ezldap Documentation
Release 0.6

Jeff Stafford

Jul 08, 2018

Getting started

Installation

1.1

Working with the development version

Configuration

2.1

2.2 Delete your ezldap configuration

Walkthrough

3.1 Spin up a test LDAP server

3.2 Setup and configure ezldap

33 Nextsteps . . .o v v v vt

Configure ezldap before use

Bash recipes

4.1

4.2

4.3

4.4

4.5
4.6

Query an LDAPserver
4.1.1 Get information about your LDAP server
4.1.2 Get information about an objectClass
4.1.3 Search using LDAP filters
4.1.4 Search for entries by DN

Addentries oo
421 Addagroup,
4.2.2 Add a group using an alternate LDIF template
423 Addawuser.
424 Add auser to a group
Modify anentry

4.3.1 modify replace

432 modifydelete
433 modifyadd
4.3.4 Renaming / moving objects
Miscellaneous operations

4.4.1 Delete an object

442 Change a user’s password
443 Check auser’s password

Other commands /help.
ANOEONEITOrs v v v v v

Python recipes

5.1

Bindtoadirectory

WK W

[cBEN RN N |

.......................... 11

5.1.1 Anonymousbind e
5.1.2 Bind using your credentials in ~/.ezldapo oo
5.1.3 Bindmanually e e e e
5.1.4 Unbind from adirectory e
5.1.5 Recommended workflow L
Python API
6.1 Connection L e e e e e e e e e e e e e e e
6.2 LDIF parser and utilities oL e e e
6.3 Passwordutilities e

Idap3 and ezldap compatibility

A note on security

Supported servers

21
21
24
25

27

29

31

ezldap Documentation, Release 0.6

ezldap is an object-oriented Python LDAP API and command-line LDAP client to make working with your directory
server as fast and easy as possible.

Although several very comprehensive LDAP API’s currently exist (notably python-ldap and Idap3), neither are partic-
ularly easy to use and generally focus more on the specifics of communicating via LDAP rather than exposing an easy
to use high-level API. This package is designed to do that. The target audience of this package is system administrators
and support staff who are on a timeline and just need to add a user or write a quick script in a portable manner.

So how is ezldap different? It is a wrapper around the 1dap3 API that gives access to easily perform a number of
high-level tasks like searching an LDAP directory, adding a user and sending them an email, or resetting someone’s
password securely. This process is streamlined by a configuration script that autodetects as many LDAP configuration
values as possible and automates future connections to the directory server. Additionally, additions to an LDAP
directory are performed using a set of configurable LDIF templates, making it very quick to customize the behavior of
certain actions (like adding a group). Finally, for most tasks, a command-line interface is provided, for users who just
want to get started doing stuff.

Python example:

import ezldap

with ezldap.auto_bind() as con:
con.add_user ('username', 'groupname', 'password')

Command-line example:

a password will be automatically generated
ezldap add_user username groupname

For a quick tour of what ezldap can do, why not check out the package walkthrough?

Getting started 1

tutorial.html

ezldap Documentation, Release 0.6

2 Getting started

CHAPTER 1

Installation

ezldap has no dependencies aside from any currently supported version of Python 3. ezldap is tested against all current
versions of Python 3 (3.4, 3.5, and 3.6). To install ezldap, just use pip:

pip install ezldap
ezldap config

1.1 Working with the development version

To install the development version from Github, use the following command: It is highly suggested to run the tests if
you will be working with the development version.

install github release
pip install git+https://github.com/jstaf/ezldap.git
ezldap config

to run tests
pip install pytest pytest-docker pytest-cov docker-compose
pytest

ezldap Documentation, Release 0.6

4 Chapter 1. Installation

CHAPTER 2

Configuration

2.1 Configure ezldap before use

Both the Python API and the command line client use a set of config values and LDIF templates stored in ~/ .
ezldap/. To create these configs, run the following command:

’ezldap config

Sample output (default values are in brackets, just press Enter to accept the defaults and move to the next option):

LDAP host [ldap:///]:

Bind DN (leave blank for anonymous bind) [cn=Manager,dc=ezldap,dc=io]:
Bind password (leave blank to prompt for password) [password]:

User base dn [ou=People,dc=ezldap,dc=io]:

Group base dn [ou=Group,dc=ezldap,dc=io]:

Host base dn [ou=Hosts,dc=ezldap,dc=io]:

Default home directory for new users [/home]:

2.2 Delete your ezldap configuration

To delete an ezldap configuration and start from a clean slate, it’s as easy as:

’rm -r ~/.ezldap

ezldap Documentation, Release 0.6

6 Chapter 2. Configuration

CHAPTER 3

Walkthrough

This is a quick walkthrough designed to show the basics of using ezldap to query and modify an LDAP directory.
Please install Docker before beginning this tutorial.

3.1 Spin up a test LDAP server

We will begin by starting an example LDAP server (OpenLDAP, in this case) to add and subtract objects to. This
essentially is a throw-away LDAP server that will not impact our computer or a production environment. You can test
out operations on this container to your heart’s content.

To start our example LDAP server:

docker run -p 389:389 -p 636:636 jstaf/ezldap

You should see something like the following:

5blb49a6 @ (#) SOpenLDAP: slapd 2.4.45 (Dec 6 2017 14:25:36) S
mockbuild@buildhw-08.phx2.fedoraproject.org:/builddir/build/BUILD/openldap-2.4.45/

—openldap-2.4.45/servers/slapd

5b1b49a6 slapd starting

This is an example LDAP server with debug logging on. As we make queries against this server, we will see them ap-
pear here. Though the actual content is not important, you can use this information to verify exactly what’s happening
when we perform LDAP operations later.

To stop the container later on, just use Control-c. You do not need to worry about cleaning up or revisiting this
container later, it is completely disposable.

3.2 Setup and configure ezldap

To install ezldap, run the following:

https://www.docker.com/community-edition

ezldap Documentation, Release 0.6

pip install ezldap

Now we will configure ezldap to connect to the OpenLDAP instance running on our demonstration Docker container.
Run ezldap config. You will be prompted for the following. I have provided the bind information for the
container here:

e LDAP host: ldap:///

e Bind DN: cn=Manager,dc=ezldap,dc=io

* Bind password: password (yes, it’s “password”)
» User base dn: ou=People,dc=ezldap,dc=io

* Group base dn: ou=Group,dc=ezldap,dc=io

* Host base dn: ou=Hosts,dc=ezldap,dc=io

¢ Default home directory: /home

When running ezldap config, this will look like the following:

Configuring ezldap...
Default values are in [brackets] - to accept, press Enter.

LDAP host: ldap:///

Bind DN (leave blank for anonymous bind) [cn=Manager,dc=example,dc=com]: cn=Manager,
—dc=ezldap,dc=io

Bind password (leave blank to prompt for password): password

User base dn [ou=People,dc=example,dc=com]: ou=People,dc=ezldap,dc=io

Group base dn [ou=Group,dc=example,dc=com]: ou=Group,dc=ezldap,dc=io

Host base dn [ou=Hosts,dc=example,dc=com]: ou=Hosts,dc=ezldap,dc=io

Default home directory for new users [/home]:

Writing configs to ~/.ezldap/
Edit config.yaml and the LDIF templates in ~/.ezldap/ to configure ezldap's behavior.

To check that you’ve entered this information correctly, you can run the bind_info command:

ezldap bind_info

If the Docker container is running and ezldap has been setup and configured correctly, you should see the following:

ldap://localhost:389 - cleartext - user: cn=Manager,dc=ezldap,dc=io - not lazy -
—bound - open - <local: [::1]:36788 - remote: [::1]:389> - tls started - listening —
—SyncStrategy - internal decoder

3.3 Next steps

Assuming you’ve reached this point, congratulations! You are now set to use ezldap.

* To get started using the command-line LDAP client, see the Bash recipes page, and run through the examples
there.

* To get started with the Python API, go to the Python recipes page. More detailed information can be found by
reading the Python API documentation.

8 Chapter 3. Walkthrough

ldap:///
bash_recipes.html
python_recipes.html
python_api.html

CHAPTER 4

Bash recipes

ezldap provides a command-line client that attempts to mimic the Python API as closely as possible. The goal is to
make common LDAP operations available via the command-line.

4.1 Query an LDAP server

4.1.1 Get information about your LDAP server

Every LDAP server will supply information about itself once connected. To fetch identity information from your
LDAP server, you can use the server_info command:

ezldap server_info

Sample output:

DSA info (from DSE) :
Supported LDAP versions: 3
Naming contexts:
dc=ezldap,dc=io
Supported controls:
1.2.826.0.1.3344810.2.3 — Matched Values - Control - RFC3876
1.2.840.113556.1.4.319 — LDAP Simple Paged Results - Control - RFC2696

[lines omitted for brevity]

1.3.6.1.4.1.4203.1.5.4 - Language Tag Options - Feature - RFC3866
1.3.6.1.4.1.4203.1.5.5 - language Range Options - Feature - RFC3866
Schema entry: cn=Subschema
Other:
objectClass:
top
OpenLDAProotDSE

(continues on next page)

ezldap Documentation, Release 0.6

(continued from previous page)

structuralObjectClass:
OpenlLDAProotDSE
configContext:
cn=config
monitorContext:
cn=Monitor
entryDN:

4.1.2 Get information about an objectClass

No one remembers every possible attribute for every objectClass off the top of their head. For information about what
a particular attributes an objectClass supports or requires, you can use class_info. class_info will display
all required and optional attributes for an objectClass, as well as all superior objectClasses it inherits attributes from.
(You can specifically look up the details for only the current objectClass with the —n/——no-superior option).

ezldap class_info inetOrgPerson

Object class: 2.16.840.1.113730.3.2.2

Short name: inetOrgPerson

Description: RFC2798: Internet Organizational Person

Type: Structural

Superior: organizationalPerson

May contain attributes: audio, businessCategory, carLicense, departmentNumber,
displayName, employeeNumber, employeeType, givenName, homePhone,
homePostalAddress, initials, jpegPhoto, labeledURI, mail, manager, mobile,
o, pager, photo, roomNumber, secretary, uid, userCertificate,
x500uniqueIdentifier, preferredLanguage, userSMIMECertificate, userPKCS12

[more classes that inetOrgPerson is derived from follow...]

4.1.3 Search using LDAP filters

You can query an LDAP directory using search. This will use the same syntax as ldapsearch. For
convenience, single filters do not need to be wrapped in parentheses (for example, (objectClass=x)
can be represented with objectClass=x). More complex queries should be wrapped in paren-
theses and quotes: (& (cn=someuser) (objectClass=posixAccount)) should be represented as
' (& (cn=someuser) (objectClass=posixAccount))'.

ezldap search objectClass=organizationalUnit

dn: ou=Group,dc=ezldap,dc=io
objectClass: organizationalUnit
ou: Group

dn: ou=People,dc=ezldap,dc=io
objectClass: organizationalUnit
ou: People

dn: ou=Hosts,dc=ezldap,dc=io
objectClass: organizationalUnit
ou: Hosts

10 Chapter 4. Bash recipes

ezldap Documentation, Release 0.6

4.1.4 Search for entries by DN

This function finds any DN in a directory tree matching a keyword. (Might not work for huge directories yet due to
paging limits.)

’ezldap search_dn People

’ou:People,dc:ezldap,dc:io

4.2 Add entries

ezldap supports adding entries to a directory using a set of configurable LDIF templates in ~/ .ez1ldap. Let’s go
through some example use cases.

4.2.1 Add a group

’ezldap add_group demo

’Success!

Verify the group has been created using ezldap search (you can also use 1dapsearch, it won’t hurt my feel-
ings...)

’ezldap search cn=demo

dn: cn=demo, ou=Group,dc=ezldap,dc=io
objectClass: top

objectClass: posixGroup

cn: demo

gidNumber: 10000

4.2.2 Add a group using an alternate LDIF template

Chances are, the default LDIFs provided in this package won’t match your organization’s needs. No problem - ezldap
works off of templates you can customize to your needs. Let’s create a copy of the default add_group.1dif and
use that instead:

cp ~/.ezldap/add_group.ldif custom_group.ldif
vim custom_group.ldif

Perhaps we want our new group to be an extensibleObject in addition to top and posixGroup. Our
custom_group.1dif might look like this instead:

dn: cn=$groupname, Sgroupdn
objectClass: top

objectClass: posixGroup
objectClass: extensibleObject
cn: S$groupname

gidNumber: $gid

4.2. Add entries 11

ezldap Documentation, Release 0.6

To use this custom LDIF instead of the default, we can specify the path to our custom LDIF as a command-line option
(if we wanted to use this as the default, we could have edited ~/ .ezldap/add_group.1dif instead):

’ezldap add_group --1dif custom_group.ldif our-custom-group

’Success!

Let’s check our work and make sure our group was created:

’ezldap search objectClass=extensibleObject

dn: cn=our-custom-group, ou=Group,dc=ezldap,dc=1io
objectClass: top

objectClass: posixGroup

objectClass: extensibleObject

cn: our-custom-group

gidNumber: 10001

4.2.3 Add a user

Creating a user is similar to creating a group. The only thing to remember here is that if we do not specify a group to
add a user to, one will be created with the same name as that user:

ezldap add_user jeff

Creating LDAP group jeff... Success!
Creating user jeff... Success!
Adding jeff to LDAP group jeff... Success!

Password: 4NEy5uTs47

Checking our work:

ezldap search cn=jeff

dn: cn=jeff,ou=Group,dc=ezldap,dc=io
objectClass: top

objectClass: posixGroup

cn: jeff

gidNumber: 10002

memberUid: jeff

dn: uid=jeff,ou=People,dc=ezldap,dc=io
objectClass: top
objectClass: posixAccount
objectClass: shadowAccount
objectClass: inetOrgPerson
cn: jeff

sn: Jjeff

loginShell: /bin/bash
uidNumber: 10000
gidNumber: 10002

gecos: jeff

shadowMax: 180
shadowWarning: 7

(continues on next page)

12 Chapter 4. Bash recipes

ezldap Documentation, Release 0.6

(continued from previous page)

homeDirectory: /home/jeff
uid: jeff

As with add_group, all of the steps (adding a user, adding a group, adding the user to that group) let you customize
which LDIFs get used.

4.2.4 Add a user to a group

Let’s add jeff to our demo group from earlier.

’ezldap add_to_group jeff demo

’Success!

Check our work:

’ezldap search cn=demo

dn: cn=demo, ou=Group, dc=ezldap,dc=1io
objectClass: top

objectClass: posixGroup

cn: demo

gidNumber: 10000

memberUid: jeff

It looks like je ff was successfully added.

4.3 Modify an entry

ezldap provides a modify command that can modify any attribute of an entry (add, replace, delete). What happens if
we want to change the gidnumber of the demo group?

4.3.1 modify replace

’ezldap modify cn=demo, ou=Group,dc=ezldap,dc=io replace gidNumber 12345

’Success!

If we search for the demo group again, it should now reflect the new gidNumber:

ezldap search cn=demo

dn: cn=demo, ou=Group, dc=ezldap,dc=1io
objectClass: top

objectClass: posixGroup

cn: demo

memberUid: jeff

gidNumber: 12345

4.3. Modify an entry 13

ezldap Documentation, Release 0.6

4.3.2 modify delete

What if we want to delete “jeff” as a member?

’ezldap modify cn=demo,ou=Group,dc=ezldap,dc=io delete memberUid jeff

’Success!

Result:

dn: cn=demo, ou=Group,dc=ezldap,dc=1io
objectClass: top

objectClass: posixGroup

cn: demo

gidNumber: 12345

4.3.3 modify add

Let’s restore jeff as a member and add that user back into the group:

ezldap modify cn=demo, ou=Group,dc=ezldap,dc=io0 add memberUid Jjeff

Result:

dn: cn=demo, ou=Group, dc=ezldap,dc=1io
objectClass: top

objectClass: posixGroup

cn: demo

gidNumber: 12345

memberUid: jeff

4.3.4 Renaming / moving objects

The modify_dn operation lets you rename and/or move objects around in a directory. For convenience, the mod-
ify_dn provided by the ez1dap command lets you both move and rename an entry in one go. To rename the demo
group to new—name and move it into the ou=People container:

ezldap modify_dn cn=demo,ou=Group,dc=ezldap,dc=io cn=new-name,ou=People,dc=ezldap,
—dc=10

’ezldap search cn=new-name

Result:

dn: cn=new-name, ou=People,dc=ezldap,dc=io

objectClass:
objectClass:

top
posixGroup

gidNumber:
memberUid:
cn:

12345
Jeff

new—name

14

Chapter 4. Bash recipes

ezldap Documentation, Release 0.6

4.4 Miscellaneous operations

4.4.1 Delete an object

Maybe we realized that putting a group in the ou=People organizationalUnit was a bad idea. Maybe we just didn’t
want the new-name group anymore. Let’s delete it. Note - since this is an inherently risky operation, you’ll be
prompted for confirmation before deleting anything (unless you use the —f£/-—force option).

ezldap delete cn=new-name,ou=People,dc=ezldap,dc=io

dn: cn=new-name, ou=People,dc=ezldap,dc=io
objectClass: top

objectClass: posixGroup

gidNumber: 12345

memberUid: jeff

cn: new-name

Delete object? (y/N) y
Success!

4.4.2 Change a user’s password

Users frequently forget passwords. Though hopefully you won’t have to reset passwords manually for users every
time, there’s a convenience function to speed things up: change_pw. In this case, the —s option lets us specify a new
password. To simply randomize it, leave this option out.

ezldap change_pw -s Jjeff

New password for jeff:
Confirm password:
Success!

4.4.3 Check a user’s password

Are you sure you typed that right? Absolutely sure? Let’s check with check_pw:

ezldap check_pw jeff

Enter password to verify...
Password:
Passwords match!

4.5 Other commands / help

I’ve covered a few of the more common commands here. For more information on commands, refer to the ez1dap
client’s command-line documentation (just add either the —h or ——help options to bring up detailed help for each
command).

4.4. Miscellaneous operations 15

ezldap Documentation, Release 0.6

ezldap —-help

usage: ezldap [-h] [-V]
ezldap CLI - Perform various options on an LDAP directory.
optional arguments:

-h, —-help show this help message and exit

-v, —-version show program's version number and exit

Valid commands:

config Configure ezldap (configs are stored in ~/.ezldap/) .

search Search for entities by LDAP filter.

search_dn Search for and print DNs in a directory that match a keyword.
add_user Add a user.

add_group Add a group.

add_to_group Add a user to a group.

add_host Add a host.

add_1dif Add a generic LDIF template to a directory.

modify Add, replace, or delete an attribute from an entity.
modify_1dif Modify an entry using an LDIF template.

modify_dn Rename the DN of and/or move an entry.

delete Delete an entry from an LDAP directory.

change_home Change a user's home directory.

change_shell Change a user's default shell.

change_pw Change or reset a user's password.

check_pw Check a user's password.

bind_info Print info about ezldap's connection to your server.
server_info Print information about the LDAP server you are using.
class_info Print information about a specific LDAP objectClass.

For help on a given command:

ezldap modify --help

usage: ezldap modify [-h] dn {add, replace,delete} attribute value [replace_with]

Add, replace, or delete an attribute from an entity.

positional arguments:
dn Distinguished Name (DN) of object
{add, replace,delete} Type of operation to perform. Can
replace, delete.

to modify.
be one of: add,

attribute Attribute to modify.
value Value to add, replace, or delete. When performing a
delete operation, passing "-" will delete all wvalues

for that attribute.

replace_with Value to replace an attribute with when performing a

replace operation.

optional arguments:
-h, —-help show this help message and exit

16

Chapter 4. Bash recipes

ezldap Documentation, Release 0.6

4.6 A note on errors

If you run into an error, the ez1ldap client will immediately exit and print the reason for the error. Operations do
not get performed half-way and leave things in a broken state. That said, I provide no guarantees or warranty of any
kind while using this package. If you want to check that things are working correctly, run the tests! (You can also spin
up a custom LDAP instance using a tool like Docker an test against that, you can use this package’s Dockerfile as a
reference to build your own test instances.)

Example error:

’ezldap class_info sldfjsldjfl

’objectclass "sldfjsldjfl" not found.

4.6. A note on errors 17

https://github.com/jstaf/ezldap/blob/master/tests/Dockerfile

ezldap Documentation, Release 0.6

18 Chapter 4. Bash recipes

CHAPTER B

Python recipes

This is a “recipe book” of things that can be done using the ezldap Python API. These examples all assume that you’ve
imported the ezldap package like so:

’import ezldap

You must run ez1ldap config on the command-line before the package will work.

5.1 Bind to a directory

5.1.1 Anonymous bind

’connection = ezldap.Connection('ldap:///")

5.1.2 Bind using your credentials in ~/ .ezldap

’connection = ezldap.auto_bind()

5.1.3 Bind manually

connection = ezldap.Connection('ldap:///', user='cn=someuser,dc=example,dc=com',
password="password")

5.1.4 Unbind from a directory

19

ezldap Documentation, Release 0.6

connection.unbind ()

5.1.5 Recommended workflow

Though it is possible to define a connection and later unbind. It is often easier to just use the with keyword, that will
unbind for you.

with ezldap.auto_bind() as con:
do something with the "con" connection

(More documentation is on its way here, taking a break for now...)

20 Chapter 5. Python recipes

CHAPTER O

Python API

This is the page for ezldap’s Python API documentation. For general-purpose recipes and use cases, check out the
Python recipes.

6.1 Connection

ezldap.ping (uri)
Returns true if an LDAP server is responding at a given URI by attempting an anonymous bind.

ezldap.supports_starttls (uri)
Determine if the server actually supports StartTLS (both the server software itself supports it, and the server
instance itself has been configured with SSL support).

ezldap.auto_bind (conf=None, server_info=True)
Automatically detects LDAP config values and returns a directory binding.

ezldap.dn_address (dn)
Get the “.’-delmited address for a DN (typically a directory naming context/ base dn). If the directory naming
context was dc=ezldap,dc=io, then the address would be “ezldap.io”. Typically used when generating fully-
qualified hostnames for new hosts (for instance, “hostname.ezldap.io”). However, this function will create
addresses for any DN, if so desired.

ezldap.clean_uri (uri)
ldap3 really struggles with URIs ending in a slash. This function cleans common LDAP URI formats to some-
thing the underlying ldap3 API can understand.

class ezldap.Connection (host, user=None, password=None, conf=None, authentication="SIMPLE’,
server_info=True)
An object-oriented wrapper around an LDAP connection. To automatically create a binding use ezl-
dap.auto_bind() instead. If either user or password are omitted, the bind is anonymous. conf is a dictionary with
any placeholders or key/value combinations that you wish to be passed to 1dif templates or details like user/group
OUs. When used with the “with” keyword, the connection will automatically call Connection.unbind() (and un-
bind from the directory) when done.

21

ezldap Documentation, Release 0.6

__init__ (host, user=None, password=None, conf=None, authentication="SIMPLE",
server_info=True)

Parameters
* host — An LDAP server URI (eg. 1daps://someserver:636)
* user — Bind user. If None, bind will be anonymous.
* password — Bind password. If None, the bind will be anonymous.
* conf — A dict of configuration falues, such as those generated by ezldap.config().
* authentication - Type of authentication to use, by default ldap3.SIMPLE

* server_info — Whether to fetch information about the server like schema and sup-
ported controls. Setting this to False will significantly increase speed of the bind.

Returns Returns a directory binding used to perform operations on a directory.

abandon (message_id, controls=None)
Abandon the operation indicated by message_id

add (dn, object_class=None, attributes=None, controls=None)
Add dn to the DIT, object_class is None, a class name or a list of class names.

Attributes is a dictionary in the form ‘attr’: ‘val’ or ‘attr’: [‘vall’, ‘val2’, ...] for multivalued attributes

add_group (groupname, ldif_path="~/.ezldap/add_group.ldif’, **kwargs)
Adds a group from an LDIF template.

add_host (hostname, ip_address, ldif_path="~/.ezldap/add_host.ldif’, **kwargs)
Add a host to a directory. Hostname is the short hostname (hostname -s), to add. If specifying the fully
qualified hostname is desired (or the fully qualified hostname does not match the directory suffix), specify
the fully-qualified hostname as “hostname_fq”.

add_to_group (username, groupname, ldif_path="~/.ezldap/add_to_group.ldif’, **kwargs)
Adds a user to a group. The user and group in question must already exist.

add_user (username, groupname, password, ldif_path="~/.ezldap/add_user.ldif’, **kwargs)
Adds a user. Does not create or modify groups. “groupname” may be None if “gid” is specified.

base_dn ()
Detect the base DN/naming context from an LDAP connection.

bind (read_server_info=True, controls=None)
Bind to ldap Server with the authentication method and the user defined in the connection

Parameters

e read_server_info —reads info from server

* controls (1ist of tuple)—LDAP controls to send along with the bind operation
Returns bool

compare (dn, attribute, value, controls=None)
Perform a compare operation

delete (dn, controls=None)
Delete the entry identified by the DN from the DIB.

exists (dn)
Returns true if a given DN exists in an LDAP directory.

extended (request_name, request_value=None, controls=None, no_encode=None)
Performs an extended operation

22 Chapter 6. Python API

ezldap Documentation, Release 0.6

get_group (group, basedn=None, index="cn’)
Return a given group. Searches entire directory if no base search dn given.

get_host (host, basedn=None, index="cn’)
Return a given host. Searches entire directory if no base search dn given.

get_user (user, basedn=None, index="uid’)
Return given user as a dict or None if none is found. Searches entire directory if no base search dn given.

1dif_add (/dif)
Perform an add operation using an LDIF object.

1dif_modify (Ildif)
Perform an LDIF modify operation from an LDIF object.

modify (dn, changes, controls=None)
Modify attributes of entry

 changes is a dictionary in the form { ‘attribute1’: change), ‘attribute2’: [change, change, ...], ...}
* change is (operation, [valuel, value2, ...])

 operation is 0 (MODIFY_ADD), 1 (MODIFY_DELETE), 2 (MODIFY_REPLACE), 3 (MOD-
IFY_INCREMENT)

modify_add (dn, attrib, value)
Add a single attribute to an object.

modify_ delete (dn, attrib, value=None)
Delete a single attribute from an object. If value is None, deletes all attributes of that name.

modify_dn (dn, relative_dn, delete_old_dn=True, new_superior=None, controls=None)
Modify DN of the entry or performs a move of the entry in the DIT.

modify_replace (dn, attrib, value, replace_with=None)
Change a single attribute on an object.

next_gidn (search_filter="(objectClass=posixGroup)’, search_base=None, gid_start=10000,

gid_attribute="gidNumber’)
Determine the next available gid number in a directory tree.

next_uidn (search_filter="(objectClass=posixAccount)’, search_base=None, uid_start=10000,

_ uid_attribute="uidNumber’)
Determine the next available uid number in a directory tree.

search (search_base, search_filter, search_scope="SUBTREE’, dereference_aliases="ALWAYS’,
attributes=None, size_limit=0, time_limit=0, types_only=False,
get_operational_attributes=False, controls=None, paged_size=None, paged_criticality=False,
paged_cookie=None, auto_escape=None)
Perform an Idap search:

* If attributes is empty noRFC2696 with the specified size

* If paged is 0 and cookie is present the search is abandoned on server attribute is returned
o If attributes is ALL_ATTRIBUTES all attributes are returned

* If paged_size is an int greater than 0 a simple paged search is tried as described in

* Cookie is an opaque string received in the last paged search and must be used on the next paged search
response

¢ If lazy == True open and bind will be deferred until another LDAP operation is performed

* If mssing_attributes == True then an attribute not returned by the server is set to None

6.1. Connection 23

ezldap Documentation, Release 0.6

* If auto_escape is set it overrides the Connection auto_escape

search_df (search_filter="(objectClass=*)’, attributes="*’, search_base=None, **kwargs)
A convenience function to search an LDAP directory and return a Pandas DataFrame. Very useful for
analyzing the contents of your directory, computing stats, etc. Requires the pandas package to be installed.

search_list (search_filter="(objectClass=*)’, attributes="*’, search_base=None, **kwargs)
A wrapper around search() with better defaults and output format. A list of dictionaries will be returned,
with one dict per output object. If search_base is None, the directory base DN will be used.

Parameters
e search_ filter — An LDAP search filter.

* attributes — Attributes to return. If not specified, all defaults will be returned. None
will return no attributes.

* search_base - Level of directory to begin search at, for example ou=People.
Returns A list of dicts, one per entry returned.

search_list_t (search_filter="(objectClass=%*)’, attributes="*", search_base=None, un-
pack_lists=True, unpack_delimiter="1", **kwargs)
A utility function that returns the transposed result of search_list() (a dict of lists, with one list per attribute.)
This is very useful for tasks like retrieving all uidNumbers currently assigned or emails used by users. The

DN of each entry is always output.

stream
Used by the LDIFProducer strategy to accumulate the 1dif-change operations with a single LDIF header
:return: reference to the response stream if defined in the strategy.

unbind (controls=None)
Unbind the connected user. Unbind implies closing session as per RFC4511 (4.3)

Parameters controls — LDAP controls to send along with the bind operation

usage
Usage statistics for the connection. :return: Usage object

who_am_ i ()
Return the DN of the user you have currently connected as.

6.2 LDIF parser and utilities

ezldap.ldif_read (path, replacements=None)
Read an LDIF file into a list of dicts appropriate for use with ezldap.

Parameters
* path — Path of an LDIF file to read.

* replacements — A dictionary of replacement values to replace $placeholders in the LDIF
template.

ezldap.ldif_write (entries, path)
Write self.entries as LDIF file.

Parameters
* entries — A list of dicts, such as that returned by Connection.search_list()

e path - File to write.

24 Chapter 6. Python API

ezldap Documentation, Release 0.6

ezldap.ldif_print (entries)
Print an LDIF entry to stdout.

Parameters entries — A list of dicts, such as that returned by Connection.search_list().

ezldap.template (path, replacements=None)
Read a file and substitute replacment entries for placeholders designated by $placeholder_name. If replacements
is None, it simply opens and reads a file into a string.

6.3 Password utilities

ezldap.random_passwd (length=10, ambiguous_chars=False)
Generate a readable, random password with no ambiguous characters (unless you set that option to true, of
course).

ezldap.ssha_passwd (str_val)
Hash and salt a string using SHA1 algorithm and format for use with LDAP.

ezldap.ssha_check (ssha_val, str_val)
Check that a password decodes to the correct password.

ezldap.ssha (val, salt)
Generate an SSHA hash.

6.3. Password utilities 25

ezldap Documentation, Release 0.6

26 Chapter 6. Python API

CHAPTER /

ldap3 and ezldap compatibility

(This article will be fleshed out more later, check back soon!)

27

ezldap Documentation, Release 0.6

28 Chapter 7. Idap3 and ezldap compatibility

CHAPTER 8

A note on security

ezldap tries to do things the right way. It will attempt to force a StartTLS operation before binding in all cases, and
connecting to an 1daps:// URI or over port 636 will connect using SSL. Encryption is preferred by default. A
cleartext bind will only be performed if the server supports neither StartTLS or SSL (and it will warn you when it does
so!).

All of that said, one of the configuration options is to specify your bind password as part of the config. I highly
recommend leaving this option blank. This would store your bind password in plaintext in ~/ .ezldap/config.
yml. Don’t do it! (The option is there purely for convenience while testing and maybe if you wanted to add a huge
swath of users from the command line.)

Instead of specifying your password using ez1ldap config, justleave the bind password field blank to be prompted
for your password every time you perform a bind using the bind DN (typically the directory manager). If you’ve
already specified a password and want to remove it, just delete the corresponding value for bindpwin ~/.ezldap/
config.yml.

Example:

assuming "bindpw" is not specified in ~/.ezldap/config.yml
ezldap add_host compute-node 10.100.1.123

Enter bind DN password...
Success!

Operations that can be performed anonymously (using an anonymous bind without credentials) are preferred by
ez ldap whenever possible. Generally ez1dap will only prompt you for a bind password if it needs it.

29

ezldap Documentation, Release 0.6

30 Chapter 8. A note on security

CHAPTER 9

Supported servers

Though the underlying 1dap3 API that ezldap is built on supports virtually all vendors, ezldap is currently only tested
against OpenLDAP. Most ezldap operations will likely work against all LDAP server implementations, though this
has not been tested!

What happens if an operation fails? In all likelihood, nothing - the server will refuse to perform the operation and
ezldap will raise an error. That said, there are bound to be bugs until ezldap has test cases targeting other LDAP server
implementations.

If you encounter a bug, please raise an issue on the issue tracker on Github.
The current list of LDAP servers I intend to add compatibility for is as follows:
* OpenLDAP (done)
* 389 Directory Server / FreeIPA

* Active Directory

31

https://ldap3.readthedocs.io/features.html
https://github.com/jstaf/ezldap/issues

ezldap Documentation, Release 0.6

32 Chapter 9. Supported servers

Index

Symbols

__init__() (ezldap.Connection method), 21

A

abandon() (ezldap.Connection method), 22
add() (ezldap.Connection method), 22
add_group() (ezldap.Connection method), 22
add_host() (ezldap.Connection method), 22
add_to_group() (ezldap.Connection method), 22
add_user() (ezldap.Connection method), 22
auto_bind() (in module ezldap), 21

B

base_dn() (ezldap.Connection method), 22
bind() (ezldap.Connection method), 22

C

clean_uri() (in module ezldap), 21
compare() (ezldap.Connection method), 22
Connection (class in ezldap), 21

D

delete() (ezldap.Connection method), 22
dn_address() (in module ezldap), 21

E

exists() (ezldap.Connection method), 22
extended() (ezldap.Connection method), 22

G

get_group() (ezldap.Connection method), 23
get_host() (ezldap.Connection method), 23
get_user() (ezldap.Connection method), 23

L

1dif_add() (ezldap.Connection method), 23
1dif_modify() (ezldap.Connection method), 23
1dif_print() (in module ezldap), 24

1dif_read() (in module ezldap), 24
1dif_write() (in module ezldap), 24

M

modify() (ezldap.Connection method), 23
modify_add() (ezldap.Connection method), 23
modify_delete() (ezldap.Connection method), 23
modify_dn() (ezldap.Connection method), 23
modify_replace() (ezldap.Connection method), 23

N

next_gidn() (ezldap.Connection method), 23
next_uidn() (ezldap.Connection method), 23

P

ping() (in module ezldap), 21

R

random_passwd() (in module ezldap), 25

S

search() (ezldap.Connection method), 23
search_df() (ezldap.Connection method), 24
search_list() (ezldap.Connection method), 24
search_list_t() (ezldap.Connection method), 24
ssha() (in module ezldap), 25

ssha_check() (in module ezldap), 25
ssha_passwd() (in module ezldap), 25

stream (ezldap.Connection attribute), 24
supports_starttls() (in module ezldap), 21

T

template() (in module ezldap), 25

U

unbind() (ezldap.Connection method), 24
usage (ezldap.Connection attribute), 24

W

who_am_i() (ezldap.Connection method), 24

33

	Installation
	Working with the development version

	Configuration
	Configure ezldap before use
	Delete your ezldap configuration

	Walkthrough
	Spin up a test LDAP server
	Setup and configure ezldap
	Next steps

	Bash recipes
	Query an LDAP server
	Get information about your LDAP server
	Get information about an objectClass
	Search using LDAP filters
	Search for entries by DN

	Add entries
	Add a group
	Add a group using an alternate LDIF template
	Add a user
	Add a user to a group

	Modify an entry
	modify replace
	modify delete
	modify add
	Renaming / moving objects

	Miscellaneous operations
	Delete an object
	Change a user’s password
	Check a user’s password

	Other commands / help
	A note on errors

	Python recipes
	Bind to a directory
	Anonymous bind
	Bind using your credentials in ~/.ezldap
	Bind manually
	Unbind from a directory
	Recommended workflow

	Python API
	Connection
	LDIF parser and utilities
	Password utilities

	ldap3 and ezldap compatibility
	A note on security
	Supported servers

