fabric.

• branch The topic is searched at this branch.

• topic The name of an specific topic, leave it blank to include them all.

• sort Sorts the found topics, in this case by update (-u).

75.9 Downloading or Checking Out a Change

In the review UI, on the top right corner, the Download link provides a list of commands and hyperlinks to checkout
or download diffs or files.

We recommend the use of the git review plugin. The steps to install git review are beyond the scope of this document.
Refer to the git review documentation for the installation process.

To check out a specific change using Git, the following command usually works:

git review -d CHANGEID

If you don’t have Git-review installed, the following commands will do the same thing:

git fetch REMOTE refs/changes/NN/CHANGEIDNN/VERSION \ && git checkout FETCH_HEAD

For example, for the 4th version of change 2464, NN is the first two digits (24):

git fetch REMOTE refs/changes/24/2464/4 \ && git checkout FETCH_HEAD

75.10 Using Draft Branches

You can use draft branches to add specific reviewers before you publishing your change. The Draft Branches are
pushed to refs/drafts/master/TopicName

75.8. Finding Available Topics 191

https://wiki.openstack.org/wiki/Documentation/HowTo/FirstTimers

fabricdocs Documentation, Release 1.0

The next command ensures a local branch is created:

git checkout -b BRANCHNAME

The next command pushes your change to the drafts branch under TopicName:

git push REMOTE HEAD:refs/drafts/master/TopicName

75.11 Using Sandbox Branches

You can create your own branches to develop features. The branches are pushed to the
refs/sandbox/USERNAME/BRANCHNAME location.

These commands ensure the branch is created in Gerrit’s server.

git checkout -b sandbox/USERNAME/BRANCHNAME
git push --set-upstream REMOTE HEAD:refs/heads/sandbox/USERNAME/BRANCHNAME

Usually, the process to create content is:

• develop the code,

• break the information into small commits,

• submit changes,

• apply feedback,

• rebase.

The next command pushes forcibly without review:

git push REMOTE sandbox/USERNAME/BRANCHNAME

You can also push forcibly with review:

git push REMOTE HEAD:ref/for/sandbox/USERNAME/BRANCHNAME

75.12 Updating the Version of a Change

During the review process, you might be asked to update your change. It is possible to submit multiple versions of the
same change. Each version of the change is called a patch set.

Always maintain the Change-Id that was assigned. For example, there is a list of commits, c0...c7, which were
submitted as a topic branch:

git log REMOTE/master..master

c0
...
c7

git push REMOTE HEAD:refs/for/master/SOMETOPIC

192 Chapter 75. Gerrit Recommended Practices

fabricdocs Documentation, Release 1.0

After you get reviewers’ feedback, there are changes in c3 and c4 that must be fixed. If the fix requires rebasing,
rebasing changes the commit Ids, see the rebasing section for more information. However, you must keep the same
Change-Id and push the changes again:

git push REMOTE HEAD:refs/for/master/SOMETOPIC

This new push creates a patches revision, your local history is then cleared. However you can still access the history
of your changes in Gerrit on the review UI section, for each change.

It is also permitted to add more commits when pushing new versions.

75.13 Rebasing

Rebasing is usually the last step before pushing changes to Gerrit; this allows you to make the necessary Change-Ids.
The Change-Ids must be kept the same.

• squash: mixes two or more commits into a single one.

• reword: changes the commit message.

• edit: changes the commit content.

• reorder: allows you to interchange the order of the commits.

• rebase: stacks the commits on top of the master.

75.14 Rebasing During a Pull

Before pushing a rebase to your master, ensure that the history has a consecutive order.

For example, your REMOTE/master has the list of commits from a0 to a4; Then, your changes c0...c7 are on top of
a4; thus:

git log --oneline REMOTE/master..master

a0
a1
a2
a3
a4
c0
c1
...
c7

If REMOTE/master receives commits a5, a6 and a7. Pull with a rebase as follows:

git pull --rebase REMOTE master

This pulls a5-a7 and re-apply c0-c7 on top of them:

$ git log --oneline REMOTE/master..master
a0
...
a7
c0

75.13. Rebasing 193

http://git-scm.com/book/en/v2/Git-Branching-Rebasing

fabricdocs Documentation, Release 1.0

c1
...
c7

75.15 Getting Better Logs from Git

Use these commands to change the configuration of Git in order to produce better logs:

git config log.abbrevCommit true

The command above sets the log to abbreviate the commits’ hash.

git config log.abbrev 5

The command above sets the abbreviation length to the last 5 characters of the hash.

git config format.pretty oneline

The command above avoids the insertion of an unnecessary line before the Author line.

To make these configuration changes specifically for the current Git user, you must add the path option --global
to config as follows:

194 Chapter 75. Gerrit Recommended Practices

CHAPTER 76

Testing

[WIP] ...coming soon

This topic is intended to contain recommended test scenarios, as well as current performance numbers against a variety
of configurations.

195

fabricdocs Documentation, Release 1.0

196 Chapter 76. Testing

CHAPTER 77

Coding guidelines

77.1 Coding Golang

We code in Go™ and strictly follow the best practices and will not accept any deviations. You must run the following
tools against your Go code and fix all errors and warnings: - golint - go vet - goimports

197

http://golang.org/doc/effective_go.html
https://github.com/golang/lint
https://golang.org/cmd/vet/
https://godoc.org/golang.org/x/tools/cmd/goimports

fabricdocs Documentation, Release 1.0

198 Chapter 77. Coding guidelines

CHAPTER 78

Generating gRPC code

If you modify any .proto files, run the following command to generate/update the respective .pb.go files.

cd $GOPATH/src/github.com/hyperledger/fabric
make protos

199

fabricdocs Documentation, Release 1.0

200 Chapter 78. Generating gRPC code

CHAPTER 79

Adding or updating Go packages

The Hyperledger Fabric Project uses Go 1.6 vendoring for package management. This means that all required packages
reside in the vendor folder within the fabric project. Go will use packages in this folder instead of the GOPATH
when the go install or go build commands are executed. To manage the packages in the vendor folder,
we use Govendor, which is installed in the Vagrant environment. The following commands can be used for package
management:

Add external packages.
govendor add +external

Add a specific package.
govendor add github.com/kardianos/osext

Update vendor packages.
govendor update +vendor

Revert back to normal GOPATH packages.
govendor remove +vendor

List package.
govendor list

201

https://github.com/kardianos/govendor

fabricdocs Documentation, Release 1.0

202 Chapter 79. Adding or updating Go packages

CHAPTER 80

Still Have Questions?

We try to maintain a comprehensive set of documentation for various audiences. However, we realize that often there
are questions that remain unanswered. For any technical questions relating to the Hyperledger Fabric project not
answered in this documentation, please use StackOverflow. If you need help finding things, please don’t hesitate to
send a note to the mailing list, or ask on RocketChat (an alternative to Slack).

203

http://stackoverflow.com/questions/tagged/hyperledger
http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric

fabricdocs Documentation, Release 1.0

204 Chapter 80. Still Have Questions?

CHAPTER 81

Quality

[WIP] ...coming soon

205

fabricdocs Documentation, Release 1.0

206 Chapter 81. Quality

CHAPTER 82

Incubation Notice

This project is a Hyperledger project in Incubation. It was proposed to the community and documented here. Infor-
mation on what Incubation entails can be found in the Hyperledger Project Lifecycle document.

207

https://goo.gl/RYQZ5N
https://goo.gl/4edNRc

fabricdocs Documentation, Release 1.0

208 Chapter 82. Incubation Notice

CHAPTER 83

License

The Hyperledger Project uses the Apache License Version 2.0 software license.

209

	Overview
	Why Hyperledger Fabric?
	Hyperledger Fabric Glossary
	Blockchain Network
	Permissioned Network
	Peer
	Member
	Transaction
	End User
	Ordering Service
	Consensus
	Orderer
	Endorser
	Committer
	Bootstrap
	Block
	System chain
	Channel
	Multi-channel
	Configuration Block
	Genesis Block
	Ledger
	Dynamic membership
	Query/Non-Key Value Query
	Gossip Protocol
	System Chaincode
	Lifecycle System Chaincode
	Configuration System Chaincode
	Endorsement System Chaincode
	Validation System Chaincode
	Policy
	Endorsement policy
	Proposal
	Deploy
	Invoke
	Membership Services
	Membership Service Provider
	Initialize
	appshim
	osshim
	Hyperledger Fabric Client SDK
	Chaincode

	Transaction Data Model
	Security Model
	Multichannel
	Smart Contracts
	Consensus
	Getting Started with v1.0 Hyperledger Fabric - App Developers
	Prerequisites and setup
	Curl the source code to create network entities
	Using Docker
	Commands
	Use Docker to spawn network entities & create/join a channel
	Curl the application source code and SDK modules
	Use node SDK to register/enroll user and deploy/invoke/query
	Manually create and join peers to a new channel
	Use cli to deploy, invoke and query
	Creating your initial channel through the cli
	Troubleshooting (optional)
	Clean up
	Helpful Docker tips

	What's Included?
	Prerequisites and setup
	Curl the source code to create network entities
	Using Docker
	Commands
	Use Docker to spawn network entities & create/join a channel
	Curl the application source code and SDK modules
	Use node SDK to register/enroll user, followed by deploy/invoke
	Manually create and join peers to a new channel
	Use cli to deploy, invoke and query
	Creating your initial channel through the cli
	Troubleshooting (optional)
	Clean up
	Helpful Docker tips
	Node SDK
	Java SDK
	Python SDK
	Marbles
	Art Auction
	Commercial Paper
	Car Lease
	What is chaincode?
	Chaincode interfaces
	Dependencies
	Chaincode APIs
	Response
	Command Line Interfaces
	Deploy a chaincode

	Learn to write chaincode
	Docker Compose
	Sample Application
	Videos
	Administration and operations
	Debugging & Logging
	Logging Control
	Overview
	peer
	Go chaincodes

	Recipe Book
	Starting a network
	Architecture
	Architecture Deep Dive
	Table of contents
	1. System architecture
	2. Basic workflow of transaction endorsement
	3. Endorsement policies
	4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning)

	Endorsement policies
	Endorsement policy design
	Endorsement policy syntax in the CLI
	Specifying endorsement policies for a chaincode
	Future enhancements

	Ordering Service
	Pluggable Ordering implementations
	Ledger
	Gossip protocol
	Fabric CA User's Guide
	Getting Started
	Prerequisites
	Install
	The Fabric CA CLI

	Fabric CA Server
	Appendix
	Postgres SSL Configuration
	MySQL SSL Configuration

	Components
	Transaction Flow
	Endorsing Peer
	Committing Peer
	Troubleshooting
	Chaincode (Smart Contracts and Digital Assets)
	Confidentiality
	How is the confidentiality of transactions and business logic achieved?

	Consensus Algorithm
	Identity Management (Membership Service)
	Usage
	Releases
	Contributions Welcome!
	Getting a Linux Foundation account
	Getting help
	Requirements and Use Cases
	Reporting bugs
	Fixing issues and working stories
	Working with a local clone and Gerrit
	What makes a good change request?
	Coding guidelines
	Communication
	Maintainers
	Legal stuff

	Requesting a Linux Foundation Account
	Creating a Linux Foundation ID
	Configuring Gerrit to Use SSH
	Checking Out the Source Code

	Maintainers
	Using Jira to understand current work items
	Setting up the development environment
	Overview
	Prerequisites
	pip, behave and docker-compose
	Steps
	Building the fabric
	Notes

	Building the fabric
	Running the unit tests
	Running Node.js Unit Tests
	Running Behave BDD Tests

	Building outside of Vagrant
	Building on Z
	Building on Power Platform

	Configuration
	Logging
	Working with Gerrit
	Git-review
	Sandbox project
	Getting deeper into Gerrit
	Working with a local clone of the repository
	Submitting a Change
	Adding reviewers
	Reviewing Using Gerrit
	Viewing Pending Changes

	Submitting a Change to Gerrit
	Change Requirements

	Reviewing a Change
	Gerrit Recommended Practices
	Browsing the Git Tree
	Watching a Project
	Commit Messages
	Avoid Pushing Untested Work to a Gerrit Server
	Keeping Track of Changes
	Topic branches
	Creating a Cover Letter for a Topic
	Finding Available Topics
	Downloading or Checking Out a Change
	Using Draft Branches
	Using Sandbox Branches
	Updating the Version of a Change
	Rebasing
	Rebasing During a Pull
	Getting Better Logs from Git

	Testing
	Coding guidelines
	Coding Golang

	Generating gRPC code
	Adding or updating Go packages
	Still Have Questions?
	Quality
	Incubation Notice
	License

