

F5 reference solutions as code

This is a community project. it is not maintained or sponsered by F5.
use at your own responsability !

designed to provide a common framework for deploying and developing F5 solutions as code.

You can use these modules to create, edit, update, and delete configuration objects on BIG-IP or cloud infrastructure.

User Guide

	About

	Running the container on your docker host

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

Module Reference

	Module Index

Support Details

	BIG-IP versions

	Experimental vs. production modules

Developer's Guide

	How to get involved

	Guidelines

About

General

This project is a community driven effort to enable F5 users to build/experiment/test F5 services in their own cloud environments.
The intent is to make it easier and faster to test the advanced security/ADC services offered by F5 by delivering modular pieces of automation code/scripts.

About the framework

The f5-rs framework is built from the following components:

	F5-rs-container

	runs the tools we use and their dependencies (for example - f5-sdk, aws python sdk..)

	Shared infrastructure

	bigiq for licensing

	DNS

	Centralized logging platform

	automation modules

[image: lab-diag-005]

Tools

The framework leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Getting started

You can run the container from any docker host, follow the instructions here:

	Running the container on your docker host

Running the container on your docker host

Note

The following instructions will create a volume on your docker host and will instruct you
to store private information in the host volume. the information in the volume will persist
on the host even after the container is terminated.

1. run the rs-container

docker pull f5usecases/f5-rs-container:1.1
docker run -it --name rs-container -v config:/home/snops/host_volume -v jenkins:/var/jenkins_home -p 2222:22 -p 10000:8080 --rm f5usecases/f5-rs-container:1.1

The container exposes the following access methods:

	SSH to RS-CONTAINER ssh://localhsot:2222

	HTTP Access to Jenkins http://localhost:10000 (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	SSH to dockerhost:2222

	username: root

	password: default

1.2 initial setup or skip to solutions if already completed the initial setup

	Move on to configure the container:

	Initial setup

2. Start a solution

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

Initial setup

1. Configure the rs-container

The entire lab is built from code hosted in this repo.
To run the deployments you need to configure your personal information and credentials.

Note

You will be asked to configure sensitive parameters like AWS credentials.
those are used to deploy resources on your account. those cloud resources will appear on your cloud account

it is your responsibility to use it responsibly and shut down the instances when done.

1.1 Configure credentials and personal information

The following steps are required only in the first time you run the container on a host,
this information persists on the host and will be available for you on any subsequent runs.

1.1.1 Create an AWS credentials file

	create an AWS credentials file by typing:

mkdir -p /home/snops/host_volume/aws
vi /home/snops/host_volume/aws/credentials

	Copy and paste the following (and change to your keys):

[default]
aws_access_key_id = CHANGE_TO_ACCESS_KEY
aws_secret_access_key = CHANGE_TO_SECRET

1.1.2 Create a personal SSH key

The SSH key will be used when creating EC2 instances.
we will store them in the host-volume so they will persist any container restart:

mkdir -p /home/snops/host_volume/sshkeys
ssh-keygen -f /home/snops/host_volume/sshkeys/id_rsa -t rsa -N ''

1.1.3 open jenkins

on your laptop:

	open http://localhost:10000

	username: snops , password: default

1.1.4 add credentials

	You will now configure some paramaters as ‘jenkins credentials’, those paramaters are used when deploying the solutions.

	In jenkins, Navigate to ‘credentilas’ on the left side

[image: jenkins_001]

	Click on ‘global’

[image: jenkins_002]

	Click on ‘Add Credentials’ on the left side

[image: jenkins_003]

	Change the ‘kind’ to ‘secret text’

[image: jenkins_004]

	
	Add the following credentials:

	
	
	Secret: ‘USERNAME’ , ID: ‘vault_username’

	
	USERNAME: used as the username for instances that you launch. also used to tag instances. example johnw. please follow BIGIP password complexity guide https://techdocs.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/big-ip-system-secure-password-policy-14-0-0/01.html

	
	Add the following credentials:

	
	
	Secret: ‘EMAIL’ , ID: ‘vault_email’

	
	EMAIL: your EMAIL address

	
	Add the following credentials:

	
	
	Secret: ‘YOUR_SECRET_PASSWORD’ , ID: ‘vault_password’

	
	USERNAME: used as the password for instances that you launch. needs to be a secure password.

	
	Add the following credentials:

	
	
	Secret: ‘TEAMS_WEBHOOK’ , ID: ‘teams_builds_uri’

	
	TEAMS_WEBHOOK: webhook from your teams channel.

	open teams, click on the channel options (3 points next to the channel name)

	configure an Incoming Webhook

[image: jenkins_0041]

1.2 Run the container startup script

	Run the container startup script with the following command:

	The script will download the repos again and copy files from the host volume you just populated to the relevant directories

/snopsboot/start

2. Start a solution

List of available solutions:

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

F5 AWAF in AWS with DO/AS3

This lab covers the following topics:

	Deploying a vpc to AWS with the required subnets

	Deploying a juiceshop application in an autoscale group

	Deploying a bigip to AWS and onboarding it using declarative onboarding

	Deploying an F5 AWAF to protect juiceshop application

	Declaring the F5 service using AS3

Here are the lab steps:

	Lab Environment

	Lab 1: Deploy app and bigip

	Lab 2 (BIGIP):

DevSecOps - Advanced WAF in a CI/CD Workflow

This lab covers the following topics:

	Shifting WAF policies left [https://en.wikipedia.org/wiki/Shift_left_testing], closer to Dev

	Declarative Advanced WAF

Lab Goals:

	Describe the main DevSecOps concepts and how they translate into an actual environment

	Describe the various roles in a DevSecOps workflow (SecOps, Dev, DevOps)

	Describe the workflow with F5 Application Security integrated into the pipeline

Roles in the Lab:

	SecOps - Represents an application security engineer

	Dave - Represents a guy from the application / end to end team, responsible for the app and infrastructure code required to build the app.

	DevOps / Automation / SRE - aren’t represented in the lab. Their role is to build the tools we utilize in this lab (the automation pipeline of infrastructure and application security)

OUT OF SCOPE:

	The “how-to” and the mechanics of the automation components

	Please refer to the F5 Super-NetOps Training [https://f5.com/supernetops] for the above

Expected time to complete: 1 hours

To continue, please review the information about the Lab Environment.

	Lab info

	Module 0 - initial setup

	Module 1: Shifting WAF policy left, closer to DEV.

	Module 2: Declarative advanced waf

F5 AWAF in AWS with DO/AS3

This lab covers the following topics:

	Deploying a vpc to AWS with the required subnets

	Deploying a juiceshop application in an autoscale group

	Deploying a bigip to AWS and onboarding it using declarative onboarding

	Deploying an F5 AWAF to protect juiceshop application

	Declaring the F5 service using AS3

Here are the lab steps:

	Lab Environment

	Lab 1: Deploy app and bigip

	Lab 2 (BIGIP):

Lab Environment

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC.
while most of the components are dedicated for their app and separated from the rest of the netwrok,
there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Lab 1: Deploy app and bigip

Task 1.1 - Configure jenkins credentials

1.1.1 open jenkins

on your laptop:

	open http://localhost:10000

	username: snops , password: default

1.1.2 Verify that credentials are configured

	
	verify the following credentials exists:

	
	
	Secret: ‘USERNAME’ , ID: ‘vault_username’

	
	USERNAME: used as the username for instances that you launch. also used to tag instances. example johnw

	
	Add the following credentials:

	
	
	Secret: ‘EMAIL’ , ID: ‘vault_email’

	
	EMAIL: your EMAIL address

	
	Add the following credentials:

	
	
	Secret: ‘YOUR_SECRET_PASSWORD’ , ID: ‘vault_password’

	
	USERNAME: used as the password for instances that you launch. needs to be a secure password.

	
	Add the following credentials:

	
	
	Secret: ‘teams_builds_uri’ , ID: ‘teams_builds_uri’

	
	USERNAME: uri used for teams

Task 1.2 - Deploy environment

1.2.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.2.2 start the ‘Deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder
we will start by deploying a full environment in AWS.

[image: jenkinsjobs01]

	click on the ‘Deploy_and_onboard’ job.

[image: jenkinsjobs02]

	click on Build Now button on the left side.

[image: jenkinsjobs03]

Task 1.3 - Review the deployed environment

1.3.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.3.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.3.3 open teams channel and extract BIG-IP info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send to this channel the BIG-IP address.

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

1.3.4 login to the BIG-IP:

	use the address from the slack notification (look for your username in the builds channel)

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

explore the objects that were created:

	AS3 and DO installed

Task 1.4 - Deploy services:

1.4.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.4.2 start the ‘service deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder

	click on the ‘Deploy_service’ job.

	click on Build Now button on the left side.

Task 1.5 - Review the deployed application

1.5.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.5.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.5.3 open teams channel and extract application information info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send the application access information to this channel

1.6 Go over WAF logs:

1.6.1 open WAF logs:

	Open the BIGIP

	Switch to App10 partition

	Go over the ‘application event log’, go over the ‘brute force event log’

Lab 2 (BIGIP):

Task 1.2 - Explore the app repo

1.2.1 explore the infrastructure as code parameters file:

1.2.2 view git branches in the application repo:

on the container CLI type the following command to view git branches:

cd /home/snops/f5-rs-app10
git branch -a

1.2.3 explore files in the app repo:

more iac_parameters.yaml

the infrastructure of the environments is deployed using ansible playbooks that were built by devops/netops.
those playbooks are being controlled by jenkins which takes the iac_parameters.yaml file and uses it as parameters for the playbooks.

	You can choose the AWS region you want to deploy in

	You can also control the WAF blocking state using this file

Task 1.3 - Update the AWS region for the DEV environment (Optional)

1.3.1 Update git with your information:

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)
- on the RS-CONTAINER CLI

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

1.3.2 verify you edit the dev branch:

	go to the container CLI

	go to the application git folder (command below)

	check which branches are there and what is the active branch. (command below)

cd /home/snops/f5-rs-app10
git branch

1.3.3 Update the infrastructure as code parameters file:

edit the iac_parameters.yaml file to the desired AWS region. then add the file to git and commit.

	change line: aws_region: “us-west-2”

	to: aws_region: “your_region”

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed aws region"

DevSecOps - Advanced WAF in a CI/CD Workflow

This lab covers the following topics:

	Shifting WAF policies left [https://en.wikipedia.org/wiki/Shift_left_testing], closer to Dev

	Declarative Advanced WAF

Lab Goals:

	Describe the main DevSecOps concepts and how they translate into an actual environment

	Describe the various roles in a DevSecOps workflow (SecOps, Dev, DevOps)

	Describe the workflow with F5 Application Security integrated into the pipeline

Roles in the Lab:

	SecOps - Represents an application security engineer

	Dave - Represents a guy from the application / end to end team, responsible for the app and infrastructure code required to build the app.

	DevOps / Automation / SRE - aren’t represented in the lab. Their role is to build the tools we utilize in this lab (the automation pipeline of infrastructure and application security)

OUT OF SCOPE:

	The “how-to” and the mechanics of the automation components

	Please refer to the F5 Super-NetOps Training [https://f5.com/supernetops] for the above

Expected time to complete: 1 hours

To continue, please review the information about the Lab Environment.

	Lab info

	Module 0 - initial setup

	Module 1: Shifting WAF policy left, closer to DEV.

	Module 2: Declarative advanced waf

Lab info

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC. while most of the components are dedicated for their app and separated from the rest of the netwrok, there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Accessing the lab

The lab is built from code, to run it you need a docker host (can be your laptop), and an AWS account with API access (access and secret keys):

	Module 0 - initial setup

Module 0 - initial setup

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Security Lab: DevSecOps
Blueprint and Start it.

1. Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to RS-CONTAINER

	SSH to the linux host

	HTTP Access to Jenkins (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	In UDF navigate to the Deployments

	Click the Details button for your DevSecOps Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the ACCESS
button.

	use your favorite SSH client to connect to RS-CONTAINER using your UDF private key. username is root

1.2 Configure the rs-container

The entire lab is built from code hosted in this repo, the container that you are connecting to runs on the linux host
and is publicly available. to run the deployments you need to configure it with personal information and credentials.

1.3 Configure credentials and personal information

1.3.1 Copy ssh key, aws credentials and global parameters file

the SSH key will be used when creating EC2 instances.
we will store them in the Jenkins SSH folder so that Jenkins can use them to access instances.

Copy credentials and parameters files from the host folder using the following script:

/home/snops/host_volume/udf_startup.sh

1.3.2 Edit the global parameters file with your personal information

	Edit the encrypted global parameters file /home/snops/f5-rs-global-vars-vault.yaml by typing:

ansible-vault edit --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	Once in edit mode - type i to activate INSERT mode and configure your personal information by changing the following variables: vault_dac_user, vault_dac_email and vault_dac_password

	Use your student# from Teams for vault_dac_user - used as a Tenant ID to differentiate between multiple deployments

	Choose your own (secure) value for vault_dac_password - ** this is the password for the admin user of the BIG-IP **

	There are a number of special characters that you should avoid using in passwords for F5 products. See https://support.f5.com/csp/article/K2873 for details

For example:

vault_dac_user: "student01" // username IS case sensitive
vault_dac_email: "yossi@f5.com"
vault_dac_password: "Sup3rsecur3Passw0rd1"

	Press the ESC key and save the file by typing: :wq

1.3.3 Configure Jenkins and reload it

Run the following command to configure jenkins with your personal information and reload it:

ansible-playbook --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

	Start: Module 1: Shifting WAF policy left, closer to DEV.

Module 1: Shifting WAF policy left, closer to DEV.

	In this module you will review the lab environment, practice some of the concepts discussed in class:

	
	break down the silos, enable dev to deploy securely with minimum friction.

	introduce security as early on in the dev chain as possible

	automated security tests

	roles of secops and dev in our lab model and deploy an app to prod with WAF protection.

	Lab 1 (Dave): Deploy app to DEV environment

	Lab 2 (Secops): Tune/fix security policy

	Lab 3: (Dave) Deploy with a new WAF policy

	Lab 4 (Dave): Deploy the PROD environment

Lab 1 (Dave): Deploy app to DEV environment

Background:

Security team has created some security policies templates, those were built based on the F5 templates with some modifications to the specific enterprise.
in this lab we don’t cover the ‘how to’ of the security templates. we focus on the operational side and the workflows.

	The Tasks are split between the two roles:

	
	SecOps

	Dave - a person from the ‘end to end’ team. a team that’s responsible for the application code and running it in production.

Lab scenario:

New app - App2 is being developed. the app is an e-commerce site.
code is ready to go into ‘DEV’ environment. for lab simplicity there are only two environments - DEV and PROD.
Dave should deploy their new code into a DEV environment that is exactly the same as the production environment.
run their application tests and security tests.

Note

Pipeline is broken to DEV and PROD for lab simplicity.
from a workflow perspective the pipelines are the same.
it is broken up to two for a better lab flow.

Note

OUT OF SCOPE - a major part of the app build process is out of scope for this lab,
Building the app code and publish it as a container to the registry. this process is done using DOCKERHUB.

Task 1.1 - review Dave’s repo

	Make sure you’ve completed the setup section - http://f5-rs-docs.readthedocs.io/en/latest/solutions/devsecops/labinfo/udf.html

1.1.1 view git branches in the application repo:

on the container CLI type the following command to view git branches:

cd /home/snops/f5-rs-app2
git branch

the app repo has two branches, dev and master. we are now working on the dev branch.

Note

the lab builds two environments, dev and prod.
the dev environment deploys the code on the dev branch
the prod environment deploys the code on the master branch.

1.1.2 view files in the application repo:

on the container CLI type the following commands to view the files in the repo:

cd /home/snops/f5-rs-app2
ls

	application code under the ‘all-in-one-hackazon’ folder.

	infrastructure code maintained in the ‘iac_parameters.yaml’ file.

1.1.3 explore the infrastructure as code parameters file:

more iac_parameters.yaml

the infrastructure of the environments is deployed using ansible playbooks that were built by devops/netops.
those playbooks are being controlled by jenkins which takes the iac_parameters.yaml file and uses it as parameters for the playbooks.

	that enables Dave to choose the AWS region in which to deploy, the name of the app and more.

	Dave can also control the deployment of the security policies from his repo as we will see.

Task 1.2 - Deploy dev environment

Note

Jenkins can be configured to run the dev pipeline based on code change in dave’s app repo.
in this lab we are manually starting the Full stack pipeline in Jenkins to visualize the process.

1.2.1 Open Jenkins:

go to UDF, on the jumphost click on access and jenkins

username: snops , password: default

Note

when you open jenkins you should see some jobs that have started running automatically, jobs that contain: ‘Push a WAF policy’,
this happens because jenkins monitors the repo and start the jobs.

you can cancel the jobs or let them fail.

1.2.2 start the ‘Full stack pipeline’:

in jenkins open the DevSecOps - Lab - App2 folder, the lab jobs are all in this folder
we will start by deploying a DEV environment, you will start a pipeline that creates a full environment in AWS.

[image: jenkins010]

click on the ‘f5-rs-app2-dev’ folder.
here you can see all of the relevant jenkins jobs for the dev environment.

[image: jenkins020]

click on ‘Full stack deployment’ , that’s the pipeline view for the same folder.

[image: jenkins030]

click on ‘run’ to start the dev environment pipeline.

[image: jenkins040]

Task 1.3 - Review the deployed environment

Note

Jenkins doesn’t automatically refresh the page, either refresh manually to see the progress or click on the ‘ENABLE AUTO REFRESH’ on the upper right side.

1.3.1 review jobs output:

you can review the output of each job while its running, click on the small console output icon as shown in the screenshot:

[image: jenkins050]

1.3.2 let the jobs run until the pipeline finishes:

wait until all of the jobs have finished (turned green and the app-test one is red).

[image: jenkins055]

1.3.3 open slack and extract BIG-IP and application info:

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/ (if you don’t already have an account you can set it up with an F5 email)

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-dev, bigip acces:”

	jenkins will send to this channel the BIG-IP and the application address.

[image: slack040]

1.3.4 login to the BIG-IP:

	use the address from task 1.3.3

	username: admin

	password: the personal password you defined in the global parameters file in the vault_dac_password parameter.

explore the objects that were created:

1.3.5 Access the App:

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/ (if you don’t already have an account you can set it up with an F5 email)

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-dev, application at:”

	try to access the app using the ip provided in the slack channel - that’s the Elastic ip address that’s tied to the VIP on the BIG-IP.

	after ignoring the ssl error (because the certificate isn’t valid for the domain) you should get to the Hackazone mainpage

[image: hackazone010]

1.3.6 Summary - Jobs roles:

A1 - aws-net:

	Builds an AWS VPC with subnets and security groups.

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like which region)

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A2 - aws_app:

	Deploys an AWS autoscale group with a containerized app

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like container name)

	Jenkins uses the VPC / subnets information from previews job

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A3 - aws-bigip:

	Deploys a BIG-IP to AWS

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like which region)

	Jenkins uses the VPC / subnets information from previews job

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A4 - aws bigip onboard (rest_user):

	Connects to the BIG-IP over SSH with private key (only way to connect to an AWS instance).

	configures rest user and password for future use

A5 - bigip rs onboard:

	deploys the ‘enterprise’ default profiles, for example: HTTP, analytics, AVR, DOSL7, iapps etc.

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo.

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

B1 - push a WAF policy:

	deploys the ‘application specific’ profiles, for example: DOSL7, waf policy

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (which waf policy to use, dosl7 parameters)

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

B2 - rs-iapp service:

	deploys the ‘service definition’ uses AS2 API

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo.

	Jenkins uses the application autoscale group name from previous jobs

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

	AS2 turns the service definition into objects on the BIG-IP

B3 - app-test:

	Send HTTP requests to the application to test it

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run HTTP requests to our APP.

B4 - rs-attacks:

	Test app vulnerabilities

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run HTTP requests to our APP.

SEC export waf policy:

	Pulls a policy from a BIG-IP and stores in a git repo

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run F5 modules (Created by Fouad Chmainy <F.Chmainy@F5.com>) to pull the waf policy from the BIG-IP

Z - destroy:

	Destroy the environment

Task 1.4 - Go over the test results

1.4.1 view the test results:

the deployment process failed because not all of the application tests completed successfully.
review the app-test job console output

[image: jenkins053]

1.4.2 identify the WAF blocked page response:

scroll to the bottom of the page, you should see the response with request rejected, and the failure reason as unexpected response returned

this is an indication that ASM has blocked the request. in our case it is a false positive.

[image: jenkins056]

Note

in this lab secops uses the same WAF policy template for many apps.
we don’t want to create a ‘snowflake’ waf policy. so with this failure dave will escalate to secops.
that ensures that the setting will be reviewed and if needed the policy template will get updated.
we don’t want to create a ‘snowflake’ waf policy. so with this failure Dave will escalate to secops.
this ensures that the setting will be reviewed and if needed the policy template will get updated.

Lab 2 (Secops): Tune/fix security policy

Background:

The application team tests came back and some of the tests have failed. the test result came back with the WAF blocking page.

Task 2.1 - Find which requests were blocked and resolve false-positive

2.1.1 Clear false positive:

	log on to the ‘DEV’ bigip. (username: admin , password: your personal password that you set in the lab setup) see section 1.3.3

	log on to the ‘DEV’ BIG-IP.

	go to ‘traffic learning’,

	make sure you are editing the ‘linux-high’ policy.

	check the requests that triggered suggestions.

	you should see a suggestion on ‘High ASCII characters in headers’ , examine the request. this is a false positive.

	the app uses a different language in the header and it is legitimate traffic.

	you can also see that the request comes from a trusted ip.

	accept the suggestion.

[image: Bigip-030]

2.1.2 Apply the policy :

	apply the policy.

Note

you are applying the policy to DEV,
secops shouldn’t change the waf policy running in production outside of the ci/cd workflow
** unless there is a true emergency

Task 2.2 - Save the WAF policy to the templates repo (managed by secops)

	secops have updated the policy with a setting that makes sense to update on the general template.

	we will now export the policy from the BIG-IP to the waf-policies repo (managed by secops)

2.2.1 Pull WAF policy from the BIG-IP :

go back to jenkins, under the ‘f5-rs-app2-dev’ there is a job that will export the policy and save it to the git repo - SEC export waf policy

[image: jenkins075]

click on this job and choose Build with Parameters from the left menu.

[image: jenkins080]

you can leave the defaults, it asks for two parameters. the first parameter is the name of the policy on the BIG-IP and the other is the new policy name in the git repo.

Note

why saving the template with a different version ?
changes should be tracked, more than that we should allow app teams to ‘control their own destiny’
allowing them to choose the right time and place to update the waf policy in their environment.
by versioning the policies we ensure their control over which template gets deployed.

click on ‘build’

2.2.2 Check slack channel notification :

check the slack channel - you should see a message about the new security policy that’s ready.
this illustrates how chatops can help communicate between different teams.

[image: Slack-030]

the security admin role ends here. it’s now up to Dave to run the pipeline again.

Lab 3: (Dave) Deploy with a new WAF policy

Background:

secops found a false positive on the waf policy template, they fixed it and created a new version for that policy.

Task 3.1 - Update the WAF policy deployed in DEV

we (Dave) got the message on a new waf template, we need to deploy the new template to the DEV environment.
to do so we will edit the ‘infrastructure as code’ parameters file in Dave’s app2 repo.

3.1.1 Update git with your information:

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)
- on the RS-CONTAINER CLI

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

3.1.2 verify you edit the dev branch:

	go to the container CLI

	go to the application git folder (command below)

	check which branches are there and what is the active branch. (command below)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git branch

3.1.3 Update the infrastructure as code parameters file:

edit the iac_parameters.yaml file to point the deployment to the new WAF policy (linux-high-v01). then add the file to git and commit.

	change line: waf_policy_name: “linux-high”

	to: waf_policy_name: “linux-high-v01”

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed asm policy"

[image: dev-cmd-010]

3.1.4 service deployment update:

Note

	we now have an active DEV environment, the app, network and BIG-IP shouldn’t change. the only change is to the SERVICE deployed on the BIG-IP.

	we have a dedicated pipeline view for the Service deployment.

	
	jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. Jenkins takes the parameters from the file and uses them to start the ansible playbooks that will push the changes to the BIG-IP.

	
	that way it will update the WAF policy on the BIG-IP.

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab , it takes up to
a minute for jenkins to start the pipeline. you should see that the tasks start to run and the pipeline finishes successfully (all tasks are now green).

	Don’t forget to refresh the page

3.1.5 view changes on the BIG-IP :

	log on to the BIG-IP again, check which WAF policies are there and which policy is attached to the ‘App2 VIP’
check the ‘traffic learning’ for the security policy and verify you no longer see the ‘high ascii charachters’

this concludes the tests in the ‘dev’ environment.
we are now ready to push the changes to production.

Lab 4 (Dave): Deploy the PROD environment

Background:

we completed tests in DEV, both functional tests and security tests have passed.

Task 4.1 - merge infrastructure as code file from dev

	we will ‘merge’ the app2 dev branch with the master branch.
so that the production deployment will use the correct policy.

	on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "changed asm policy"

Note

the merge will trigger a job in Jenkins that’s configured to monitor this repo - ‘Push waf policy’,
since the environment isn’t deployed yet it will fail, either cancel the job or let it fail.

Task 4.2 deploy PROD:

Note

in this lab we manually deploy PROD after the tests have completed.
this manual step can easily be automated. what are the metrics that we need to verify successful deployment ?

How can splunk analytics / BIG-IQ 6.0 help with that ?

	go to the ‘f5-rs-app2-prod’ folder, choose the ‘Full stack deployment’ view and run the pipeline.

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-master, bigip acces:”

	open the BIG-IP and verify that you don’t see the ‘high ascii’ false positive.

	verify the security policy that’s attached to the VIP.

Module 2: Declarative advanced waf

In this module you will use declarative security controls that controls the F5 advanced waf.
the Lab doesn’t cover how to configure the automation tools, just how to operate them and the workflow.
in this lab we cover:

	automated attacks prevention

	application layer encryption (OPTIONAL)

	Lab 1: (Dave) protect the app from automated attacks

	Lab 2: (Dave) Account takeover protection (app layer encryption) - OPTIONAL

Lab 1: (Dave) protect the app from automated attacks

Background:

after the app was launched we started identifying an abnormal activity, some specific products were added to the cart until the stock was out but were never purchased. in addition we identified an abuse of our coupons that every new member gets.

in an effort to mitigate those unwanted requests the secops engineer suggests the use of ‘proactive bot defense’, he configures a template DOSL7 profile with some values as defaults.

he then exposes the option of enabling / disabling proactive bot defense from the ‘iac_paramaters’ file.

it is up to Dave now to deploy the new feature in dev and promote to PROD when it makes sense for him.

Task 1.1 - Enable proactive bot defense in the DEV environment

1.1.1 Review iac_paramaters file in the app repo:

	Open the container CLI

	go to the application git folder.

	check which branches are there and what is the active branch. (git branch)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

1.1.2 Edit the iac_paramaters file in the app repo:

	edit the iac_parameters.yaml file to enable proactive bot defense,

	change the setting from:

	proactive_autometed_attack_prevention: “disabled”

	To

	Proactive_autometed_attack_prevention: “always”

	change the setting from: proactive_autometed_attack_prevention: "disabled" to proactive_autometed_attack_prevention: "always"

vi iac_parameters.yaml

1.1.3 Add the file to git and commit:

	add the file to git and commit

git add iac_parameters.yaml
git commit -m "enabled proactive bot defense"

1.1.4 View the automatic pipeline:

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab ,

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab,
jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.
jenkins takes the parametes from the git repo and uses them to deploy/update the service.

	OPTIONAL - Log on to splunk (logon details in the UDF documentation), navigate to your app and look under the ‘Security - DDoS’ tab for proactive mitigation.

Task 1.2 - (Secops) Verify bot defense configuration and logs on the BIG-IP

while all of the logs are sent to splunk where they can be viewed by Dave, part of the lab is to verify the change on the BIG-IP.
this task doesn’t represents an actual step of the deployment. it is just for lab purpose
log on to the dev BIG-IP again, check the setting on the dos profile named rs_dosl7, verify that proactive bot defense is now enabled.

[image: pbd-bigip-010]

on the bigip, check the bot request log, verify that requests are being challenged

[image: pbd-bigip-020]

this concludes the tests in the ‘DEV’ environment. we are now ready to push the changes to production.

Task 1.3 - Enable proactive bot defense in the PROD environment

we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.

1.3.1 Merge app2 dev to master :

on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "enabled proactive bot defense"

1.3.2 view the automatic pipeline :

the merge will trigger a job in Jenkins that’s configured to monitor this repo - Push WAF policy, open the f5-rs-app2-prd folder and navigate to the Service deployment pipeline , you should see the jobs running in up to a minute.

open the PRODUCTION BIG-IP, check that the DOSL7 profile named rs_dosl7 has the ‘proactive bot defense’ enabled.

check that requests are getting challenged in the bot event log.

Lab 2: (Dave) Account takeover protection (app layer encryption) - OPTIONAL

Background:

Application is up and running, sales on the site have seen a big growth. our support center started getting complaints from customers
that their account is abused and they are charged with purcheses they never did.
after further investigation it turns out that the user’s credentials were stolen by a malware on the client side.

secops engineer suggests to turn on F5’s application encryption on the login page, he configured a template profile with some settings that make sense for the enterprise. exposing the login page paramters (URI), and a choice to enable/disable.

Task 4 - Enable application layer encryption

it is up to Dave now to deploy the new feature in DEV and promote to PROD when it makes sense for him.

	Open the container CLI

	go to the application git folder. check which branches are there and what is the active branch. (git branch)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

	edit the iac_parameters.yaml file to enable login password encryption,

	change the setting from:

	login_password_encryption: “disabled”

	to:

	login_password_encryption: “enabled”

	add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "enabled login password encryption"

	go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘Service deployment pipeline’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

	jenkins takes the parametes from the git repo and uses them to deploy/update the service.

	log on to the dev BIG-IP again, check the setting on the FPS profile.

[image: ale-bigip-010]

this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "enabled login password encryption"

the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, open the f5-rs-app2-prd folder and navigate to the ‘service deployment pipeline’ , you should see the jobs running in up to a minute.

open the PRODUCTION BIG-IP, check that the FPS profile named rs_fps has the ‘login_password_encryption’ enabled.

Running the container on your docker host

Note

The following instructions will create a volume on your docker host and will instruct you
to store private information in the host volume. the information in the volume will persist
on the host even after the container is terminated.

1. run the rs-container

docker pull f5usecases/f5-rs-container
docker run -it --name rs-container -v config:/home/snops/host_volume -v jenkins:/var/jenkins_home -p 2222:22 -p 10000:8080 --rm f5usecases/f5-rs-container

The container exposes the following access methods:

	SSH to RS-CONTAINER ssh://localhsot:2222

	HTTP Access to Jenkins http://localhost:10000 (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	SSH to dockerhost:2222

	username: root

	password: default

1.2 initial setup or skip to solutions if already completed the initial setup

	Move on to configure the container:

	Initial setup

2. Start a solution

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

Initial setup

1. Configure the rs-container

The entire lab is built from code hosted in this repo.
To run the deployments you need to configure your personal information and credentials.

Note

You will be asked to configure sensitive parameters like AWS credentials.
those are used to deploy resources on your account. those cloud resources will appear on your cloud account

it is your responsibility to use it responsibly and shut down the instances when done.

1.1 Configure credentials and personal information

The following steps are required only in the first time you run the container on a host,
this information persists on the host and will be available for you on any subsequent runs.

1.1.1 Create an AWS credentials file

	create an AWS credentials file by typing:

mkdir -p /home/snops/host_volume/aws
vi /home/snops/host_volume/aws/credentials

	Copy and paste the following (and change to your keys):

[default]
aws_access_key_id = CHANGE_TO_ACCESS_KEY
aws_secret_access_key = CHANGE_TO_SECRET

1.1.2 Create a personal SSH key

The SSH key will be used when creating EC2 instances.
we will store them in the host-volume so they will persist any container restart:

mkdir -p /home/snops/host_volume/sshkeys
ssh-keygen -f /home/snops/host_volume/sshkeys/id_rsa -t rsa -N ''

1.1.3 open jenkins

on your laptop:

	open http://localhost:10000

	username: snops , password: default

1.1.4 add credentials

	You will now configure some paramaters as ‘jenkins credentials’, those paramaters are used when deploying the solutions.

	In jenkins, Navigate to ‘credentilas’ on the left side

[image: jenkins_001]

	Click on ‘global’

[image: jenkins_002]

	Click on ‘Add Credentials’ on the left side

[image: jenkins_003]

	Change the ‘kind’ to ‘secret text’

[image: jenkins_004]

	
	Add the following credentials:

	
	
	Secret: ‘USERNAME’ , ID: ‘vault_username’

	
	USERNAME: used as the username for instances that you launch. also used to tag instances. example johnw. please follow BIGIP password complexity guide https://techdocs.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/big-ip-system-secure-password-policy-14-0-0/01.html

	
	Add the following credentials:

	
	
	Secret: ‘EMAIL’ , ID: ‘vault_email’

	
	EMAIL: your EMAIL address

	
	Add the following credentials:

	
	
	Secret: ‘YOUR_SECRET_PASSWORD’ , ID: ‘vault_password’

	
	USERNAME: used as the password for instances that you launch. needs to be a secure password.

	
	Add the following credentials:

	
	
	Secret: ‘TEAMS_WEBHOOK’ , ID: ‘teams_builds_uri’

	
	TEAMS_WEBHOOK: webhook from your teams channel.

	open teams, click on the channel options (3 points next to the channel name)

	configure an Incoming Webhook

[image: jenkins_0041]

1.2 Run the container startup script

	Run the container startup script with the following command:

	The script will download the repos again and copy files from the host volume you just populated to the relevant directories

/snopsboot/start

2. Start a solution

List of available solutions:

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

F5 AWAF in AWS with DO/AS3

This lab covers the following topics:

	Deploying a vpc to AWS with the required subnets

	Deploying a juiceshop application in an autoscale group

	Deploying a bigip to AWS and onboarding it using declarative onboarding

	Deploying an F5 AWAF to protect juiceshop application

	Declaring the F5 service using AS3

Here are the lab steps:

	Lab Environment

	Lab 1: Deploy app and bigip

	Lab 2 (BIGIP):

Lab Environment

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC.
while most of the components are dedicated for their app and separated from the rest of the netwrok,
there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Lab 1: Deploy app and bigip

Task 1.1 - Configure jenkins credentials

1.1.1 open jenkins

on your laptop:

	open http://localhost:10000

	username: snops , password: default

1.1.2 Verify that credentials are configured

	
	verify the following credentials exists:

	
	
	Secret: ‘USERNAME’ , ID: ‘vault_username’

	
	USERNAME: used as the username for instances that you launch. also used to tag instances. example johnw

	
	Add the following credentials:

	
	
	Secret: ‘EMAIL’ , ID: ‘vault_email’

	
	EMAIL: your EMAIL address

	
	Add the following credentials:

	
	
	Secret: ‘YOUR_SECRET_PASSWORD’ , ID: ‘vault_password’

	
	USERNAME: used as the password for instances that you launch. needs to be a secure password.

	
	Add the following credentials:

	
	
	Secret: ‘teams_builds_uri’ , ID: ‘teams_builds_uri’

	
	USERNAME: uri used for teams

Task 1.2 - Deploy environment

1.2.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.2.2 start the ‘Deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder
we will start by deploying a full environment in AWS.

[image: jenkinsjobs01]

	click on the ‘Deploy_and_onboard’ job.

[image: jenkinsjobs02]

	click on Build Now button on the left side.

[image: jenkinsjobs03]

Task 1.3 - Review the deployed environment

1.3.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.3.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.3.3 open teams channel and extract BIG-IP info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send to this channel the BIG-IP address.

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

1.3.4 login to the BIG-IP:

	use the address from the slack notification (look for your username in the builds channel)

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

explore the objects that were created:

	AS3 and DO installed

Task 1.4 - Deploy services:

1.4.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.4.2 start the ‘service deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder

	click on the ‘Deploy_service’ job.

	click on Build Now button on the left side.

Task 1.5 - Review the deployed application

1.5.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.5.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.5.3 open teams channel and extract application information info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send the application access information to this channel

1.6 Go over WAF logs:

1.6.1 open WAF logs:

	Open the BIGIP

	Switch to App10 partition

	Go over the ‘application event log’, go over the ‘brute force event log’

Lab 2 (BIGIP):

Task 1.2 - Explore the app repo

1.2.1 explore the infrastructure as code parameters file:

1.2.2 view git branches in the application repo:

on the container CLI type the following command to view git branches:

cd /home/snops/f5-rs-app10
git branch -a

1.2.3 explore files in the app repo:

more iac_parameters.yaml

the infrastructure of the environments is deployed using ansible playbooks that were built by devops/netops.
those playbooks are being controlled by jenkins which takes the iac_parameters.yaml file and uses it as parameters for the playbooks.

	You can choose the AWS region you want to deploy in

	You can also control the WAF blocking state using this file

Task 1.3 - Update the AWS region for the DEV environment (Optional)

1.3.1 Update git with your information:

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)
- on the RS-CONTAINER CLI

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

1.3.2 verify you edit the dev branch:

	go to the container CLI

	go to the application git folder (command below)

	check which branches are there and what is the active branch. (command below)

cd /home/snops/f5-rs-app10
git branch

1.3.3 Update the infrastructure as code parameters file:

edit the iac_parameters.yaml file to the desired AWS region. then add the file to git and commit.

	change line: aws_region: “us-west-2”

	to: aws_region: “your_region”

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed aws region"

DevSecOps - Advanced WAF in a CI/CD Workflow

This lab covers the following topics:

	Shifting WAF policies left [https://en.wikipedia.org/wiki/Shift_left_testing], closer to Dev

	Declarative Advanced WAF

Lab Goals:

	Describe the main DevSecOps concepts and how they translate into an actual environment

	Describe the various roles in a DevSecOps workflow (SecOps, Dev, DevOps)

	Describe the workflow with F5 Application Security integrated into the pipeline

Roles in the Lab:

	SecOps - Represents an application security engineer

	Dave - Represents a guy from the application / end to end team, responsible for the app and infrastructure code required to build the app.

	DevOps / Automation / SRE - aren’t represented in the lab. Their role is to build the tools we utilize in this lab (the automation pipeline of infrastructure and application security)

OUT OF SCOPE:

	The “how-to” and the mechanics of the automation components

	Please refer to the F5 Super-NetOps Training [https://f5.com/supernetops] for the above

Expected time to complete: 1 hours

To continue, please review the information about the Lab Environment.

	Lab info

	Module 0 - initial setup

	Module 1: Shifting WAF policy left, closer to DEV.

	Module 2: Declarative advanced waf

Lab info

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC. while most of the components are dedicated for their app and separated from the rest of the netwrok, there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Accessing the lab

The lab is built from code, to run it you need a docker host (can be your laptop), and an AWS account with API access (access and secret keys):

	Module 0 - initial setup

Module 0 - initial setup

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Security Lab: DevSecOps
Blueprint and Start it.

1. Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to RS-CONTAINER

	SSH to the linux host

	HTTP Access to Jenkins (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	In UDF navigate to the Deployments

	Click the Details button for your DevSecOps Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the ACCESS
button.

	use your favorite SSH client to connect to RS-CONTAINER using your UDF private key. username is root

1.2 Configure the rs-container

The entire lab is built from code hosted in this repo, the container that you are connecting to runs on the linux host
and is publicly available. to run the deployments you need to configure it with personal information and credentials.

1.3 Configure credentials and personal information

1.3.1 Copy ssh key, aws credentials and global parameters file

the SSH key will be used when creating EC2 instances.
we will store them in the Jenkins SSH folder so that Jenkins can use them to access instances.

Copy credentials and parameters files from the host folder using the following script:

/home/snops/host_volume/udf_startup.sh

1.3.2 Edit the global parameters file with your personal information

	Edit the encrypted global parameters file /home/snops/f5-rs-global-vars-vault.yaml by typing:

ansible-vault edit --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	Once in edit mode - type i to activate INSERT mode and configure your personal information by changing the following variables: vault_dac_user, vault_dac_email and vault_dac_password

	Use your student# from Teams for vault_dac_user - used as a Tenant ID to differentiate between multiple deployments

	Choose your own (secure) value for vault_dac_password - ** this is the password for the admin user of the BIG-IP **

	There are a number of special characters that you should avoid using in passwords for F5 products. See https://support.f5.com/csp/article/K2873 for details

For example:

vault_dac_user: "student01" // username IS case sensitive
vault_dac_email: "yossi@f5.com"
vault_dac_password: "Sup3rsecur3Passw0rd1"

	Press the ESC key and save the file by typing: :wq

1.3.3 Configure Jenkins and reload it

Run the following command to configure jenkins with your personal information and reload it:

ansible-playbook --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

	Start: Module 1: Shifting WAF policy left, closer to DEV.

Module 1: Shifting WAF policy left, closer to DEV.

	In this module you will review the lab environment, practice some of the concepts discussed in class:

	
	break down the silos, enable dev to deploy securely with minimum friction.

	introduce security as early on in the dev chain as possible

	automated security tests

	roles of secops and dev in our lab model and deploy an app to prod with WAF protection.

	Lab 1 (Dave): Deploy app to DEV environment

	Lab 2 (Secops): Tune/fix security policy

	Lab 3: (Dave) Deploy with a new WAF policy

	Lab 4 (Dave): Deploy the PROD environment

Module 2: Declarative advanced waf

In this module you will use declarative security controls that controls the F5 advanced waf.
the Lab doesn’t cover how to configure the automation tools, just how to operate them and the workflow.
in this lab we cover:

	automated attacks prevention

	application layer encryption (OPTIONAL)

	Lab 1: (Dave) protect the app from automated attacks

	Lab 2: (Dave) Account takeover protection (app layer encryption) - OPTIONAL

F5 AWAF in AWS with DO/AS3

This lab covers the following topics:

	Deploying a vpc to AWS with the required subnets

	Deploying a juiceshop application in an autoscale group

	Deploying a bigip to AWS and onboarding it using declarative onboarding

	Deploying an F5 AWAF to protect juiceshop application

	Declaring the F5 service using AS3

Here are the lab steps:

	Lab Environment

	Lab 1: Deploy app and bigip

	Lab 2 (BIGIP):

Lab Environment

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC.
while most of the components are dedicated for their app and separated from the rest of the netwrok,
there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Lab 1: Deploy app and bigip

Task 1.1 - Configure jenkins credentials

1.1.1 open jenkins

on your laptop:

	open http://localhost:10000

	username: snops , password: default

1.1.2 Verify that credentials are configured

	
	verify the following credentials exists:

	
	
	Secret: ‘USERNAME’ , ID: ‘vault_username’

	
	USERNAME: used as the username for instances that you launch. also used to tag instances. example johnw

	
	Add the following credentials:

	
	
	Secret: ‘EMAIL’ , ID: ‘vault_email’

	
	EMAIL: your EMAIL address

	
	Add the following credentials:

	
	
	Secret: ‘YOUR_SECRET_PASSWORD’ , ID: ‘vault_password’

	
	USERNAME: used as the password for instances that you launch. needs to be a secure password.

	
	Add the following credentials:

	
	
	Secret: ‘teams_builds_uri’ , ID: ‘teams_builds_uri’

	
	USERNAME: uri used for teams

Task 1.2 - Deploy environment

1.2.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.2.2 start the ‘Deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder
we will start by deploying a full environment in AWS.

[image: jenkinsjobs01]

	click on the ‘Deploy_and_onboard’ job.

[image: jenkinsjobs02]

	click on Build Now button on the left side.

[image: jenkinsjobs03]

Task 1.3 - Review the deployed environment

1.3.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.3.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.3.3 open teams channel and extract BIG-IP info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send to this channel the BIG-IP address.

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

1.3.4 login to the BIG-IP:

	use the address from the slack notification (look for your username in the builds channel)

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

explore the objects that were created:

	AS3 and DO installed

Task 1.4 - Deploy services:

1.4.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.4.2 start the ‘service deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder

	click on the ‘Deploy_service’ job.

	click on Build Now button on the left side.

Task 1.5 - Review the deployed application

1.5.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.5.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.5.3 open teams channel and extract application information info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send the application access information to this channel

1.6 Go over WAF logs:

1.6.1 open WAF logs:

	Open the BIGIP

	Switch to App10 partition

	Go over the ‘application event log’, go over the ‘brute force event log’

Lab 2 (BIGIP):

Task 1.2 - Explore the app repo

1.2.1 explore the infrastructure as code parameters file:

1.2.2 view git branches in the application repo:

on the container CLI type the following command to view git branches:

cd /home/snops/f5-rs-app10
git branch -a

1.2.3 explore files in the app repo:

more iac_parameters.yaml

the infrastructure of the environments is deployed using ansible playbooks that were built by devops/netops.
those playbooks are being controlled by jenkins which takes the iac_parameters.yaml file and uses it as parameters for the playbooks.

	You can choose the AWS region you want to deploy in

	You can also control the WAF blocking state using this file

Task 1.3 - Update the AWS region for the DEV environment (Optional)

1.3.1 Update git with your information:

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)
- on the RS-CONTAINER CLI

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

1.3.2 verify you edit the dev branch:

	go to the container CLI

	go to the application git folder (command below)

	check which branches are there and what is the active branch. (command below)

cd /home/snops/f5-rs-app10
git branch

1.3.3 Update the infrastructure as code parameters file:

edit the iac_parameters.yaml file to the desired AWS region. then add the file to git and commit.

	change line: aws_region: “us-west-2”

	to: aws_region: “your_region”

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed aws region"

DevSecOps - Advanced WAF in a CI/CD Workflow

This lab covers the following topics:

	Shifting WAF policies left [https://en.wikipedia.org/wiki/Shift_left_testing], closer to Dev

	Declarative Advanced WAF

Lab Goals:

	Describe the main DevSecOps concepts and how they translate into an actual environment

	Describe the various roles in a DevSecOps workflow (SecOps, Dev, DevOps)

	Describe the workflow with F5 Application Security integrated into the pipeline

Roles in the Lab:

	SecOps - Represents an application security engineer

	Dave - Represents a guy from the application / end to end team, responsible for the app and infrastructure code required to build the app.

	DevOps / Automation / SRE - aren’t represented in the lab. Their role is to build the tools we utilize in this lab (the automation pipeline of infrastructure and application security)

OUT OF SCOPE:

	The “how-to” and the mechanics of the automation components

	Please refer to the F5 Super-NetOps Training [https://f5.com/supernetops] for the above

Expected time to complete: 1 hours

To continue, please review the information about the Lab Environment.

	Lab info

	Module 0 - initial setup

	Module 1: Shifting WAF policy left, closer to DEV.

	Module 2: Declarative advanced waf

Lab info

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC. while most of the components are dedicated for their app and separated from the rest of the netwrok, there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Accessing the lab

The lab is built from code, to run it you need a docker host (can be your laptop), and an AWS account with API access (access and secret keys):

	Module 0 - initial setup

Module 0 - initial setup

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Security Lab: DevSecOps
Blueprint and Start it.

1. Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to RS-CONTAINER

	SSH to the linux host

	HTTP Access to Jenkins (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	In UDF navigate to the Deployments

	Click the Details button for your DevSecOps Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the ACCESS
button.

	use your favorite SSH client to connect to RS-CONTAINER using your UDF private key. username is root

1.2 Configure the rs-container

The entire lab is built from code hosted in this repo, the container that you are connecting to runs on the linux host
and is publicly available. to run the deployments you need to configure it with personal information and credentials.

1.3 Configure credentials and personal information

1.3.1 Copy ssh key, aws credentials and global parameters file

the SSH key will be used when creating EC2 instances.
we will store them in the Jenkins SSH folder so that Jenkins can use them to access instances.

Copy credentials and parameters files from the host folder using the following script:

/home/snops/host_volume/udf_startup.sh

1.3.2 Edit the global parameters file with your personal information

	Edit the encrypted global parameters file /home/snops/f5-rs-global-vars-vault.yaml by typing:

ansible-vault edit --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	Once in edit mode - type i to activate INSERT mode and configure your personal information by changing the following variables: vault_dac_user, vault_dac_email and vault_dac_password

	Use your student# from Teams for vault_dac_user - used as a Tenant ID to differentiate between multiple deployments

	Choose your own (secure) value for vault_dac_password - ** this is the password for the admin user of the BIG-IP **

	There are a number of special characters that you should avoid using in passwords for F5 products. See https://support.f5.com/csp/article/K2873 for details

For example:

vault_dac_user: "student01" // username IS case sensitive
vault_dac_email: "yossi@f5.com"
vault_dac_password: "Sup3rsecur3Passw0rd1"

	Press the ESC key and save the file by typing: :wq

1.3.3 Configure Jenkins and reload it

Run the following command to configure jenkins with your personal information and reload it:

ansible-playbook --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

	Start: Module 1: Shifting WAF policy left, closer to DEV.

Module 0 - initial setup

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Security Lab: DevSecOps
Blueprint and Start it.

1. Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to RS-CONTAINER

	SSH to the linux host

	HTTP Access to Jenkins (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	In UDF navigate to the Deployments

	Click the Details button for your DevSecOps Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the ACCESS
button.

	use your favorite SSH client to connect to RS-CONTAINER using your UDF private key. username is root

1.2 Configure the rs-container

The entire lab is built from code hosted in this repo, the container that you are connecting to runs on the linux host
and is publicly available. to run the deployments you need to configure it with personal information and credentials.

1.3 Configure credentials and personal information

1.3.1 Copy ssh key, aws credentials and global parameters file

the SSH key will be used when creating EC2 instances.
we will store them in the Jenkins SSH folder so that Jenkins can use them to access instances.

Copy credentials and parameters files from the host folder using the following script:

/home/snops/host_volume/udf_startup.sh

1.3.2 Edit the global parameters file with your personal information

	Edit the encrypted global parameters file /home/snops/f5-rs-global-vars-vault.yaml by typing:

ansible-vault edit --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	Once in edit mode - type i to activate INSERT mode and configure your personal information by changing the following variables: vault_dac_user, vault_dac_email and vault_dac_password

	Use your student# from Teams for vault_dac_user - used as a Tenant ID to differentiate between multiple deployments

	Choose your own (secure) value for vault_dac_password - ** this is the password for the admin user of the BIG-IP **

	There are a number of special characters that you should avoid using in passwords for F5 products. See https://support.f5.com/csp/article/K2873 for details

For example:

vault_dac_user: "student01" // username IS case sensitive
vault_dac_email: "yossi@f5.com"
vault_dac_password: "Sup3rsecur3Passw0rd1"

	Press the ESC key and save the file by typing: :wq

1.3.3 Configure Jenkins and reload it

Run the following command to configure jenkins with your personal information and reload it:

ansible-playbook --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

	Start: Module 1: Shifting WAF policy left, closer to DEV.

Module 1: Shifting WAF policy left, closer to DEV.

	In this module you will review the lab environment, practice some of the concepts discussed in class:

	
	break down the silos, enable dev to deploy securely with minimum friction.

	introduce security as early on in the dev chain as possible

	automated security tests

	roles of secops and dev in our lab model and deploy an app to prod with WAF protection.

	Lab 1 (Dave): Deploy app to DEV environment

	Lab 2 (Secops): Tune/fix security policy

	Lab 3: (Dave) Deploy with a new WAF policy

	Lab 4 (Dave): Deploy the PROD environment

Lab 1 (Dave): Deploy app to DEV environment

Background:

Security team has created some security policies templates, those were built based on the F5 templates with some modifications to the specific enterprise.
in this lab we don’t cover the ‘how to’ of the security templates. we focus on the operational side and the workflows.

	The Tasks are split between the two roles:

	
	SecOps

	Dave - a person from the ‘end to end’ team. a team that’s responsible for the application code and running it in production.

Lab scenario:

New app - App2 is being developed. the app is an e-commerce site.
code is ready to go into ‘DEV’ environment. for lab simplicity there are only two environments - DEV and PROD.
Dave should deploy their new code into a DEV environment that is exactly the same as the production environment.
run their application tests and security tests.

Note

Pipeline is broken to DEV and PROD for lab simplicity.
from a workflow perspective the pipelines are the same.
it is broken up to two for a better lab flow.

Note

OUT OF SCOPE - a major part of the app build process is out of scope for this lab,
Building the app code and publish it as a container to the registry. this process is done using DOCKERHUB.

Task 1.1 - review Dave’s repo

	Make sure you’ve completed the setup section - http://f5-rs-docs.readthedocs.io/en/latest/solutions/devsecops/labinfo/udf.html

1.1.1 view git branches in the application repo:

on the container CLI type the following command to view git branches:

cd /home/snops/f5-rs-app2
git branch

the app repo has two branches, dev and master. we are now working on the dev branch.

Note

the lab builds two environments, dev and prod.
the dev environment deploys the code on the dev branch
the prod environment deploys the code on the master branch.

1.1.2 view files in the application repo:

on the container CLI type the following commands to view the files in the repo:

cd /home/snops/f5-rs-app2
ls

	application code under the ‘all-in-one-hackazon’ folder.

	infrastructure code maintained in the ‘iac_parameters.yaml’ file.

1.1.3 explore the infrastructure as code parameters file:

more iac_parameters.yaml

the infrastructure of the environments is deployed using ansible playbooks that were built by devops/netops.
those playbooks are being controlled by jenkins which takes the iac_parameters.yaml file and uses it as parameters for the playbooks.

	that enables Dave to choose the AWS region in which to deploy, the name of the app and more.

	Dave can also control the deployment of the security policies from his repo as we will see.

Task 1.2 - Deploy dev environment

Note

Jenkins can be configured to run the dev pipeline based on code change in dave’s app repo.
in this lab we are manually starting the Full stack pipeline in Jenkins to visualize the process.

1.2.1 Open Jenkins:

go to UDF, on the jumphost click on access and jenkins

username: snops , password: default

Note

when you open jenkins you should see some jobs that have started running automatically, jobs that contain: ‘Push a WAF policy’,
this happens because jenkins monitors the repo and start the jobs.

you can cancel the jobs or let them fail.

1.2.2 start the ‘Full stack pipeline’:

in jenkins open the DevSecOps - Lab - App2 folder, the lab jobs are all in this folder
we will start by deploying a DEV environment, you will start a pipeline that creates a full environment in AWS.

[image: jenkins010]

click on the ‘f5-rs-app2-dev’ folder.
here you can see all of the relevant jenkins jobs for the dev environment.

[image: jenkins020]

click on ‘Full stack deployment’ , that’s the pipeline view for the same folder.

[image: jenkins030]

click on ‘run’ to start the dev environment pipeline.

[image: jenkins040]

Task 1.3 - Review the deployed environment

Note

Jenkins doesn’t automatically refresh the page, either refresh manually to see the progress or click on the ‘ENABLE AUTO REFRESH’ on the upper right side.

1.3.1 review jobs output:

you can review the output of each job while its running, click on the small console output icon as shown in the screenshot:

[image: jenkins050]

1.3.2 let the jobs run until the pipeline finishes:

wait until all of the jobs have finished (turned green and the app-test one is red).

[image: jenkins055]

1.3.3 open slack and extract BIG-IP and application info:

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/ (if you don’t already have an account you can set it up with an F5 email)

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-dev, bigip acces:”

	jenkins will send to this channel the BIG-IP and the application address.

[image: slack040]

1.3.4 login to the BIG-IP:

	use the address from task 1.3.3

	username: admin

	password: the personal password you defined in the global parameters file in the vault_dac_password parameter.

explore the objects that were created:

1.3.5 Access the App:

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/ (if you don’t already have an account you can set it up with an F5 email)

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-dev, application at:”

	try to access the app using the ip provided in the slack channel - that’s the Elastic ip address that’s tied to the VIP on the BIG-IP.

	after ignoring the ssl error (because the certificate isn’t valid for the domain) you should get to the Hackazone mainpage

[image: hackazone010]

1.3.6 Summary - Jobs roles:

A1 - aws-net:

	Builds an AWS VPC with subnets and security groups.

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like which region)

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A2 - aws_app:

	Deploys an AWS autoscale group with a containerized app

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like container name)

	Jenkins uses the VPC / subnets information from previews job

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A3 - aws-bigip:

	Deploys a BIG-IP to AWS

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like which region)

	Jenkins uses the VPC / subnets information from previews job

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A4 - aws bigip onboard (rest_user):

	Connects to the BIG-IP over SSH with private key (only way to connect to an AWS instance).

	configures rest user and password for future use

A5 - bigip rs onboard:

	deploys the ‘enterprise’ default profiles, for example: HTTP, analytics, AVR, DOSL7, iapps etc.

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo.

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

B1 - push a WAF policy:

	deploys the ‘application specific’ profiles, for example: DOSL7, waf policy

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (which waf policy to use, dosl7 parameters)

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

B2 - rs-iapp service:

	deploys the ‘service definition’ uses AS2 API

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo.

	Jenkins uses the application autoscale group name from previous jobs

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

	AS2 turns the service definition into objects on the BIG-IP

B3 - app-test:

	Send HTTP requests to the application to test it

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run HTTP requests to our APP.

B4 - rs-attacks:

	Test app vulnerabilities

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run HTTP requests to our APP.

SEC export waf policy:

	Pulls a policy from a BIG-IP and stores in a git repo

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run F5 modules (Created by Fouad Chmainy <F.Chmainy@F5.com>) to pull the waf policy from the BIG-IP

Z - destroy:

	Destroy the environment

Task 1.4 - Go over the test results

1.4.1 view the test results:

the deployment process failed because not all of the application tests completed successfully.
review the app-test job console output

[image: jenkins053]

1.4.2 identify the WAF blocked page response:

scroll to the bottom of the page, you should see the response with request rejected, and the failure reason as unexpected response returned

this is an indication that ASM has blocked the request. in our case it is a false positive.

[image: jenkins056]

Note

in this lab secops uses the same WAF policy template for many apps.
we don’t want to create a ‘snowflake’ waf policy. so with this failure dave will escalate to secops.
that ensures that the setting will be reviewed and if needed the policy template will get updated.
we don’t want to create a ‘snowflake’ waf policy. so with this failure Dave will escalate to secops.
this ensures that the setting will be reviewed and if needed the policy template will get updated.

Lab 2 (Secops): Tune/fix security policy

Background:

The application team tests came back and some of the tests have failed. the test result came back with the WAF blocking page.

Task 2.1 - Find which requests were blocked and resolve false-positive

2.1.1 Clear false positive:

	log on to the ‘DEV’ bigip. (username: admin , password: your personal password that you set in the lab setup) see section 1.3.3

	log on to the ‘DEV’ BIG-IP.

	go to ‘traffic learning’,

	make sure you are editing the ‘linux-high’ policy.

	check the requests that triggered suggestions.

	you should see a suggestion on ‘High ASCII characters in headers’ , examine the request. this is a false positive.

	the app uses a different language in the header and it is legitimate traffic.

	you can also see that the request comes from a trusted ip.

	accept the suggestion.

[image: Bigip-030]

2.1.2 Apply the policy :

	apply the policy.

Note

you are applying the policy to DEV,
secops shouldn’t change the waf policy running in production outside of the ci/cd workflow
** unless there is a true emergency

Task 2.2 - Save the WAF policy to the templates repo (managed by secops)

	secops have updated the policy with a setting that makes sense to update on the general template.

	we will now export the policy from the BIG-IP to the waf-policies repo (managed by secops)

2.2.1 Pull WAF policy from the BIG-IP :

go back to jenkins, under the ‘f5-rs-app2-dev’ there is a job that will export the policy and save it to the git repo - SEC export waf policy

[image: jenkins075]

click on this job and choose Build with Parameters from the left menu.

[image: jenkins080]

you can leave the defaults, it asks for two parameters. the first parameter is the name of the policy on the BIG-IP and the other is the new policy name in the git repo.

Note

why saving the template with a different version ?
changes should be tracked, more than that we should allow app teams to ‘control their own destiny’
allowing them to choose the right time and place to update the waf policy in their environment.
by versioning the policies we ensure their control over which template gets deployed.

click on ‘build’

2.2.2 Check slack channel notification :

check the slack channel - you should see a message about the new security policy that’s ready.
this illustrates how chatops can help communicate between different teams.

[image: Slack-030]

the security admin role ends here. it’s now up to Dave to run the pipeline again.

Lab 3: (Dave) Deploy with a new WAF policy

Background:

secops found a false positive on the waf policy template, they fixed it and created a new version for that policy.

Task 3.1 - Update the WAF policy deployed in DEV

we (Dave) got the message on a new waf template, we need to deploy the new template to the DEV environment.
to do so we will edit the ‘infrastructure as code’ parameters file in Dave’s app2 repo.

3.1.1 Update git with your information:

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)
- on the RS-CONTAINER CLI

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

3.1.2 verify you edit the dev branch:

	go to the container CLI

	go to the application git folder (command below)

	check which branches are there and what is the active branch. (command below)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git branch

3.1.3 Update the infrastructure as code parameters file:

edit the iac_parameters.yaml file to point the deployment to the new WAF policy (linux-high-v01). then add the file to git and commit.

	change line: waf_policy_name: “linux-high”

	to: waf_policy_name: “linux-high-v01”

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed asm policy"

[image: dev-cmd-010]

3.1.4 service deployment update:

Note

	we now have an active DEV environment, the app, network and BIG-IP shouldn’t change. the only change is to the SERVICE deployed on the BIG-IP.

	we have a dedicated pipeline view for the Service deployment.

	
	jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. Jenkins takes the parameters from the file and uses them to start the ansible playbooks that will push the changes to the BIG-IP.

	
	that way it will update the WAF policy on the BIG-IP.

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab , it takes up to
a minute for jenkins to start the pipeline. you should see that the tasks start to run and the pipeline finishes successfully (all tasks are now green).

	Don’t forget to refresh the page

3.1.5 view changes on the BIG-IP :

	log on to the BIG-IP again, check which WAF policies are there and which policy is attached to the ‘App2 VIP’
check the ‘traffic learning’ for the security policy and verify you no longer see the ‘high ascii charachters’

this concludes the tests in the ‘dev’ environment.
we are now ready to push the changes to production.

Lab 4 (Dave): Deploy the PROD environment

Background:

we completed tests in DEV, both functional tests and security tests have passed.

Task 4.1 - merge infrastructure as code file from dev

	we will ‘merge’ the app2 dev branch with the master branch.
so that the production deployment will use the correct policy.

	on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "changed asm policy"

Note

the merge will trigger a job in Jenkins that’s configured to monitor this repo - ‘Push waf policy’,
since the environment isn’t deployed yet it will fail, either cancel the job or let it fail.

Task 4.2 deploy PROD:

Note

in this lab we manually deploy PROD after the tests have completed.
this manual step can easily be automated. what are the metrics that we need to verify successful deployment ?

How can splunk analytics / BIG-IQ 6.0 help with that ?

	go to the ‘f5-rs-app2-prod’ folder, choose the ‘Full stack deployment’ view and run the pipeline.

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-master, bigip acces:”

	open the BIG-IP and verify that you don’t see the ‘high ascii’ false positive.

	verify the security policy that’s attached to the VIP.

Module 2: Declarative advanced waf

In this module you will use declarative security controls that controls the F5 advanced waf.
the Lab doesn’t cover how to configure the automation tools, just how to operate them and the workflow.
in this lab we cover:

	automated attacks prevention

	application layer encryption (OPTIONAL)

	Lab 1: (Dave) protect the app from automated attacks

	Lab 2: (Dave) Account takeover protection (app layer encryption) - OPTIONAL

Lab 1: (Dave) protect the app from automated attacks

Background:

after the app was launched we started identifying an abnormal activity, some specific products were added to the cart until the stock was out but were never purchased. in addition we identified an abuse of our coupons that every new member gets.

in an effort to mitigate those unwanted requests the secops engineer suggests the use of ‘proactive bot defense’, he configures a template DOSL7 profile with some values as defaults.

he then exposes the option of enabling / disabling proactive bot defense from the ‘iac_paramaters’ file.

it is up to Dave now to deploy the new feature in dev and promote to PROD when it makes sense for him.

Task 1.1 - Enable proactive bot defense in the DEV environment

1.1.1 Review iac_paramaters file in the app repo:

	Open the container CLI

	go to the application git folder.

	check which branches are there and what is the active branch. (git branch)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

1.1.2 Edit the iac_paramaters file in the app repo:

	edit the iac_parameters.yaml file to enable proactive bot defense,

	change the setting from:

	proactive_autometed_attack_prevention: “disabled”

	To

	Proactive_autometed_attack_prevention: “always”

	change the setting from: proactive_autometed_attack_prevention: "disabled" to proactive_autometed_attack_prevention: "always"

vi iac_parameters.yaml

1.1.3 Add the file to git and commit:

	add the file to git and commit

git add iac_parameters.yaml
git commit -m "enabled proactive bot defense"

1.1.4 View the automatic pipeline:

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab ,

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab,
jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.
jenkins takes the parametes from the git repo and uses them to deploy/update the service.

	OPTIONAL - Log on to splunk (logon details in the UDF documentation), navigate to your app and look under the ‘Security - DDoS’ tab for proactive mitigation.

Task 1.2 - (Secops) Verify bot defense configuration and logs on the BIG-IP

while all of the logs are sent to splunk where they can be viewed by Dave, part of the lab is to verify the change on the BIG-IP.
this task doesn’t represents an actual step of the deployment. it is just for lab purpose
log on to the dev BIG-IP again, check the setting on the dos profile named rs_dosl7, verify that proactive bot defense is now enabled.

[image: pbd-bigip-010]

on the bigip, check the bot request log, verify that requests are being challenged

[image: pbd-bigip-020]

this concludes the tests in the ‘DEV’ environment. we are now ready to push the changes to production.

Task 1.3 - Enable proactive bot defense in the PROD environment

we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.

1.3.1 Merge app2 dev to master :

on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "enabled proactive bot defense"

1.3.2 view the automatic pipeline :

the merge will trigger a job in Jenkins that’s configured to monitor this repo - Push WAF policy, open the f5-rs-app2-prd folder and navigate to the Service deployment pipeline , you should see the jobs running in up to a minute.

open the PRODUCTION BIG-IP, check that the DOSL7 profile named rs_dosl7 has the ‘proactive bot defense’ enabled.

check that requests are getting challenged in the bot event log.

Lab 2: (Dave) Account takeover protection (app layer encryption) - OPTIONAL

Background:

Application is up and running, sales on the site have seen a big growth. our support center started getting complaints from customers
that their account is abused and they are charged with purcheses they never did.
after further investigation it turns out that the user’s credentials were stolen by a malware on the client side.

secops engineer suggests to turn on F5’s application encryption on the login page, he configured a template profile with some settings that make sense for the enterprise. exposing the login page paramters (URI), and a choice to enable/disable.

Task 4 - Enable application layer encryption

it is up to Dave now to deploy the new feature in DEV and promote to PROD when it makes sense for him.

	Open the container CLI

	go to the application git folder. check which branches are there and what is the active branch. (git branch)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

	edit the iac_parameters.yaml file to enable login password encryption,

	change the setting from:

	login_password_encryption: “disabled”

	to:

	login_password_encryption: “enabled”

	add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "enabled login password encryption"

	go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘Service deployment pipeline’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

	jenkins takes the parametes from the git repo and uses them to deploy/update the service.

	log on to the dev BIG-IP again, check the setting on the FPS profile.

[image: ale-bigip-010]

this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "enabled login password encryption"

the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, open the f5-rs-app2-prd folder and navigate to the ‘service deployment pipeline’ , you should see the jobs running in up to a minute.

open the PRODUCTION BIG-IP, check that the FPS profile named rs_fps has the ‘login_password_encryption’ enabled.

F5 AWAF in AWS with DO/AS3

This lab covers the following topics:

	Deploying a vpc to AWS with the required subnets

	Deploying a juiceshop application in an autoscale group

	Deploying a bigip to AWS and onboarding it using declarative onboarding

	Deploying an F5 AWAF to protect juiceshop application

	Declaring the F5 service using AS3

Here are the lab steps:

	Lab Environment

	Lab 1: Deploy app and bigip

	Lab 2 (BIGIP):

Lab Environment

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC.
while most of the components are dedicated for their app and separated from the rest of the netwrok,
there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Lab 1: Deploy app and bigip

Task 1.1 - Configure jenkins credentials

1.1.1 open jenkins

on your laptop:

	open http://localhost:10000

	username: snops , password: default

1.1.2 Verify that credentials are configured

	
	verify the following credentials exists:

	
	
	Secret: ‘USERNAME’ , ID: ‘vault_username’

	
	USERNAME: used as the username for instances that you launch. also used to tag instances. example johnw

	
	Add the following credentials:

	
	
	Secret: ‘EMAIL’ , ID: ‘vault_email’

	
	EMAIL: your EMAIL address

	
	Add the following credentials:

	
	
	Secret: ‘YOUR_SECRET_PASSWORD’ , ID: ‘vault_password’

	
	USERNAME: used as the password for instances that you launch. needs to be a secure password.

	
	Add the following credentials:

	
	
	Secret: ‘teams_builds_uri’ , ID: ‘teams_builds_uri’

	
	USERNAME: uri used for teams

Task 1.2 - Deploy environment

1.2.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.2.2 start the ‘Deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder
we will start by deploying a full environment in AWS.

[image: jenkinsjobs01]

	click on the ‘Deploy_and_onboard’ job.

[image: jenkinsjobs02]

	click on Build Now button on the left side.

[image: jenkinsjobs03]

Task 1.3 - Review the deployed environment

1.3.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.3.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.3.3 open teams channel and extract BIG-IP info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send to this channel the BIG-IP address.

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

1.3.4 login to the BIG-IP:

	use the address from the slack notification (look for your username in the builds channel)

	username is the ‘vault_username’ that was configured in jenkins credentials

	password is the ‘vault_password’ that was configured in jenkins credentials

explore the objects that were created:

	AS3 and DO installed

Task 1.4 - Deploy services:

1.4.1 Open Jenkins:

	LOCAlL: open http://localhost:10000

	username: snops , password: default

1.4.2 start the ‘service deployment Pipeline’:

in jenkins open the AWAF - AWS, F5 AO toolchain (DO, AS3) folder, the lab jobs are all in this folder

	click on the ‘Deploy_service’ job.

	click on Build Now button on the left side.

Task 1.5 - Review the deployed application

1.5.1 review jobs output:

	you can review the output of each job while its running, click on any of the green square and then click on logs icon

1.5.2 let the jobs run until the pipeline finishes:

	wait until all of the jobs have finished (turned green).

1.5.3 open teams channel and extract application information info:

	open the teams channel you’ve configured in the ‘initial setup’ section

	jenkins will send the application access information to this channel

1.6 Go over WAF logs:

1.6.1 open WAF logs:

	Open the BIGIP

	Switch to App10 partition

	Go over the ‘application event log’, go over the ‘brute force event log’

Lab 2 (BIGIP):

Task 1.2 - Explore the app repo

1.2.1 explore the infrastructure as code parameters file:

1.2.2 view git branches in the application repo:

on the container CLI type the following command to view git branches:

cd /home/snops/f5-rs-app10
git branch -a

1.2.3 explore files in the app repo:

more iac_parameters.yaml

the infrastructure of the environments is deployed using ansible playbooks that were built by devops/netops.
those playbooks are being controlled by jenkins which takes the iac_parameters.yaml file and uses it as parameters for the playbooks.

	You can choose the AWS region you want to deploy in

	You can also control the WAF blocking state using this file

Task 1.3 - Update the AWS region for the DEV environment (Optional)

1.3.1 Update git with your information:

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)
- on the RS-CONTAINER CLI

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

1.3.2 verify you edit the dev branch:

	go to the container CLI

	go to the application git folder (command below)

	check which branches are there and what is the active branch. (command below)

cd /home/snops/f5-rs-app10
git branch

1.3.3 Update the infrastructure as code parameters file:

edit the iac_parameters.yaml file to the desired AWS region. then add the file to git and commit.

	change line: aws_region: “us-west-2”

	to: aws_region: “your_region”

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed aws region"

DevSecOps - Advanced WAF in a CI/CD Workflow

This lab covers the following topics:

	Shifting WAF policies left [https://en.wikipedia.org/wiki/Shift_left_testing], closer to Dev

	Declarative Advanced WAF

Lab Goals:

	Describe the main DevSecOps concepts and how they translate into an actual environment

	Describe the various roles in a DevSecOps workflow (SecOps, Dev, DevOps)

	Describe the workflow with F5 Application Security integrated into the pipeline

Roles in the Lab:

	SecOps - Represents an application security engineer

	Dave - Represents a guy from the application / end to end team, responsible for the app and infrastructure code required to build the app.

	DevOps / Automation / SRE - aren’t represented in the lab. Their role is to build the tools we utilize in this lab (the automation pipeline of infrastructure and application security)

OUT OF SCOPE:

	The “how-to” and the mechanics of the automation components

	Please refer to the F5 Super-NetOps Training [https://f5.com/supernetops] for the above

Expected time to complete: 1 hours

To continue, please review the information about the Lab Environment.

	Lab info

	Module 0 - initial setup

	Module 1: Shifting WAF policy left, closer to DEV.

	Module 2: Declarative advanced waf

Lab info

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC. while most of the components are dedicated for their app and separated from the rest of the netwrok, there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: lab-diag-010]

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Accessing the lab

The lab is built from code, to run it you need a docker host (can be your laptop), and an AWS account with API access (access and secret keys):

	Module 0 - initial setup

Module 0 - initial setup

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Security Lab: DevSecOps
Blueprint and Start it.

1. Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to RS-CONTAINER

	SSH to the linux host

	HTTP Access to Jenkins (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	In UDF navigate to the Deployments

	Click the Details button for your DevSecOps Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the ACCESS
button.

	use your favorite SSH client to connect to RS-CONTAINER using your UDF private key. username is root

1.2 Configure the rs-container

The entire lab is built from code hosted in this repo, the container that you are connecting to runs on the linux host
and is publicly available. to run the deployments you need to configure it with personal information and credentials.

1.3 Configure credentials and personal information

1.3.1 Copy ssh key, aws credentials and global parameters file

the SSH key will be used when creating EC2 instances.
we will store them in the Jenkins SSH folder so that Jenkins can use them to access instances.

Copy credentials and parameters files from the host folder using the following script:

/home/snops/host_volume/udf_startup.sh

1.3.2 Edit the global parameters file with your personal information

	Edit the encrypted global parameters file /home/snops/f5-rs-global-vars-vault.yaml by typing:

ansible-vault edit --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	Once in edit mode - type i to activate INSERT mode and configure your personal information by changing the following variables: vault_dac_user, vault_dac_email and vault_dac_password

	Use your student# from Teams for vault_dac_user - used as a Tenant ID to differentiate between multiple deployments

	Choose your own (secure) value for vault_dac_password - ** this is the password for the admin user of the BIG-IP **

	There are a number of special characters that you should avoid using in passwords for F5 products. See https://support.f5.com/csp/article/K2873 for details

For example:

vault_dac_user: "student01" // username IS case sensitive
vault_dac_email: "yossi@f5.com"
vault_dac_password: "Sup3rsecur3Passw0rd1"

	Press the ESC key and save the file by typing: :wq

1.3.3 Configure Jenkins and reload it

Run the following command to configure jenkins with your personal information and reload it:

ansible-playbook --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

	Start: Module 1: Shifting WAF policy left, closer to DEV.

Module 0 - initial setup

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Security Lab: DevSecOps
Blueprint and Start it.

1. Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to RS-CONTAINER

	SSH to the linux host

	HTTP Access to Jenkins (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	In UDF navigate to the Deployments

	Click the Details button for your DevSecOps Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the ACCESS
button.

	use your favorite SSH client to connect to RS-CONTAINER using your UDF private key. username is root

1.2 Configure the rs-container

The entire lab is built from code hosted in this repo, the container that you are connecting to runs on the linux host
and is publicly available. to run the deployments you need to configure it with personal information and credentials.

1.3 Configure credentials and personal information

1.3.1 Copy ssh key, aws credentials and global parameters file

the SSH key will be used when creating EC2 instances.
we will store them in the Jenkins SSH folder so that Jenkins can use them to access instances.

Copy credentials and parameters files from the host folder using the following script:

/home/snops/host_volume/udf_startup.sh

1.3.2 Edit the global parameters file with your personal information

	Edit the encrypted global parameters file /home/snops/f5-rs-global-vars-vault.yaml by typing:

ansible-vault edit --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	Once in edit mode - type i to activate INSERT mode and configure your personal information by changing the following variables: vault_dac_user, vault_dac_email and vault_dac_password

	Use your student# from Teams for vault_dac_user - used as a Tenant ID to differentiate between multiple deployments

	Choose your own (secure) value for vault_dac_password - ** this is the password for the admin user of the BIG-IP **

	There are a number of special characters that you should avoid using in passwords for F5 products. See https://support.f5.com/csp/article/K2873 for details

For example:

vault_dac_user: "student01" // username IS case sensitive
vault_dac_email: "yossi@f5.com"
vault_dac_password: "Sup3rsecur3Passw0rd1"

	Press the ESC key and save the file by typing: :wq

1.3.3 Configure Jenkins and reload it

Run the following command to configure jenkins with your personal information and reload it:

ansible-playbook --vault-password-file /var/jenkins_home/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

	Start: Module 1: Shifting WAF policy left, closer to DEV.

Module 1: Shifting WAF policy left, closer to DEV.

	In this module you will review the lab environment, practice some of the concepts discussed in class:

	
	break down the silos, enable dev to deploy securely with minimum friction.

	introduce security as early on in the dev chain as possible

	automated security tests

	roles of secops and dev in our lab model and deploy an app to prod with WAF protection.

	Lab 1 (Dave): Deploy app to DEV environment

	Lab 2 (Secops): Tune/fix security policy

	Lab 3: (Dave) Deploy with a new WAF policy

	Lab 4 (Dave): Deploy the PROD environment

Lab 1 (Dave): Deploy app to DEV environment

Background:

Security team has created some security policies templates, those were built based on the F5 templates with some modifications to the specific enterprise.
in this lab we don’t cover the ‘how to’ of the security templates. we focus on the operational side and the workflows.

	The Tasks are split between the two roles:

	
	SecOps

	Dave - a person from the ‘end to end’ team. a team that’s responsible for the application code and running it in production.

Lab scenario:

New app - App2 is being developed. the app is an e-commerce site.
code is ready to go into ‘DEV’ environment. for lab simplicity there are only two environments - DEV and PROD.
Dave should deploy their new code into a DEV environment that is exactly the same as the production environment.
run their application tests and security tests.

Note

Pipeline is broken to DEV and PROD for lab simplicity.
from a workflow perspective the pipelines are the same.
it is broken up to two for a better lab flow.

Note

OUT OF SCOPE - a major part of the app build process is out of scope for this lab,
Building the app code and publish it as a container to the registry. this process is done using DOCKERHUB.

Task 1.1 - review Dave’s repo

	Make sure you’ve completed the setup section - http://f5-rs-docs.readthedocs.io/en/latest/solutions/devsecops/labinfo/udf.html

1.1.1 view git branches in the application repo:

on the container CLI type the following command to view git branches:

cd /home/snops/f5-rs-app2
git branch

the app repo has two branches, dev and master. we are now working on the dev branch.

Note

the lab builds two environments, dev and prod.
the dev environment deploys the code on the dev branch
the prod environment deploys the code on the master branch.

1.1.2 view files in the application repo:

on the container CLI type the following commands to view the files in the repo:

cd /home/snops/f5-rs-app2
ls

	application code under the ‘all-in-one-hackazon’ folder.

	infrastructure code maintained in the ‘iac_parameters.yaml’ file.

1.1.3 explore the infrastructure as code parameters file:

more iac_parameters.yaml

the infrastructure of the environments is deployed using ansible playbooks that were built by devops/netops.
those playbooks are being controlled by jenkins which takes the iac_parameters.yaml file and uses it as parameters for the playbooks.

	that enables Dave to choose the AWS region in which to deploy, the name of the app and more.

	Dave can also control the deployment of the security policies from his repo as we will see.

Task 1.2 - Deploy dev environment

Note

Jenkins can be configured to run the dev pipeline based on code change in dave’s app repo.
in this lab we are manually starting the Full stack pipeline in Jenkins to visualize the process.

1.2.1 Open Jenkins:

go to UDF, on the jumphost click on access and jenkins

username: snops , password: default

Note

when you open jenkins you should see some jobs that have started running automatically, jobs that contain: ‘Push a WAF policy’,
this happens because jenkins monitors the repo and start the jobs.

you can cancel the jobs or let them fail.

1.2.2 start the ‘Full stack pipeline’:

in jenkins open the DevSecOps - Lab - App2 folder, the lab jobs are all in this folder
we will start by deploying a DEV environment, you will start a pipeline that creates a full environment in AWS.

[image: jenkins010]

click on the ‘f5-rs-app2-dev’ folder.
here you can see all of the relevant jenkins jobs for the dev environment.

[image: jenkins020]

click on ‘Full stack deployment’ , that’s the pipeline view for the same folder.

[image: jenkins030]

click on ‘run’ to start the dev environment pipeline.

[image: jenkins040]

Task 1.3 - Review the deployed environment

Note

Jenkins doesn’t automatically refresh the page, either refresh manually to see the progress or click on the ‘ENABLE AUTO REFRESH’ on the upper right side.

1.3.1 review jobs output:

you can review the output of each job while its running, click on the small console output icon as shown in the screenshot:

[image: jenkins050]

1.3.2 let the jobs run until the pipeline finishes:

wait until all of the jobs have finished (turned green and the app-test one is red).

[image: jenkins055]

1.3.3 open slack and extract BIG-IP and application info:

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/ (if you don’t already have an account you can set it up with an F5 email)

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-dev, bigip acces:”

	jenkins will send to this channel the BIG-IP and the application address.

[image: slack040]

1.3.4 login to the BIG-IP:

	use the address from task 1.3.3

	username: admin

	password: the personal password you defined in the global parameters file in the vault_dac_password parameter.

explore the objects that were created:

1.3.5 Access the App:

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/ (if you don’t already have an account you can set it up with an F5 email)

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-dev, application at:”

	try to access the app using the ip provided in the slack channel - that’s the Elastic ip address that’s tied to the VIP on the BIG-IP.

	after ignoring the ssl error (because the certificate isn’t valid for the domain) you should get to the Hackazone mainpage

[image: hackazone010]

1.3.6 Summary - Jobs roles:

A1 - aws-net:

	Builds an AWS VPC with subnets and security groups.

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like which region)

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A2 - aws_app:

	Deploys an AWS autoscale group with a containerized app

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like container name)

	Jenkins uses the VPC / subnets information from previews job

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A3 - aws-bigip:

	Deploys a BIG-IP to AWS

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (like which region)

	Jenkins uses the VPC / subnets information from previews job

	Ansible playbook takes the parameters and use them to deploy a cloud formation template

	cloud formation template deploys all resources in AWS subscription

A4 - aws bigip onboard (rest_user):

	Connects to the BIG-IP over SSH with private key (only way to connect to an AWS instance).

	configures rest user and password for future use

A5 - bigip rs onboard:

	deploys the ‘enterprise’ default profiles, for example: HTTP, analytics, AVR, DOSL7, iapps etc.

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo.

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

B1 - push a WAF policy:

	deploys the ‘application specific’ profiles, for example: DOSL7, waf policy

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo. (which waf policy to use, dosl7 parameters)

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

B2 - rs-iapp service:

	deploys the ‘service definition’ uses AS2 API

	Jenkins runs a shell command that kicks off an ansible playbook with parameters from the application repo.

	Jenkins uses the application autoscale group name from previous jobs

	Ansible playbook takes the parameters and uses them to deploy a configuration to the BIG-IP using the F5 supported ansible modules and API’s.

	AS2 turns the service definition into objects on the BIG-IP

B3 - app-test:

	Send HTTP requests to the application to test it

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run HTTP requests to our APP.

B4 - rs-attacks:

	Test app vulnerabilities

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run HTTP requests to our APP.

SEC export waf policy:

	Pulls a policy from a BIG-IP and stores in a git repo

	Jenkins runs a shell command that kicks off an ansible playbook with parameters

	Ansible playbook takes the parameters and uses them to run F5 modules (Created by Fouad Chmainy <F.Chmainy@F5.com>) to pull the waf policy from the BIG-IP

Z - destroy:

	Destroy the environment

Task 1.4 - Go over the test results

1.4.1 view the test results:

the deployment process failed because not all of the application tests completed successfully.
review the app-test job console output

[image: jenkins053]

1.4.2 identify the WAF blocked page response:

scroll to the bottom of the page, you should see the response with request rejected, and the failure reason as unexpected response returned

this is an indication that ASM has blocked the request. in our case it is a false positive.

[image: jenkins056]

Note

in this lab secops uses the same WAF policy template for many apps.
we don’t want to create a ‘snowflake’ waf policy. so with this failure dave will escalate to secops.
that ensures that the setting will be reviewed and if needed the policy template will get updated.
we don’t want to create a ‘snowflake’ waf policy. so with this failure Dave will escalate to secops.
this ensures that the setting will be reviewed and if needed the policy template will get updated.

Lab 2 (Secops): Tune/fix security policy

Background:

The application team tests came back and some of the tests have failed. the test result came back with the WAF blocking page.

Task 2.1 - Find which requests were blocked and resolve false-positive

2.1.1 Clear false positive:

	log on to the ‘DEV’ bigip. (username: admin , password: your personal password that you set in the lab setup) see section 1.3.3

	log on to the ‘DEV’ BIG-IP.

	go to ‘traffic learning’,

	make sure you are editing the ‘linux-high’ policy.

	check the requests that triggered suggestions.

	you should see a suggestion on ‘High ASCII characters in headers’ , examine the request. this is a false positive.

	the app uses a different language in the header and it is legitimate traffic.

	you can also see that the request comes from a trusted ip.

	accept the suggestion.

[image: Bigip-030]

2.1.2 Apply the policy :

	apply the policy.

Note

you are applying the policy to DEV,
secops shouldn’t change the waf policy running in production outside of the ci/cd workflow
** unless there is a true emergency

Task 2.2 - Save the WAF policy to the templates repo (managed by secops)

	secops have updated the policy with a setting that makes sense to update on the general template.

	we will now export the policy from the BIG-IP to the waf-policies repo (managed by secops)

2.2.1 Pull WAF policy from the BIG-IP :

go back to jenkins, under the ‘f5-rs-app2-dev’ there is a job that will export the policy and save it to the git repo - SEC export waf policy

[image: jenkins075]

click on this job and choose Build with Parameters from the left menu.

[image: jenkins080]

you can leave the defaults, it asks for two parameters. the first parameter is the name of the policy on the BIG-IP and the other is the new policy name in the git repo.

Note

why saving the template with a different version ?
changes should be tracked, more than that we should allow app teams to ‘control their own destiny’
allowing them to choose the right time and place to update the waf policy in their environment.
by versioning the policies we ensure their control over which template gets deployed.

click on ‘build’

2.2.2 Check slack channel notification :

check the slack channel - you should see a message about the new security policy that’s ready.
this illustrates how chatops can help communicate between different teams.

[image: Slack-030]

the security admin role ends here. it’s now up to Dave to run the pipeline again.

Lab 3: (Dave) Deploy with a new WAF policy

Background:

secops found a false positive on the waf policy template, they fixed it and created a new version for that policy.

Task 3.1 - Update the WAF policy deployed in DEV

we (Dave) got the message on a new waf template, we need to deploy the new template to the DEV environment.
to do so we will edit the ‘infrastructure as code’ parameters file in Dave’s app2 repo.

3.1.1 Update git with your information:

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)
- on the RS-CONTAINER CLI

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

3.1.2 verify you edit the dev branch:

	go to the container CLI

	go to the application git folder (command below)

	check which branches are there and what is the active branch. (command below)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git branch

3.1.3 Update the infrastructure as code parameters file:

edit the iac_parameters.yaml file to point the deployment to the new WAF policy (linux-high-v01). then add the file to git and commit.

	change line: waf_policy_name: “linux-high”

	to: waf_policy_name: “linux-high-v01”

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed asm policy"

[image: dev-cmd-010]

3.1.4 service deployment update:

Note

	we now have an active DEV environment, the app, network and BIG-IP shouldn’t change. the only change is to the SERVICE deployed on the BIG-IP.

	we have a dedicated pipeline view for the Service deployment.

	
	jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. Jenkins takes the parameters from the file and uses them to start the ansible playbooks that will push the changes to the BIG-IP.

	
	that way it will update the WAF policy on the BIG-IP.

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab , it takes up to
a minute for jenkins to start the pipeline. you should see that the tasks start to run and the pipeline finishes successfully (all tasks are now green).

	Don’t forget to refresh the page

3.1.5 view changes on the BIG-IP :

	log on to the BIG-IP again, check which WAF policies are there and which policy is attached to the ‘App2 VIP’
check the ‘traffic learning’ for the security policy and verify you no longer see the ‘high ascii charachters’

this concludes the tests in the ‘dev’ environment.
we are now ready to push the changes to production.

Lab 4 (Dave): Deploy the PROD environment

Background:

we completed tests in DEV, both functional tests and security tests have passed.

Task 4.1 - merge infrastructure as code file from dev

	we will ‘merge’ the app2 dev branch with the master branch.
so that the production deployment will use the correct policy.

	on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "changed asm policy"

Note

the merge will trigger a job in Jenkins that’s configured to monitor this repo - ‘Push waf policy’,
since the environment isn’t deployed yet it will fail, either cancel the job or let it fail.

Task 4.2 deploy PROD:

Note

in this lab we manually deploy PROD after the tests have completed.
this manual step can easily be automated. what are the metrics that we need to verify successful deployment ?

How can splunk analytics / BIG-IQ 6.0 help with that ?

	go to the ‘f5-rs-app2-prod’ folder, choose the ‘Full stack deployment’ view and run the pipeline.

	open slack - https://f5-rs.slack.com/messages/C9WLUB89F/

	go to the builds channel.

	use the search box on the upper right corner and filter by your username (student#). replace you student# in this string: “user: student# , solution: f5-rs-app2-master, bigip acces:”

	open the BIG-IP and verify that you don’t see the ‘high ascii’ false positive.

	verify the security policy that’s attached to the VIP.

Module 2: Declarative advanced waf

In this module you will use declarative security controls that controls the F5 advanced waf.
the Lab doesn’t cover how to configure the automation tools, just how to operate them and the workflow.
in this lab we cover:

	automated attacks prevention

	application layer encryption (OPTIONAL)

	Lab 1: (Dave) protect the app from automated attacks

	Lab 2: (Dave) Account takeover protection (app layer encryption) - OPTIONAL

Lab 1: (Dave) protect the app from automated attacks

Background:

after the app was launched we started identifying an abnormal activity, some specific products were added to the cart until the stock was out but were never purchased. in addition we identified an abuse of our coupons that every new member gets.

in an effort to mitigate those unwanted requests the secops engineer suggests the use of ‘proactive bot defense’, he configures a template DOSL7 profile with some values as defaults.

he then exposes the option of enabling / disabling proactive bot defense from the ‘iac_paramaters’ file.

it is up to Dave now to deploy the new feature in dev and promote to PROD when it makes sense for him.

Task 1.1 - Enable proactive bot defense in the DEV environment

1.1.1 Review iac_paramaters file in the app repo:

	Open the container CLI

	go to the application git folder.

	check which branches are there and what is the active branch. (git branch)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

1.1.2 Edit the iac_paramaters file in the app repo:

	edit the iac_parameters.yaml file to enable proactive bot defense,

	change the setting from:

	proactive_autometed_attack_prevention: “disabled”

	To

	Proactive_autometed_attack_prevention: “always”

	change the setting from: proactive_autometed_attack_prevention: "disabled" to proactive_autometed_attack_prevention: "always"

vi iac_parameters.yaml

1.1.3 Add the file to git and commit:

	add the file to git and commit

git add iac_parameters.yaml
git commit -m "enabled proactive bot defense"

1.1.4 View the automatic pipeline:

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab ,

	go back to jenkins and open the f5-rs-app2-dev folder. choose the Service deployment pipeline tab,
jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.
jenkins takes the parametes from the git repo and uses them to deploy/update the service.

	OPTIONAL - Log on to splunk (logon details in the UDF documentation), navigate to your app and look under the ‘Security - DDoS’ tab for proactive mitigation.

Task 1.2 - (Secops) Verify bot defense configuration and logs on the BIG-IP

while all of the logs are sent to splunk where they can be viewed by Dave, part of the lab is to verify the change on the BIG-IP.
this task doesn’t represents an actual step of the deployment. it is just for lab purpose
log on to the dev BIG-IP again, check the setting on the dos profile named rs_dosl7, verify that proactive bot defense is now enabled.

[image: pbd-bigip-010]

on the bigip, check the bot request log, verify that requests are being challenged

[image: pbd-bigip-020]

this concludes the tests in the ‘DEV’ environment. we are now ready to push the changes to production.

Task 1.3 - Enable proactive bot defense in the PROD environment

we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.

1.3.1 Merge app2 dev to master :

on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "enabled proactive bot defense"

1.3.2 view the automatic pipeline :

the merge will trigger a job in Jenkins that’s configured to monitor this repo - Push WAF policy, open the f5-rs-app2-prd folder and navigate to the Service deployment pipeline , you should see the jobs running in up to a minute.

open the PRODUCTION BIG-IP, check that the DOSL7 profile named rs_dosl7 has the ‘proactive bot defense’ enabled.

check that requests are getting challenged in the bot event log.

Lab 2: (Dave) Account takeover protection (app layer encryption) - OPTIONAL

Background:

Application is up and running, sales on the site have seen a big growth. our support center started getting complaints from customers
that their account is abused and they are charged with purcheses they never did.
after further investigation it turns out that the user’s credentials were stolen by a malware on the client side.

secops engineer suggests to turn on F5’s application encryption on the login page, he configured a template profile with some settings that make sense for the enterprise. exposing the login page paramters (URI), and a choice to enable/disable.

Task 4 - Enable application layer encryption

it is up to Dave now to deploy the new feature in DEV and promote to PROD when it makes sense for him.

	Open the container CLI

	go to the application git folder. check which branches are there and what is the active branch. (git branch)

	you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

	edit the iac_parameters.yaml file to enable login password encryption,

	change the setting from:

	login_password_encryption: “disabled”

	to:

	login_password_encryption: “enabled”

	add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "enabled login password encryption"

	go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘Service deployment pipeline’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

	jenkins takes the parametes from the git repo and uses them to deploy/update the service.

	log on to the dev BIG-IP again, check the setting on the FPS profile.

[image: ale-bigip-010]

this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge dev -m "enabled login password encryption"

the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, open the f5-rs-app2-prd folder and navigate to the ‘service deployment pipeline’ , you should see the jobs running in up to a minute.

open the PRODUCTION BIG-IP, check that the FPS profile named rs_fps has the ‘login_password_encryption’ enabled.

Module Index

Module Reference

	f5_rs_aws_net - Deploys vpc and network objects to an AWS region

	f5_rs_aws_app - Creates an application in an auto-scale group

	f5_rs_aws_bigip - deploys bigip in AWS using CFT

	bigip_command - Run arbitrary command on F5 devices

	f5_rs_aws_external_lb - Creates an ELB on a given AWS vpc

	bigip_command - Run arbitrary command on F5 devices

	f5_rs_attacks - Run attacks on an HTTP/S target

	bigip_command - Run arbitrary command on F5 devices

f5_rs_aws_net - Deploys vpc and network objects to an AWS region

New in version 0.9.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Deploys vpc and network objects to an AWS region.

Requirements (on host that executes module)

	f5-sdk >= 3.0.9

	ansible >= 2.4

	boto3 >= 1.6.4

Options

 f5_rs_aws_app - Creates an application in an auto-scale group

f5_rs_aws_app - Creates an application in an auto-scale group

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Creates an application in an auto-scale group in a given AWS vpc

Requirements (on host that executes module)

	aws

Options

 f5_rs_aws_bigip - deploys bigip in AWS using CFT

f5_rs_aws_bigip - deploys bigip in AWS using CFT

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	deploys bigip in AWS using CFT, currently supports only the WAF-autoscale CFT

Requirements (on host that executes module)

	aws

Options

 bigip_command - Run arbitrary command on F5 devices

bigip_command - Run arbitrary command on F5 devices

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Sends an arbitrary command to an BIG-IP node and returns the results read from the device. This module includes an argument that will cause the module to wait for a specific condition before returning or timing out if the condition is not met.

Requirements (on host that executes module)

	f5-sdk >= 3.0.9

Options

 f5_rs_aws_external_lb - Creates an ELB on a given AWS vpc

f5_rs_aws_external_lb - Creates an ELB on a given AWS vpc

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Creates an ELB on a given AWS vpc

Requirements (on host that executes module)

	f5-sdk >= 3.0.9

Options

 bigip_command - Run arbitrary command on F5 devices

bigip_command - Run arbitrary command on F5 devices

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Sends an arbitrary command to an BIG-IP node and returns the results read from the device. This module includes an argument that will cause the module to wait for a specific condition before returning or timing out if the condition is not met.

Requirements (on host that executes module)

	f5-sdk >= 3.0.9

Options

 f5_rs_attacks - Run attacks on an HTTP/S target

f5_rs_attacks - Run attacks on an HTTP/S target

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Run attacks on an HTTP/S target

Requirements (on host that executes module)

	curl

Options

	parameter
	required
	default
	choices
	comments

	https_target

 bigip_command - Run arbitrary command on F5 devices

bigip_command - Run arbitrary command on F5 devices

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Sends an arbitrary command to an BIG-IP node and returns the results read from the device. This module includes an argument that will cause the module to wait for a specific condition before returning or timing out if the condition is not met.

Requirements (on host that executes module)

	f5-sdk >= 3.0.9

Options

 BIG-IP versions

BIG-IP versions

F5 does not currently support the F5 Modules for Ansible. However, F5 provides informal support through a number of channels. For details, see Get help.

The informal support F5 provides is for BIG-IP version 12.0.0 and later.

For a detailed list of BIG-IP versions that are currently supported, see this solution article.

When a version of BIG-IP reaches end of technical support, it is supported until the next Ansible release.

For example, if a version of BIG-IP reaches end of technical support on January 1, and Ansible releases a new version on March 1, then the F5 Modules for Ansible are supported on that version of BIG-IP until March 1.

F5 does not back-port changes to earlier versions of Ansible.

F5 develops the Ansible modules in tandem with the REST API, and newer versions of BIG-IP provide better support for the REST API.

Experimental vs. production modules

F5 modules are included when you install Ansible. These modules are informally supported by F5 employees.

F5 modules are also in the F5 GitHub repository. These modules are also informally supported by F5 employees, but you should consider these modules to be experimental and not production-ready.

However, if an experimental module’s DOCUMENTATION block has a completed Tested platforms section, then the module is likely complete and ready for use. You can file issues against modules that are complete.

Tested platforms:
#
- 12.0.0
#

 How to get involved

How to get involved

Thank you for getting involved with this project.

You can contribute in a number of different ways.

Here is some information that can help set your expectations.

Developing and supporting your module

When you develop a module, it goes through review before F5 accepts it. This review process may be difficult at times, but it ensures the published modules are good quality.

You should stay up to date with this site’s documentation about module development. As time goes on, things change and F5 and the industry adopt new practices; F5 tries to keep the documentation updated to reflect these changes.

If you develop a module that uses an out-of-date convention, F5 will let you know, and you should take the initiative to fix it.

What to work on

While module/solution development is the primary focus of most contributors, it’s understandable that you may not know how to create modules, or may not have any interest in creating modules to begin with.

That’s OK. Here are some things you can do to assist.

Documentation

Documentation help is always needed. F5 encourages you to submit documentation improvements.

Unit tests

The unit tests in the test/ directory can always use work. Unit tests run fast and are not a burden on the test runner.

F5 encourages you to add more test cases for your particular usage scenarios or any other scenarios that are missing tests.

F5 adds enough unit tests to be reasonably comfortable that the code will execute correctly. This, unfortunately, does not cover many of the functional test cases. Writing unit test versions of functional tests is hugely beneficial.

New modules

Modules do not cover all of the ways you might use F5 products. If you find that a module is missing from the repo and you think F5 should add it, put those ideas on the Github Issues page.

New functionality for an existing module

If a module is missing a parameter that you think it should have, raise the issue and F5 will consider it.

Postman collections

The Ansible modules make use of the F5 Python SDK. In the SDK, all work is via the product REST APIs. This just happens to fit in perfectly with the Postman tool.

If you want to work on new modules without involving yourself in ansible, a great way to start is to write Postman collections for the APIs that configure BIG-IP.

If you provide F5 with the Postman collections, F5 can easily write the module itself.

And you get bonus points for collections that address differences in APIs between versions of BIG-IP.

Bugs

Using the modules is the best way to iron out bugs. Using the modules in the way that you expect them to work is a great way to find bugs.

During the development process, F5 writes tests with specific user personas in mind. Your usage patterns may not reflect those personas.

Using the modules is the best way to get good code and documentation. If the documentation isn’t clear to you, it’s probably not clear to others.

Righting those wrongs helps you and future users.

 Guidelines

Guidelines

Follow these guidelines when developing F5 modules for Ansible.

Which API to use

In Ansible 2.2 and later, all new F5 modules must use the f5-sdk.

Prior to 2.2, modules used bigsuds (SOAP) or requests (REST).

To maintain backward compatibility of older modules, you can continue to extend modules that use bigsuds. bigsuds and f5-sdk can co-exist, but F5 recommends that you write all new features, and fix all bugs by using f5-sdk.

Module naming convention

Base the name of the module on the part of BIG-IP that the module manipulates. A good rule of thumb is to refer to the API the f5-sdk uses.

Don’t further abbreviate names. If something is a well-known abbreviation because it is a major component of BIG-IP, you can use it, but don’t create new ones independently (e.g., LTM, GTM, ASM, etc. are fine).

Adding new APIs

If a module you need does not exist yet, the REST API in the f5-sdk may not exist yet.

Refer to the following GitHub project to determine if the REST API exists:

	https://github.com/F5Networks/f5-common-python

If you want F5 to write an API, open an issue with this project.

Using the f5-sdk

Follow these guidelines for using the f5-sdk in the modules you develop. Here are the most common scenarios that you will encounter.

Importing

Wrap import statements in a try block and fail the module later if the import fails.

try:
 from f5.bigip import ManagementRoot
 from f5.bigip.contexts import TransactionContextManager
 HAS_F5SDK = True
except ImportError:
 HAS_F5SDK = False

def main():

 if not HAS_F5SDK:
 module.fail_json(msg='f5-sdk required for this module')

You might wonder why you are doing this.

The answer is that Ansible runs automated tests specifically against your module, and they use an environment that doesn’t include your module’s dependencies.

Therefore, without the appropriate exception handlers, your PR will fail to pass when Ansible runs these upstream tests.

Example tests include, but are not limited to:

	ansible-test sanity –test import –python 2.6

	ansible-test sanity –test import –python 2.7

	ansible-test sanity –test import –python 3.5

	ansible-test sanity –test import –python 3.6

Connecting to BIG-IP

Connecting to an F5 product is automatic. You can control which product you are communicating with by changing the appropriate value in your ArgumentSpec class.

For example, to specify that your module is one that communicates with a BIG-IP, here is the minimum viable ArgumentSpec:

class ArgumentSpec(object):
 def __init__(self):
 self.argument_spec = dict()
 self.f5_product_name = 'bigip'

Note the special key f5_product_name. By changing this value, you are able to change the ManagementRoot that your module uses.

The following is a list of allowed values for this key:

	bigip

	bigiq

	iworkflow

Inside your module, the ManagementRoot is in the ModuleManager under the self.client.api object.

Use the object in the same way that you normally use the ManagementRoot of an f5-sdk product.

For example, this code snippet illustrates a “normal” method of using the f5-sdk:

mr = ManagementRoot("localhost", "admin", "admin", port='10443')
vs = mr.tm.ltm.virtuals.virtual.load(name='asdf')

The equivalent Ansible module code is:

Assumes you provided "bigip" in your ArgumentSpec
vs = self.client.api.tm.ltm.virtuals.virtual.load(name='asdf')

Exception handling

If the code throws an exception, it is up to you to decide how to handle it.

For raising exceptions, use the exception class, F5ModuleError, provided with the f5-sdk, exclusively.

Module code
...

try:
 result = self.want.api.tm.ltm.pools.pool.create(foo='bar')
except iControlUnexpectedHTTPError as ex:
 raise F5ModuleError(str(ex))

...
End of module code

In all cases in which you encounter it, it is correct to catch internal exceptions and re-raise them (if necessary) with the F5ModuleError class.

Python compatibility

The Python code underlying the Ansible modules should be compatible with both Python 2.7 and 3.

The Travis configuration contained in this repo will verify that your modules are compatible with both versions. Use the following cheat-sheet to write compatible code.

	http://python-future.org/compatible_idioms.html

Automated testing

F5 recommends that you use the testing facilities paired with this repository. When you open PR’s, F5’s testing tools will run the PR against supported BIG-IP versions.

Because F5 has test harnesses, you do not need your own devices or VE instances to test (although if you do that’s fine).

F5 currently has the following devices in the test harness:

	12.0.0 (BIGIP-12.0.0.0.0.606)

	12.1.0 (BIGIP-12.1.0.0.0.1434)

	12.1.0-hf1 (BIGIP-12.1.0.1.0.1447-HF1)

	12.1.0-hf2 (BIGIP-12.1.0.2.0.1468-HF2)

	12.1.1 (BIGIP-12.1.1.0.0.184)

	12.1.1-hf1 (BIGIP-12.1.1.1.0.196-HF1)

	12.1.1-hf2 (BIGIP-12.1.1.2.0.204-HF2)

	12.1.2 (BIGIP-12.1.2.0.0.249)

	12.1.2-hf1 (BIGIP-12.1.2.1.0.264-HF1)

	13.0.0 (BIGIP-13.0.0.0.0.1645)

	13.0.0-hf1 (BIGIP-13.0.0.1.0.1668-HF1)

 Index

Index

 Call tracing

Call tracing

This document details the process of call-tracing the F5 Ansible modules to gain insight into the actual code-execution that is occurring.

from pycallgraph import PyCallGraph
from pycallgraph.output import GraphvizOutput
from pycallgraph import Config
from pycallgraph import GlobbingFilter
config = Config()
config.trace_filter = GlobbingFilter(exclude=[
 'pycallgraph.*',
 'httplib.*',
 'mimetools.*',
 'rfc822.*',
 'cookielib.*',
 'contextlib.*',
 'threading.*',
 'Queue.*',
 'logging.*',
 'Connection.*',
 'cgi.*',
 'collections.*',
 'socket.*',
 'Context.*',
 '_asFileDescriptor',
 'base64.*',
 'urllib.*',
 'json.*',
 'functools.*',
 '_VerifyHelper.*',
 'weakref.*',
 'distutils.*',
 'string.*',
 # Ansible related
 'ansible.module_utils.basic.AnsibleModule.*',
 'ansible.module_utils.basic.*',
 'ansible.module_utils.parsing.*',
 'ansible.module_utils._text.*',
 'ansible.module_utils.six.*',
])
graphviz = GraphvizOutput(output_file='/tmp/filter_exclude.png')
with PyCallGraph(output=graphviz, config=config):
 main()

 F5 Networks Contributor License Agreement

F5 Networks Contributor License Agreement

Before you can contribute to any project sponsored by F5 Networks, Inc. (F5) on GitHub, you must sign a Contributor License Agreement (CLA).

If you sign as an individual, you should talk to your employer (if applicable) before signing the CLA, because some employment agreements may have restrictions on your contributions to other projects.

Otherwise, by submitting a CLA, you represent that you are legally entitled to grant the licenses recited therein.

If your employer has rights to intellectual property that you create, such as your contributions, you represent that you have received permission to make contributions on behalf of that employer, that your employer has waived such rights for your contributions, or that your employer has executed a separate CLA with F5.

If you are signing on behalf of a company, you represent that you are legally entitled to grant the license recited therein. You represent further that each employee of the entity that submits contributions has authorization to submit such contributions on behalf of the entity pursuant to the CLA.

Click the link below to download the PDF:

F5 Contributor License Agreement (CLA)

 <no title>

 Code conventions

Code conventions

The F5 modules follow a set of coding conventions that apply to all new and existing modules. These conventions help new contributors quickly develop new modules, and they help existing contributors maintain the current modules.

Where possible, F5 tries to automate the validation of these coding conventions so you are aware of mistakes and can fix them yourself.

For more information on the tools that perform these checks, refer to the Tests page.

When you write modules and their accompanying tests and docs, follow these coding conventions.

Use the complex/structure map format

In reference to Jeff Geerling’s page here, this format looks like this:

- name: Create a UCS
 bigip_ucs_fetch:
 dest: "/tmp/{{ ucs_name }}"
 password: "{{ bigip_password }}"
 server: "{{ inventory_hostname }}"
 src: "{{ ucs_name }}"
 user: "{{ bigip_username }}"
 validate_certs: "{{ validate_certs }}"
 register: result

F5 uses this format for several reasons, including Geerling’s.

	The structure is all valid YAML that uses the structured list/map syntax.

	Strings, booleans, integers, octals, etc. are all preserved (instead of converted to strings).

	Each parameter must be on its own line, so you can’t chain together mode: 0755, owner: root, user: root to save space.

	YAML syntax highlighting works slightly better for this format than key=value, since it highlights each key and displays values as constants, strings, etc.

In addition, some situations will raise syntax errors if you use the simple key=value format.

And finally, it saves space and is easier to read and know what the arguments to the module are.

Alphabetize the module’s parameters

The parameters must be in alphabetic order.

GOOD

- name: My task
 bigip_module:
 alpha: "foo"
 beta: "bar"
 gamma: "baz"

BAD

- name: My task
 bigip_module:
 alpha: "foo"
 gamma: "baz"
 beta: "bar"

This provides consistency between module usage and a way to see at a glance if a module has the correct parameters.

Use double quotes for strings

Ansible supports a simple parameter format. If a value is a string, represent it as a string by using double quotes.

GOOD

- name: My task
 bigip_module:
 alpha: "foo"
 beta: "bar"

BAD

- name: My task
 bigip_module:
 alpha: foo
 beta: bar

Do not use quotes for numbers

For numeric characters, do not use quotes. If the expected value is a number and you provide a number wrapped in quotes, some modules will raise ‘type’ errors.

GOOD

- name: My task
 bigip_module:
 alpha: 1
 beta: 100

BAD

- name: My task
 bigip_module:
 alpha: "1"
 beta: "100"

Begin YAML files with a triple-dash

A YAML file usually begins with three dashes. As such, you should have that as part of your own YAML files.

GOOD

- name: My task
 bigip_module:
 alpha: 1
 beta: 100

BAD

- name: My task
 bigip_module:
 alpha: "1"
 beta: "100"

Give each task a name

When your Playbooks encounter errors, the name of the task is always called out in the failure. If you do not provide a name, Ansible creates a name by using the module call itself.

Naming your tasks allows you to quickly reference where a failure occurred.

GOOD

- name: My task
 bigip_module:
 alpha: 1
 beta: 100

BAD

- bigip_module:
 alpha: "1"
 beta: "100"

Always include a DOCUMENTATION variable

Ansible requires the DOCUMENTATION variable; it serves as the source of the module documentation that appears on their website.

Good documentation is essential to others being able to use the module, so you must include it.

GOOD

DOCUMENTATION = '''

module: bigip_device_ntp
short_description: Manage NTP servers on a BIG-IP
description:
 - Manage NTP servers on a BIG-IP
version_added: "2.1"
options:
...
'''

BAD

Missing DOCUMENTATION variable

Always include an EXAMPLES variable

Useful and valid examples are crucial for people new to Ansible and for the module itself.

When providing examples, be mindful of what you provide. If you developed the module with a specific use case in mind, be sure to include that use case. It may be applicable to a large majority of users and may eliminate a significant portion of time that they would otherwise spend figuring out what is or is not needed.

GOOD

EXAMPLES = '''
- name: Set the banner for the SSHD service from a string
 bigip_device_sshd:
 banner: "enabled"
 banner_text: "banner text goes here"
 password: "admin"
 server: "bigip.localhost.localdomain"
 user: "admin"
 delegate_to: localhost
'''

BAD

Missing EXAMPLES variable

Always include a RETURN variable

The RETURN variable provides documentation essential to determining what, if any, information the module returns.

Other users will reference this documentation when they want to use the register keyword.

The RETURN field should include the parameters that your module has changed. If nothing has changed, then the module does not need to return any values.

GOOD

RETURN = '''
full_name:
 description: Full name of the user
 returned: changed
 type: string
 sample: "John Doe"
'''

BAD

Missing RETURN variable

According to bcoca, the correct way to set a RETURN variable when a module does not return any information is the following.

GOOD

RETURN = '''
only common fields returned
'''

Make the author field a list

Multiple people will probably maintain the module over time, so it is a good idea to make the author keyword in your module a list.

GOOD

author:
 - Tim Rupp (@caphrim007)

BAD

author: Tim Rupp (@caphrim007)

Use GitHub handle for the author name

Both Ansible and the F5 Ansible repository are on GitHub. Therefore, for maintenance reasons, F5 requires your GitHub handle. Additionally, your email address may change over time.

GOOD

author:
 - Tim Rupp (@caphrim007)

BAD

author:
 - Tim Rupp <caphrim007@gmail.com>

Use 2 spaces in DOCUMENTATION, EXAMPLES, and RETURN

Follow this simple spacing convention to ensure that everything is properly spaced.

GOOD

options:
 server:
 description:
 - BIG-IP host
 required: true
 user:
^^

BAD

options:
 server:
 description:
 - BIG-IP host
 required: true
 user:
^^^^

Use Ansible lookup plugins where appropriate

Ansible provides existing facilities that you can use to read in file contents to a module’s parameters.

If your module can accept a string or a file containing a string, then assume that users will be using the lookup plugins.

For example, SSL files are typically strings. SSH keys are also strings, even if they are in a file. Therefore, you would delegate the fetching of the string data to a lookup plugin.

There should be no need to use the python open facility to read in the file.

GOOD

some_module:
 string_param: "{{ lookup('file', '/path/to/file') }}"

BAD

some_module:
 param: "/path/to/file"

Always expand lists in the various documentation variables

When you list examples or documentation in any of the following variables:

	DOCUMENTATION

	RETURN

	EXAMPLES

Always expand lists of values if the key takes a list value.

GOOD

options:
 state:
 description:
 - The state of things
 choices:
 - present
 - absent

BAD

options:
 state:
 description:
 - The state of things
 choices: ['enabled', 'disabled']

Specify the BIG-IP version

In the DOCUMENTATION section notes, you should specify which version of BIG-IP the module requires.

GOOD

notes:
 - Requires BIG-IP version 12.0.0 or greater

BAD

Any version less than 12.0.0.

If your module requires functionality greater than 12.0.0 it is also acceptable to specify that in the DOCUMENTATION block.

Never raise a general exception

General exceptions are bad because they hide unknown errors from you, the developer. If a bug report comes in and an exception that you do not handle causes the exception, the issue will be exceedingly difficult to debug.

Instead, only catch the F5ModuleError exception that the f5-sdk provides. Specifically raise this module and handle those errors. If an unknown error occurs, a full traceback will allow you to debug the problem more easily.

GOOD

try:
 // do some things here that can cause an Exception
except bigsuds.OperationFailed as e:
 raise F5ModuleError('Error on setting profiles : %s' % e)

GOOD

if foo:
 // assume something successful happens here
else:
 raise F5ModuleError('Error on baz')

BAD

try:
 // do some things here that can cause an Exception
except bigsuds.OperationFailed as e:
 raise Exception('Error on setting profiles : %s' % e)

BAD

if foo:
 // assume something successful happens here
else:
 raise Exception('Error on baz')

Support check mode

Check mode allows Ansible to run your Playbooks in a dry-run sort of operation. This is handy when you want to run a set of tasks but are not sure what will happen when you do.

Because BIG-IPs are usually considered a sensitive device to handle, you should always implement a check mode.

http://www.jeffgeerling.com/blog/yaml-best-practices-ansible-playbooks-tasks

Do not use local_action in your EXAMPLES

Some people prefer local_action and some people prefer delegation. Delegation is more applicable to general-purpose Ansible, so you should get in the habit of using and understanding it.

Therefore, do not use local_action when defining examples. Instead, use delegate_to.

GOOD

- name: Reset the initial setup screen
 bigip_sys_db:
 user: "admin"
 password: "secret"
 server: "lb.mydomain.com"
 key: "setup.run"
 state: "reset"
 delegate_to: localhost

BAD

- name: Reset the initial setup screen
 local_action:
 module: "bigip_sys_db"
 user: "admin"
 password: "secret"
 server: "lb.mydomain.com"
 key: "setup.run"
 state: "reset"

Set default EXAMPLE parameters

For consistency, always use the following values for the given parameters, so you do not have to over-think the inclusion of your example:

	user: “admin”

	password: “secret”

	server: “lb.mydomain.com”

GOOD

- name: Reset the initial setup screen
 bigip_sys_db:
 user: "admin"
 password: "secret"
 server: "lb.mydomain.com"
 key: "setup.run"
 state: "reset"
 delegate_to: localhost

BAD

- name: Reset the initial setup screen
 bigip_sys_db:
 user: "joe_user"
 password: "admin"
 server: "bigip.host"
 key: "setup.run"
 state: "reset"
 delegate_to: localhost

Assign values before returning them

To enable easier debugging when something goes wrong, ensure that you assign values before you return those values.

GOOD

def exists(self):
 result = self.client.api.tm.gtm.pools.pool.exists(
 name=self.want.name,
 partition=self.want.partition
)
 return result

BAD

def exists(self):
 return self.client.api.tm.gtm.pools.pool.exists(
 name=self.want.name,
 partition=self.want.partition
)

In the bad example, when it comes time to debug the value of the variable, you must change the code to do an assignment operation anyway.

For example, if you use q to debug the value, you must implicitly assign the value of the API call before you do this.

...
result = self.client.api....
q.q(result)
...

When the code does not do an assignment, then you must change the code before you are able to debug the code.

Create a functional test for each code fix

When you fix an issue and it requires changes to code, you should create a new functional test YAML file in the module’s test/integration/PRODUCT/targets directory.

For example, consider Github Issue 59 [https://github.com/F5Networks/f5-ansible/issues/59], which is relevant to the bigip_virtual_server module.

The developer added new code to the module. To verify that someone tested the new code, the developer should add a new file to the module’s targets directory here:

	test/functional/bigip/bigip_virtual_server/tasks

The name of the file should be:

	issue-59.yaml

And inside the file, you should include any and all work to:

	Set up the test

	Perform the test

	Teardown the test

Any issues that you report on GitHub should follow the same pattern. However, the filenames of those modules should be:

	ansible-xxxxx.yaml

This way, they will not conflict with the numeric namespace in the f5-ansible repository.

Exclude code from unit test coverage

Ansible’s test runner makes use of pytest, so the acceptable way of excluding lines from code coverage is here:

	http://coverage.readthedocs.io/en/coverage-4.2/excluding.html

You should use this to include the various *_on_device and *_from_device methods in modules that make direct calls to the remote BIG-IPs.

Put exception message on a new line

This convention helps eliminate the total number of columns in use, but also increases readability when long lines tend to scroll off screen. Even with a 160 column limit for this project, long lines, and many lines, can begin to grow less compact.

GOOD

...
raise F5ModuleError(
 '"{0}" is not a supported filter. '
 'Supported key values are: {1}'.format(key, ', '.join(keys)))
)

BAD

...
raise F5ModuleError('"{0}" is not a supported filter. '
 'Supported key values are: {1}'.format(key, ', '.join(keys)))

Put list contents on a new line

Lists should also be on a new line. The ending bracket should be on a new line as well, aligned with the beginning of the variable name.

GOOD

...
mylist = [
 'foo', 'bar',
 'baz', 'biz'
]

BAD

...
mylist = ['foo', 'bar',
 'baz', 'biz']

Include the license header

Each module requires a license header that includes the GPL3 license.

Here is the common license header.

Copyright 2016 F5 Networks Inc.
#
This file is part of Ansible
#
Ansible is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Ansible is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Ansible. If not, see <http://www.gnu.org/licenses/>.

If the module under development is your original work, then you can include your name in the copyright above.

If you are only contributing to an existing module, then it is not necessary to include a copyright line at the top. Instead, accepting the F5 CLA is sufficient to get code merged into the F5 branch.

Include the ANSIBLE_METADATA variable

The ANSIBLE_METADATA variable should be first in your module. It specifies metadata for the module itself. It can always look the same.

Here is how it’s defined in code.

ANSIBLE_METADATA = {'status': ['preview'],
 'supported_by': 'community',
 'version': '1.0'}

The stubber creates this for you automatically.

Do not include required key for non-required parameters

This convention comes to us courtesy of Ansible module-authoring rules. This convention limits the amount of verbosity in module code. Additionally, conflict can occur if you do not follow this convention (who is right? docs or code?).

Ansible, by default, makes parameters not required. It is redundant to provide it again in your documentation.

GOOD

...
login:
 description:
 - Specifies, when checked C(enabled), that the system accepts SSH
 communications.
 choices:
 - enabled
 - disabled
...

BAD

...
login:
 description:
 - Specifies, when checked C(enabled), that the system accepts SSH
 communications.
 choices:
 - enabled
 - disabled
 required: False
...

Do not include default key for parameters without defaults

Another convention from Ansible, similar to the required: False convention, is applying the rule to the default value. Since default: None is already the value that Ansible uses (in code), it is redundant to provide it again in the docs.

GOOD

...
login:
 description:
 - Specifies, when checked C(enabled), that the system accepts SSH
 communications.
 choices:
 - enabled
 - disabled
...

BAD

...
login:
 description:
 - Specifies, when checked C(enabled), that the system accepts SSH
 communications.
 choices:
 - enabled
 - disabled
 default: None
...

Do not decompose to a *_device method if the using method is itself a *_device method

This convention is in place to limit the total amount of function decomposition that you will inevitably try to put into the code.

Some level of decomposition is good because it isolates the code that targets the device (called *_device methods) from the code that does not communicate with the device.

This method of isolation is how you extend modules when the API code diverges, or when the means of transporting information from and to the device changes.

You can take this decomposition too far, though. Refer to the examples below for an illustration of this. When you go to far, the correction is to merge the two methods.

GOOD

...
def import_to_device(self):
 self.client.api.tm.asm.file_transfer.uploads.upload_file(self.want.file)
 tasks = self.client.api.tm.asm.tasks
 result = tasks.import_policy_s.import_policy.create(
 name=self.want.name, filename=name
)
 return result
...

BAD

...
def upload_to_device(self):
 self.client.api.tm.asm.file_transfer.uploads.upload_file(self.want.file)

def import_to_device(self):
 self.upload_to_device()
 tasks = self.client.api.tm.asm.tasks
 result = tasks.import_policy_s.import_policy.create(
 name=self.want.name, filename=name
)
 return result
...

This convention remains valid when the code you are using is a single line. Therefore, if you use the upload_file line in many places in the code, it is still correct to merge the methods instead of having a different method for it.

The only time when it would be correct to decompose it is if the “other” methods were not *_device methods.

 Deprecating functionality

Deprecating functionality

Deprecating modules

F5 sometimes deprecates modules. Before the modules go away, you should have enough time to upgrade to a new version of Ansible.

New releases of Ansible happen approximately once per quarter.

With this in mind, the following process should allow you between three and six months to upgrade your Ansible installation to the new code.

If you miss this timeframe, you can upgrade incrementally (2.1 -> 2.2 -> 2.3) instead of upgrading directly to the latest version and, in the process, test that the incremental versions work with your playbooks.

Deprecation process

Here is a sample deprecation process:

	2.0 - version to deprecate

	2.1 - deprecated version

	2.2 - version with deprecated feature removed

During the second release, you MUST insert adequate warnings for the user to see. Ansible highlights warning messages so that they’re more visible than regular messages.

Raise deprecated warnings

To raise warnings about deprecated functionality, add the following method to your ModuleManager class.

def _announce_deprecations(self, result):
 warnings = result.pop('__warnings', [])
 for warning in warnings:
 self.client.module.deprecate(
 msg=warning['msg'],
 version=warning['version']
)

Additionally, you should call that method when you collect the changes to report to the user. For example:

changes = self.changes.to_return()
result.update(**changes)
result.update(dict(changed=changed))
self._announce_deprecations(result)
return result

And finally, you should populate the __warnings key of your changes attribute as needed.

For example, in the bigip_gtm_wide_ip module, the lb_method property uses this code when it sees you are using a deprecated option.

For example:

if self._values['__warnings'] is None:
 self._values['__warnings'] = []
self._values['__warnings'].append(
 [
 dict(
 msg='The provided lb_method is deprecated',
 version='2.4'
)
]
)

The changes attribute is typically updated during the call to _update_changed_options, during update, or _set_changed_options during create.

If your module needs to detect changes outside of those two general methods, you should do so inside of the should_update method.

Note

To do your own ad-hoc detection inside of should_update, you must overload the base classes’ method. If you do this, you should decide whether or not it is still necessary to call the base classes’ method during the call to your overloaded method.

With that in place, you will find yourself with warning messages raised by Ansible when you use the deprecated functionality.

Deprecating parameters

Below is an excerpt that shows how you might deprecate an option you no longer want to use. You may do this for a number of reasons, but in most cases it is because the original name does not make sense in the context you’re using it in.

For example, you might have named the original option rules, when the more appropriate name for the option would have been irules.

Note

Ansible allows for aliasing of options so that specifying one is equivalent to specifying another. This is not the situation that we are referring to here. It is still perfectly acceptable to use option aliases if you want to. These guidelines are for when you specifically want to remove options that are presumably already in use.

Here is a sample ArgumentSpec from the version where we made the mistake. Let’s assume we made this mistake in version 2.0.

class ArgumentSpec(object):
 def __init__(self):
 self.supports_check_mode = True
 self.argument_spec = dict(
 rules=dict(
 required=False,
 default=None
),
 name=dict(
 required=True,
 aliases=['wide_ip']
)
)
 self.f5_product_name = 'bigip'

Now, we wish to deprecate that option name. In version 2.1 of Ansible, we would do something like this:

class ArgumentSpec(object):
 def __init__(self):
 self.supports_check_mode = True
 self.argument_spec = dict(
 rules=dict(
 required=False,
 default=None
),
 irules=dict(
 required=False,
 default=None
),
 name=dict(
 required=True,
 aliases=['wide_ip']
)
)
 self.f5_product_name = 'bigip'

Additionally, we would include the warnings necessary to make the user aware that they are using deprecated functionality (the rules option).

Finally, during the release cycle of Ansible 2.2, we would want to change our spec to look like this:

class ArgumentSpec(object):
 def __init__(self):
 self.supports_check_mode = True
 self.argument_spec = dict(
 irules=dict(
 required=False,
 default=None
),
 name=dict(
 required=True,
 aliases=['wide_ip']
)
)
 self.f5_product_name = 'bigip'

This removes the deprecated functionality.

Also, do not forget to remove any mention of the deprecation inside the actual module code. We don’t want the legacy code to stick around. This helps keep technical debt at bay.

Deprecating choices

When functionality is deprecated, it may be necessary to raise warnings to the user.

Normally, you do deprecations in the ArgumentSpec. For example, when you use removed_in_version:

type=dict(
 removed_in_version='2.4'
)

This is only relevant when the parameter itself is deprecated.

Sometimes the parameter is a list of choices and the choices themselves are deprecated.

For example, consider the following parameter:

type=dict(
 choices=['foo_1', 'bar_2', 'baz_3']
)

You may need to deprecate the values themselves in favor of other values.

type=dict(
 choices=['foo-1', 'bar-2', 'baz-3']
)

This may seem like a simple thing that you could add code to fix, but doing so would increase technical debt.

Mapping old values to new values is a candidate for deprecation.

Custom deprecations

To announce deprecations, you can use the removed_in_version field mentioned previously, but your module can also raise more customized deprecations.

To do this, begin by amending the __init__ method of your Parameters class to define a __warnings variable.

class Parameters(AnsibleF5Parameters):
 def __init__(self, params=None):
 super(Parameters, self).__init__(params)
 self._values['__warnings'] = []

Next, add a new method to the ModuleManager, or, class-specific manager (such as those used when forking logic, like bigip_gtm_pool).

The definition of this method is:

def _announce_deprecations(self):
 warnings = []
 if self.want:
 warnings += self.want._values.get('__warnings', [])
 if self.have:
 warnings += self.have._values.get('__warnings', [])
 for warning in warnings:
 self.client.module.deprecate(
 msg=warning['msg'],
 version=warning['version']
)

The third and final step is to actually make use of the deprecation code that you set up previously. To do that, you want to append to the aforementioned __warnings field.

For example:

if lb_method in deprecated.keys():
 if self._values['__warnings'] is None:
 self._values['__warnings'] = []
 self._values['__warnings'].append(
 [
 dict(
 msg='The provided lb_method is deprecated',
 version='2.4'
)
]
)

 Development environment

Development environment

This document covers development tools that make developing F5 Ansible modules significantly easier.

Getting Started

This document assumes that you are working on a *nix, or *nix-like environment.

The workstation in the examples is a Mac running Sierra (10.12.6). Some of the steps will not be relevant to other environments. When that happens, it will be noted.

Amongst the topics of this document are the following:

	Choosing an IDE

	REST communication

	Virtualization tools

	Docker

	Getting the source

	sudo ifconfig lo0 -alias 1.2.3.4

This document ultimately serves as a gateway to all the other development-related documents on this site. You will be unable to follow the other development documents without having the setup outlined here.

Choosing an IDE

F5 uses the PyCharm IDE to write the Ansible modules.

	https://www.jetbrains.com/pycharm/download/

The developers use the Professional edition, but there is also a Community edition available.

You can use other editors as you see fit, but this document uses the above editor.

A vanilla installation of PyCharm is sufficient.

With an editor in place, it is time for you to get a tool that will facilitate your ability to speak with the F5 device’s REST API.

REST communication

You can use a variety of tools to introspect a REST API, but Postman is the one that we used for the F5 Ansible modules.

You can use this tool in two ways:

	As a way to communicate with F5 devices during development

	As a way for contributors to provide API workflows to the Ansible module developers

You can download Postman from the following URL.

	https://www.getpostman.com/

It comes in two parts. First, there is the postman tool itself which is a GUI tool that you can use to interact with remote REST APIs. Second, there is a CLI tool called newman which you can use to run batches of API calls. These batches are usually in the form of what Postman refers to as “Collections”.

We do not use newman.

Virtualization tools

For the primary needs of development and test we use VE (Virtual Edition) instances of F5 product to do our work.

To run these VE products, you have two options:

	OpenStack

	Virtualbox/VMWare/some local solution

You options are limited to the platform that you choose to do development on. Mac and hardware-based Linux installations have the largest breadth of options. We’ll explain why this is, shortly.

As mentioned, all development platforms can support OpenStack. This is because our
usage of OpenStack’s client libraries is constrained to the Docker dev/test
containers. Once you are in the container, you should have all the tools necessary
to perform your work.

You can use the OpenStack tools by using the “plumbing” commands;
openstack stack create, openstack server create, etc. Or, you can use the porcelain commands; f5ansible harness-create, f5ansible harness-delete,
etc. F5 recommends that you use the porcelain commands.

I also mentioned that, for certain platforms, you have access to local dev tools.
I specifically mentioned Mac and hardware Linux because there is a limitation in
Windows in which you can only run one hypervisor.

Docker for Windows requires that HyperV be turned on in Windows. However, doing this
prevents you from using Virtualbox. You can, alternatively, use HyperV itself in
Vagrant, but at this time this is not a method that works by the development team. YMMV.

If you are using the aforementioned Mac or hardware Linux, we provide both public
and private (internal) copies of Vagrantfiles for you to use.

For public Vagrantfiles, refer to the following URL

	https://github.com/f5devcentral/f5-vagrant-files

For private Vagrantfiles, refer to your F5 colleague.

Docker

Since the F5 Ansible modules are written in Python, it’s required that we have
the different installations of Python available to us. To do this, we provide
a docker-compose.yaml file that has all the necessary Python environments.

docker-compose should come with docker by default. If not, you can install it
by following the instructions here.

	https://docs.docker.com/compose/install/

To make use of this requires the following two steps.

First, you will need to build the initial containers. You do not need to rebuild containers frequently; only if we change the base Dockerfile.

To build the initial container, you will want to know what the existing Python
environments that we support are.

You can get this information with the following command

	docker-compose -f devtools/docker-compose.yaml config –services

For example:

(ansible-dev) SEA-ML-RUPP1:f5-ansible trupp$ docker-compose -f devtools/docker-compose.yaml config --services
docker-compose -f devtools/docker-compose.yaml config --services
py2.7.10
py3.5.4
py3.6.2
(ansible-dev) SEA-ML-RUPP1:f5-ansible trupp$

Once you have chosen the environment that you want, you can proceed to build.
Suppose you were interested in Python 3.6.2. You could build that development
environment with the following command.

	docker-compose -f devtools/docker-compose.yaml build py3.6.2

For example:

(ansible-dev) SEA-ML-RUPP1:f5-ansible trupp$ docker-compose -f devtools/docker-compose.yaml build --no-cache py3.6.2
docker-compose -f devtools/docker-compose.yaml build py3.6.2
Building py3.6.2
Step 1/11 : FROM python:2.7
 ---> 416af6c21fa5
...
Removing intermediate container 32dce77d8634
Step 11/11 : CMD ['/bin/bash']
 ---> Running in dc5557ae0583
 ---> f6684c7280f9
Removing intermediate container dc5557ae0583

Successfully built f6684c7280f9
Successfully tagged python:3.6
(ansible-dev) SEA-ML-RUPP1:f5-ansible trupp$

Building will take a minute or two the first time that you do it. After your
initial build, you will no longer need to re-build the container unless we
specifically change the Dockerfile or docker-compose.yaml file.

Note

I am deliberately using the –no-cache argument. This will cause the
build to take slightly longer because it will not be re-using existing Docker
layers. The upside, is that you do not need to be concerned with any old artifacts
from former layers sticking around to cause problems with the build.

Finally, to make use of the new container, you can use the run argument to
docker-compose, instead of the build argument.

	docker-compose -f devtools/docker-compose.yaml run py3.6.2

For example:

(ansible-dev) SEA-ML-RUPP1:f5-ansible trupp$ docker-compose -f devtools/docker-compose.yaml run py3.6.2
docker-compose -f devtools/docker-compose.yaml run py3.6.2
root@cd71daf91439:/here#

You will immediately be dropped into the container environment. From within this
container, you can run all the Ansible/py.test/etc commands that you need to do
development of the f5-ansible source code.

Also, it should be noted that you can continue to use external development tools
(like IDEs) and all the changes you make in them will be immediately reflected
in your container environment. This is made possible by a bound volume in your
container that references the f5-ansible source tree.

Note

Local development usually happens with local F5 product running in Virtualbox
VMs. The tools for doing this are not packaged in this container, nor are the
Vagrantfiles for bringing up those devices. If you are external to F5, we
provide means to make your own at the following repositories

	https://github.com/f5devcentral/f5-packer-templates

	https://github.com/f5devcentral/f5-vagrant-files

Internal F5 engineers can contact the maintainers of this code-base for
pointers on internal resources that are available.

Local Ansible source copy

It is required that you have a locally available source copy of the Ansible upstream
codebase. To do this, you must do the following

	In Github, create a fork of the Ansible codebase. You can find this codebase here https://github.com/ansible/ansible. You can use the Fork button in the top right of
the screen to fork it. Please fork it to your __personal__ Github
account.

	Clone your fork to the local/ directory in this (f5-ansible) source tree. You can do this like so. git clone git@github.com:USERNAME/ansible.git local/ansible.
Replace USERNAME with your Github username.

	Add a git remote pointing to the “upstream” ansible source tree. You can do this
from __within__ the local/ansible/ directory. From there, issue this command,
git remote add upstream https://github.com/ansible/ansible

With this setup in place, you now have the ability to do the following

	Copy f5-ansible source code “upstream” so that you can merge it into Ansible

	Re-create the integration test playbook that Ansible uses for bigip_* modules.

	Run all upstream PR tests that you need to run when upstreaming a new module to
Ansible core.

We will add more things that you “can do” as they become appropriate.

Merging from other contributors

At times it may be necessary to track other contributors source trees and test
their fixes.

The times that this is particularly import are,

	When the contributor has changed something in module_utils/ related to F5
(for example f5_utils.py or in f5networks/).

	When the contributor has changed something in a plugin that is related to F5
(for example an action or terminal plugin).

The reason that the procedure below is important is because it allows you to test
their changes without needing to care about exposing any internal services (such
as testing harnesses) to the outside world. Since that is strictly forbidden, it’s
easier to just do the following.

	With the above local checkout of the Ansible source code in place, start by
changing into that source code directory and adding a git remote for the
repo that you want to test stuff from.

cd local/ansible
git remote add CONTRIBUTOR https://github.com/CONTRIBUTOR/ansible.git`

	Next, fetch the content of their repository so that you can use it locally

git fetch CONTRIBUTOR

	Next, ask the contributor which branch they have been doing their development
on. Suppose its name was feature.foo-bar-baz. With this information in mind,
you would next checkout the given branch and supply the –track argument to
git. This will create a local copy of the branch just for you, and will
additionally configure git so that a git pull will pull directly from the
CONTRIBUTOR’s repo and specific branch you are using.

git checkout --track CONTRIBUTOR/feature.foo-bar-baz

	You are have the CONTRIBUTOR source at the ready. It is recommended that you
install it in a separate virtualenv. We can make use of the mkvirtualenv
command for this. Note that I am referencing the requirements.test.txt file
from the f5-ansible repository.

mkvirtualenv ansible-CONTRIBUTOR
pip install -r ../../requirements.test.txt

	With your virtualenv created, install the CONTRIBUTORS branch that you checked
out earlier. Replace F5_ANSIBLE_PATH with the local path to your f5-ansible
fork.

pip install file:///F5_ANSIBLE_PATH/local/ansible

	You are now fully ready to test anything that the CONTRIBUTOR wants you to
test.

f5ansible command

This repository provides a convenience command for you to use both inside and outside
the dev/test containers in this repo.

The command is called f5ansible and it is in the devtools/bin directory
of this repository.

F5 recommends that you add the bash completions as well as the path to this
command to you local $PATH variable. YOu can do this by adding the following
to your ~/.bashrc file,

eval "$(_F5ANSIBLE_COMPLETE=source /PATH/TO/f5-ansible/devtools/bin/f5ansible)"
export PATH=$PATH:/PATH/TO/f5-ansible/devtools/bin/

Be sure to change the /PATH/TO value above to reflect the settings that you have
on your system.

With this configuration in place, you can restart your terminal. Once you have, you
will find that you now have an f5ansible command available in your $PATH (which
means that you can use the TAB key to auto-complete it).

Additionally, you can tab complete the f5ansbile command, and then continue to
press TAB twice or more to get the list of sub-commands that the f5ansible command
provides.

For example:

SEA-ML-00028116:f5-ansible trupp$ f5ansible
container-run module-stub module-upstream
SEA-ML-00028116:f5-ansible trupp$ f5ansible

Questions

Below are a variety of development environment related questions that I’ve been
asked and answers to each

	What is the smallest incarnation of an F5 that I can use in my lab to
test playbooks?

I use vagrant boxes for this if I’m doing local testing. For vagrant boxes you
need to build your own, however we provide packerfiles to do that

https://github.com/f5devcentral/f5-packer-templates

and the associated vagrant files

https://github.com/f5devcentral/f5-vagrant-files

Otherwise, I use VE’s on OpenStack. The base VE image should be sufficient to
run on OpenStack. I use the OVA’s that we distribute because that’s what works
with our OpenStack distro.

	Is there a way to get one of those and/or licensing for virtual devices?

You can get any pre-built images from downloads.f5.com (free registration) but
you will indeed need a license to make much use of it. You can acquire a license
through sales or, in special cases, through a business partnership with F5.

 Design patterns

Design patterns

These patterns should:

	Make your time spent developing new modules shorter

	Allow you to not need to decide “what to do”

	Allow for easier unit testing

	Allow for customizing the modules to meet edge cases easier

	Allow for customizing the modules to meet feature requests easier

	Allow for customizing the modules to address bug reports easier

If these patterns conflict with the above goals, the patterns should be re-evaluated and all modules changed to support the new patterns.

CRUDable

	bigip_static_route

Only Updatable

	bigip_snmp

Executable

	bigip_command

CRUDable Reference

	iworkflow_tenant_connector

List item as member

	bigip_remote_syslog

Class variables

The following class variables are common attributes that each Parameters class needs to define.

updatables

Specifies a list of Parameters properties that the module considers updatable. Use this when doing should_update() comparisons and setting properties in self.changes.

api_attributes

Specifies a list Parameters properties to provide to the api_params() method when generating valid sets of attributes for resources in the REST API.

You will likely need to write adapter methods that call the properties used internally by the module. For example:

def minSupportedBIGIPVersion(self):
 return self.min_bigip_version

Use this method instead of the map method when the value in api_params() is not a single property but a set of properties that you need to combine.

The api_params method uses this to generate a valid set of attributes to provide to the REST API. Typically this dictionary does NOT provide the name and partition parameters.

You should specify these values specifically in the (create|update|delete)_on_device methods.

returnables

Specifies a list of Parameters properties for the to_return() method to iterate over when supplying “changed” options back to the user.

api_map

Sometimes you cannot write the API parameters as methods. For example, the bigip_device_dns APIs parameters include:

dns.proxy.__iter__

This attribute is mapped to forwarders in the Ansible module.

The pattern is to use methods decorated as properties in Python and then to call those methods when setting values and getting values.

For example, you would map the dns.proxy.__iter__ API attribute to the _values key “forwarders”. Normally you would set the API attributes directly in the dictionary. You would get those API-specific keys when you return the values to compare.

This makes the getters for the Module options look messy though.

You could make the API attributes have their own @property decorators, but this won’t work in the “dns” case mentioned above.

NEED
a pattern for a single Ansible Option Parameter that returns 2 API attributes.
For example in the bigip_virtual_server module there is an option called
enabled vlans. This, however, actually sets two (possibly 3) values in the API:

	vlans (list)

	vlansDisabled (boolean True)

	vlansEnabled (boolean True)

what is a pattern that, that supports that?

The pattern is that the api_attributes is an arbitrary list of attributes that
you want to send to the API.

The api_params() method uses this list to iterate over the

param_api_map does not work for situations where the Ansible->API relationship
is 1->n (bigip_virtual_server with enabled_vlans) param_api_map only works
for 1->1

Requirements
- Easy attribute comparison in Ansible parameters format with BIG-IP API values
- Ability to consume API attributes that you cannot write as Python functions (dns.proxy.__iter__ for example)

params_spec=dict(
 cache='dns.cache',
 forwarders='dns.proxy.__iter__',
 name_servers='nameServers',
 search='search',
 ip_version='include'
)

 updatables = [
 'cache', 'forwarders', 'name_servers', 'search', 'ip_version'
]
)

Common classes

Nearly every module (see exceptions) should have the following classes. These classes support the stated design patterns.

	Parameters

	Changes

	Difference

	ModuleManager

	ArgumentSpec

Exceptions to common classes

Exceptions to the above rules will happen when:

	The API that a particular module addresses changes between versions of the software.

	The resources or collections that the module is manipulating become too numerous.

Good examples of this include:

	bigip_ssl_certificate

	bigip_gtm_wide_ip

Defaulting to None

You should never specify default values in your ArgumentSpec. For example, the following is incorrect:

type=dict(
 required=False,
 default='foo'
),

But, shouldn’t you use the actual defaults?

Answer: No

You want to support cases where the user does not specify a value for a particular option. If that happens, then you should not step on that parameter if it is pre-configured.

If a user had a setting that they want to keep and you specified a default value, then the first time they forgot to specify that value, you would end up replacing that value with your default.

Ansible defaults required to False and default to None. Therefore, there is no need to specify these default values.

What is the layer of @property decorators all about?

The @property decorators represent an adapter pattern. Inside the ModuleManager, when you need to compare the data, these properties return that data in a known format.

The API’s resource attributes differ in structure and name from the options that a user can provide to a module.

For example, an API resource may have an attribute called minSupportedBIGIPVersion. However, the user-facing portion of the module may refer to this attribute as min_bigip_version.

You should do this because:

	It provides an abstraction of the API so the name of the thing you’re modifying is not closely tied to the implementation of the API.

	Many times the API attribute names are vague, and this abstraction makes them more clear.

	The Resource Attributes use camelCase variable naming, while some of Python and nearly all of Ansible use snake_case variable naming.

For clarity’s sake, all of the attributes are typically compared by the option name in Ansible and not the Resource attribute name.

This allows you to look at the names of variables and match them to the names of the options in the Ansible module.

While the names of properties usually mirror the names of the module options available to the user, the values of those properties do not.

Values of the properties reflect the values that the API resource accepts. This is because, ultimately, the values you need to deal with are the values that will update the API.

Therefore, when you receive options from the module, you transform them into the values that would appropriate for the API. When you receive values from the API, you might order them or cast some of their values to specific types so that comparisons can occur, but otherwise you don’t really touch them.

	The property name reflects module option.

	The property getter reflects the appropriate Resource attribute value.

Why are they not all setters?

Sometimes you do not know ahead of time what the value of that property should be. Often you must set two or more options before you can know the value of another option.

Consider a module that accepts an IP address option and a gateway mask option, but needs to return a CIDR representation of those two values. Without getting both values, you cannot produce the one value.

That is why you calculate the necessary value at time of getattr, and not at the time of setattr.

Use the module_utils test suite to verify AnsibleF5Parameters classes

This is important in case there is a pattern you miss for adapting API attributes and module params.

This test suite is here:

	test/misc/test_module_utils.py

Never import *

Most often, you do this because you are using one of the following variables:

	BOOLEANS

	BOOLEANS_TRUE

	BOOLEANS_FALSE

It is, however, an anti-pattern to import from * and the Ansible unit tests will catch it. Instead, specifically include each thing that you want to use.

The Changes class

In many cases, the values that you process from the user will match the values that you send to BIG-IP.

For example, consider the following parameters:

- name: This is an example
 bigip_device_sshd:
 banner: "enabled"
 banner_text: "banner text goes here"
 port: "1234"
 password: "secret"
 server: "lb.mydomain.com"
 user: "admin"

The module code that implements this is a collection of different adapters. Collectively, they allow the module to convert the information the user provides into a format that can the BIG-IP can receive and send.

By using this class, you can complete the cycle:

User (params) -> Module -> REST -> Module -> User (changed params)

Most of the adapters adapt data to meet the format expect by the REST API. Use the Changes class to adapt the data to meet the format expected by the end user.

If there is a need to change the value to something that is more “human” so that the user can understand it, that job is undertaken by the Changes module.

An example is the bigip_device_connectivity module, where it acts as a way to translate BIG-IP’s representation of “none” (any6) to the human word “none”.

Examples of modules that use the Changes class are:

	bigip_gtm_datacenter

	bigip_device_connectivity

	bigip_device_group

The Difference class

When you compare values to detect changes, sometimes the default comparison method will not be appropriate. The default comparison method essentially just does a simple comparison.

The source of this method illustrates its simplicity:

attr1 = getattr(self.want, key)
attr2 = getattr(self.have, key)
if attr1 != attr2:
 changed[key] = attr1

As you can see, it is quite simple and does not take into consideration anything more complicated than simply comparing the values.

This difference is not conducive to more complicated data structures or types of data.

int(5) == '5'

The above fails to satisfy this simple (albeit erroneous due to established patterns) difference.

Note

This is logically incorrect because the Adapter pattern you should use for the Parameters class mandates that @property values return a specific data type (in the above case int) and should never be non-deterministic.

To check for differences in more complicated data structures, use of the Difference class.

The definition of the Difference class is:

class Difference(object):
 def __init__(self, want, have=None):
 self.want = want
 self.have = have

 def compare(self, param):
 try:
 result = getattr(self, param)
 return result
 except AttributeError:
 return self.__default(param)

 def __default(self, param):
 attr1 = getattr(self.want, param)
 try:
 attr2 = getattr(self.have, param)
 if attr1 != attr2:
 return attr1
 except AttributeError:
 return attr1

By default, it uses the simple comparison to diff the parameters provided, and discovered, by the module.

To make use of it, you must do the following.

First, define this class in your module.

Second, add @property methods for each of the values you want to compare.

Remember, the properties of the Parameter classes are the names exposed to the module user and not the names of REST API parameters themselves (unless it perfectly matches), because the REST API camel-cases all parameter names.

To provide custom diffing for the members module parameter, you can add this as a @property to the Difference class:

@property
def members(self):
 if self.want.members is None:
 return None
 if set(self.want.members) == set(self.have.members):
 return None
 if self.want.append is False:
 return self.want.members

 # Checking to see if the supplied list is a subset of the current
 # list is only relevant if user provides the `append` parameter
 new_members = set(self.want.members)
 current_members = set(self.have.members)
 if new_members.issubset(current_members):
 return None
 result = list(set(self.have.members + self.want.members))
 return result

These @property methods must be named after the Parameter you want to compare.

Additionally, the return value of these @property definitions is one of two values.

	Python None if there is no difference.

	The value of the difference if there is one. Later, the module reports this value as what changed when the module ran.

Finally, to make use of this new difference class, you must change the following method in the ModuleManager code:

	_update_changed_options

The new value of this method must include the usage of the Difference class as a new object. For example:

def _update_changed_options(self):
 diff = Difference(self.want, self.have)
 updatables = Parameters.updatables
 changed = dict()
 for k in updatables:
 change = diff.compare(k)
 if change is None:
 continue
 else:
 changed[k] = change
 if changed:
 self.changes = Parameters(changed)
 return True
 return False

API Map Adapter

This adapter pattern is useful for converting data values from user inputs to REST outputs.

The API Map Adapter pattern adapts a known REST attribute to a predefined Parameters method. The return value of this method is a correct payload for the REST attribute.

This pattern is frequently used so you can translate the input provided by the user into a format that the REST API can consume.

Here is an example of this kind of adapter.

...

api_map = {
 ...

 'bannerText': 'banner_text',

 ...
}

1-to-1 Adapter

YAML represents the banner parameter as a simple key with a simple value. The actual REST payload contains an attribute called banner and it takes an actual value called enabled.

In code, the ArgumentSpec class represents this.

This is the most simple form of a parameter definition by the F5 Ansible modules because it is nearly a 1 to 1 translation of Ansible to F5.

The following is an example of this kind of adapter.

...
 banner_text=dict(
 required=False,
 default=None,
 choices=['enabled', 'disabled']
),
...

 Parameter classes

Parameter classes

The modules use a Parameter class that acts as a rudimentary two-way adapter.

This class adapts data in the following ways:

	Ansible module parameters submitted by the user into REST API attributes.

	REST API attributes into Ansible module parameters for comparison and internal data structures.

This method works for most modules. However, there are instances where:

	The api_map maps resource attribute names to Ansible module parameter names that are similarly named but have very different values.

	A name conflict results in not knowing if you are dealing with the API’s values or the module’s values. You can check for the existence of the kind key and compare it to what you know to be the _real_ kind key for the resource.

	You need to include resource attributes in the updatables key because there is no other way to get them into the api_params method. The error is doing this even if that updatables addition is not an Ansible module parameter. The updatables list should be a list of only Ansible module parameter names.

	It can be difficult to do Difference engine comparisons if the API values are not in the updatables array because only those values are diff’d.

In an attempt to settle the difficulty of using the “big adapter”, F5 is testing a different pattern, where different classes (inheriting from a Parameters base class) are used for the Ansible module parameters (ModuleParameters) and the REST API parameters (ApiParameters).

Additionally, the base Parameters class will be changing its base definition to remove the __getattr__ definition that it has. This definition has introduced an added layer of difficulty when debugging problems because it implicitly swallows errors that invalid “dot” attribute access may raise. For example, self.want.baz where exceptions raised in baz may be swallowed. The only indication that this has happened is that a post q.q call will never happen.

For example:

...
q.q("started here")
self.want.baz # <-- raises exception internally
q.q("ended here")

When this situation occurs, the second q.q call will never happen. There will be no entry in the q log file location, but success of the module may actually happen.

The base Parameters class will also have its signature changed from:

def __init__(self, params=None):

To a version that allows for a free-form of parameters and selectively chooses “special” parameters to do key things with. The new signature is:

def __init__(self, *args, **kwargs):

This allows you to expand on what the “valid” kwargs to the init method are. To begin with, there are two args that the base Parameters classes will know about. They are:

	params

	client

The former is no different than the way things work today; the exception being that you will need to be explicit when supplying params to a Parameters derived class because params is no longer just assumed to be the default. Change your code:

legacy version
self.want = Parameters(self.client.module.params)

To:

current version
self.want = ModuleParameters(params=self.client.module.params)

The later client parameter is new to the Parameters base class. In existing code bases it is possible to add this functionality to your concrete Parameter classes, but it is not obvious how, nor well-documented.

For example, you would need to do this:

self.want = Parameters()
self.want.client = self.client
self.want.update(self.client.module.params)

You can change this to the following:

self.want = ModuleParameters(
 client=self.client,
 params=self.client.module.params
)

Any concrete params class that inherits from the Parameters base class will be able to use the method shown above.

The client= feature supports:

	BIG-IQ

	Unit tests (for BIG-IQ)

The BIG-IQ code-base sometimes requires the concrete Parameters classes themselves to be responsible for reading data from the remote device.

This is because, in many circumstances, you cannot know all of the resources and their attributes without querying for data using a resource attribute itself as input.

 Playbook metadata

Playbook metadata

Our integration tests are made possible through the use of Ansible playbooks.
These playbooks can be found here:

	test/integration/

Each playbook has a vars section that includes a __metadata__ key. This key is used by other tools and processes in this
repository to provide the developers with information relevant to the module.

Different versions of metadata are valid in different Ansible versions.

Versions

The version history below outlines the changes that have been made to the
metadata over time. The current version is at the top of this list. The original
version is at the bottom.

1.1

Release date: March 2018
Ansible version 2.5

New keys:

	tested_versions

	supported_harnesses

	coding_standards

	Original tested_platforms values have been moved to tested_versions

Example

__metadata__:
 version: 1.1
 tested_versions:
 - 11.5.4-hf1
 - 11.6.0
 - 12.0.0
 - 12.1.0
 - 12.1.0-hf1
 - 12.1.0-hf2
 - 12.1.1
 - 12.1.1-hf1
 - 12.1.1-hf2
 - 12.1.2
 - 12.1.2-hf1
 - 13.0.0
 - 13.0.0-hf1
 tested_platforms:
 - ve
 - viprion 4200
 supported_harnesses:
 - TwoArmed-bigip-12.1.1
 coding_standards: v3
 callgraph_exclude:
 - pycallgraph.*

 # Ansible related
 - ansible.module_utils.basic.AnsibleModule.*
 - ansible.module_utils.basic.*
 - ansible.module_utils.parsing.*
 - ansible.module_utils._text.*
 - ansible.module_utils.six.*

1.0 (unused)

Release date: September 2017
Ansible version 2.4

Initial version of the playbook metadata keys include:

	version

	tested_platforms

	callgraph_exclude

	Valid values for tested_platforms are N/A

Example

__metadata__:
 version: 1.0
 tested_platforms:
 - NA
 callgraph_exclude:
 - pycallgraph.*

 # Ansible related
 - ansible.module_utils.basic.AnsibleModule.*
 - ansible.module_utils.basic.*
 - ansible.module_utils.parsing.*
 - ansible.module_utils._text.*
 - ansible.module_utils.six.*

 Securing sensitive information

Securing sensitive information

The f5-ansible repository contains sensitive information and needs to be secure.

This sensitive information includes, but is not limited to:

	Product keys

	Internal URLs

	System configurations not relevant to the general public

To prevent exposing this information in plain text, F5 uses a series of GPG encrypted files.

Tools used to secure information

Many tools help prevent the storage of secret information in an otherwise public place. These include, but are not limited to:

	blackbox (from StackExchange)

	git-crypt

	git-secret

	Keyringer

	Pass

	Transcrypt

The tool that F5 uses is blackbox, primarily because:

	It works in Docker containers

	It has many stars and forks

	It is just shell wrappers around GPG

	It automatically ignores registered files

	StackExchange

Create a key

Start by creating a set of GPG keys to use for encryption and decryption of secrets.

Use the gpg command to create a key. For example:

gpg --gen-key

This command will ask for your name and address.

For example:

root@9f1cc7b78557:~# gpg --gen-key
gpg (GnuPG) 2.1.20; Copyright (C) 2017 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

GnuPG needs to construct a user ID to identify your key.

Real name: Alice User
Email address: a.user@organization.com
You selected this USER-ID:
 "Alice User <a.user@organization.com>"

Change (N)ame, (E)mail, or (O)kay/(Q)uit?

To proceed, answer O (the letter, not the number) and the command will ask you for a passphrase in a separate window.

6──^@
< Please enter the passphrase to │
< protect your new key │
< │
< Passphrase: __ │
< │
< <OK> <Cancel> │
^@───5

If you do nothing else correctly for this procedure, you must absolutely get this step correct.

Your passphrase decrypts and encrypts sensitive data in the f5-ansible repository. If your passphrase is compromised, then the information contained within the gpg-encrypted files is compromised.

Now, because you include these gpg files in git, the compromised versions are accessible even if you rotate the keys.

It is your job to choose a passphrase (not just pass**word**) that is sufficiently long to hedge the risk of having it discovered computationally.

Create a passphrase

A practice referred to as Diceware allows you to choose a passphrase that is sufficiently difficult to computationally discover.

You can read about Diceware in detail here:

	http://world.std.com/~reinhold/diceware.html

The idea is that you toss a dice and record the number. The numbers correspond to words in a list of words.

Your passphrase should be at least six words and a symbol, in any order.

If you do not have a pair of dice to roll, the next best option is to use an online service that rolls digitally or generates word lists on the fly. For example:

	https://www.rempe.us/diceware/

Complete your key

After you choose a passphrase, enter it in the aforementioned box. Press Enter and re-enter the passphrase.

6──^@
< Please re-enter this passphrase │
< │
< Passphrase: __ │
< │
< <OK> <Cancel> │
^@───5

Pressing Enter after typing the passphrase a second time will generate the necessary public and private keys for you, as well as add them to your GPG keychain locally on disk.

For example:

gpg: key 5FE19AB05871BDA3 marked as ultimately trusted
gpg: revocation certificate stored as '/gpg//openpgp-revocs.d/6CA2078812CBB7F6112BDADF5FE19AB05871BDA3.rev'
public and secret key created and signed.

pub rsa2048 2017-09-26 [SC] [expires: 2019-09-26]
 6CA2078812CBB7F6112BDADF5FE19AB05871BDA3
 6CA2078812CBB7F6112BDADF5FE19AB05871BDA3
uid Alice User <a.user@organization.com>
sub rsa2048 2017-09-26 [E] [expires: 2019-09-26]

root@9f1cc7b78557:~#

You can verify that your keys exist in your keyring with the following command:

gpg --list-keys

If you were successful, you will see your key in the list.

pub 2048R/5871BDA3 2017-09-26 [expires: 2019-09-26]
uid Alice User <a.user@organization.com>
sub 2048R/0B29438A 2017-09-26 [expires: 2019-09-26]

Note

By default, your key has an expiration date two years in the future. You must renew your key before it expires. Instructions can be found here [https://www.g-loaded.eu/2010/11/01/change-expiration-date-gpg-key/].

Include your key in the test environment

After you generate your keys, you can include them in the Docker development containers that come with f5-ansible.

In the devtools/docker-compose.yaml file in this repository, a configuration section instructs docker-compose to create a path in your container at runtime. This path maps the .gnupg directory in your home directory to the /gpg directory in the container.

- type: bind
 source: ~/.gnupg
 target: /gpg

To change the local file system location where the GPG keys are, change it in this configuration.

Encrypt files

Determining what you should and should not encrypt is the first step in this process.

Generally speaking, F5 encrypts anything that is “F5-specific”. Some examples are:

	Websites that are internal to F5

	License keys used for integration tests

	System configuration that is irrelevant to the public (insofar as it would not help them in any way to have)

For all of those, and more, instances, encrypt.

Adding new files to the encryption process starts with the following command:

blackbox_register_new_file path/to/file.ext

Note

The suite of blackbox_ commands is your interface to the process of encryption and decryption. The commands you are most likely to use are:

	blackbox_register_new_file

	blackbox_decrypt_all_files

	blackbox_deregister_file

	blackbox_edit_start

	blackbox_edit_end

	blackbox_list_files

 Using SSH to configure the modules

Using SSH to configure the modules

Users have requested the ability to use SSH to configure the F5 Modules for Ansible.

To get the same results as the existing Parameter classes, you can try to use local curl commands to parse the REST output.

Before you use this method, note the following limitations.

Limited role usage

Only two roles can use the “Advanced shell,” also known as “bash.”

	Administrator

	Resource Administrator

If you have either role, you can use curl through the tmsh run util bash command.

All other roles are limited to the tmsh shell only. In tmsh, you do not natively have a curl command you can use.

Appliance mode

Appliance mode’s restrictions are outlined in this support article:

	https://support.f5.com/csp/article/K12815

Some of the restrictions are:

	Access to the Advanced shell (bash) has been removed.

	Administrative access is limited to the Configuration utility, bigpipe shell (bpsh), and Traffic Management Shell (tmsh).

	The root user cannot log in to the device by any means, including the serial console.

	To disable Appliance mode, you must contact F5 to help remove Appliance mode from your license file and then perform a clean installation of the software.

These restrictions make it difficult to configure the device by using an API that provides structured data.

In addition, some of the actions the modules take become impossible. For example, in Appliance Mode, you cannot upload file data that would require SCP functionality.

As it stands, these requirements mean that you would need to rely on tmsh itself to accomplish your tasks.

This means working with a tool that provides free-form output, rather than structured output.

There is a --oneline argument that may be supplied to tmsh commands, but it is not clear how parseable, or reliable, this format is.

Conclusion

For the above reasons, if you pursue CLI functionality for any of these modules, F5 recommends that the functionality be allowed for users with one of the following roles only:

	Administrator

	Resource Administrator

These roles can access all modules.

Without making this a requirement, it may not be possible to provide you with a reliable way to configure the system, due to restrictions put in place by other roles.

 Tests

Tests

Several different CI/CD tools automatically test the modules.

General tests check syntax, and specific tests exercise the functionality of the module.

General tests

All modules go through a set of general tests. Travis CI runs these tests. You can view the tests in .travis.yml in the root directory of the f5-ansible repository.

	flake8

	ansible-lint

Functional tests

Each Ansible module should have a role associated with it. This role contains all of the functional tests you want run to validate your module.

These tests run against several different test harnesses of BIG-IP VE. You do not need instances of each BIG-IP VE version available to you; the F5 instances have all of the necessary modules enabled for you to test against.

Code coverage

Upstream, Ansible provides code-coverage metrics for the F5 modules. These metrics are specific to the UNIT tests, not the integration/functional tests.

The URL is here:

	https://codecov.io/gh/ansible/ansible/tree/devel/lib/ansible/modules/network/f5

Ansible updates these metrics every 24 hours. Therefore, if you submit new code that includes unit tests, you will not immediately see the results.

Pycodestyle checks

F5 includes pycodestyle checks as part of the linting process. Ansible itself does this and, therefore, F5 must also include the steps.

The tests that F5 runs are from:

	https://github.com/ansible/ansible/blob/devel/test/sanity/pep8/current-ignore.txt

F5 updates these tests for each Ansible release.

Why do I make any error fatal?

The integration tests specify the following in their YAML.

- name: Test the bigip_iapp_service module
 ...
 any_errors_fatal: true
 ...

Why is any_errors_fatal specified and set to true?

The reason is because of the test layout.

Integration tests build on top of each other. If one of those tests fails, then a cascade of failures will occur. Therefore it’s a waste of time to continue with tests; the remainder will never pass.

Take, for example, a type of integration test for bigip_pool. It looks like this:

	Create pool

	Assert creation

	Create pool - idempotent check

	Assert no creation

If any of those tests fail, it is equivalent to all of them failing.

	If the first fails, then all the latter will fail.

	If the second fails, that means the first one is incorrect, and failure occurs.

	If the third fails, then the updating code is wrong and future tests that change parameters will fail.

	If the fourth fails, then the assertion is that the third test is wrong, and future tests that change parameters will fail.

For these reasons, F5 makes the integration tests fail fast.

 Upstreaming

Upstreaming

Upstreaming refers to opening a PR with the Ansible core product.

F5’s goal with this repository is to serve as an incubator for modules to mature. Eventually, the modules in this repository should find their way to the upstream Ansible product (core or extras).

Experimental modules

Experimental modules follow the same naming convention as those in the Ansible product. Experimental modules are easy to distinguish, because their filenames do not include a leading underscore.

You can obtain experimental modules by using the installation steps outlined here: installunstable.

An experimental module may or may not work at any point in time.

Note

Just because a module is experimental does not mean that it is unstable. Many modules remain in the incubator because the community has not expressed enough interest in them.

An experimental module should have an associated Issue in Github so everyone can track the module’s progress and so that others do not repeat work.

Qualifications for upstreaming

A module is in a mature state after it has met all of the established standards.

	http://docs.ansible.com/ansible/dev_guide/testing.html

	Code conventions

When the module meets these requirements, F5 will request Ansible to include the module.

Ansible releases

After F5 upstreams a module, a period of time will pass before it becomes part of the core Ansible product.

That release schedule is in the ROADMAP files near the top of each file.

Depending on which version is currently stable, upstreamed modules will be part of the next major stable release.

For example, if 2.3 is the current stable version and F5 upstreamed a module to core, the module would not appear as part of pip install ansible until version 2.4 releases.

You can get the modules before that point in time, but you must do so manually. The link to the stable modules is here.

How to upstream a module

A summary of the upstreaming process is below. Only one person needs to know how to upstream modules.

Complete GitHub template

Ansible provides an Issue template that you receive when you create a new PR in GitHub. You should fill out the various fields, making sure to include the following information in the “Summary”, “Description”, or related fields.

Here is an example:

PR Title:
Adds the bigip_user module to Ansible

Summary:
This patch adds the bigip_user module to Ansible to support managing
users on an F5 BIG-IP.

Additional Info:
Unit tests provided. Integration tests are here:

* https://github.com/F5Networks/f5-ansible/blob/devel/test/integration/bigip_user.yaml
* https://github.com/F5Networks/f5-ansible/tree/devel/test/integration/targets/bigip_user/tasks

When you include this extra information, it shows your due diligence in writing and testing the module. It helps assure the Ansible maintainers, and F5 customers, that you wrote the code well.

Attend the upstream meeting

Generally speaking, the upstreaming window is open each week, around the times of the Networking meeting. Here is the Networking team’s schedule.

	https://github.com/ansible/community/blob/master/MEETINGS.md#wednesdays

During that time, you must comment on the Ansible Networking Group’s issue tracker for new PRs, which is here:

	https://github.com/ansible/community/issues/110

The Networking team will address your PRs at their weekly meeting, which Ansible expects you to attend.

The meeting is on IRC at the below location:

	Server: irc.freenode.net

	Channel: #ansible-devel

 ApiParameters class

ApiParameters class

The ApiParameters class is one of two major Adapter-based classes that routinely appears
in the F5 Modules for Ansible. This class acts as a translation layer, or adapter
between the data received from the API and the data used in the module.

For this tutorial, you should navigate to the appropriate section [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L271] of the stable 2.5 source
code and copy it into your working module at the same location that it exists in the stable
branch.

The rest of this section discusses implementation details of this class.

Internal methods

Adapter classes like ApiParameters may have any number of internal methods added to them.

In this module’s implementation, the class has one method: _remove_internal_keywords.
Adding new internal methods is a great way to tease out common functionality that you may want to reuse across a wide variety of modules.

The quintessential example is the fq_name method. You know it is common, because if you
remember back to the import block section, it was included in one of the imports:

from ansible.module_utils.network.f5.common import fq_name

The history of this particular function goes back to the earliest days of the F5 module code.
In fact, its original implementation was not written by F5, but by customer contributors before
F5 ever became involved.

This method is used to combine a resource’s name and its partition. This behavior is
so common that it affects every resource on the device. Therefore, it was a great
candidate for inclusion in the common methods.

This same process of deducing what is common, and then re-using it across modules,
typically begins with internal methods.

Ansible’s means of supporting this inclusion is through the module_utils area of Ansible.

What should you do in situations where your method may apply to a small subset of modules, but not all
modules? It turns out that Ansible can support that too. The module_utils directory contains
a number of sub-directories; one of them is delegated for use by F5.

Inside F5’s directory (conveniently called f5), module developers may add more files for
use in common subsets of modules. Examples might be “the GTM modules”, or “the monitor modules.”
The combinations may vary, but including them is all the same.

Suppose there was a common function used in all monitor-related modules. This
function is only relevant to monitors though, so it makes no sense to include it in all
modules. The result is that the developer may create a new file in F5’s module_utils
directory called monitors.py and inside of that file, put the implementation of the
function.

Usage of this method could then be done in the monitor-related modules, like this.

from ansible.module_utils.network.f5.monitors import the_function

Where the_function is replaced with the name of the function.

So by all means, write as many internal methods as you can.

@property methods

When it comes right down to it, the entirety of the functionality of the ApiParameters
class is encapsulated in the numerous @property methods that it exposes.

These methods are used whenever you call the name of the property via the self.have object.
This object is the ApiParameters class. You should make sure that you have as many
properties as needed to make your development easier.

There is an additional, special, piece of functionality that all ApiParameters inherit;
they can be populated by the api_map. If you’ll remember back to the previous section
on the base Parameters class, one of the top-of-class variables was the api_map
variable. The ApiParameters class is where this variable is most useful because it will
auto-map the API resource attribute name to the @property you specify.

Some modules implement additional @property methods that are neither mapped to the API
nor provided by the module user. The reason this is done (usually) is to get a simpler
view of data that either the API or the user provide. This simpler implementation is then used
for comparisons for validity checks.

Looking deeper into an @property method

To illustrate an example of a @property method, consider the actions property. The
implementation of this property is:

@property
def actions(self):
 result = []
 if self._values['actions'] is None or 'items' not in self._values['actions']:
 return [dict(type='ignore')]
 for item in self._values['actions']['items']:
 action = dict()
 self._remove_internal_keywords(item)
 if 'forward' in item:
 action.update(item)
 action['type'] = 'forward'
 del action['forward']
 elif 'enable' in item:
 action.update(item)
 action['type'] = 'enable'
 del action['enable']
 result.append(action)
 result = sorted(result, key=lambda x: x['name'])
 return result

Remember that the purpose of a the ApiParameters adapter is to take the content from the
API and translate it to something that is usable in the module.

The API representation of this action data is a list of dictionaries:

{
 "kind": "tm:ltm:policy:rules:actions:actionscollectionstate",
 "selfLink": "https://localhost/mgmt/tm/ltm/policy/~Common~sdfg/rules/foo/actions?ver=13.1.0",
 "items": [
 {
 "kind": "tm:ltm:policy:rules:actions:actionsstate",
 "name": "0",
 "fullPath": "0",
 "generation": 62,
 "selfLink": "https://localhost/mgmt/tm/ltm/policy/~Common~sdfg/rules/foo/actions/0?ver=13.1.0",
 "code": 0,
 "expirySecs": 0,
 "forward": true,
 "length": 0,
 "offset": 0,
 "pool": "/Common/dfgh",
 "poolReference": {
 "link": "https://localhost/mgmt/tm/ltm/pool/~Common~dfgh?ver=13.1.0"
 },
 "port": 0,
 "request": true,
 "select": true,
 "status": 0,
 "timeout": 0,
 "vlanId": 0
 }
]
}

The adapter needs to take this payload and turn it into something that the module can use.
A lot of thought needs to go into the “that the module can use” part, because there is no
prescribed way of handling data.

The developer of this module needed to know about what was stored in the API so that they could do an accurate comparison. These things were outlined back in
the DOCUMENTATION blob that you wrote. If you’ll remember, that data was the following:

actions:
 description:
 - The actions that you want the policy rule to perform.
 - The available attributes vary by the action, however, each action requires that
 a C(type) be specified.
 - These conditions can be specified in any order. Despite them being a list, the
 BIG-IP does not treat their order as anything special.
 - Available C(type) values are C(forward).
 suboptions:
 type:
 description:
 - The action type. This value controls what below options are required.
 - When C(type) is C(forward), will associate a given C(pool) with this rule.
 - When C(type) is C(enable), will associate a given C(asm_policy) with
 this rule.
 - When C(type) is C(ignore), will remove all existing actions from this
 rule.
 required: true
 choices: ['forward', 'enable', 'ignore']
 pool:
 description:
 - Pool that you want to forward traffic to.
 - This parameter is only valid with the C(forward) type.
 asm_policy:
 description:
 - ASM policy to enable.
 - This parameter is only valid with the C(enable) type.

This documentation tells us that the module intends to receive an actions argument.
Inside this argument will be a list. Each item in the list will be a dictionary containing
a required type key, and then one of the two other keys: either pool, or
asm_policy.

So we know that the data we want to compare with should look something like this in terms
of its Python representation.

[
 {
 'type': '...',
 'pool': '...'
 },
]

or

[
 {
 'type': '...',
 'asm_policy': '...'
 },
]

Additionally, the data could possibly be a combination of the above, because policies allow
this. Perhaps something like this:

[
 {
 'type': '...',
 'pool': '...'
 },
 {
 'type': '...',
 'asm_policy': '...'
 },
]

Python lets us compare dictionaries pretty easily using their tuple representations, so
let’s assume that we want to make the API data reflect the data structure shown above.

To do this, we need to know the type, and one of two values: either the pool or
asm_policy. It turns out that the action payload shown earlier actually contains this
information. Furthermore, we can see that the actions @property converts the JSON
payload to a dict that resembles the intended data structure above.

First, because the module data structure wants a list, the method sets the result local
variable to a Python empty list. This allows the method to then add values to the list later.

Next, the method checks to see if either of two conditions are true:

	Is the actions attribute of the LTM policy rule missing? If it is, its value will be
Python’s None value.

	Is the actions attribute missing the items key? Earlier, in the JSON payload, you
saw that the actions payload will have three top-level keys: kind, selfLink, and
items. If the items value is missing, then there are no actions to be taken.

If either of the above conditions are met, the method immediately returns a single item list
with the one item being set to a dictionary with a type key whose value is ignore.
This is the internal representation for how the module detects an ignore type.

If the above does not happen, the method can safely assume that it has a number of actions
that need to be discovered and formatted into usable dictionaries.

On the for item... line, it iterates over each of these items.

During iteration, the method will be determining the actions that can be deduced from
the original JSON payload. Therefore, it creates a new local variable named actions and
sets its value to an empty dictionary. If it is able to intuit actions from this payload,
they will go in this variable.

Next, the module removes any keywords that it deems internal, from the current action in
the items list.

After removing internal (i.e., useless to the module) keywords, the method makes a judgement
call about the type. This judgement call also says a lot about which ``type``s the module
supports.

The two decisions are:

	Does the current action have an attribute named forward?

	Does the current action have an attribute named enable?

If either of those two rules is met, then the current action is added to the local action
variable, a type key is added that is specific to the type that the method found,
and the original key that was used to determine the type is deleted from the local action
variable. The last step is done to prevent any polluting of what is returned by the method.

Finally, the local action variable is appended to the local result list.

The final action of the method before returning the result to the caller is that it sorts
all of the entries in the local result variable by the name key of the item in the
result list.

This is a very important step because it ensures that any future comparisons will be
done on lists that are in the same order. When determining “difference,” it is not enough
to assume that all items in a list have the same value. Order of that list is just as
important in certain circumstances. Those circumstances are usually when the data on the
BIG-IP itself is *un*ordered.

If BIG-IP does not consider order important for a particular resource, then the module
developer must consider it important. This is because when there is no order, the users
are not expecting there to be any order, and therefore, can arrange things in any way they
want. For the module developer, this is a problem because all of the following are technically
the same:

[1, 2, 3, 4]
[2, 3, 1, 4]
[4, 3, 2, 1]

The module then, is responsible for assuming that all values can possibly be unordered, and
ordering them sanely for comparison.

Contrast this with a situation where the above is ordered. Then, each one of those lists
is a different value. And a comparison of one order would fail against another order– i.e., if
the customer changes the order of an ordered list, it implies their desire to change the
order of the values in the BIG-IP.

Rules in a policy are a great example of this. The rules have order. However the actions
and conditions in that rule have no order.

Conclusion

Understanding and using the ApiParameters class is a core tenant of understanding
the F5 Modules for Ansible. From here, you may want to go back and consider exploring the
twin of this class (but which operates on the user’s side): the ModuleParameters class.

 The ArgumentSpec

The ArgumentSpec

The ArgumentSpec defines which arguments your module will accept.

Earlier, when you were writing the DOCUMENTATION variable, you identified the arguments to the module and the values those arguments took.

Now is the time you would concern yourself with implementing the code that reflects this documentation.

The ArgumentSpec is your opportunity to turn documentation into code that you will provide to Ansible.

Ansible has the ability to parse these arguments and provide a small set of enforcement
checks to them. It determines what needs to be checked by virtue of the ArgumentSpec class
you provide to it.

First, here is a look at the ArgumentSpec class for this module.

class ArgumentSpec(object):
 def __init__(self):
 self.supports_check_mode = True
 argument_spec = dict(
 description=dict(),
 actions=dict(
 type='list',
 elements='dict',
 options=dict(
 type=dict(
 choices=[
 'forward',
 'enable',
 'ignore'
],
 required=True
),
 pool=dict(),
 asm_policy=dict()
),
 mutually_exclusive=[
 ['pool', 'asm_policy']
]
),
 conditions=dict(
 type='list',
 options=dict(
 type=dict(
 choices=[
 'http_uri',
 'all_traffic'
],
 required=True
)
),
 path_begins_with_any=dict()
),
 name=dict(required=True),
 policy=dict(required=True),
 state=dict(
 default='present',
 choices=['absent', 'present']
),
 partition=dict(
 default='Common',
 fallback=(env_fallback, ['F5_PARTITION'])
)
)
 self.argument_spec = {}
 self.argument_spec.update(f5_argument_spec)
 self.argument_spec.update(argument_spec)

The ArgumentSpec class

The class is located near the bottom of the module. It is by convention that the F5 module
developers put it there. This location is not a technical requirement, but you are required
to follow it per the coding conventions that F5 has established.

Looking at the body of this class, you’ll note that it only consists of an __init__()
method. This class has no purpose outside of encapsulating the requirements that it will
deliver to Ansible. Therefore, it typically has no real functionality.

The order in which the code is written, however, is of deep importance. Let’s take a look
at that.

The check_mode declaration

Typically, the first thing you find in an ArgumentSpec class is the creation of an
instance variable named supports_check_mode. This is almost always True.

Check mode lets the Ansible user ask a module to run without doing anything to a device. It’s a way for the user to know (before they run Ansible in non-check mode) that the module is going to change something on their system.

A deficiency of this feature though, is that it is not implemented in Ansible core. It is
instead left to the will of the module developer whether or not to support this functionality.

The end result is that most modules do not use it, and therefore, it is not a feature you can rely on.

This doesn’t mean that F5 needs to perpetuate the problem though. The F5 module
developers, by default, expect that a module should support check mode. There are very few
cases where it is impossible, or impractical, to support it.

This instance variable is how the module declares that it will support it. Later on in the
module, the F5 developers will add the implementation of the support.

The argument_spec

The argument_spec is the body of what defines the arguments your module can accept. You’ll
notice that is is nearly a complete reflection of what was specified in the DOCUMENTATION
variable earlier.

Note

This variable is not an instance variable; it has no self. attached to
it. This is important for unit testing. When unit tests are written and run, they
usually begin with an import of the ArgumentSpec class from the appropriate
module being tested.

If the module were only ever declaring and updating an instance variable, then the unit
tests would begin failing.

For example, when running many module unit tests, the developer might see the first module’s
tests pass, but then the second module’s tests fail with errors that mention that
a mutual exclusivity is being violated. This may sound weird, but is actually very common.

The cause is the global instance of the ArgumentSpec class being re-used. And this
problem manifests itself in particular when you are maintaining an instance variable.

One test may use one of the mutually-exclusive properties; it sets it in the
ArgumentSpec. The next test tries to use the other, but since the ArgumentSpec
is re-used, the first property was never cleared. Now you have both properties (which
are mutually exclusive) being set to a value. This is an error, and your tests will
fail.

Putting the arguments in a local variable prevents this, because that variable is
destroyed between runs of the tests and usage of the ArgumentSpec.

After the argument spec is locally defined, another variable is created and set to an
empty dictionary value.

This variable is named identically to the first, except this time it is an instance
variable. The module always sets this to an empty dict to ensure that no collisions
happen between unit tests.

Next, this instance variable is updated with all of the parameters in the base argument
spec that was imported at the top of the module. This gives the ArgumentSpec all of
the common parameters such as user, password, and server.

Finally, the instance variable is updated with this module’s arguments. The order to
this updating is important, because it gives the module authors the ability to override
any of the parameters that are defined in the base parameter configuration.

Conclusion

This is one of the easier classes to write because you have largely done all the work when
you wrote the DOCUMENTATION variable earlier.

With this class out of the way, the next class to explore is the ModuleManager
class. This class is the traffic cop of the module. The stubbing tool provides a boilerplate
version of this class to you. You, as the developer, are expected to replace certain key
instances of API calls in it.

 Collecting and Reporting Changes

Collecting and Reporting Changes

After comparing differences between sets of attributes, there are two points in a module’s
execution where you may need to massage data. They are:

	Before you send the data to the API

	Before you report the data to the user

To help facilitate this difference, you can make use of one, or both, of
the Changes classes that exist in a module. This section discusses those classes in greater detail.

	Usable Changes

	Reporting Changes

 Detecting Configuration Differences

Detecting Configuration Differences

When it comes to deciding what changes to make to a remote BIG-IP, the majority of the job
falls on the shoulders of the Difference class (or suite of Difference classes).
Rectifying an existing config with a provided config can be the most difficult
part of module development.

This section explores the implementation of the Difference class that is used for the
module we’ve been working with. We’ll also see the module execution that leads up to the
usage of the Difference class.

You may hear the Difference class referred to as the Difference “engine.”

Difference class implementation

The implementation for the module under development begins here [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L522]. Open this content in a new tab
and begin re-implementing it in the module under development.

The Difference class will be comparing the internal module representations of the
attributes you are interested in. Therefore, it is the output of the different adapter
classes. Keep this in mind.

What follows is a deeper dive into the components that make up the Difference class.

The common methods

This Difference class includes a couple of common methods. The base Difference class
is capable of doing simple, non-typed, key/value comparisons. If this satisfies all of your
needs, then you do not need to implement any further code in this class.

The __init__ method

The first method that a developer will encounter is the __init__ method. There is no
need to change any of the code in this method.

The purpose of the method is to initialize a Difference object from the class itself.
There is a well-defined set of work that this method does, respective to this class. In
particular, it sets two instance variables to the values that are passed to the class.

The variables are:

	self.want

	self.have

These names should be familiar, as they are the same self.want and self.have that
are used throughout the ModuleManager class that was explored earlier. When used in the
Difference class, these methods will be the conduit from which you will do comparisons.

The compare method

This method is responsible for deciding whether a comparison should be done by using predefined properties or the default comparison method.

The default comparison method is a simple if foo != bar: return foo comparison. It does
not take into consideration things like datatypes, where a comparison such as the one done
above might fail.

Note

This underscores an important point about the earlier adapter patterns that were discussed
in the ApiParameters and ModuleParameters classes. When writing the properties in
these methods, it is imperative that you take comparison into consideration. Doing simple
things like sorting or type casting your return values can go a long way in minimizing
the problems you would otherwise have when implementing the Difference class.

For more complex comparisons, implement your own comparison method instead of using the default method. To do this, follow the same methodology that you
followed when writing the ApiParameters and ModuleParameters adapters: using the
@property decorator on methods.

You can see this implementation at work in the following method.

@property
def actions(self):
 result = self._diff_complex_items(self.want.actions, self.have.actions)
 if self._conditions_missing_default_rule_for_asm(result):
 raise F5ModuleError(
 "The 'all_traffic' condition is required when using an ASM policy in a rule's 'enable' action."
)
 return result

The above method is concerned with comparing a non-trivial comparison of the actions
property of the ApiParameters and ModuleParameters classes. Its implementation
looks pretty simple because most of the heavy lifting is done in other functions. The basic
idea though should drive the point home.

The __default method

This method is the fallback method that is called in the event that there is no user-defined
method with a @property decorator that matches the property being compared. This
fallback method allows you to avoid common situations involving comparison. For example,
consider the comparison of one description to another. This is clearly a simple task and,
therefore, does not need to have a customer @property decorated method written for it.

How change is affected

How does the Difference class affect what is returned and used by the module when
updating an API? The answer to that has three components.

First, the return value of any @property decorated method in the Difference
class should return the value for the API attribute that it wants to change. Any value
these methods return is considered by the Ansible module to be the value for the
attribute in the API. The only exception is None. If you return None,
then the API attribute will be filtered out from any further operations.

The second part of the tool chain is handled by the _update_changed_options method
of the ModuleManager. This method initiates the Difference object, and also is
responsible for making the calls to compare to compare. There is a fragment of the
_update_changed_options code that is responsible for checking the return value of the
compare method. The behavior is defined as such:

	If the returned value is a dict, then merge it into the dictionary of changed properties

	Else, set the changed dictionary at key k to the returned value.

This behavior implies that you are able to change multiple properties
with a single return value. Furthermore, you can return properties that are not even named
after the key being compared.

Consider the following:

Simple return

Difference
@property
def description(self):
 return "foo"

The above example would result in a changed dictionary that looks like this.

changed = {
 'description': 'foo'
}

Dictionary return

Difference
@property
def description(self):
 return {
 'baz': 1234,
 'bar': '5678'
 }

The above example would result in a changed dictionary that looks like this.

changed = {
 'baz': 1234,
 'bar': '5678'
}

The third part of the tool change is the UsableChanges class. This will be discussed
further in later sections.

Complex comparison

For any situation in which the comparison of properties is more complicated than x == y,
the module developer will definitely need to implement their own comparison check.

Consider a property that contains dictionaries. In Python, it is not possible to compare two
dictionaries in their native state. The reason is because dictionaries inherently
have no order.

To perform this comparison, a @property should be defined in the Difference class.
The name of the @property must match the name of the property being compared, as shown in
earlier sections.

It is then the responsibility of the module developer to figure out how to carry out the
differentiation between the two values. Below is a comparison of two dicts
and other comparisons to take into consideration when diff’ing two values.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	@property
def records(self):
 # External data groups are compared by their checksum, not their records. This
 # is because the BIG-IP does not store the actual records in the API. It instead
 # stores the checksum of the file. External DGs have the possibility of being huge
 # and we would never want to do a comparison of such huge files.
 #
 # Therefore, comparison is no-op if the DG being worked with is an external DG.
 if self.want.internal is False:
 return None
 if self.have.records is None and self.want.records == []:
 return None
 if self.have.records is None:
 return self.want.records
 result = compare_dictionary(self.want.records, self.have.records)
 return result

This comparison in particular comes from the bigip_data_group module. Let’s take a moment
to go line-by-line through the comparison. This will be a good opportunity to get a sense of
what can, and should, be done in a comparison method.

Ignore the comments at the top and begin at line 9.

if self.want.internal is False:

This comparison function begins by checking a self.want variable. In this module’s case,
the reason is described in the comment block above the comparison. Remember that
self.want is the data that the user provided to the Ansible module.

Line 10 brings you to a feature of the Difference class’s properties.

return None

By returning None, the particular property will not be made available to the
UsableChanges class (and, subsequently, won’t be sent to the API). The lesson here is that
you should return None when there is no change in the values being compared.

Line 11 contains another comparison, but this comparison is done for a completely different
reason.

if self.have.records is None and self.want.records == []:

This comparison checks to see if there are:

	No existing records

	No records specified by the user to the module

The equality check with an empty list ([]) may be a bit confusing. The reason for a comparison
like this is because the `ModuleParameters returns an empty list when the user specifies
a single empty item in the Ansible module. For example, something like this:

records: ""

This allows the user of the module to zero out the values of records. So this comparison is
essentially checking that there are no existiing records, and that the user specified a single
empty record. Therefore, a no-op, or no change, and the comparison returns what is seen on line
12: None.

On line 13, there is a shortcut in logic for this comparison method.

if self.have.records is None:

The shortcut is that, if the module has reached this point, and there are no existing records,
no comparison even needs to take place, just return whatever the user specified to the module.

This is a common operation to make when checking parameter difference. There is no reason to
do a comparison in this case because there are no existing records to compare with. The current
order of if statements to get to this point though, is important. Line 14 is the shortcut
in practice, returning what the user wants.

Finally, on line 15, a serious comparison takes place.

result = compare_dictionary(self.want.records, self.have.records)

This line illustrates a true comparison of dictionaries. In this case, the module is using a
method called compare_dictionary, found in ansible.module_utils.network.f5.common.
This method allows you to compare dictionaries to find out if there are the same
or different.

Finally, the method here returns the return value from the compare_dictionary function.
For your information, the return value is the content of self.want for the property being
compared. In this case, the records the user wants will be returned if the
two values differ.

Conclusion

The Difference class is a core piece of functionality in the F5 Modules for Ansible. It is
responsible for much of the heavy lifting when doing an update of an existing resource. The work
it does, however, can be complicated and prone to error because of this complexity. It is
highly recommended that you utilize unit tests when working on your module’s own implementation.

You received a taste of what a more complicated comparison looks like. Future modules will surely
push the limits of what it means to be complicated when comparing values. Over time, it is
expected that patterns and common methods will emerge that makes the process of comparison much
easier for the lay-developer.

In the next section, we’ll touch upon the Changes classes that you will encounter in modules.

 DOCUMENTATION variable

DOCUMENTATION variable

The DOCUMENTATION variable is the first chunk of code that you will insert. It describes the module and names the parameters it accepts, who the authors/maintainers are, its dependencies, and a variety of other things.

This area of the module is near the top, but note that you were not instructed to change anything else near the top. This is because when fleshing out a stub, a lot of boilerplate is included for you automatically.

This actually makes writing modules easier. You no longer need to concern yourself with writing this boilerplate; only changing it as necessary. This can really shorten your development time for a module that uses a good API.

The f5ansible tool created all of what you see, but you are concerned right now with only documenting this module. The stub includes some of that work for you. For example:

DOCUMENTATION = r'''

module: {{ module }}
short_description: __SHORT_DESCRIPTION__
description:
 - __LONG DESCRIPTION__.
version_added: 2.6
options:
 name:
 description:
 - Specifies the name of the
 required: True
extends_documentation_fragment: f5
author:
 - Tim Rupp (@caphrim007)
'''

This content is used to generate the online documentation and you must update it.

It’s critical that this documentation reflects what the module is intended to do, as well as what it actually does.

Now copy the following code into your own copy of the bigip_policy_rule module.

DOCUMENTATION = r'''

module: bigip_policy_rule
short_description: Manage LTM policy rules on a BIG-IP
description:
 - This module will manage LTM policy rules on a BIG-IP.
version_added: 2.5
options:
 description:
 description:
 - Description of the policy rule.
 actions:
 description:
 - The actions that you want the policy rule to perform.
 - The available attributes vary by the action, however, each action requires that
 a C(type) be specified.
 - These conditions can be specified in any order. Despite them being a list, the
 BIG-IP does not treat their order as anything special.
 - Available C(type) values are C(forward).
 suboptions:
 type:
 description:
 - The action type. This value controls what below options are required.
 - When C(type) is C(forward), will associate a given C(pool) with this rule.
 - When C(type) is C(enable), will associate a given C(asm_policy) with
 this rule.
 - When C(type) is C(ignore), will remove all existing actions from this
 rule.
 required: true
 choices: ['forward', 'enable', 'ignore']
 pool:
 description:
 - Pool that you want to forward traffic to.
 - This parameter is only valid with the C(forward) type.
 asm_policy:
 description:
 - ASM policy to enable.
 - This parameter is only valid with the C(enable) type.
 policy:
 description:
 - The name of the policy that you want to associate this rule with.
 required: True
 name:
 description:
 - The name of the rule.
 required: True
 conditions:
 description:
 - A list of attributes that describe the condition.
 - See suboptions for details on how to construct each list entry.
 - The ordering of this list is important, the module will ensure the order is
 kept when modifying the task.
 - The suboption options listed below are not required for all condition types,
 read the description for more details.
 - These conditions can be specified in any order. Despite them being a list, the
 BIG-IP does not treat their order as anything special.
 suboptions:
 type:
 description:
 - The condition type. This value controls what below options are required.
 - When C(type) is C(http_uri), will associate a given C(path_begins_with_any)
 list of strings with which the HTTP URI should begin with. Any item in the
 list will provide a match.
 - When C(type) is C(all_traffic), will remove all existing conditions from
 this rule.
 required: true
 choices: ['http_uri', 'all_traffic']
 path_begins_with_any:
 description:
 - A list of strings of characters that the HTTP URI should start with.
 - This parameter is only valid with the C(http_uri) type.
 state:
 description:
 - When C(present), ensures that the key is uploaded to the device. When
 C(absent), ensures that the key is removed from the device. If the key
 is currently in use, the module will not be able to remove the key.
 default: present
 choices:
 - present
 - absent
 partition:
 description:
 - Device partition to manage resources on.
 default: Common
extends_documentation_fragment: f5
requirements:
 - BIG-IP >= v12.1.0
author:
 - Tim Rupp (@caphrim007)
'''

The first key takeaway from this documentation blob is that the order of the keys is irrelevant.

This is a variable in Python that contains a string that is formatted in YAML. YAML
has a number of data structures that it supports; one of those being a dictionary.

Dictionaries are unordered. What is useful about a dictionary is that you can refer to
values in a dictionary by their keys, or names. The above documentation blob is one large
dictionary containing a number of other datatypes.

Most documentation variables have a common set of keys and only differ in the values of
those keys.

Commonly-used keys are:

	module

	short_description

	description

	version_added

	options

	notes

	requirements

	author

	extends_documentation_fragment

Note

The extends_documentation_fragment key is special because it automatically injects the
variables user, password, server, server_port, and validate_certs
into your documentation. You should use it for all modules.

Documentation header

Starting at the top of the DOCUMENTATION section:

module: bigip_policy_rule
short_description: Manage LTM policy rules on a BIG-IP
description:
 - This module will manage LTM policy rules on a BIG-IP.
version_added: 2.5

This set of documentation tells you:

	The name of the module.

	A title for the module, which will be shown in Ansible’s documentation.

	An area for a more full description of what the module is used for, including
its capabilities and limitations.

	The version of Ansible that the module was added to.

If you were developing your own module (and not re-creating an existing one) you would
change these fragments to reflect your situation.

A note on raw string literals

Take special note of how the string content of this variable is started. There is
an r character before the string. What is that?

When an r character prefixes a string, Python considers that string a “raw” string
literal.

Alex Martelli has a great explanation of this on Stack Overflow [https://stackoverflow.com/a/2081708].

A "raw string literal" is a slightly different syntax for a string literal, in which a
backslash, \, is taken as meaning "just a backslash" (except when it comes right before
a quote that would otherwise terminate the literal) -- no "escape sequences" to represent
newlines, tabs, backspaces, form-feeds, and so on. In normal string literals, each
backslash must be doubled up to avoid being taken as the start of an escape sequence.

What this means is that nowhere in the string do you need to do things like escape
characters.

Consider the string C:\Users\John Smith\Documents\test.txt

This variable contains documentation, so you would want to present that full string to
a user when they are reading the documentation.

Python, however, will interpret the \ characters as an escape sequence and will attempt to escape them for you when
rendering the documentation. The above example would print() in Python as:

C:\Users\John Smith\Documents est.txt

Which is definitely not what a user expects. By attaching the r character though, the
documentation renders like this instead.

C:\Users\John Smith\Documents\test.txt

This is much more likely what you want the documentation to look like. So always use r
strings for the documentation related variables at the top of a module. These include:

	DOCUMENTATION

	EXAMPLES

	RETURN

If you do, you will never need to worry about escape sequences.

Specifying options (parameters)

Next, there are a series of options:

options:
 description:
 description:
 - Description of the policy rule.
 actions:
 description:
 - The actions that you want the policy rule to perform.
 - The available attributes vary by the action, however, each action requires that
 a C(type) be specified.
 - These conditions can be specified in any order. Despite them being a list, the
 BIG-IP does not treat their order as anything special.
 - Available C(type) values are C(forward).
 suboptions:
 type:
 description:
 - The action type. This value controls what below options are required.
 - When C(type) is C(forward), will associate a given C(pool) with this rule.
 - When C(type) is C(enable), will associate a given C(asm_policy) with
 this rule.
 - When C(type) is C(ignore), will remove all existing actions from this
 rule.
 required: True
 choices: ['forward', 'enable', 'ignore']
 pool:
 description:
 - Pool that you want to forward traffic to.
 - This parameter is only valid with the C(forward) type.
 asm_policy:
 description:
 - ASM policy to enable.
 - This parameter is only valid with the C(enable) type.
 policy:
 description:
 - The name of the policy that you want to associate this rule with.
 required: True

A few points:

First, the top-level key for this block is called options. Yours should be the same.
This is how Ansible knows to report this section of documentation in the module’s parameters
table.

The first parameter listed above is the description parameter. It has a description field that describes what the purpose of the description parameter is.

The next parameter is called actions. Like the previous parameter, this one also
has a description field that describes what its purpose in the module is. In fact, it
has many descriptions.

This is actually a recommended way of writing documentation bits about your parameter.
You may have many thoughts about what a parameter does. Instead of putting them into one
long line, it is recommended that you define them as a list (indicated by the leading hyphen).

This parameter has another field; suboptions. This field acts in the same
way as the top-level options field does. It allows you to define a series of fields that
can be specified to the parameter. This is a great way to spell out what is exactly required
by the parameter. It is also a great way to enforce compliance with input. Were these not here,
the user may expect that they need to provide a free-form string of data when providing
the actions. Such as:

actions: Are these actions that I put here?

Instead, the suboptions tell the user that the module will require the field
type, and can optionally accept a pool field and asm_policy field. Each of those
fields has their own documentation. The end result is that the user will know
that their action will resemble the following when used in a playbook.

one possible option
actions:
 - type: enable
 asm_policy: foo-policy

another possible option
actions:
 - type: pool
 pool: my-pool

another possible option
actions:
 - type: ignore

Now, you have not yet codified that enforcement, but you have made known to the user
your plan to do so. This is a great approach.

The final parameter in the snippet above is the policy parameter. Note that it is similar
to the first parameter (description) but it includes another field: required.

Ansible does not require you to specify False or default: None in either your
documentation or ArgumentSpec. It does, however, require that
you specify truthiness. Therefore, because this parameter will be required by the module,
we specify in the documentation that it is indeed required.

If you leave anything out

Note that Ansible upstream has several rules for their documentation blocks.
At the time of this writing, some of the rules are:

	If a parameter is not required, do not include a required: false field in the
parameter’s DOCUMENTATION section.

	A period (.) must be placed at the end of all sentences.

	The short_description field does not end with a period.

	The version_added field must match the current devel version of Ansible
if the module is a new module.

	If you are adding new parameters to an existing module, then those parameters must
have a version_added field that matches the current devel version of Ansible.

There are a number of other rules that Ansible enforces. All of them will be checked for
when you attempt to upstream a new module.

Conclusion

This puts in place the first important part of the module. It gets you thinking about what
you want in the module, as well as what is even possible. Since a module will be flagged
as incorrect if any of this information is wrong or missing, it is also a great way to
ensure that all modules have user-facing documentation.

Click the Next button to continue to the next variable.

 EXAMPLES variable

EXAMPLES variable

The EXAMPLES variable contains the most common use cases for this module.

You are free to add any examples you think would help a user of the module solve a
problem quickly.

These examples also serve as a basis for the functional tests.

For this module, the EXAMPLES variable looks like this:

EXAMPLES = r'''
- name: Create policies
 bigip_policy:
 name: Policy-Foo
 state: present
 delegate_to: localhost

- name: Add a rule to the new policy
 bigip_policy_rule:
 policy: Policy-Foo
 name: rule3
 conditions:
 - type: http_uri
 path_begins_with_any: /ABC
 actions:
 - type: forward
 pool: pool-svrs
 delegate_to: localhost

- name: Add multiple rules to the new policy
 bigip_policy_rule:
 policy: Policy-Foo
 name: "{{ item.name }}"
 conditions: "{{ item.conditions }}"
 actions: "{{ item.actions }}"
 delegate_to: localhost
 loop:
 - name: rule1
 actions:
 - type: forward
 pool: pool-svrs
 conditions:
 - type: http_uri
 path_starts_with: /euro
 - name: rule2
 actions:
 - type: forward
 pool: pool-svrs
 conditions:
 - type: http_uri
 path_starts_with: /HomePage/

- name: Remove all rules and confitions from the rule
 bigip_policy_rule:
 policy: Policy-Foo
 name: rule1
 conditions:
 - type: all_traffic
 actions:
 - type: ignore
 delegate_to: localhost
'''

This variable should go after the DOCUMENTATION variable.

The examples that you provide should always have the following:

delegate_to: localhost

You should run the BIG-IP modules on the Ansible controller only. The best practice is to
use delegate_to: here so that you get in the habit of using it.

The delegate_to keyword is not an argument to your module. It is an argument to
the Ansible Task. Therefore, it should align with the module name.

common args

The common args to modules include:

	password. This should always be secret

	server. This should always be lb.mydomain.com

	user. This should always be admin

Conclusion

There is nothing unique about this documentation blob compared to the DOCUMENTATION
variable mentioned earlier. It is still YAML, and therefore must follow the constraints covered earlier.

The next section covers the final documentation blob: the RETURN variable.

 The import block

The import block

The next section of the module is the block of code where the imports happen.

This code usually just involves importing the module_utils helper libraries, but may
also include imports of other libraries if you are working with legacy code.

For this module, the import block is:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from ansible.module_utils.basic import AnsibleModule
from ansible.module_utils.basic import env_fallback
from ansible.module_utils.six import iteritems

HAS_DEVEL_IMPORTS = False

try:
 # Sideband repository used for dev
 from library.module_utils.network.f5.bigip import HAS_F5SDK
 from library.module_utils.network.f5.bigip import F5Client
 from library.module_utils.network.f5.common import F5ModuleError
 from library.module_utils.network.f5.common import AnsibleF5Parameters
 from library.module_utils.network.f5.common import cleanup_tokens
 from library.module_utils.network.f5.common import fq_name
 from library.module_utils.network.f5.common import f5_argument_spec
 HAS_DEVEL_IMPORTS = True
except ImportError:
 # Upstream Ansible
 from ansible.module_utils.network.f5.bigip import HAS_F5SDK
 from ansible.module_utils.network.f5.bigip import F5Client
 from ansible.module_utils.network.f5.common import F5ModuleError
 from ansible.module_utils.network.f5.common import AnsibleF5Parameters
 from ansible.module_utils.network.f5.common import cleanup_tokens
 from ansible.module_utils.network.f5.common import fq_name
 from ansible.module_utils.network.f5.common import f5_argument_spec

In 90% of cases, this code is boilerplate and you can ignore it when writing a module.
The f5ansible command takes care of this for you.

Let’s take a moment to walk through some of the things you see here and explain their
purpose.

AnsibleModule import

This import is at line #1 above.

from ansible.module_utils.basic import AnsibleModule

This import makes available to the module all of the utilities and convenience functions that Ansible provides to modules written in Python.

This module is defined in Ansible here [https://github.com/ansible/ansible/blob/2f36b9e5ce0ec41a822752845d3b7c4afdf7eee9/lib/ansible/module_utils/basic.py#L801]. This code will change over time, so you may need
to visit the file location itself on Ansible’s devel branch.

All F5 modules should include this line because it is used in the body of the main()
method of the module. Its purpose is to consume the module’s ArgumentSpec class and
provide back to the module a list of parameters that have been parsed and verified to meet
the spec.

env_fallback import

This import is at line #2 above.

This import is used by any modules that support a partition argument. Its purpose is to
provide access to environment variables for parameters to “fall back” to in the event that
the parameter is not provided directly to the module.

Normally, all of these environment fallbacks are defined in the F5 common.py module util
file. The partition one is the exception though, because it is not a common parameter.

Consider APIs of the BIG-IP that change system-level resources, like SSHD configuration or the
management IP of the BIG-IP. Modules like these have no reason to offer a partition
parameter to the user. Therefore, partition is not common across all modules, and is
not included in the common.py module utils. Each module that can use a partition is
expected to define that parameter in its ArgumentSpec.

Various helper import

These imports are the other imports that remain outside of the import try block. In this
module, that means line #3.

Modules can make use of a number of helper libraries that ship with Ansible. This module
makes use of the iteritems function to provide dictionary iteration that is compatible
across both Python 2.x and 3.x.

This illustrates another concern that modules have; that they should support older and newer
Python versions.

This commitment enables the users of F5 modules to gradually move off of older Python versions
over time.

HAS_DEVEL_IMPORTS definition

This import happens on or around line #5. In this module’s case, it happens exactly at
line #5.

When working with an Ansible module, there is a convention that constant-like things be
defined in all capital letters. This is seen in most situations when the module author is
interested in checking that an import happened, or did not happen.

The same thinking applies here.

The F5 module developers maintain a side-band repository that contains all of the F5 module
code. In fact, the documentation you’re reading is maintained in there, and you cloned that
side-band repository to work on the module in this tutorial.

Due to the way the developers structure their code, they want to be able to do all of the
module development without requiring that they move all of their code directly to Ansible.

This variable is defined so that they can know (during debugging) that they are indeed
importing code from their side-band repository, and not from the Ansible installation that
is on their system.

By default, this value is False. It assumes that you are not running from the
side-band codebase. This value is set to boolean True when you are. Which leads us
to the next import area.

The dev/prod import try block

This series of imports start at, or around, line #7 and continues for some time. In this
module’s case, it starts at line #7 and continues to line #33.

This large block of imports is actually a couple of things.

First, remember back to the previous section where the HAS_DEVEL_IMPORTS was first
defined. The first set of imports in this try block is the module’s attempts to load
those.

The reason that the modules tries its development libraries first is that, were the developers
to try to import the second block, the second block would always succeed. This is because
the second block’s imports are always defined; they are part of Ansible.

However, the developers need to test and do their development. So the module tries to
import the development code (part of the side-band repository) first. This allows the
developers to do their work without messing up anything in their installed copy of Ansible.
It also allows them to do work in their own side-band source repository. Otherwise, they
would need to do development directly in the Ansible repository.

When Ansible ships, this code will fail to import, but that’s not a problem. The module
will catch this failing behavior, and instead, try to import what it considers to be the
production imports. In other words, what comes installed with Ansible. This is nearly
always guaranteed to succeed.

Note

This may fail when a newer copy of the module is run on an older copy of
Ansible. In this case, the older copy may be missing things that were defined in the
newer Ansible. The F5 modules should always be run on the newest version of Ansible
to prevent this from occurring.

What is imported in the try block?

These try blocks are a mixture of support libraries that the Ansible module will use.
Most of these libraries are standard across all F5 modules. Also, you’ll notice that
the actual imported things are nearly identical, except for the path leading up to them.

For example:

from library.module_utils.network.f5.bigip import HAS_F5SDK

versus:

from ansible.module_utils.network.f5.bigip import HAS_F5SDK

In both cases, the HAS_F5SDK variable is attempted to be imported. It is the location
of this variable that changes. The first attempt is in the side-band repository. The
second attempt is in Ansible core.

Key imports to recognize

Some of the imports that are made are crucial for the module to execute correctly. The
imports and their purposes are outlined below.

	Imported item

	Comment

	HAS_F5SDK

	This variable that tells the module if the f5-sdk was found on your
Ansible controller. This variable may be overridden shortly in a
subsequent import check.

	F5Client

	This variable contains a connection to your F5 device (BIG-IP,
BIG-IQ, etc).

	F5ModuleError

	This is a general purpose Exception class that all F5 modules
use when something “bad” happens in them. It is raised for
situations when F5 is aware that something troubling can happen.
F5 does not catch, nor raise, Python’s base Exception exception
because this may suppress problems that occur that we are not
aware of. The developers want to be identified of those unknowns.

	AnsibleF5Parameters

	This is a base class for the Parameters class that is used by
all modules. This class includes methods for handling common F5
things such as the method by which the Parameters class
auto-creates properties for you.

	cleanup_tokens

	This method is used by all modules to clean up the authentication
tokens that are created during a module’s run. If token cleanup is
not done, this can wedge your BIG-IP after hundreds of tokens have
accumulated.

	fq_name

	This is a convenience method. Give a partition and a name.
It will return a name that is “fully qualified,” i.e., includes
the partition. This is helpful in situations where users can
specify a name which, itself, is a fully qualified name. For
example, inputs of foo and /Common/foo would both return
/Common/foo.

	f5_argument_spec

	This returns the base set of arguments that all modules can consume.
This is usually combined with module specific arguments to form the
final ArgumentSpec.

Conclusion

The import block at the top of each module has a number of useful things injected into the module.

The next section skips down to the bottom of the file and begins exploring some of the common classes of a module. ArgumentSpec will be the first class we visit.

 Tutorial: Writing a module

Tutorial: Writing a module

The following tutorial explains how to create an F5 module for Ansible. This tutorial shows what is necessary to re-create the bigip_policy_rule module, which was released in Ansible 2.5. This module is a core part of LTM policy manipulation and, therefore, a crucial component of BIG-IP automation.

The module that you will re-create is considered to be an advanced module. It is, however, the one that illustrates all pieces of the current coding conventions. So it is useful to see the standards in their completeness instead of illustrating many different
modules.

This tutorial is split up into a number of different sections. Feel free to jump to any section for a reference.

	Requirements

	Stubbing the module fragments

	DOCUMENTATION variable

	EXAMPLES variable

	RETURN variable

	The import block

	The ArgumentSpec

	The ModuleManager

	Parameters

	Detecting Configuration Differences

	Collecting and Reporting Changes

	Main module execution

	Testing a module

General module design

This document discusses module development for the F5 Modules for Ansible.

As you follow the tutorial, you can use the following image to visualize how things are connected.

[image: ../../_images/f5-ansible-module-diagram.png]
This image shows a high-level view of what happens when a module executes. In general, the module is a pipeline that moves from the left side of the diagram to the right side of the diagram. You should keep this diagram nearby as the tutorial moves on to more code-heavy topics.

 Integration/Functional tests

Integration/Functional tests

This is probably the most important part of testing.

When you submit your module, you must submit functional tests, so that you and F5 can agree
that a module works on a particular platform.

When you submit a new PR, F5 will test your module on a variety of versions automatically, and
will provide feedback if issues exist.

Structure of tests

When you stub a new module, test file stubs are automatically created. There are several parts to
these stubs, and ultimately to the integration tests. All integration tests are composed of plain-old
Ansible features and components.

	A Playbook

	A Role

	Files

	Templates

	Inventory

The playbook

All integration tests begin their life in the Playbook. The Playbook used by the tests is a regular
Playbook that you might find in regular Ansible deployments. For the module being developed, here is the
Playbook that is used [https://github.com/F5Networks/f5-ansible/blob/devel/test/integration/bigip_policy_rule.yaml].

As might be expected, this Playbook has all the components of a “normal” Playbook. It specifies hosts,
has a name, declares variables, and includes a Role.

The Playbook and its contents are shown below.

- name: Test the bigip_policy_rule module
 hosts: "f5-test[0]"
 connection: local
 any_errors_fatal: true

 vars:
 limit_to: '*'
 __metadata__:
 version: 1.0
 tested_platforms:
 - NA
 callgraph_exclude:
 - pycallgraph.*

 # Ansible related
 - ansible.module_utils.basic.AnsibleModule.*
 - ansible.module_utils.basic.*
 - ansible.module_utils.parsing.*
 - ansible.module_utils._text.*
 - ansible.module_utils.six.*

 environment:
 F5_SERVER: "{{ ansible_host }}"
 F5_USER: "{{ bigip_username }}"
 F5_PASSWORD: "{{ bigip_password }}"
 F5_SERVER_PORT: "{{ bigip_port }}"
 F5_VALIDATE_CERTS: "{{ validate_certs }}"

 roles:
 - bigip_policy_rule

Because most of this is a normal Playbook, this tutorial will just cover the parts that are interesting.

The first interesting bit is the large vars section. Frankly speaking, this can be ignored by
most contributors as it is not something that is used by the functional tests directly. Its
purpose is to provide metadata to the module developers for use in tracking testing and things.

	Variable

	Purpose

	limit_to

	
	Not currently used

	In the future, this var may allow you to select the tests that you want to run.

	__metadata__

	
	Special variable used by F5 only to track F5-specific interests.

	Playbook metadata versions are described more in this document.

The environment section is also interesting in the context of the F5 modules. The modules support
specifying common connection parameters in the environment like this so that you do not need to specify
them in each task. To keep the size of the tasks small, the developers use this method.

The role

The Role contains all of the tests that will be run as part of the integration test suite.
Roles are written, and use all the same conventions, that normal Ansible Roles use.

Roles for integration tests can be found in the targets directory, right alongside the test
Playbook. Inside this directory are sub-directories. Each is named after the module under test.

For the purposes of this tutorial, the Role directory can be found here [https://github.com/F5Networks/f5-ansible/tree/devel/test/integration/targets/bigip_policy_rule].

This role has everything you would associate with a normal role in Ansible.

	If your test requires static files, then a files/ directory should be in your role.

	If your test requires template data (for example, iRules) for its input, then a templates/
directory should be in your role.

	All roles will perform some work to test the module, so a tasks/ directory should be in
your role.

When Ansible executes a role, it calls one file and one file only. That file is:

	tasks/main.yaml

All integration tests will originate from this file.

Additional files that are commonly found in the tasks/ directory alongside the
main.yaml file include:

	setup.yaml

	teardown.yaml

These files, as their names suggest, are used for setting up the integration tests that
will run, and tearing down the integration tests that have run, respectively.

Now let’s dig in to what a test should look like.

Test content

The implementation for the functional tests related to the module being developed in this
tutorial can be found here [https://github.com/F5Networks/f5-ansible/blob/devel/test/integration/targets/bigip_policy_rule/tasks/main.yaml].

The test itself will follow the pattern below.

	Perform some operation with the module

	Assert a change (and optionally other values)

	Perform the same operation again (identical)

	Assert no change

All of the tests work like this, and it is a decent smoke test for all modules.

Here is an example of a test from the module under development in this tutorial.

- name: Create rule for published policy, no actions, no conditions
 bigip_policy_rule:
 policy: "{{ policy_name1 }}"
 name: rule1
 register: result

- name: Assert Create rule for published policy, no actions, no conditions
 assert:
 that:
 - result is changed

- name: Create rule for published policy, no actions, no conditions - Idempotent check
 bigip_policy_rule:
 policy: "{{ policy_name1 }}"
 name: rule1
 register: result

- name: Assert Create rule for published policy, no actions, no conditions - Idempotent check
 assert:
 that:
 - result is not changed

All tests that change data should include a subsequent test that tries to perform the same test,
but whose result you do not expect to change.

These are idempotent tests because they ensure that the module only changes settings if needed.

Note

The test code itself is identical to the previous test. The test name includes the string
"- Idempotent check". This gives reviewers the ability to visually note that this is an
idempotent test. Additionally, it allows them to call out this specific test if running
the Playbook with the --start-at-task argument.

The assertion checks that the result has not changed. This is the important part, because
it ensures that the test itself was idempotent.

Test variables

Information specific to the tests that you need to run should be in the defaults/main.yaml
file of your test role.

By putting them there, you allow individuals to override values in your test by providing
arguments to the CLI at runtime.

Calling the test

There are two ways to run the tests. They are:

	Use a make command

	Run the playbook directly

The methods have different pros and cons depending on your objective. For those concerned
with developing modules, you will likely prefer the latter method: running playbooks directly.

	Method

	Pros

	Cons

	make command

	
	Not a lot to type

	Commands available for all modules

	Useful when verifying an otherwise known good test

	
	No debug output

	No ability to step through tests

	No ability to start at specific tests

	Run Playbook

	
	Supports all Ansible commands

	Supports skipping

	Supports debug

	Supports stepping

	Supports specifying overriding arguments

	Supports tag selection

	
	Requires more typing

	Requires knowledge of Ansible commands

Since this tutorial is interested in development of a module, it will use the “Run Playbook”
method.

To run the tests without make, first, change to the following directory:

	test/integration

Next, find the playbook that matches the module you wish to test. Using this playbook, run
ansible-playbook as you normally would. A hosts file is provided in the inventory directory.

An example command might be:

ansible-playbook -i inventory/hosts bigip_policy_rule.yaml -vvvv --step

This is the most flexible option during debugging, and it is the recommended way to test the
modules.

Including supplementary information

If you include files inside of the files/, templates, or other directories in which the
content of that file was auto-generated or pulled from a third party source, you should
include a README.md file in your role’s directory.

In this file, you can include steps to reproduce any of the input items that you include in
the role subdirectories.

In addition, this is a good location to include references to third-party file locations if
you have included them in the tests. For example, if you were to include iRules or other
things that you downloaded and included from DevCentral or similar.

The README.md is there for future developers to reference the information needed to re-create
any of the inputs to your tests.

Other testing notes

When writing your tests, you should concern yourself with “undoing” what you have done
previously to the test environment.

The test environment boots harnesses for each suite of tests. This means that all tests run on
the same harness. Therefore, someone might accidentally use changes you made in one of the integration
tests as a basis for subsequent tests. This makes using the ansible-playbook previously mentioned
arguments (--step, --start-at-task, --tags, etc.) much more difficult.

Therefore, please clean up after yourself. Since you need to test the absent case in most
cases, this is a good opportunity to do that. The teardown.yaml file can also be used to
teardown any resources that were created to assist in testing your module.

Conclusion

If you’ve made it this far, then give yourself a pat on the back. This officially concludes the
mainline tutorial concerning module development. At this point you should be much more familiar
with the parts that make up a module, as well as the assortment of supporting files for the
module.

Feel free to peruse the other development-related docs on the site, and keep an eye out for
future documents that detail more technical methods for development. Finally, since the
process of module development (and the conventions that are used) are continually changing,
be sure to frequently refer back to these pages for updates to your existing knowledge.

 Main module execution

Main module execution

At this point in the module’s development, the module is largely complete. In this section, we’ll
cover one of the boilerplate methods that ships with all the modules; the main function.

It is not necessary that you implement this function. We cover it here so that you are able to
combine the knowledge of how the module executes, with where its execution actually begins.

The main function

In the module used for this tutorial, the main function is defined at the bottom of the
source code [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L859].

The implementation of it is almost entirely boilerplate. Here it is.

def main():
 spec = ArgumentSpec()

 module = AnsibleModule(
 argument_spec=spec.argument_spec,
 supports_check_mode=spec.supports_check_mode
)
 if not HAS_F5SDK:
 module.fail_json(msg="The python f5-sdk module is required")

 try:
 client = F5Client(**module.params)
 mm = ModuleManager(module=module, client=client)
 results = mm.exec_module()
 cleanup_tokens(client)
 module.exit_json(**results)
 except F5ModuleError as ex:
 cleanup_tokens(client)
 module.fail_json(msg=str(ex))

The operation of this function is as follows.

First, the ArgumentSpec and the AnsibleModule classes are initialized. You have seen both
of these in the past, so you should know their purpose.

	ArgumentSpec defines what the module can do

	AnsibleModule uses the ArgumentSpec to validate user input

Next, a series of validations are made on the available libraries used in this module. The
series above only includes one check, but others can be added as necessary. See the section
later in this document that discusses under what circumstances you would want to do this.

Next is the main try...except block. This exception handling is in place to catch all of the
known F5 generated errors. It very specifically does not catch the general Python Exception
class. This is done this way because module developers want bugs reported that are not known to
them already. Handling Exception though, would prevent those bugs from raising.

The internals of the try block include the instantiation of the F5Client object. This
object will be used later for all communication with the F5 product.

Note

When the F5Client class is instantiated, a connection is not immediately made to the
remote F5 product. This is intentional, because some modules (like bigip_wait) require that this does not
happen.

The ModuleManager class is also instantiated here and is given the AnsibleModule object
as well as the F5Client object. These will be necessary later when the manager is busy
executing.

Execution of the manager is next using the exec_module method call. The return value of this
call is what will be returned to the user.

Before that return can take place, however, a function is called to clean up the authentication
tokens on the F5 device.

Note

The cleanup_tokens method is not put in the ModuleManager because the manager
can fail in a variety of places due to F5ModuleException’s being raised by error checking
code. This function must be run after manager execution.

Finally, the module cleanly exits with the exit_json method if everything up to this point
has gone well.

If failure occurred at any time, the except block is invoked and a cleanup of authentication
tokens is done. The failing module reports back to Ansible with the fail_json method of
the AnsibleModule class.

When to change the main function

The only time it would be necessary to change the main function is if you included other
module dependencies that needed to be checked for at runtime.

Note the two lines above, shown here.

if not HAS_F5SDK:
 module.fail_json(msg="The python f5-sdk module is required")

This series of conditionals would need to be changed if you were, for example, to include the
Python netaddr module in your work. Any dependencies of the module need to be checked for here
(and fail the module if they are not found) to ensure that the module runs correctly.

Executing main

The final two lines in your module inform Python to execute the module’s code if the script
itself is executable.

if __name__ == '__main__':
 main()

Because of how Ansible works, when the main function contacts the remote device (or runs
locally), it is not called if you import the module.

You would import the module if you were using it outside of Ansible, or in some sort of test
environment where you do not want the module to actually run.

Conclusion

This concludes the entirety of the core module development tutorial. At this point in time, if
you followed along and copied code correctly, you should have a functioning module.

In the remaining sections, we’ll cover the business of testing: a requirement for F5 module
development.

 The ModuleManager

The ModuleManager

The next class that we will look at is the ModuleManager class.

The previous section stated that the ModuleManager is considered the
traffic cop of the module. It is also the main ingress point into all future work that
the module can take.

This class can take several forms. The most typical form though is a rather simple form
of the Command pattern. This is the type of ModuleManager that is used in this
module.

Other forms that the manager can take vary with the needs of the module. A common alternative
of the Command pattern in the ModuleManager is the use of the Factory pattern.

The Factory pattern, for example, is used in a number of GTM modules. It is a go-to pattern
for cases where the F5 module developers need to create one module to support a variety of
versions of an F5 product. For example, the major API changes that occurred in GTM between
versions 11.x and 12.x.

The ModuleManager class is usually where the specifics of your code will be. The f5ansible
command will create a generic version of this for you. It is your responsibility to change
the API calls as needed.

Versions of the coding standards

This would be a good point in time to discuss how the ModuleManager implementation (and
a number of other classes) have changed in design over time. This gives some history to the
story, and insight into what has been done in the past.

Below are examples of the different versions of the design standards that have existed at
one point or another:

	version 3.1.1 (current) [https://github.com/F5Networks/f5-ansible/blob/8505ed1a245673aa856eb88baad9896bbe87994b/library/bigip_pool.py]

	version 3.1 [https://github.com/F5Networks/f5-ansible/blob/f6ae5eecbcffdf0008905830dbefb4044f849a14/library/bigip_monitor_tcp_echo.py]

	version 3 [https://github.com/F5Networks/f5-ansible/blob/b81304b75d0d3a4d406f20e121ac3c3285168c2d/library/bigip_device_sshd.py]

	version 2 [https://github.com/F5Networks/f5-ansible/blob/b6a502034e21d1d7039ec0cbb642e22259d646fc/library/bigip_routedomain.py]

	version 1 [https://github.com/F5Networks/f5-ansible/blob/b0d2afa1ad0b5bef29526477bb1ca0cdfd74ff74/library/_bigip_node.py]

Note

The ModuleManager class will change over time as design standards change. The above
examples are for historical reference and training.

Most modules these days will “look” like version 3.1.1 (as of the time of this writing). The F5 module developers expect this to change as their needs change.

When a change in the coding standards happens, work must be undertaken to ensure that all modules are brought up to spec. This is an arduous task that will get more difficult as time goes on and the total number of F5 modules for Ansible increases.

Nevertheless, it is more difficult to maintain the F5 Modules for Ansible code base if the modules are each in varying states of convention.

ModuleManager for bigip_policy_rule

The ModuleManager for this module is shown in its entirety at this link [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L596]. For this tutorial, you should reproduce this class in your own module file.

The remainder of this content covers several things.

	The changes to make to this module to reflect the required functionality.

	Explanations of the different methods in the class and how they relate to the
ModuleManager’s responsibilities.

	Conventions that are allowed when you want to extend the functionality of the manager.

	An example of the Factory ModuleManager and how the flow of a module changes to
accommodate the pattern.

The common methods

The following methods are part of the boilerplate that is generated by the f5ansible
command.

The __init__ method

This method initializes the ModuleManager class. In this method, a couple of
important things are initialized.

A number of variables are set. These variables are used throughout the module.

	Variable

	Instance Of

	Purpose

	self.module

	AnsibleModule

	The self.module variable contains the AnsibleModule
object. This allows the ModuleManager class to have
access to the parameters that were sent to the module.

	self.client

	F5Client

	The self.client variable contains your copy of the
connection to the F5 product. This variable is used
extensively in the *_on_device and *_from_device
methods that are discussed later.

	self.want

	ModuleParameters

	The self.want variable is a common theme across a
number of areas of the module, the Difference and
ModuleManager classes in particular. This object
exposes all of the parameters sent to the module, as
properties of the self.want object. You will refer to
this module for all future operations that require you to
get the data that was sent to you by the user. It is the
configuration that the user “wants.”

	self.have

	ApiParameters

	The self.have variable is similar to the self.want
variable. It, too, is a collection of parameters that are
available as properties. The difference is that, while the
self.want variable is what the user wants, the
self.have variable contains the configuration that the
system already has. With these two variables, you are
able to do all of the comparison needed to support updating
resources on the F5 products.

	self.changes

	UsableChanges

	The self.changes variable contains a copy of the
usable changes that will be discovered by the
Difference class. When the Difference class is
used, it generates a number of properties. These properties
usually match the properties that you’ve been working with
in the self.want and self.have objects. With
self.changes, the module gives you one last opportunity
to make sure that your API values are formatted as you want
them to be. It is this object that is then usually
delivered to the API.

The _update_changed_options method

This method invokes the Difference class to check for updates.

Use this method when requesting an update to an existing resource. When this method runs,
the self.changes object is updated with the changes needed when updating the API.

A key point about this method is the way the results of diff’ing parameters are interpreted. The return value of a compare operation of the Difference class is
either a scalar value or a dictionary of values.

If a scalar value is returned, it is just associated with the key that matches the parameter
being compared. For example:

changed[k] = change

Where changed is a dictionary of results that will become the UsableChanges.

If a dictionary value is returned, it is merged into the changed dictionary. Each key
and value of the returned dictionary becomes a key and value of the changed dictionary.
For example:

changed.update(change)

The should_update method

This method is very similar to the _update_changed_options, except this method is used when creating a new resource only. In this case, there is no Difference class that
you need to invoke.

The exec_module method

This method is the only ingress point into the execution of the module. All modules run
this command to begin execution.

The exact implementation of this method can vary from module to module, however, what usually
changes is only the if...else statement in the body of it. Other implementations may
have more states, or even no states.

Just remember that this is the ingress point to all module execution.

The _announce_deprecations method

The purpose of this method is to notify the user of the module (via the Playbook) that a
feature they are using is deprecated.

The present method

This is a simple method that directs the execution of the module based on whether the
requested resource needs to be created or updated. This method is usually called from
the exec_module method.

The exists method

This is the first method you will change.

The purpose of this method is to determine if a resource currently exists. You must change this method to reflect the APIs of the module that you are writing. During unit
testing, you will be stubbing out this module because you will be driving code paths and
have no need to communicate with a real device.

The update method

This method is responsible for dealing with update-specific logic. It is the last chance
you have before you drop the API data on the wire to send to the
remote F5 device.

The content of this module usually changes for each module (and is expected to change).
Therefore, this is another method that you will change from the default
boilerplate implementation.

This method wraps the update_on_device method.

The remove method

This method is responsible for dealing with resource removal-specific logic. It is the last
chance that you have before the request to delete the resource is dropped on
the wire.

The content of this module usually changes for each module (and is expected to change).
Therefore, this is another method you will want to change from the default
boilerplate implementation.

This method wraps the remove_from_device method.

The create method

This method is responsible for dealing with resource creation specific logic. It is the last
chance that a module developer has before the request to create the resource is dropped on
the wire.

The content of this module usually changes for each module (and is expected to change).
Therefore, this will be another method that you will want to change from the default
boilerplate implementation.

This method wraps the create_on_device method.

The absent method

This is a simple method that directs the execution of the module based on whether the
requested resource needs to be deleted or not. This method is usually called from
the exec_module method.

The create_on_device method

This method is one of the major override points in a module. This method must be customized
to reflect the APIs required by your module for resource creation.

The update_on_device method

This method is one of the major override points in a module. This method must be customized
to reflect the APIs required by your module for resource updating.

The remove_from_device method

This method is one of the major override points in a module. This method must be customized
to reflect the APIs required by your module for resource removal.

The read_current_from_device method

This method is one of the major override points in a module. This method must be customized
to reflect the APIs required by your module for fetching resource details from the remote
device.

This method returns a copy of the ApiParameters, or similar, class.

The other methods

The remaining methods in the ModuleManager class are specific to this module. They are
supporting methods, whose purpose is to make the developer’s task easier in implementing a
particular piece of functionality.

Usually, these custom methods are prefixed with an underscore (_) character, such as in the
following methods.

	_create_existing_policy_draft_on_device

Note

While this method seems to be named after the special *_on_device methods mentioned earlier, it is in fact a module-specific method. The other *_on_device
methods mentioned earlier are part of the common ModuleManager class and are stubbed out for you. The above method is not stubbed out for you and you would
need to add it.

Other times, these methods have no underscore, such as in the following methods.

	draft_exists

	publish_on_device

Again, just like the underscored methods, the non-underscored methods (while they have
a similar *_on_device naming scheme) are not considered core methods. The important
point is to use the *_on_device pattern when you need to communicate with the
remote F5 device.

Conclusion

By now, the ModuleManager class you have been working with should be fleshed out. This
class is the core point of control in the module. It contains the only ingress point in
the execution of the module. It also contains all the other integration points with all the
other classes in the module.

The next section explores the classes related to parameters.

 ModuleParameters class

ModuleParameters class

The ModuleParameters class is one of two major Adapter-based classes that routinely appears
in the F5 Modules for Ansible. The job of this class is to act as a translation layer, or
adapter between the data received from the user (via Ansible) and the data used in the module.

For this tutorial, you should navigate to the appropriate section [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L327] of the stable 2.5 source
code and copy it in to your working module at the same location that it exists in the stable
branch.

The rest of this section discusses implementation details of this class.

Internal methods

Adapter classes such as ModuleParameters may have any number of internal methods added to
them.

In this module’s implementation, the class has several methods:

	_handle_http_uri_condition

	_handle_forward_action

	_handle_enable_action

As mentioned in the ApiParameters class section, this is an encouraged behavior. Small
functions that handle assist the developer in meeting their goal, are encouraged.

@property methods

Like the ApiParameters class, the ModuleParameters will also be composed of (module-specific) @property decorators. The purpose is completely the same as the
ApiParameters. This module is an implementation of the Adapter pattern, and therefore,
it should be used to adapt the values that are received from the Ansible module (i.e., the user)
into what is usable inside the module code.

Conclusion

There is nothing specific about the ModuleParameters class that has not already been
covered in the ApiParameters content. In a module, the most likely adapter that you
will modify is the ModuleParameters class. This is because the Ansible
module will often offer arguments that do not map cleanly to the F5 product’s API.

In the next section, the Difference class will be explored in greater detail.

 Parameters

Parameters

The Parameters topic is more broad than just a single class. Therefore, in this section,
only the Parameters base class will be discussed. There are concrete classes that inherit
from this base class and they are discussed in the sections listed below.

Concrete Parameters

	ApiParameters class

	ModuleParameters class

The Parameters base class

Each module has a class named Parameters. This class is a base class
for the more specialized ApiParameters and ModuleParameters classes. The purpose of
this base class is to provide functionality and data that is used in both of the specialized
classes.

The Parameters classes implementation is a little boiler plate mixed with several module-specific changes. This means that for this tutorial (and for any custom modules that you
may write in the future) it is almost certain that you will be changing parts of it.

For the tutorial’s module, please refer to this link [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L231] for the correct source code for the
module’s Parameters class. Replicate this implementation in the tutorial’s module.

The Parameters class boilerplate

The implementation of the Parameters class contains some boilerplate code. Let’s look
at that boilerplate and what it means.

The top-of-class variables

There are several variables that each Parameters class usually defines.

	Variable

	Purpose

	api_map

	This is a dictionary (use { ... } form) that maps API Parameter
attribute names to property names used internally by the module.
This functions as a quick way for the module developer to define a
series of property variables that require no form of manipulation
when they are received from the API. There are many resource attributes
that play well with the user of the API, but they vary from API to API.

	api_attributes

	This is a list of attributes for the resource being modified as they
are named in the API. This is used when generating the return value
that the api_params method returns. Nearly every module should have
this class parameter defined. The value of this list will vary with the
module. name and partition attributes are not defined here.

	updatables

	This is a list of attributes that should be updatable. The list
contains internal attribute names; i.e., the property values
that the developer uses within the module. This list is also used by
the Difference class to determine which attributes should be
compared during an update.

	returnables

	This is a list of properties that you want to return to the user after
the module finishes running. The names in this list are sent to the
ReportableChanges class, as well as received back from that class
(after appropriate formatting).

The top-of-class variables should always be defined (even if they are empty) because they are
used through the module.

Common properties

This module’s Parameters class has several @property definitions included in it. These
are not a requirement for all modules. Instead, putting the properties here allows those
properties (and their return values) to be used in both the ApiParameters and
ModuleParameters automatically.

Note

Be sure to only put properties here that are 100% common to the API and Module parameters
classes. Even a slight deviation in return values among code in the different parameters
classes can cause issues.

Some of the common properties that this module has (but that others may not) are:

	name

	description

	policy

Conclusion

The general Parameters should only be used for the things that are truly generic between
the ApiParameters and ModuleParameters classes. The most common of these are the
top-of-class variables. Links to deeper dives on the concrete classes are listed at the top
of this topic. Use them as an introduction to those classes and their purpose in the module.

 Reporting Changes

Reporting Changes

The second of the two Changes classes that can be encountered in a module’s execution is
the ReportableChanges class. The implementation of this class for the module being developed
in this tutorial can be found here [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L442].

Purpose

As mentioned earlier, the general purpose of all the Changes classes is to serve as a place
for massaging data. The ReportableChanges class is responsible for massaging data that is
about to be sent back to the user.

This class implements an Adapter pattern, similar to the Adapter patterns that were implemented
by the ApiParameters and ModuleParameters classes. Since you have already worked with
those classes, you should be more than familiar with what needs to happen in this class.

Additionally, because this class is nothing more than another Adapter, its implementation is
completely optional. It will exist as a stub in your module by default. It is your responsibility
to implement it as needed.

So what sort of data do you need to adapt at this point in the module?

Consider the implementation that is found in the module that is being studied here.

Implementation

Let’s look at one of the adapted properties in this class. The other is largely similar in purpose
and function, so we’ll skip it. You should, however, implement it for completeness in your copy of
the module.

@property
def actions(self):
 result = []
 if self._values['actions'] is None:
 return [dict(type='ignore')]
 for item in self._values['actions']:
 action = dict()
 if 'forward' in item:
 action.update(item)
 action['type'] = 'forward'
 del action['forward']
 elif 'enable' in item:
 action.update(item)
 action['type'] = 'enable'
 del action['enable']
 result.append(action)
 result = sorted(result, key=lambda x: x['name'])
 return result

Remember that earlier it was mentioned that the purpose of these classes is to adapt data
immediately before it returns to the user. This module made use of an actions property that
was observed in the different Parameters classes, and even the Difference class.

For the module to have done its work, it needed to create an internal representation of the data
to do things like comparison. It did this in the Parameters classes. Now that the comparison
is done though, it has to sent those updates to the BIG-IP. The data format used by the API
though is unlikely to be the same as the data format expected by the user.

Remember that, in the user’s world view, they are unaware of:

	The F5 product API data format

	The internal Ansible module representation

The user is only familiar with the format of the parameters sent to the module. This classes
adaptation, therefore, needs to go towards making sure that what was sent to the API is translated
back to what the user is familiar with.

Therefore, this adapter for the actions property is tasked with converting the API
representation of the data back into a format that is capable of being recognized by the
Ansible user.

In the implementation here, you can see that key names are being changed to the ones that are
known to the user. Additionally, data is being deleted from the existing dictionaries so that
it is not accidentally sent to the user.

Received values

The values that are received by the ReportableChanges are those that were contained in the
UsableChanges class. You can see this at work in the exec_module method of the
ModuleManager class.

For example:

reportable = ReportableChanges(params=self.changes.to_return())
changes = reportable.to_return()

Where self.changes is the UsableChanges object, and to_return is a method that
takes the returnables class variable into account.

Note that the returnables class variable is defined in the ReportableChanges class. It
is not always this way. Indeed, you will often find this variable defined in the base
Parameters class. Because the ReportableChanges ultimately inherits from the base
Parameters class, it is a matter of taste where you put it.

Conclusion

There is really not much more to say about this class. You’re now aware of its place in the
pipeline, and prior to that knowledge, you already had a firm understanding of the purpose of
the various adapters in the module.

It’s not always necessary to implement this class. Indeed, in a good API, you will never need
to be concerned with this class. Situations that warrant it usually involve complex data types
that needed to be converted to representations that the user is familiar with.

In the next section, we’ll look at the main function.

 Requirements

Requirements

To develop modules, you need the following:

	docker

	docker-compose

	A copy of the f5-ansible source code [https://github.com/F5Networks/f5-ansible] that you cloned by using git clone

	A built copy of the development container

Docker and docker-compose

The installation of docker and docker-compose are beyond the scope of this document. However, here are links to assist you:

	https://docs.docker.com/install/#cloud

	https://docs.docker.com/compose/install/

Note that you should install the CE version of Docker. Depending on your operating system, packages for one or both of these tools may already be available. You are advised to use them if they are.

Note

On macOS X, if you install the pre-compiled binaries for Mac from the Docker website, the docker-compose tool comes pre-installed with docker.

The development container

To acquire a copy of the development container, issue the following command after you install docker and docker-compose.

$ docker-compose -f devtools/docker-compose.yaml build

This step can take some time to finish because each of the containers needs to build.

After the containers are built, use the docker-compose command with the run argument to enter one of the containers. For example:

$ docker-compose -f devtools/docker-compose.yaml run py2.7

The remaining steps can take place inside this container. Actual code writing does not need to happen inside the container, because docker-compose mounts your source directory to the container’s /here directory.

 RETURN variable

RETURN variable

When a module finishes running, F5 usually wants to report back to the user with the new state
of the module and anything that may be relevant to them.

The general rule of thumb is to return data that is in the same format that the user supplied to the module.

Why is this important?

Parameter consistency and validity

Imagine, if you will, a scenario where you go to your bank to have a $20 bill broken up
into a smaller denomination of money. For example:

	A $10 bill

	A $5 bill

	And five $1 bills

When you reach the teller and hand them your money, they instead give you back:

	A duck

	A chicken

	A crow

Technically, these are all birds, but combined, they have no relevance to what you put in
to the transaction. If you put money in, you expected money out; not various fowl.

The same principal applies with to the F5 Modules for Ansible. If you put in a list of dictionaries,
such as the example below:

actions:
 - type: forward
 pool: pool-svrs

Then it would make sense that after the module completes and makes any changes it deems
necessary, you should receive data back out that is in the same usable form.

Exceptions to the rule

Not all information that the user puts in is information that is relevant on its way back
out. For example, the state variable usually contains information that is not typically
re-used in Ansible.

There are some instances though when the state is “more” relevant, such as when it contains
more than just absent and present, such as in the bigip_virtual_server module.

Another example would be when the module consumes otherwise sensitive information. For example,
the bigip_ssl_certificate and bigip_ssl_key modules consume parameters that you
probably do not want echoed back out (like keys and certs). Therefore, we suppress that in
the return value.

One more example is in situations where modules can consume a whole lot of data. For example,
the bigip_data_group module can consume megabytes or more of data. It makes no sense to
echo all this back out to the user.

RETURN variable for the example module

With the above made known, here is the content of the RETURN variable as it applies to
the module we are in the process of writing.

RETURN = r'''
actions:
 description: The new list of actions applied to the rule
 returned: changed
 type: complex
 contains:
 type:
 description: The action type
 returned: changed
 type: string
 sample: forward
 pool:
 description: Pool for forward to
 returned: changed
 type: string
 sample: foo-pool
 sample: hash/dictionary of values
conditions:
 description: The new list of conditions applied to the rule.
 returned: changed
 type: complex
 contains:
 type:
 description: The condition type
 returned: changed
 type: string
 sample: http_uri
 path_begins_with_any:
 description: List of strings that the URI begins with.
 returned: changed
 type: list
 sample: [foo, bar]
 sample: hash/dictionary of values
description:
 description: The new description of the rule.
 returned: changed
 type: string
 sample: My rule
'''

Conclusion

When the Ansible module documentation is generated, these values are output in a table.
You can see an example of the kind of table that is created here [https://docs.ansible.com/ansible/latest/bigip_pool_module.html#return-values]. This is the final
documentation-related blob that will be added to the module. Up next, we will cover the
import block.

 Stubbing the module fragments

Stubbing the module fragments

At this point, you’re ready to begin working in the development environment that you downloaded or built.

If you have not already, run the development container now. The remainder of the tutorial uses the py3.6 container.

Use the following command to run the development container:

$ docker-compose -f devtools/docker-compose.yaml run py3.6

Note

F5 employees should use the following command. This assumes that you have contacted a member of the development team to prepare your environment.

$ docker-compose -f devtools/docker-compose.yaml -f devtools/docker-compose.site.yaml run py3.6

Recreate the stubs

This tutorial recreates the bigip_policy_rule module, because it provides good examples of the common idioms you will encounter when developing or maintaining modules.

Because this module already exists, you must first remove it. The development
container provides a tool to do this. Using the f5ansible command, provide the
following arguments to delete the existing bigip_policy_rule module and its
associated stubs.

$ f5ansible unstub module bigip_policy_rule

Use the git status command to see that a number of files are reported as deleted now. Now, recreate the stubs from scratch.

There are a number of files and directories you must create to hold the various test and validation code, in addition to the module code itself and docs.

To create the necessary directories and files automatically, use this command:

$ f5ansible stub module bigip_policy_rule

When it finishes running, you will have the necessary files available to begin working on your module.

Stubbed files

The stubber creates a number of files that you need to do some form of development on.

These files are:

	docs/modules/bigip_policy_rule.rst

	library/bigip_policy_rule.py

	test/integration/bigip_policy_rule.yaml

	test/integration/targets/bigip_policy_rule/

	test/unit/bigip/test_bigip_policy_rule.py

For now, disregard the first file there (the docs file) because you have tools in this container that will help you build all of those tools automatically.

With these files in place, you’re ready to begin re-creating the source for the bigip_policy_rule module.

Open the library/bigip_policy_rule.py file.

Library stub

The library file is the module itself. Inside this file is all of the work that you
will be doing to make this add LTM policy rule functionality to Ansible.

The f5ansible command provides you with a starting point.

As you scroll through the library file, take note of the names of the classes that you
encounter. Take note of the imports near the top of the file and how there are different
sets of them.

When you reach the bottom, observe how the module’s execution actually occurs. The module
is written using the standard Python pattern of writing a Python module (not an Ansible
module; same words, different meaning) that can be both included and executed. In other
words, used as a library, or run as an application.

In the tutorial, you will see how the module is used in both ways: whether it will be included
in a unit test, or executed in a Playbook run.

Up next

In the next section, we will see how to change one of the required areas to update: the DOCUMENTATION variable.

 Testing a module

Testing a module

Providing tests with your module is a crucial step for having it merged and subsequently pushed
upstream.

This section provides detail on the organization of tests and how you can write your own to
ensure that your modules work as designed.

	Unit Testing

	Integration/Functional tests

 Unit Testing

Unit Testing

Unit testing ensures that the general execution of the module code is correct. It is
the fastest way to test, requires no F5 products, and is what the developers recommended be used
when doing the initial development of a module.

While both forms of testing are important, the unit tests will not tell you if you have a fully
functioning module. Functional tests are the only things that can provide anything close to this
assurance. Nevertheless, unit tests are required by the F5 module developers. When contributing
code to upstream Ansible, only unit tests may be submitted to the core product. This is because
the Ansible developers do not have the ability to test F5 products.

Filesystem location

All unit tests are located in the following directory:

	tests/unit/

Changing to this directory will show a number of files that are named after different modules.
For example:

-rw-r--r-- 1 trupp OLYMPUS\Domain Users 3507 Jan 24 17:20 test_bigip_config.py
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 4138 Feb 15 11:21 test_bigip_configsync_action.py
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 16007 Feb 22 09:27 test_bigip_data_group.py
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 12692 Jan 24 17:20 test_bigip_device_connectivity.py
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 4323 Jan 24 17:20 test_bigip_device_dns.py
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 5547 Jan 24 17:20 test_bigip_device_group.py

These files are the unit test files themselves. The test/unit/ directory also includes another
directory of interest:

	fixtures/

This directory contains a number of static data files that are used by the different unit tests.

As will be seen later during test development, the files in the fixtures/ directory can be
easily loaded by using functions in the unit test file. Examples of fixture files are:

-rw-r--r-- 1 trupp OLYMPUS\Domain Users 912 Nov 14 19:22 load_tm_sys_syslog.json
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 893 Jan 24 17:20 load_tm_sys_ucs.json
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 969 Nov 14 19:22 load_vcmp_guest.json
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 808 Nov 14 19:22 load_vlan.json
-rw-r--r-- 1 trupp OLYMPUS\Domain Users 510 Dec 18 18:37 load_vlan_interfaces.json

Note

Fixture files are often in JSON format, because the REST API returns information in this format. Unit tests use these REST response payloads to verify the
tests’ correctness.

Tutorial module implementation

The implementation of the tutorial module’s unit tests can be found here [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/test/unit/test_bigip_policy_rule.py]. Additionally, you
will need to have the following fixture files downloaded and placed in the fixtures
directory.

	load_ltm_policy_draft_rule_http-uri_forward.json [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/test/unit/fixtures/load_ltm_policy_draft_rule_http-uri_forward.json]

General things to know about unit tests

Unit tests for the F5 Modules for Ansible are written using pytest [https://docs.pytest.org/en/latest/].

For pytest to be able to run your unit tests, your tests must follow these rules.

	Classes, if used, must start with the string Test. Spelling must be exact.

	Methods or functions containing tests must start with the string test_. Spelling must be
exact.

	Unit tests do not need to do any form of cleanup. Pytest handles cleanup for you automatically.

Writing a unit test

Let’s take the time now to write the unit tests for the module that was developed in this
tutorial. During the initial stubber run, the f5ansible command produced a unit test file that included a sampling of what will need to be done.

Let’s touch on those boilerplate blocks before investigating the actual testing code.

Import block

At the top of the unit test file (like at the top of many Python source code) there are a series
of import statements. These tell Python to include different bodies of code that come either
pre-installed with Python, or as separate packages that you should have installed.

Note

All of the dependencies for typical F5 modules for Ansible are pre-installed for you in the
development Docker containers that were mentioned at the beginning of the tutorial.

Some of the imports of interest are:

	The SkipTest import

	The dev versus prod import

First, the SkipTest import. This import is defined as such:

from nose.plugins.skip import SkipTest
if sys.version_info < (2, 7):
 raise SkipTest("F5 Ansible modules require Python >= 2.7")

The purpose of this import is to declare that the F5 modules require Python versions
greater than, or equal to, 2.7. Over time, it is expected that this check will change to require
Python 3 and beyond. Therefore, be sure to keep aware of this and do not find yourself in a
situation where you are unable to upgrade either your operating system, or Python, to later
versions.

Next, the dev/prod import. This import is defined as such:

try:
 from library.bigip_policy_rule import Parameters
 from library.bigip_policy_rule import ModuleParameters
 from library.bigip_policy_rule import ApiParameters
 from library.bigip_policy_rule import ModuleManager
 from library.bigip_policy_rule import ArgumentSpec
 from library.module_utils.network.f5.common import F5ModuleError
 from library.module_utils.network.f5.common import iControlUnexpectedHTTPError
 from test.unit.modules.utils import set_module_args
except ImportError:
 try:
 from ansible.modules.network.f5.bigip_policy_rule import Parameters
 from ansible.modules.network.f5.bigip_policy_rule import ModuleParameters
 from ansible.modules.network.f5.bigip_policy_rule import ApiParameters
 from ansible.modules.network.f5.bigip_policy_rule import ModuleManager
 from ansible.modules.network.f5.bigip_policy_rule import ArgumentSpec
 from ansible.module_utils.network.f5.common import F5ModuleError
 from ansible.module_utils.network.f5.common import iControlUnexpectedHTTPError
 from units.modules.utils import set_module_args
 except ImportError:
 raise SkipTest("F5 Ansible modules require the f5-sdk Python library")

The purpose of this import block is the same as the purpose of a similar import block that
existed in the actual module code. The content in the try section attempts to import
development code (code in the f5-ansible Github repository) and if that fails, it will attempt
to load product code (code in the upstream Ansible Github repository).

This differentiation is used by the F5 module developers to allow for development out-of-band
of the upstream Ansible product.

Therefore, this import block serves a similar purpose to the module’s block. The major difference
is that the things that are imported are different. The unit test is interested in importing
the classes that are defined in the module. It will test these classes later.

Note

There is an ongoing disagreement among developers about what constitutes a “unit” for test.
F5 considers the “unit” under test the class, not the methods of the class.

Fixture setup

After the import block, the fixture setup block can be found. It is implemented like so.

fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures')
fixture_data = {}

def load_fixture(name):
 path = os.path.join(fixture_path, name)

 if path in fixture_data:
 return fixture_data[path]

 with open(path) as f:
 data = f.read()

 try:
 data = json.loads(data)
 except Exception:
 pass

 fixture_data[path] = data
 return data

The first assignment in this block is used to declare two things:

	Where the fixtures can be found

	A cache for the fixtures to prevent re-reads from disk

After the assignment statements comes the definition of the load_fixture function. This
function is what is responsible for using the two assignments above.

Parameter unit tests

The first set of unit tests that are stubbed (and the tests which are likely to be written
first) are the Parameters class unit tests.

The parameters tests are typically defined by a class named TestParameters. The purpose of
this class is to test the different combinations of arguments that one can send to the different
parameter classes (ApiParameters and ModuleParameters).

Usually, you will provide the class an argument, and then assert that some property of the
Parameters class is equal to an expected value.

Using the module being developed as an example, refer to the code below.

def test_module_parameters_policy(self):
 args = dict(
 policy='Policy - Foo'
)
 p = ModuleParameters(params=args)
 assert p.policy == 'Policy - Foo'

As stated previously, the test sets some property to some known value. It then creates an
instance of the Parameters class under test–in this case ModuleParameters. It provides
the defined arguments to this class in the same way that the Ansible module does.

Finally, it performs an assertion to check that some expected @property is equal to some
expected value.

All of the Parameter tests resemble this format.

There is no limit on the number of tests you are allowed to write. The general rule of thumb
is to follow code-coverage reports to determine what tests are missing.

ModuleManager unit tests

The second set of unit tests that will be stubbed out are the ModuleManager tests. There
may be either a single class, or multiple classes, for testing the module manager(s). For
instance, if the Ansible module under test is a factory module (such as several GTM modules)
there may be two classes for module manager tests.

The basic definition of a ModuleManager test class is shown below.

class TestManager(unittest.TestCase):

 def setUp(self):
 self.spec = ArgumentSpec()

In the above stub, a method names setUp is defined. This is typical of all manager test
classes. The job of this method is to, (according to the unittest documentation [https://docs.python.org/2/library/unittest.html])

…define instructions that will be executed before and after each test method

In this case, the unit tests will require an ArgumentSpec definition before they can run.
By putting this definition here, it can be used in all of the remaining unit tests in the class.

Actual tests

The actual unit tests of the ModuleManager should include (at a minimum) the following
tests:

	A creation test

	An update test

	A deletion test

	An idempotent creation test

	An idempotent update test

	An idempotent deletion test

You are unlikely to find all of these tests for every module that exists, but it is still a goal
of module development to produce this minimum set of tests.

Below is the implementation of a creation test.

def test_create_policy_rule_no_existence(self, *args):
 set_module_args(dict(
 name="rule1",
 state='present',
 policy='policy1',
 actions=[
 dict(
 type='forward',
 pool='baz'
)
],
 conditions=[
 dict(
 type='http_uri',
 path_begins_with_any=['/ABC']
)
],
 password='password',
 server='localhost',
 user='admin'
))

 module = AnsibleModule(
 argument_spec=self.spec.argument_spec,
 supports_check_mode=self.spec.supports_check_mode
)

 # Override methods to force specific logic in the module to happen
 mm = ModuleManager(module=module)
 mm.exists = Mock(return_value=False)
 mm.publish_on_device = Mock(return_value=True)
 mm.draft_exists = Mock(return_value=False)
 mm._create_existing_policy_draft_on_device = Mock(return_value=True)
 mm.create_on_device = Mock(return_value=True)

 results = mm.exec_module()

 assert results['changed'] is True

The basic design of a test follows these steps:

	Define some parameters using set_module_args

	Create an instance of AnsibleModule

	Create an instance of ModuleManager

	Stub out all of the methods that communicate with the API using simple Mock classes

	Call exec_module to drive the test

	Assert changes on the result

Most of the above is self-explanatory, but the fourth item on the list warrants some explanation.

The purpose of the F5 Ansible module unit tests is to confirm that:

	a series of arguments

	invokes a known series of methods

	to produce a known result

That’s it. There is noneed to mock the actual API calls. The best way to test actual API calls is via functional tests.

Therefore, to put it simply, the F5 module unit tests are there to test drive code
execution paths.

Using the above as an example, given the parameters that are set, if the ``Mock``ed calls are
called during execution of the module, then the module will logically return the asserted
result.

If, however, there is a problem in the logic of the module such that a different code path
is taken than expected, then pytest will fail because it will attempt to call an API
method. This failure should pique your interest because it means there is a bug in the module.

So, one last time, unit tests are meant to confirm code path execution. Nothing more.

Conclusion

This section introduced you to tests, showed how and where they are laid out, and introduced
you to writing two forms of test: a Parameters test and a ModuleManager test. With these
tools, the remainder of the work falls on the shoulders of the developer. Ansible will
run these tests as part of their basic test suite. Therefore, it is important that they are:

	Correct

	Fast

There are hundreds, if not thousands, of tests. If the F5 unit tests are slowing down the
total execution time of the test suite (beyond reason of course) then this should be
considered a bug and fixed.

In the next section, the concept of integration tests will be explored in greater depth.
Integration tests are the most important tests that can be run because they confirm or reject
the correctness of a module.

 Usable Changes

Usable Changes

The first of the two Changes classes that can be encountered in a module’s execution is
the UsableChanges class. The implementation of this class for the module being developed
in this tutorial can be found here [https://github.com/F5Networks/f5-ansible/blob/stable-2.5/library/bigip_policy_rule.py#L483].

Purpose

The general purpose of all the Changes classes is to serve as a place for massaging data.
The UsableChanges class is responsible for massaging data that is about to be sent to the API.

This class implements an Adapter pattern, similar to the Adapter patterns that were implemented
by the ApiParameters and ModuleParameters classes. Because you have already worked with
those classes, you should be more than familiar with what needs to happen in this class.

Additionally, because this class is nothing more than another Adapter, its implementation is
completely optional. It will exist as a stub in your module by default. It is your responsibility
to implement it as needed.

So what sort of data do you need to adapt at this point in the module?

Consider the implementation that is found in the module that is being studied here.

Implementation

Let’s look at one of the adapted properties in this class. The other is largely similar in purpose
and function, so we’ll skip it. You should, however, implement it for completeness in your copy of
the module.

@property
def actions(self):
 if self._values['actions'] is None:
 return None
 result = []
 for action in self._values['actions']:
 if 'type' not in action:
 continue
 if action['type'] == 'forward':
 action['forward'] = True
 del action['type']
 elif action['type'] == 'enable':
 action['enable'] = True
 del action['type']
 elif action['type'] == 'ignore':
 result = []
 break
 result.append(action)
 return result

Remember that earlier it was mentioned that the purpose of these classes is to adapt data
immediately before it hits the wire. This module made use of an actions property that was
observed in the different Parameters classes, and even the Difference class.

For the module to have done its work, it needed to create an internal representation of the data
to do things like comparison. It did this in the Parameters classes. Now that the comparison
is done though, it needs to send those updates to the BIG-IP. The internal data format, though, is
unlikely to be the same as the data format expected by BIG-IP.

Therefore, this adapter for the actions property is tasked with converting the internal
representation of the data back into a format that is capable of being handled by the F5 device.

In the implementation here, you can see that key names are being changed to the ones that are known
to the API. Additionally, data is being deleted from the existing dictionaries so that it is not
accidentally sent to the API. Were it sent, the API would raise an exception and the module would
fail.

Received values

The values that are received by the UsableChanges are those that were output by the
Difference class. You can see this at work in the _update_changed_options method of the
ModuleManager class.

For example:

if changed:
 self.changes = UsableChanges(params=changed)

Where changed is the dictionary produced by multiple calls to the Difference class’s
compare method.

Conclusion

There is really not much more to say about this class. You’re now aware of its place in the
pipeline, and prior to that knowledge, you already had a firm understanding of the purpose of
the various adapters in the module.

It’s not always necessary to implement this class. Indeed, in a good API, you will never need
to be concerned with this class. Situations that warrant it usually involve complex data types
that needed to be compared.

In the next section, we’ll look at the UsableChanges counter-class, the ReportableChanges.

 bigip_command - Run arbitrary command on F5 devices

bigip_command - Run arbitrary command on F5 devices

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Sends an arbitrary command to an BIG-IP node and returns the results read from the device. This module includes an argument that will cause the module to wait for a specific condition before returning or timing out if the condition is not met.

Requirements (on host that executes module)

	f5-sdk >= 3.0.9

Options

 bigip_command - Run arbitrary command on F5 devices

bigip_command - Run arbitrary command on F5 devices

New in version 2.4.

	Synopsis

	Requirements (on host that executes module)

	Options

	Examples

	Return Values

	Notes

	Status

	Support

Synopsis

	Sends an arbitrary command to an BIG-IP node and returns the results read from the device. This module includes an argument that will cause the module to wait for a specific condition before returning or timing out if the condition is not met.

Requirements (on host that executes module)

	f5-sdk >= 3.0.9

Options

 All modules

All modules

	f5_rs_aws_net - Deploys vpc and network objects to an AWS region

	f5_rs_aws_app - Deploys an application in an auto-scale group to AWS

	f5_rs_aws_bigip - Deploys bigip's to an AWS region using CFT

	f5_rs_aws_bigip_onboard - Onboarding a bigip in AWS after a CFT was deployed

	f5_rs_aws_external_lb - Deploys an AWS ELB to a given VPC

	f5_rs_aws_tag_master - Tags a master bigip in a given auto scale group

	f5_rs_iapp - Deploys a service using an iapp to a given bigip

	f5_rs_attacks - Lauches attacks on a given http/s server

 All modules

All modules

	f5_rs_azure_net -

 All modules

All modules

	f5_rs_iapp - Deploys a service using an iapp to a given bigip

	f5_rs_attacks - Lauches attacks on a given http/s server

 Modules Maintained by the Ansible Network Team

Modules Maintained by the Ansible Network Team

Note

	(D): This marks a module as deprecated, which means a module is kept for backwards compatibility but usage is discouraged.
The module documentation details page may explain more about this rationale.

 Modules Maintained by the Ansible Partners

Modules Maintained by the Ansible Partners

Note

	(D): This marks a module as deprecated, which means a module is kept for backwards compatibility but usage is discouraged.
The module documentation details page may explain more about this rationale.

 SecDevOps lab

SecDevOps lab

this lab covers how to protect an app using F5’s application security solutions and ‘bake’ the security policy into the application lifecycle.

Getting started

if you run into issues / problems please contact me email with some information, yossi@f5.com

Run the rs-container

The entire lab is built from code hosted in this repo, in order to launch the lab environment you will download and run a container that has the tools we are using (ansible and jenkins) as well as the depndencies and requirements to interact with the differnet services (F5, AWS, github..)
on the linux jumphost in UDF, run the following command to start the container,
the will attach a volume from the linux host to the container

sudo docker run -v config:/home/snops/host_volume -p 2222:22 -p 10000:8080 -it --rm f5usecases/f5-rs-container

Configure credentials and personal information

log in as jenkins (root password is ‘default’)

jenkins user is used so that the config changes we do are available to jenkins

su root -c "su jenkins"

Create the SSH keys, the SSH key will be used when creating EC2 instances. we will strore them in the jenkins SSH folder so that jenkins can use them to access instances.

Copy credentilas and paramaters files from the host folder.

ssh-keygen -f $HOME/.ssh/id_rsa -t rsa -N ''
cp /home/snops/host_volume/f5-rs-global-vars-vault.yaml /home/snops/f5-rs-global-vars-vault.yaml
mkdir ~/.aws && cp /home/snops/host_volume/credentials ~/.aws/credentials

configure your personal information in the global parameters file.
for the username use your student#, put your actual

echo password > ~/.vault_pass.txt
ansible-vault edit --vault-password-file ~/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	after you save the f5-rs-global-vars-vault.yaml file for the first time you get an error message, ignore it it’s a bug
ERROR! Unexpected Exception, this is probably a bug: [Errno 1] Operation not permitted: ‘/home/snops/f5-rs-global-vars-vault.yaml’

Configure jenkins and reload it

the following script will configure jenkins with your information and reload it.

ansible-playbook --vault-password-file ~/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

Open Jenkins:

go to UDF, on the ‘jumphost’ click on ‘access’ and ‘jenkins’

usernmae: snops , password: default

when you open jenkins you should see two jobs that have started running automaticlly, ‘Push a WAF policy’,
this happens because jenkins monitors the repo and start the jobs. you can cancel the jobs or let them fail.

Module 01 - WAF policy deployment and tuning

start the dev environment:

in jenkins open the ‘DevSecOps - Lab - App2’ folder’, the lab files are all in this folder
we will start by deploying a dev environment, you will start a pipeline that creates a full environment in AWS.

[image: docs/solutions/devsecops/images/jenkins010.PNG]
click on the ‘f5-rs-app2-dev’ folder.
here you can see all of the relevant jenkins jobs for the dev environment.

[image: docs/solutions/devsecops/images/jenkins020.PNG]
click on ‘Full stack deployment’ , that’s the pipeline view for the same folder.

[image: docs/solutions/devsecops/images/jenkins030.PNG]
click on ‘run’ to start the dev environment pipeline.

[image: docs/solutions/devsecops/images/jenkins040.PNG]
you can review the output of each job while its running, click on the small ‘console output’ icon as shown in the screenshot:

[image: docs/solutions/devsecops/images/jenkins050.PNG]
wait until all of the jobs have finished (turned green).

[image: docs/solutions/devsecops/images/jenkins060.PNG]
open slack - https://f5-rs.slack.com/messages/C9WLUB89F/
go to the ‘builds’ channel.
use the search box on the upper right corner and filter by your username (student#).
jenkins will send to this channel the bigip and the application address.

[image: docs/solutions/devsecops/images/Slack-040.PNG]
open the bigip and login using the provided credentials.
explore the objects that were created:

Cloud formation template:

this is the base deployment of the bigip, we start with the F5 supported 2nic CFT.
it deploys bigip with the latest cloud version, installs the necessary cloudlibs and cloud related scripts.

bigip rs onboard:

deploys the ‘enterprise’ default profiles, for example:
HTTP, analytics, AVR, DOSL7, iapps etc.

push a waf policy:

pushes a waf policy from the repo to the bigip, updates DOSL7 and FPS profiles.

rs-iapp service:

deploys a service on the bigip using either AS2 or AS3

rs-attacks:

good and bad traffic generation to the app.

try to access the app using the ip provided in the slack channel - that’s the Elastic ip address that’s tied to the VIP on the bigip.
after ignoring the ssl error (because the certificate isn’t valid for the domain) you should get to the Hackazone mainpage

[image: docs/solutions/devsecops/images/hackazone010.PNG]

SecOps role:

in this example the app owner deployed a new service to their dev environemnt, the tests show that some of the valid requests are blocked. you should log in to the bigip as the secops engineer and fix the false-positive.

go to ‘traffic learning’, make sure you are editing the ‘linux-high’ policy.
you should see a suggestion on ‘High ASCII characters in headers’ , examine the request. this is a flase positive. the app uses a different language in the header and it is legitimate traffic.
accept the suggestion.

[image: docs/solutions/devsecops/images/Bigip-040.PNG]
check the other suggestions, you’ll see some signatures that were triggered. those are actual threats that are part of the autometed security testing and we can ignore the suggestions.

apply the policy. we will now export the policy to the git repo and start the autometed build again to check that we are ready to promote it to production.

go back to jenkins, under the ‘f5-rs-app2-dev’ there is a job that will export the policy and save it to the git repo - ‘SEC export waf policy’

[image: docs/solutions/devsecops/images/jenkins075.PNG]
click on this job and choose ‘Build with Parameters’ from the left menu.

[image: docs/solutions/devsecops/images/jenkins080.PNG]
you can leave the defaults, it asks for two parameters. the first parameter is the name of the policy on the bigip and the other is the new policy name in the git repo.

click on ‘build’

check the slack channel - you should see a message about the new security policy that’s ready.
this illustrates how chatops can help between different teams.

[image: docs/solutions/devsecops/images/Slack-030.PNG]
the security admin role ends here. it’s now up to the appowner to run the pipeline again.

deploy to dev again:

ssh into the contianer, make sure you are connected as user ‘jenkins’
go to the application git folder. check which branches are there and what is the active branch. (git branch)
you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git branch

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

edit the iac_parameters.yaml file to point the deployment to the new ASM policy (linux-high-v01). then add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed asm policy"

[image: docs/solutions/devsecops/images/dev-cmd-010.PNG]
go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘waf policy’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

jenkins takes the parametes from the git repo and uses them to deploy/update the service.

log on to the bigip again, check which ASM policies are there and which policy is attached to the ‘App2 VIP.
check the ‘traffic learning’ for the security policy and verify you no longer see the ‘high ascii charachters’

this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge -m "changed asm policy"

	the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, since the environment isn’t deployed yet it will fail, either cancel the job or let it fail.

deploy to PROD:

we will deploy the environemnt. go to the ‘f5-rs-app2-prod’ folder, choose the ‘Full stack deployment’ view and run the pipeline.
go to slack to get the ip’s for the bigip and the app.

open the bigip and verify that you don’t see the ‘high ascii’ false positive.

verify the security policy that’s attached to the VIP.

Module 02 - Autometed attack mitigation

Now that we have our app running in production, the app owner noticed some strange activity. some items are added to the cart but never get purchesed. the team also noticed abnormal activity that looks like web scraping.

in an effort to mitigate those unwanted requests the secops engineer suggests the use of ‘proactive bot defense’, he configures a template DOSL7 profile with some values as defaults.

he then exposes the option of enabling / disabling proactive bot defense from the ‘iac_paramaters’ file.

it is up to the appowner now to deploy the new feature in dev and promote to PROD when it makes sense for him.

ssh into the contianer, make sure you are connected as user ‘jenkins’
go to the application git folder. check which branches are there and what is the active branch. (git branch)
you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

edit the iac_parameters.yaml file to enable proactive bot defense,
change the setting from:

proactive_autometed_attack_prevention: “disabled”

to:

proactive_autometed_attack_prevention: “always”

add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "enabled proactive bot defense"

go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘waf policy’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

jenkins takes the parametes from the git repo and uses them to deploy/update the service.

log on to the dev bigip again, check the setting on the dos profile named rs_dosl7, verify that proactive bot defense is now enabled.

[image: docs/solutions/devsecops/images/pbd-bigip-010.PNG]
on the bigip, check the bot request log, verify that requests are being challanged

[image: docs/solutions/devsecops/images/pbd-bigip-020.PNG]
this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge -m "enabled proactive bot defense"

the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, open the f5-rs-app2-prd folder and navigate to the ‘service deployment pipeline’ , you should see the jobs running in up to a minute.

open the PRODUCTION bigip, check that the DOSL7 profile named rs_dosl7 has the ‘proactive bot defense’ enabled.

check that requests are getting challanged in the bot event log.

Module 03 - Application layer encryption

Application is up and running, sales on the site have seen a big growth. our support center started getting complaints from customers
that their account is abused and they are charged with purcheses they never did.
after further investigation it turns out that the user’s credentials were stolen by a malware on the client side.

secops engineer suggests to turn on f5’s application encryption on the login page, he configured a template profile with some settings that make sense for the enterprise. exposing the login page paramters (URI), and a choice to enable/disable.

it is up to the appowner now to deploy the new feature in DEV and promote to PROD when it makes sense for him.

ssh into the contianer, make sure you are connected as user ‘jenkins’
go to the application git folder. check which branches are there and what is the active branch. (git branch)
you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

edit the iac_parameters.yaml file to enable login password encryption,
change the setting from:

login_password_encryption: “disabled”

to:

login_password_encryption: “enabled”

add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "enabled login password encryption"

go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘waf policy’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

jenkins takes the parametes from the git repo and uses them to deploy/update the service.

log on to the dev bigip again, check the setting on the FPS profile.

[image: docs/solutions/devsecops/images/ale-bigip-010.PNG]
this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge -m "enabled login password encryption"

the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, open the f5-rs-app2-prd folder and navigate to the ‘service deployment pipeline’ , you should see the jobs running in up to a minute.

open the PRODUCTION bigip, check that the FPS profile named rs_fps has the ‘login_password_encryption’ enabled.

 Solutions

Solutions

List of available solutions:

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

 F5 Unified Demo Framework (UDF)

F5 Unified Demo Framework (UDF)

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Security Lab: devsecops
Blueprint and Start it.

Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to the linux host

	SSH to the SNOPS container (only available after you start the lab)

	HTTP Access to Jenkins (only available after you start the lab)

Connect using SSH to the Linux Host

	In the UDF navigate to your Deployments

	Click the Details button for your Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the Details
button.

	use your favorite SSH client to connect using your private key.

	Select how you would like to continue:

	Review: labinfo

	Start: Module 1: Shifting WAF policy left, closer to DEV.

start jenkins

Lab Environment

Lab Environment

this lab is intended to represent an app team that deploys their app on their own AWS VPC. while most of the componenets are dedicated for their app and separated from the rest of the netwrok, there are some services that the enterprise provides to this app team which are shared and are pre-built:

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

The application lab environment will be built in AWS, we are going to create two environments - DEV and PROD
both environments have the exact same topology.
in each environment we are deploying:

	VPC with subnets, security groups and Internet gateway.

	1 x F5 BIG-IP VE (latest cloud version)

	An autoscale group of application servers running DOCKER with a dockerized Hackazone app running on them.

[image: docs/solutions/devsecops/images/lab_diag_010.PNG]

Accessing the lab

The lab is built from code, to run it you need a docker host (can be your laptop), and an AWS account with API access (access and secret keys):

this lab covers how to protect an app using F5’s application security solutions and ‘bake’ the security policy into the application lifecycle.

Getting started

if you run into issues / problems please contact me email with some information, yossi@f5.com

Run the rs-container

The entire lab is built from code hosted in this repo, in order to launch the lab environment you will download and run a container that has the tools we are using (ansible and jenkins) as well as the depndencies and requirements to interact with the differnet services (F5, AWS, github..)
on the linux jumphost in UDF, run the following command to start the container,
the will attach a volume from the linux host to the container

sudo docker run -v config:/home/snops/host_volume -p 2222:22 -p 10000:8080 -it --rm f5usecases/f5-rs-container

Configure credentials and personal information

log in as jenkins (root password is ‘default’)

jenkins user is used so that the config changes we do are available to jenkins

su root -c "su jenkins"

Create the SSH keys, the SSH key will be used when creating EC2 instances. we will strore them in the jenkins SSH folder so that jenkins can use them to access instances.

Copy credentilas and paramaters files from the host folder.

ssh-keygen -f $HOME/.ssh/id_rsa -t rsa -N ''
cp /home/snops/host_volume/f5-rs-global-vars-vault.yaml /home/snops/f5-rs-global-vars-vault.yaml
mkdir ~/.aws && cp /home/snops/host_volume/credentials ~/.aws/credentials

configure your personal information in the global parameters file.
for the username use your student#, put your actual

echo password > ~/.vault_pass.txt
ansible-vault edit --vault-password-file ~/.vault_pass.txt /home/snops/f5-rs-global-vars-vault.yaml

	after you save the f5-rs-global-vars-vault.yaml file for the first time you get an error message, ignore it it’s a bug
ERROR! Unexpected Exception, this is probably a bug: [Errno 1] Operation not permitted: ‘/home/snops/f5-rs-global-vars-vault.yaml’

Configure jenkins and reload it

the following script will configure jenkins with your information and reload it.

ansible-playbook --vault-password-file ~/.vault_pass.txt /home/snops/f5-rs-jenkins/playbooks/jenkins_config.yaml

Open Jenkins:

go to UDF, on the ‘jumphost’ click on ‘access’ and ‘jenkins’

usernmae: snops , password: default

when you open jenkins you should see two jobs that have started running automaticlly, ‘Push a WAF policy’,
this happens because jenkins monitors the repo and start the jobs. you can cancel the jobs or let them fail.

Module 01 - WAF policy deployment and tuning

start the dev environment:

in jenkins open the ‘DevSecOps - Lab - App2’ folder’, the lab files are all in this folder
we will start by deploying a dev environment, you will start a pipeline that creates a full environment in AWS.

[image: docs/solutions/devsecops/images/jenkins010.PNG]
click on the ‘f5-rs-app2-dev’ folder.
here you can see all of the relevant jenkins jobs for the dev environment.

[image: docs/solutions/devsecops/images/jenkins020.PNG]
click on ‘Full stack deployment’ , that’s the pipeline view for the same folder.

[image: docs/solutions/devsecops/images/jenkins030.PNG]
click on ‘run’ to start the dev environment pipeline.

[image: docs/solutions/devsecops/images/jenkins040.PNG]
you can review the output of each job while its running, click on the small ‘console output’ icon as shown in the screenshot:

[image: docs/solutions/devsecops/images/jenkins050.PNG]
wait until all of the jobs have finished (turned green).

[image: docs/solutions/devsecops/images/jenkins060.PNG]
open slack - https://f5-rs.slack.com/messages/C9WLUB89F/
go to the ‘builds’ channel.
use the search box on the upper right corner and filter by your username (student#).
jenkins will send to this channel the bigip and the application address.

[image: docs/solutions/devsecops/images/Slack-040.PNG]
open the bigip and login using the provided credentials.
explore the objects that were created:

Cloud formation template:

this is the base deployment of the bigip, we start with the F5 supported 2nic CFT.
it deploys bigip with the latest cloud version, installs the necessary cloudlibs and cloud related scripts.

bigip rs onboard:

deploys the ‘enterprise’ default profiles, for example:
HTTP, analytics, AVR, DOSL7, iapps etc.

push a waf policy:

pushes a waf policy from the repo to the bigip, updates DOSL7 and FPS profiles.

rs-iapp service:

deploys a service on the bigip using either AS2 or AS3

rs-attacks:

good and bad traffic generation to the app.

try to access the app using the ip provided in the slack channel - that’s the Elastic ip address that’s tied to the VIP on the bigip.
after ignoring the ssl error (because the certificate isn’t valid for the domain) you should get to the Hackazone mainpage

[image: docs/solutions/devsecops/images/hackazone010.PNG]

SecOps role:

in this example the app owner deployed a new service to their dev environemnt, the tests show that some of the valid requests are blocked. you should log in to the bigip as the secops engineer and fix the false-positive.

go to ‘traffic learning’, make sure you are editing the ‘linux-high’ policy.
you should see a suggestion on ‘High ASCII characters in headers’ , examine the request. this is a flase positive. the app uses a different language in the header and it is legitimate traffic.
accept the suggestion.

[image: docs/solutions/devsecops/images/Bigip-040.PNG]
check the other suggestions, you’ll see some signatures that were triggered. those are actual threats that are part of the autometed security testing and we can ignore the suggestions.

apply the policy. we will now export the policy to the git repo and start the autometed build again to check that we are ready to promote it to production.

go back to jenkins, under the ‘f5-rs-app2-dev’ there is a job that will export the policy and save it to the git repo - ‘SEC export waf policy’

[image: docs/solutions/devsecops/images/jenkins075.PNG]
click on this job and choose ‘Build with Parameters’ from the left menu.

[image: docs/solutions/devsecops/images/jenkins080.PNG]
you can leave the defaults, it asks for two parameters. the first parameter is the name of the policy on the bigip and the other is the new policy name in the git repo.

click on ‘build’

check the slack channel - you should see a message about the new security policy that’s ready.
this illustrates how chatops can help between different teams.

[image: docs/solutions/devsecops/images/Slack-030.PNG]
the security admin role ends here. it’s now up to the appowner to run the pipeline again.

deploy to dev again:

ssh into the contianer, make sure you are connected as user ‘jenkins’
go to the application git folder. check which branches are there and what is the active branch. (git branch)
you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git branch

Configure your information in git, this information is used by git (in this lab we use local git so it only has local meaning)

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

edit the iac_parameters.yaml file to point the deployment to the new ASM policy (linux-high-v01). then add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "changed asm policy"

[image: docs/solutions/devsecops/images/dev-cmd-010.PNG]
go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘waf policy’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

jenkins takes the parametes from the git repo and uses them to deploy/update the service.

log on to the bigip again, check which ASM policies are there and which policy is attached to the ‘App2 VIP.
check the ‘traffic learning’ for the security policy and verify you no longer see the ‘high ascii charachters’

this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge -m "changed asm policy"

	the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, since the environment isn’t deployed yet it will fail, either cancel the job or let it fail.

deploy to PROD:

we will deploy the environemnt. go to the ‘f5-rs-app2-prod’ folder, choose the ‘Full stack deployment’ view and run the pipeline.
go to slack to get the ip’s for the bigip and the app.

open the bigip and verify that you don’t see the ‘high ascii’ false positive.

verify the security policy that’s attached to the VIP.

Module 02 - Autometed attack mitigation

Now that we have our app running in production, the app owner noticed some strange activity. some items are added to the cart but never get purchesed. the team also noticed abnormal activity that looks like web scraping.

in an effort to mitigate those unwanted requests the secops engineer suggests the use of ‘proactive bot defense’, he configures a template DOSL7 profile with some values as defaults.

he then exposes the option of enabling / disabling proactive bot defense from the ‘iac_paramaters’ file.

it is up to the appowner now to deploy the new feature in dev and promote to PROD when it makes sense for him.

ssh into the contianer, make sure you are connected as user ‘jenkins’
go to the application git folder. check which branches are there and what is the active branch. (git branch)
you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

edit the iac_parameters.yaml file to enable proactive bot defense,
change the setting from:

proactive_autometed_attack_prevention: “disabled”

to:

proactive_autometed_attack_prevention: “always”

add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "enabled proactive bot defense"

go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘waf policy’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

jenkins takes the parametes from the git repo and uses them to deploy/update the service.

log on to the dev bigip again, check the setting on the dos profile named rs_dosl7, verify that proactive bot defense is now enabled.

[image: docs/solutions/devsecops/images/pbd-bigip-010.PNG]
on the bigip, check the bot request log, verify that requests are being challanged

[image: docs/solutions/devsecops/images/pbd-bigip-020.PNG]
this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge -m "enabled proactive bot defense"

the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, open the f5-rs-app2-prd folder and navigate to the ‘service deployment pipeline’ , you should see the jobs running in up to a minute.

open the PRODUCTION bigip, check that the DOSL7 profile named rs_dosl7 has the ‘proactive bot defense’ enabled.

check that requests are getting challanged in the bot event log.

Module 03 - Application layer encryption

Application is up and running, sales on the site have seen a big growth. our support center started getting complaints from customers
that their account is abused and they are charged with purcheses they never did.
after further investigation it turns out that the user’s credentials were stolen by a malware on the client side.

secops engineer suggests to turn on f5’s application encryption on the login page, he configured a template profile with some settings that make sense for the enterprise. exposing the login page paramters (URI), and a choice to enable/disable.

it is up to the appowner now to deploy the new feature in DEV and promote to PROD when it makes sense for him.

ssh into the contianer, make sure you are connected as user ‘jenkins’
go to the application git folder. check which branches are there and what is the active branch. (git branch)
you should be on the ‘dev’ branch. the files you see belong to the dev branch.

cd /home/snops/f5-rs-app2
git checkout dev
git branch

edit the iac_parameters.yaml file to enable login password encryption,
change the setting from:

login_password_encryption: “disabled”

to:

login_password_encryption: “enabled”

add the file to git and commit

vi iac_parameters.yaml
git add iac_parameters.yaml
git commit -m "enabled login password encryption"

go back to jenkins and open the ‘f5-rs-app2-dev ‘ folder. choose the ‘waf policy’ tab , jenkins is set up to monitor the application repo. when a ‘commit’ is identified jenkins will start an automatic pipeline to deploy the service. it takes up to a minute for jenkins to start the pipeline.

jenkins takes the parametes from the git repo and uses them to deploy/update the service.

log on to the dev bigip again, check the setting on the FPS profile.

[image: docs/solutions/devsecops/images/ale-bigip-010.PNG]
this concludes the tests in the ‘dev’ environment. we are now ready to push the changes to production.
we will ‘merge’ the app2 dev branch with the master branch so that the production deployment will use the correct policy.
on the /home/snops/f5-rs-app2 folder:

git checkout master
git merge -m "enabled login password encryption"

the merge will trigger a job in jenkins that’s configured to monitor this repo - ‘Push waf policy’, open the f5-rs-app2-prd folder and navigate to the ‘service deployment pipeline’ , you should see the jobs running in up to a minute.

open the PRODUCTION bigip, check that the FPS profile named rs_fps has the ‘login_password_encryption’ enabled.

 Module 0: Initial lab setup (for the security SE event)

Module 0: Initial lab setup (for the security SE event)

This Module provides information on the lab environment and instructions for the initial setup.

	Lab info

	Module 0 - initial setup

 Filing issues

Filing issues

If you run into any issues while working with the F5 modules for Ansible, you should submit them.

For F5 to triage as quickly as possible, please follow these guidelines.

Be verbose

When you file an issue with the F5 Ansible modules, an Issue template appears.

F5 will try to reproduce your environment, so in the template, please provide as much information as possible.

Some things F5 wants to know are:

	Which F5 product

	Which version of that product

	Which Ansible version

	Which Python version

	Are you using a module in Ansible upstream or one directly from this repo (there are hashes for this)

	Which Ansible plays reproduce the problem

	If this is a feature request, which tmsh commands meet your needs

	If this is a feature request for a module, provide an example (in your own YAML) and what you think the parameters to the would look like

	If you have uploaded a qkview to F5

The Issue template asks these questions.

If the issue seems to be a bug, add the label bug-report to it.

Some of the things that F5 does not want, and will never ask for are:

	passwords

	license keys

	public disclosure of your company or company contact info

Do not comment on closed issues

Important: Please do not comment on closed issues.

When you comment on closed issues:

	F5 cannot reproduce the issue properly in the code base.

	F5 doesn’t usually receive the notification for it.

Why is commenting on old issues a problem for the code base?

When you open an issue, F5 creates new files with your issue name in the integration test directory.

For example, if you open an issue and give it the number 1234, then F5 creates issue-01234.yaml in the source tree. This file is specific to your issue and no other issues.

When the F5 developers solve the problem, they ensure that future F5 Ansible modules continue to work.

If you do not create a new issue:

	F5 might accidentally change code that was already working.

	It is harder to track which issue any new code relates to.

	It is harder to repro other issues over time.

Because of this, F5 asks that you not comment on closed issues.

 Lab Environment

Lab Environment

Lab Environment

	Centralized logging server - Splunk server

	Bigiq License manager to license the bigips

	slack account

Automation workflow

This lab leverages several automation tools,
one of the automation guidelines is to use F5 supported solutions where possible,

	AWS cloud formation templates are used to deploy resources into AWS (network, app, BIGIP)

	for more information on CFT , https://aws.amazon.com/cloudformation/

	F5 supported CFT’s , https://github.com/F5Networks/f5-aws-cloudformation

	Ansible modules are used to control BIGIP configuration (Profiles, waf policy upload, iApp)

	more info on F5 supported ansible modules http://clouddocs.f5.com/products/orchestration/ansible/devel/

	F5 REST API calls are used when no ansible module is available (for example, update a DOSL7 profile)

	more info on F5 iControl REST, https://devcentral.f5.com/Wiki/Default.aspx?Page=HomePage&NS=iControlREST

	Jenkins is used to create a full pipeline that ties several ansible playbooks together.

	Each Jenkins job correlates to one ansible playbook/Role

	Jenkins is also used for ops notifications (Slack)

	Git is used as the SCM

	All references in the lab itself are to the local copy of the repos that is on /home/snops/

[image: automation-workflow-010]

Accessing the lab

The lab is built from code, to run it you need a docker host (can be your laptop), and an AWS account with API access (access and secret keys):

	Running the container on your docker host

	F5 Unified Demo Framework (UDF)

 Regular run (after you completed the initial setup)

Regular run (after you completed the initial setup)

Note

The following instructions will create a volume on your docker host and will instruct you
to store private information in the host volume. the information in the volume will persist
on the host even after the container is terminated.

1. Copy ssh key, aws credentials and global parameters file

the SSH key will be used when creating EC2 instances.
we will store them in the Jenkins SSH folder so that Jenkins can use them to access instances.

Copy credentials and parameters files from the host folder using the following script:

/home/snops/startup.sh

2. Start a solution

List of available solutions:

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

 Requirements

Requirements

	Ansible, development branch

	Advanced shell for user account enabled

	bigsuds Python Client 1.0.4 or later

	f5-sdk Python Client, development branch

why we use administrator account
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/bigip-user-account-administration-12-0-0/4.html#conceptid

 Get help

Get help

F5 does not currently support the F5 Modules for Ansible.

However, F5 provides informal support through a number of channels.

File an issue

If you need help with anything related to the F5 Modules for Ansible, you should open an issue on GitHub.

When communicating with F5 on the Issues page, use the GitHub user interface, rather than email.

For best practices, see Filing issues.

Get community support on Slack

We encourage you to use the F5 Ansible channel on Slack for discussion and assistance on the F5 Modules for Ansible.

F5 employees are members of this community and typically monitor the channel Monday-Friday 9-5 PST. They will offer best-effort assistance.

Send email

Contact us at solutionsfeedback@f5.com for general feedback or enhancement requests.

Exposing confidential information

When submitting a request for help or feedback, you should NEVER:

	Enter any private or personally identifying information about you, your network, organization, etc.

	Enter any passwords/credentials, logs, IP addresses, or servers/server ports.

	Expect that F5 Technical Support will reply to your request. They will not.

	Expect that an F5 employee will immediately respond. Employees offer best-effort assistance, but there may be times when responses are delayed.

If you need more in-depth technical assistance, you can ask us to contact you privately.

 F5 Unified Demo Framework (UDF)

F5 Unified Demo Framework (UDF)

Note

This environment is currently available for F5 employees only

Determine how to start your deployment:

	Official Events (ISC, SSE Summits): Please follow the
instructions given by your instructor to join the UDF Course.

	Self-Paced/On Your Own: Login to UDF,
Deploy the
Reference solutions as code
Blueprint and Start it.

1. Connecting to the Environment

To connect to the lab environment we will use SSH to the jumphost.

SSH key has to be configured in UDF in order to access the jumphost.

The lab environment provides several access methods to the Jumphost:

	SSH to RS-CONTAINER

	SSH to the linux host

	HTTP Access to Jenkins (only available after you start the lab)

1.1 Connect using SSH to the RS-CONTAINER

	In UDF navigate to the Deployments

	Click the Details button for your DevSecOps Deployment

	Click the Components tab

	Find the Linux Jumphost Component and click the the ACCESS
button.

	use your favorite SSH client to connect to RS-CONTAINER using your UDF private key. username is root

1.2 initial setup or skip to solutions

	Move on to configure the container:

	Initial setup

2. Start a solution

Solutions

	F5 AWAF in AWS with DO/AS3

	DevSecOps - Advanced WAF in a CI/CD Workflow

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 F5 reference solutions as code

 		
 About

 		
 General

 		
 About the framework

 		
 Tools

 		
 Getting started

 		
 Running the container on your docker host

 		
 Running the container on your docker host

 		
 1. run the rs-container

 		
 1.1 Connect using SSH to the RS-CONTAINER

 		
 1.2 initial setup or skip to solutions if already completed the initial setup

 		
 2. Start a solution

 		
 F5 AWAF in AWS with DO/AS3

 		
 DevSecOps - Advanced WAF in a CI/CD Workflow

 		
 F5 AWAF in AWS with DO/AS3

 		
 Lab Environment

 		
 Lab Environment

 		
 Automation workflow

 		
 Lab 1: Deploy app and bigip

 		
 Task 1.1 - Configure jenkins credentials

 		
 Task 1.2 - Deploy environment

 		
 Task 1.3 - Review the deployed environment

 		
 Task 1.4 - Deploy services:

 		
 Task 1.5 - Review the deployed application

 		
 1.6 Go over WAF logs:

 		
 Lab 2 (BIGIP):

 		
 Task 1.2 - Explore the app repo

 		
 Task 1.3 - Update the AWS region for the DEV environment (Optional)

 		
 DevSecOps - Advanced WAF in a CI/CD Workflow

 		
 Lab Goals:

 		
 Roles in the Lab:

 		
 OUT OF SCOPE:

 		
 Lab info

 		
 Module 0 - initial setup

 		
 Module 1: Shifting WAF policy left, closer to DEV.

 		
 Module 2: Declarative advanced waf

 		
 Module Index

 		
 f5_rs_aws_net - Deploys vpc and network objects to an AWS region

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 f5_rs_aws_app - Creates an application in an auto-scale group

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 f5_rs_aws_bigip - deploys bigip in AWS using CFT

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 bigip_command - Run arbitrary command on F5 devices

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 f5_rs_aws_external_lb - Creates an ELB on a given AWS vpc

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 bigip_command - Run arbitrary command on F5 devices

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 f5_rs_attacks - Run attacks on an HTTP/S target

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 bigip_command - Run arbitrary command on F5 devices

 		
 Synopsis

 		
 Requirements (on host that executes module)

 		
 Options

 		
 Examples

 		
 Return Values

 		
 Notes

 		
 BIG-IP versions

 		
 Experimental vs. production modules

 		
 How to get involved

 		
 Developing and supporting your module

 		
 What to work on

 		
 Documentation

 		
 Unit tests

 		
 New modules

 		
 New functionality for an existing module

 		
 Postman collections

 		
 Bugs

 		
 Guidelines

 		
 Which API to use

 		
 Module naming convention

 		
 Adding new APIs

 		
 Using the f5-sdk

 		
 Importing

 		
 Connecting to BIG-IP

 		
 Exception handling

 		
 Python compatibility

 		
 Automated testing

_static/intro/welcome.png
Enter your class number and your student number.

Class #: Student # Submit

_static/comment.png

_static/