
eZ80 Heaven
Release 1.0

KingInfinity and HactarCE

Apr 01, 2017

Tutorials

1 Introduction to Assembly 3
1.1 What is assembly? . 3
1.2 Setting up . 3

2 Program Structure 7

3 Hex, Binary, and Decimal 9

4 Registers and Indirection 13
4.1 The Registers . 13
4.2 Addresses . 14
4.3 Indirection . 14

5 Labels 15

6 Romcalls 17

7 Hooks 19

8 Arithmetic Instructions 21
8.1 ADC . 21
8.2 ADD . 22
8.3 CP . 23
8.4 DAA . 24
8.5 DEC . 25
8.6 INC . 25

9 Bit Manipulation 27
9.1 BIT . 27
9.2 RES . 29
9.3 SET . 31

10 Bit Shifts 35
10.1 RL . 35
10.2 RLA . 36
10.3 RLC . 37
10.4 RLCA . 38
10.5 RLD . 39

i

10.6 RR . 39
10.7 RRA . 40
10.8 RRC . 41
10.9 RRCA . 42
10.10 RRD . 43
10.11 SLA . 44
10.12 SRA . 45
10.13 SRL . 46

11 Block Operations 49
11.1 CPD . 49
11.2 CPDR . 49
11.3 CPI . 50
11.4 CPIR . 51
11.5 LDD . 52
11.6 LDDR . 52
11.7 LDI . 53
11.8 LDIR . 54

12 IO 57

13 Load And Exchange 59

14 Logic 61

15 Program Flow 63

16 Processor Control 65

17 Hexcodes 67
17.1 What are hex codes? . 67
17.2 General . 67
17.3 LCD . 68
17.4 Run Indicator . 69

18 Resources 71
18.1 More Websites . 71
18.2 Notepad++ . 71
18.3 SPASM-ng . 71
18.4 TI Connect CE . 71
18.5 TI 84+CE Equates File . 71
18.6 TI 83+ System Routines PDF . 72

ii

eZ80 Heaven, Release 1.0

Contents:

Tutorials 1

eZ80 Heaven, Release 1.0

2 Tutorials

CHAPTER 1

Introduction to Assembly

You want more games for your shiny new TI-84+CE? Why don’t you make them yourself?

What is assembly?

Assembly is a very powerful language that you can use on your TI-84+CE! When you write in assembly, you write in
a human readable form of machine code, which allows you to create quicker programs that can access and do more
than TI-BASIC. Mistakes in assembly can be messier than in TI-BASIC- but usually only as severe as a ram clear, so
before you start this guide, back up your calculator to prevent any data loss!

Setting up

What you’ll need

A program editor

To write your program, you can use almost any text editor. We prefer Notepad++, as it is really easy to use for
beginners and it has some nice features for developing.

Download Here: Notepad++
Syntax Highlighting: Notepad++ eZ80 Syntax Highlighting

An assembler

An assembler lets you take the code you have created and make it into a program that the TI-84 Plus CE can use. We
recommend SPASM-ng when coding in eZ80.

Download Here: Spasm-ng

3

https://notepad-plus-plus.org/download/
http://cemete.ch/p243171
https://github.com/alberthdev/spasm-ng/releases

eZ80 Heaven, Release 1.0

A debugger/emulator or a TI-84+CE

A debugger is useful for seeing what your code does and finding errors. Unfortunately, at the time of this writing, the
only 84+CE emulator available for download is CEmu, which is hardly in a usable state. Because of this, we need TI’s
Connect software to transfer our programs to our calculator, and we’ll also need a link cable (which should have come
with your calculator) and the calculator itself.

Download Here: TI Connect CE

TI 84+CE Equates File

This file tells your program and the compiler where things are located on your calculator.

Download Here: ti84pce.inc

Setting up the assembler

Alright, now we can get to putting together all the materials we just downloaded! Create a folder and call it “My First
ASM Program” (or anything else). Inside create three folders: bin, includes, and tools. Rename SPASM to just
spasm.exe and put it inside the folder named tools. Put ti84pce.inc inside the includes folder.

Create a file named Example.asm in your folder. Inside this file, write the following code.

#include "includes\ti84pce.inc"

.assume ADL=1

.org userMem-2

.db tExtTok,tAsm84CeCmp

call _homeup
call _ClrScrnFull
ld hl,TutorialText
call _PutS
call _GetKey
call _ClrScrnFull
res donePrgm,(iy+doneFlags)
ret

TutorialText:
.db "Excellent job! :) You havecreated your first assembly program!",0

Don’t worry; we’ll revisit what all this code does later on.

Now, create a file named build.bat. Inside this file, write the following code:

@echo off
:A
tools\spasm -E -T Example.asm bin\Example.8xp
Pause
Goto A

Run build.bat by double-clicking on it. Inside the “bin” folder you should see a file named FIRSTPRGM.8xp.
Transfer this onto your calculator using TI Connect CE and run it by pressing 2nd → Catalog and selecting the
Asm(token, then pressing Prgm and selecting EXAMPLE (or whatever you program was called). It should look
something like this: Asm(prgmEXAMPLE

4 Chapter 1. Introduction to Assembly

https://education.ti.com/en/us/software/details/en/CA9C74CAD02440A69FDC7189D7E1B6C2/swticonnectcesoftware
http://wikiti.brandonw.net/index.php?title=84PCE:OS:Include_File

eZ80 Heaven, Release 1.0

If this doesn’t work, try again to make sure you followed each step of the tutorial again. You can also post for help on
the Cemetech forums.

In the next lesson we’ll dive right into learning assembly.

1.2. Setting up 5

http://cemetech.net/

eZ80 Heaven, Release 1.0

6 Chapter 1. Introduction to Assembly

CHAPTER 2

Program Structure

Every program in assembly follows a specific format.

#include "includes\ti84pce.inc"
.assume ADL=1
.org userMem-2
.db tExtTok,tAsm84CeCmp

; Program code

ret

But what does all of this code do?

#include "includes\ti84pce.inc"

This is a file that includes lots of locations of routines and variables and various other things in the calculator’s
operating system that we can use.

.assume ADL=1

This tells the assembler to assume that ADL mode is on. ADL mode means the processor is using 24-bit register pairs
and memory addresses, which is the the calculator’s default.

.org userMem-2

This tells the assembler that this program will be located at userMem-2, so any memory addresses we reference
should be relative to that. (The program is actually placed at userMem, but there are two bytes right after this which
are removed from the program by the OS before it is placed at userMem.)

.db tExtTok,tAsm84CeCmp

This is exactly equivalent to the Asm84CEPrgm token in BASIC; it tells your calculator that it should be executing
an assembly program instead of a BASIC program. This is why when you try to run an assembly program on your
calculator without the Asm(token, you get an error (and why you can’t run a BASIC program with the Asm(token).

7

eZ80 Heaven, Release 1.0

; Program code

This is where you can actually write the program’s code.

ret

This exits the program (usually). More on that later.

In the next tutorial we’ll be learn about how numbers work on your calculator.

8 Chapter 2. Program Structure

CHAPTER 3

Hex, Binary, and Decimal

If you are already familiar with binary and hexadecimal, you may skip straight on to the next tutorial.
If you would prefer a video tutorial, you can use this instead. Just know that assembly programmers use the prefix
“$” for hexadecimal and “%” for binary.

When we humans write numbers, we like to use base 10, also called decimal. Decimal is a number system in which
there are ten digits (0-9). We can write any number from zero to nine using that digit.

• 4

But if we want to write a number greater than nine, we have to use two digits.

• 42

The digit on the left tells you how many “tens” there are in this number (because we use base 10) and the digit on the
right tells you how many “ones” there are in this number. So we can say that a two-digit number is equal to (10 *
digit on the left) + digit on the right.

For numbers greater than 99, the highest two-digit number, we use three digits.

• 256

The digit on the right now tells you how many “hundreds” there are (one hundred being the next power of ten), and
the middle digit tells you how many “tens” there are, etc. So we can say that a three-digit number is equal to ‘‘(100 *
digit on the left) + (10 * digit in the middle) + digit on the right

I’m sure you can see the pattern by now.

Humans may like base 10, but computers don’t. Computers can’t keep track of ten digits very easily. They only like
two: 0 and 1. A number system using only two digits is base 2, or binary. When we write a binary number, we usually
put a percent sign % in front of it to make it clear that it isn’t base 10. Here’s what a typical binary number may look
like: %101010

In base 10, each digit is ten times as significant as the next. For example, a small change in the “hundreds” place
makes a much bigger change in the value of a number than a change in the “tens” place, and likewise between the
“tens” and “ones” places. In binary, each digit is twice as significant as the one after it. What do I mean by that? Well
on the far left, there’s the “ones” place as we would expect it. After that comes the “twos” place. And after that comes

9

http://youtu.be/jvx-NrILgpE

eZ80 Heaven, Release 1.0

the “fours” place (2 * 2 = 4). And the “eights” (4 * 2 = 8), “sixteens” (8 * 2 = 16), “thirty-twos,” and so on. It will
really pay to memorize your powers of two at least up to 2^8, which is 256 (in decimal notation).

So how can we use this information to go from a binary number to a decimal number? We make a chart!

Place 32’s 16’s 8’s 4’s 2’s 1’s
Digit 1 0 1 0 1 0

Okay, so now how do we do this? We multiply down and add across. So let’s start from the right:

There is a 0 in the 1s place, so we multiply 1 times 0. The result is 0.
There is a 1 in the 2s place, so we multiply 2 times 1. The result is 2.
There is a 0 in the 4s place, so we multiply 4 times 0. The result is 0.
There is a 1 in the 8s place, so we multiply 8 times 1. The result is 8.
There is a 0 in the 16s place, so we multiply 16 times 0. The result is 0.
There is a 1 in the 32s place, so we multiply 32 times 1. The result is 32.

Now we add the results. So 32 + 0 + 8 + 0 + 2 + 0 = 42. %101010 = 42. This may seem like a rather tedious way
to work with numbers, stretching what would otherwise be a relatively short and easy-to-read decimal number into a
long, inefficient, and annoying string of binary, which is why we programmers have another way of writing numbers:
hexadecimal!

Hexadecimal, often abbreviated to hex, is precisely what the name suggests: base 16. Hexadecimal numbers are much
shorter than binary, and usually shorter than decimal too. In assembly, we put a dollar sign $ in front of a number
to make it clear that the number is hexadecimal. (Sometimes you will see 0x in front of a hexadecimal number too.)
Hexadecimal has a “ones” place, a “sixteens” place, (bear with me here) a “256s” place (16 * 16 = 256), a “65536s”
place (256 * 16 = 65536), a “16777216s” place (65536 * 16 = 16777216), and so on. It gets really big really quickly.

But wait! In decimal, we had ten digits. Binary had two. Hexadecimal needs... sixteen digits, right? How do we even
write that? Well, we use letters. In Hexadecimal, when a digit is ten, we use the letter A. When a digit is eleven, we
use the letter B. C is twelve, D is thirteen, E is fourteen, and F is fifteen. (Anything past that spills over into the next
digit, just like how decimal doesn’t have anything over the digit 9.)

Let’s use another chart to convert from hexadecimal to decimal.

Place 16384’s 256’s 16’s 1’s
Digit 9 9 2 C

Just like with binary numbers, we multiply down and add across. We just have to remember that letters A-F correspond
to the numbers 10-15.

There is a C in the 1s place, so we multiple 1 times 12 (C = 12). The result is 12.
There is a 2 in the 16s place, so we multiple 2 times 16. The result is 32.
There is a 9 in the 256s place, so we multiple 2 times 16. The result is 2304.
There is a 9 in the 65536s place, so we multiple 2 times 16. The result is 36864.

36864 + 2304 + 32 + 12 = 39212. That was a very large number. If we were to write it out in binary it would be
%1001100100101100. Ick. Hexadecimal makes things a lot cleaner. And the best part is that every four digits in
binary is equal to EXACTLY one hexadecimal digit! So if you split up that icky binary string into sections of four
(%1001 %1001 %0010 %1100) every little section corresponds with one of the digits of the hexadecimal string. This
makes converting between binary and hexadecimal much easier if you just memorize which 4-digit binary numbers go
with which hexadecimal digits.

10 Chapter 3. Hex, Binary, and Decimal

eZ80 Heaven, Release 1.0

Okay, so everything in computers is actually binary, which can be represented more nicely in hexadecimal. But even
a computer can’t manage a humongous amount of binary in one large lump. It needs to organize things. So it splits
up the data into sections called bytes. Every binary digit in a computer is a bit. If the bit is one, we say it is on. If it is
zero, we say it is off. Every byte has 8 bits. That means each byte is an 8-digit binary number, or a 2-digit hexadecimal
number. Since a single byte is two hexadecimal digits and the highest number you can write with two hexadecimal
digits is $FF (255 in decimal), a byte can store a number from 0 to 255. This is why lots of computer things have
limits at 255 or 256. You know the term kilobyte, which is 1024 bytes (roughly a thousand). A megabyte is of course
1048576 bytes (roughly a million).

Finally, computers start counting with zeroes, so if I have two files, one would be labeled file 0, and the other file 1.

Here are some practice problems to do:

Decimal Hexadecimal Binary
10 ? ?
72 $48 ?
? ? 101011
? $1E ?

If you can do all of these problems, you are ready to move on to the next tutorial.

If you need more help, visit the additional learning page: here

We’ll be using these concepts very frequently, so make sure you have mastered them before moving on to the next
tutorial.

In the next tutorial we’ll be learning about how information is stored on your calculator.

11

eZ80 Heaven, Release 1.0

12 Chapter 3. Hex, Binary, and Decimal

CHAPTER 4

Registers and Indirection

The Registers

If you’ve ever programmed in a different language, you’ve used something called variables to store your data tem-
porarily. In assembly, we use registers.

There are many registers you can use in assembly. The ones we will be covering today are: A, B, C, D, E, F, H, and L,
which can be paired together to form AF, BC, DE, and HL. As you probably have guessed, when a register is paired
with another it can hold more information.

Recall from the last tutorial bits and bytes? H is a 1 byte register, or 8 bits, while HL is a 3 byte register pair, or 24
bits.

Now that we know about registers, it’s time we learn our first instruction!

ld destination,source

What does this code do? It puts the value of source into the given destination. We can use registers as arguments for
this instruction:

ld h,d

Puts the content of D inside H.

We can also use numbers:

ld hl,7

Puts 7 into HL.

Remember the size of the registers you are using:

ld hl,a

This not a valid instruction, as both arguments have to be 8 bit registers.

13

eZ80 Heaven, Release 1.0

Addresses

To fully understand what indirection is, we have to know what an address is. An address is a number that corresponds
to a specific byte in RAM. Add one to the address and you go forward a byte; subtract one and you go backward a
byte.

You can use addresses in place of registers with the LD instruction

ld hl,(133212)

This will put whatever is inside address 133212, the 133213th byte, and the 2 bytes after that (hl is 3 bytes), inside the
hl register pair.

But why do we have parenthesis around the address? This is something called indirection.

Indirection

Note: Indirection is slightly hard to grasp for newcomers, and we’ll touch more on this later, so just do your best

Indirection tells you whether or not you are using the number as an address, or just as a number. Here the example
from above:

ld hl,(133212)

How does the program know whether you are talking about the 133213th byte or the actual number 133212? The
parenthesis tell the program to use the number as an address.

ld hl,133212 ;let's put 133212 inside hl. Note, there are no parenthesis, so we're
→˓talking about the number 133212, and not the 133213th byte.
ld a,2 ;also no parenthesis, we mean 2
ld (hl),a ;we can decide later to use it as an address, by putting the parenthesis
→˓around it. Now we are putting the value of A, 2, inside the address stored in hl.

Don’t worry if you don’t immediately get it, it will come to you eventually. Now it’s your turn to try

ld de,(133215)
ld (132918),de

If you know what’s happening here, good for you! If you don’t, it’s ok. You’ll get it later.

In the next tutorial we will learn about labels.

14 Chapter 4. Registers and Indirection

CHAPTER 5

Labels

Labels consist of an identifier (or symbol) followed by a colon :. The identifier can contain numbers, letters, and
underscores _, but cannot start with a number. Labels must be defined only once.

When a program is compiled, each label is replaced with a 24bit address. A label can be used to identify a string of
data, a location to jump to, or a subroutine to call.

From the example program:

.nolist
#include "includes\ti84pce.inc"
.list
.assume ADL=1
.org userMem-2
.db tExtTok,tAsm84CeCmp
call _homeup
call _ClrScrnFull
ld hl,TutorialText
call _PutS
call _GetKey
call _ClrScrnFull
res donePrgm,(iy+doneFlags)
ret

TutorialText:
.db "Excellent job! :) You havecreated your first assembly program!",0

The label TutorialText is used by the compiler to store the location of the start of the string. (TutorialText
now refers to the 24bit address of the start of the string.)

Here, the value of the label TutorialText is loaded into hl (the address of the start of the string) and call _PutS
displays the string located at the address in hl. _PutS itself is also a label (defined in ti84pce.inc) that refers to
the address of a subroutine built into TI-OS.

15

eZ80 Heaven, Release 1.0

16 Chapter 5. Labels

CHAPTER 6

Romcalls

Romcalls are pieces of code that run system predefined functions.

A list of romcalls can be found here, with one problem. Since this list is for the TI-83 Plus, some of the romcalls are
missing or outdated. Also, the romcalls on the +CE are prefixed with a single underscore.

How does the assembler know where the romcalls on the TI-84+CE are? Surely they must be in a different location
then the CE? The answer lies in the .inc file that you include at the start of every program.

#include "includes\ti84pce.inc"

Inside is a list of addresses that define where the romcalls (and other important items) are located. Each calculator has
a different .inc file.

So how do we call a romcall?

call _PutS

This will call the romcall _PutS, which as you can see in the system routines pdf, reads the string inside the address in
HL.

Recall from the very first tutorial the example program

.nolist
#include "includes\ti84pce.inc"
.list
.assume ADL=1
.org userMem-2
.db tExtTok,tAsm84CeCmp
call _homeup
call _ClrScrnFull
ld hl,TutorialText
call _PutS
call _GetKey
call _ClrScrnFull
res donePrgm,(iy+doneFlags)
ret

17

https://education.ti.com/~/media/01E6AF2CADF84171B6F2E2039357BAAC

eZ80 Heaven, Release 1.0

TutorialText:
.db "Excellent job! :) You havecreated your first assembly program!",0

Now that we know romcalls, we can figure out what each line does.

call _homeup
call _ClrScrnFull

_HomeUp isn’t in the System Routines file, but it and _ClrScrnFull set up for the text output by resetting the screen.

ld hl,TutorialText
call _PutS

From the last tutorial, we learned about labels, and how they are converted to addresses at runtime. Since _PutS reads
from HL as an address, we can just put the address number, and not the contents inside HL. This means we do not use
indirection and we do not need parenthesis.

_PutS reads a null terminating string from HL. All that means is that the string ends in 0.

call _GetKey
call _ClrScrnFull
res donePrgm,(iy+doneFlags)
ret

We call _GetKey to pause the program until a key is pressed. Afterword, we clear the screen again using _ClrScrnFull.
Don’t worry about the second to last line for now, we’ll learn what it does later. Finally, the program ends.

Once again, you can learn more about each romcall in the PDF above. From now on, if there is a romcall you don’t
recognize, use the PDF.

The next tutorial’s contents are unknown. How mysterious!

18 Chapter 6. Romcalls

CHAPTER 7

Hooks

19

eZ80 Heaven, Release 1.0

20 Chapter 7. Hooks

CHAPTER 8

Arithmetic Instructions

ADC

ADC M,N Add with Carry

Description

Adds M, N, and the carry flag (+0 or +1) and stores the result in M.
M += N + Carry

Uses

• Storing the state of the carry flag in either A or HLwith adc a,0 or ld bc/de,0 \ adc hl,bc/de

• 16 bit addition which checks if the result is zero (see Notes)

• Can be useful otherwise in very specific situations

Results

Regis-
ter/Flag

8-bit 16-bit (non-ADL) 24-bit (ADL)

M Set to the result of M + N + Carry
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Set if carry from bit 3; else

reset
Set if carry from bit 11; else reset

P/V flag Set if overflow; else reset
N flag Reset
C flag Set if carry from bit 7; else

reset
Set if carry from bit 15; else
reset

Set if carry from bit 23; else
reset

21

eZ80 Heaven, Release 1.0

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
adc a,a $8F 1F X X
adc a,b $88 1F X X
adc a,c $89 1F X X
adc a,d $8A 1F X X
adc a,e $8B 1F X X
adc a,h $8C 1F X X
adc a,l $8D 1F X X
adc a,ixh $DD, $8C 2F X X
adc a,ixl $DD, $8D 2F X X
adc a,iyh $FD, $8C 2F X X
adc a,iyl $FD, $8D 2F X X
adc a,(hl) $8E 1F + 1R 2F + 1R 2F + 1R
adc a,(ix+n) $DD, $8E, n 3F + 1R 4F + 1R 4F + 1R
adc a,(iy+n) $FD, $8E, n 3F + 1R 4F + 1R 4F + 1R
adc a,n $CE, n 2F X X
adc hl,bc $ED, $4A 2F 3F 3F
adc hl,de $ED, $5A 2F 3F 3F
adc hl,hl $ED, $6A 2F 3F 3F
adc hl,sp $ED, $7A 2F 3F 3F

Notes

• Unlike ADD, this instruction does not support using the index registers IX and IY as the first operand.

• Unlike ADD, this instruction does modify the Z flag when doing 16-bit and 24-bit addition.

See Also ADD, SBC, SUB

ADD

ADD M,N Add

Description

Adds M and N and stores the result in M.
M += N

Results

Regis-
ter/Flag

8-bit 16-bit (non-ADL) 24-bit (ADL)

M Set to the result of M + N
S flag Set if the result is negative;

else reset
Not affected

Z flag Set if the result is 0; else reset Not affected
H flag Set if carry from bit 3; else

reset
Set if carry from bit 11; else reset

P/V flag Set if overflow; else reset Not affected
N flag Reset
C flag Set if carry from bit 7; else

reset
Set if carry from bit 15;
else reset

Set if carry from bit 23;
else reset

22 Chapter 8. Arithmetic Instructions

eZ80 Heaven, Release 1.0

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
add a,a $87 1F X X
add a,b $80 1F X X
add a,c $81 1F X X
add a,d $82 1F X X
add a,e $83 1F X X
add a,h $84 1F X X
add a,l $85 1F X X
add a,ixh $DD, $84 2F X X
add a,ixl $DD, $85 2F X X
add a,iyh $FD, $84 2F X X
add a,iyl $FD, $85 2F X X
add a,(hl) $86 1F + 1R 2F + 1R 2F + 1R
add a,(ix+n) $DD, $86, n 3F + 1R 4F + 1R 4F + 1R
add a,(iy+n) $FD, $86, n 3F + 1R 4F + 1R 4F + 1R
add a,n $C6, n 2F X X
add hl,bc $0A 1F 2F 2F
add hl,de $1A 1F 2F 2F
add hl,hl $2A 1F 2F 2F
add hl,sp $3A 1F 2F 2F
add ix,bc $DD, $0A 2F 3F 2F
add ix,de $DD, $1A 2F 3F 3F
add ix,ix $DD, $2A 2F 3F 3F
add ix,sp $DD, $3A 2F 3F 3F
add iy,bc $FD, $0A 2F 3F 3F
add iy,de $FD, $1A 2F 3F 3F
add iy,iy $FD, $2A 2F 3F 3F
add iy,sp $FD, $3A 2F 3F 3F

Notes

• Unlike ADC, this instruction does support using the index registers IX and IY as the first operand. This is
the only difference in the allowed instructions between the two.

• This instruction does not modify the S, Z, and P/V flags when doing 16-bit and 24-bit addition. For that,
you can use ADC.

• Like most instructions, HL, IX, and IY are mutually exclusive. I.e. they cannot be used in the same
instructions.

See Also ADC, SBC, SUB

CP

CP M,N Compare

Description

Subtracts N from M (and updates the flags accordingly), but doesn’t modify either operand.
M - N

Uses

• Comparing two bytes

8.3. CP 23

eZ80 Heaven, Release 1.0

Results

Register/Flag 8-bit
S flag Set if the result is negative; else reset
Z flag Set if M = N
H flag Set if borrow from bit 4; else reset
P/V flag Set if overflow; else reset
N flag Set
C flag Set if borrow; else reset

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
cp a,a $BF 1F X X
cp a,b $B8 1F X X
cp a,c $B9 1F X X
cp a,d $BA 1F X X
cp a,e $BB 1F X X
cp a,h $BC 1F X X
cp a,l $BD 1F X X
cp a,ixh $DD, $BC 2F X X
cp a,ixl $DD, $BD 2F X X
cp a,iyh $FD, $BC 2F X X
cp a,iyl $FD, $BD 2F X X
cp a,(hl) $BE 1F + 1R 2F + 1R 2F + 1R
cp a,(ix+n) $DD, $BE, n 3F + 1R 4F + 1R 4F + 1R
cp a,(iy+n) $FD, $BE, n 3F + 1R 4F + 1R 4F + 1R
cp a,n $FE, n 2F X X

Notes

• When using CP with signed integers, the flags are set as follows:

– Z means M = N

– NZ means M N

– C means M < N

– NC means M N

See Also SUB, SBC, CPI, CPIR, CPD, CPDR

DAA

DAA Decimal Adjust Accumulator

Description

Does cool stuff with binary-coded decimal.

Uses

• Probably useful for BCD arithmetic?

Results

Register/Flag 8-bit
S flag Set to the 7th bit of the result
Z flag Set if the result is 0; else reset
H flag Really complicated
P/V flag Set if the result has even parity; else reset
N flag Not affected
C flag Really complicated

24 Chapter 8. Arithmetic Instructions

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
daa $27 1F X X

Notes

• When using CP with signed integers, the flags are set as follows:

– Z means M = N

– NZ means M N

– C means M < N

– NC means M N

See Also ADD, ADC, RLD, RRD, SBC, SUB

DEC

DEC M Decrement

Description

Decrements M by 1.
M -= 1

Results

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)

dec a $3D 1F X dec b $05 1F X dec c $0D 1F X dec d $15 1F X dec e $1D 1F X dec h $25 1F X dec l $2D
1F X dec ixh $DD, $25 2F X dec ixl $DD, $2D 2F X dec iyh $FD, $25 2F X dec iyl $FD, $2D 2F X dec (hl)
$86 1F + 1R + 1W + 1 2F + 1R + 1W + 1 dec (ix+n) $DD, $35, n 3F + 1R + 1W + 1 4F + 1R + 1W + 1 dec
(iy+n) $FD, $35, n 3F + 1R + 1W + 1 4F + 1R + 1W + 1 dec bc $ED, $0B 1F 2F dec de $ED, $1B 1F 2F dec hl
$ED, $2B 1F 2F dec sp $ED, $3B 1F 2F dec ix $DD, $2B 2F 3F dec iy $ED, $2B 2F 3F ================
================ ================ ================ ================

Notes

• While this instruction can be combined with a jr nz,LoopLabel to create a great 8-bit loop, using
dec with a 16-bit or 24-bit operand will not alter the flags, so you’ll need another method of checking if
the register pair is zero.

See Also INC

INC

INC M Increment

Description

Increments M by 1.
M += 1

8.5. DEC 25

eZ80 Heaven, Release 1.0

Results

Register/Flag 8-bit 16-bit (non-ADL) 24-bit (ADL)
M Set to the result of M + 1
S flag Set if the result is negative; else reset Not affected
Z flag Set if the result is 0; else reset Not affected
H flag Set if carry from bit 3; else reset Not affected
P/V flag Set if M was $7F before operation; else reset Not affected
N flag Reset Not affected
C flag Not affected

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
inc a $3C 1F X X
inc b $04 1F X X
inc c $0C 1F X X
inc d $14 1F X X
inc e $1C 1F X X
inc h $24 1F X X
inc l $2C 1F X X
inc ixh $DD, $24 2F X X
inc ixl $DD, $2C 2F X X
inc iyh $FD, $24 2F X X
inc iyl $FD, $2C 2F X X
inc (hl) $34 1F + 1R + 1W + 1 2F + 1R + 1W + 1 2F + 1R + 1W + 1
inc (ix+n) $DD, $34, n 3F + 1R + 1W + 1 4F + 1R + 1W + 1 4F + 1R + 1W + 1
inc (iy+n) $FD, $34, n 3F + 1R + 1W + 1 4F + 1R + 1W + 1 4F + 1R + 1W + 1
inc bc $ED, $0B 1F 2F 2F
inc de $ED, $1B 1F 2F 2F
inc hl $ED, $23 1F 2F 2F
inc sp $ED, $3B 1F 2F 2F
inc ix $DD, $23 2F 3F 3F
inc iy $ED, $23 2F 3F 3F

Notes

• Keep in mind that the flags are not altered when using this instruction with a 16-bit and 24-bit operand.

See Also DEC

26 Chapter 8. Arithmetic Instructions

CHAPTER 9

Bit Manipulation

BIT

BIT b,M Test Bit

Description

Checks the b``th bit of ``M and stores the inverse in the Z flag. b must be a hard-coded number
between 0 and 7.

Results

Register/Flag 8-bit 16-bit (non-ADL) 24-bit (ADL)
S flag Undefined
Z flag Set if bit b of M is zero
H flag Set
P/V flag Undefined
N flag Reset
C flag Not affected

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
bit 0,a $CB, $47 2F X X
bit 0,b $CB, $40 2F X X
bit 0,c $CB, $41 2F X X
bit 0,d $CB, $42 2F X X
bit 0,e $CB, $43 2F X X
bit 0,h $CB, $44 2F X X
bit 0,l $CB, $45 2F X X
bit 0,(hl) $CB, $46 2F + 1R 3F + 1R 3F + 1R
bit 0,(ix+n) $DD, $CB, n, $46 4F + 1R 5F + 1R 5F + 1R
bit 0,(iy+n) $FD, $CB, n, $46 4F + 1R 5F + 1R 5F + 1R
bit 1,a $CB, $4F 2F X X
bit 1,b $CB, $48 2F X X

Continued on next page

27

eZ80 Heaven, Release 1.0

Table 9.1 – continued from previous page
Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
bit 1,c $CB, $49 2F X X
bit 1,d $CB, $4A 2F X X
bit 1,e $CB, $4B 2F X X
bit 1,h $CB, $4C 2F X X
bit 1,l $CB, $4D 2F X X
bit 1,(hl) $CB, $4E 2F + 1R 3F + 1R 3F + 1R
bit 1,(ix+n) $DD, $CB, n, $4E 4F + 1R 5F + 1R 5F + 1R
bit 1,(iy+n) $FD, $CB, n, $4E 4F + 1R 5F + 1R 5F + 1R
bit 2,a $CB, $57 2F X X
bit 2,b $CB, $50 2F X X
bit 2,c $CB, $51 2F X X
bit 2,d $CB, $52 2F X X
bit 2,e $CB, $53 2F X X
bit 2,h $CB, $54 2F X X
bit 2,l $CB, $55 2F X X
bit 2,(hl) $CB, $56 2F + 1R 3F + 1R 3F + 1R
bit 2,(ix+n) $DD, $CB, n, $56 4F + 1R 5F + 1R 5F + 1R
bit 2,(iy+n) $FD, $CB, n, $56 4F + 1R 5F + 1R 5F + 1R
bit 3,a $CB, $5F 2F X X
bit 3,b $CB, $58 2F X X
bit 3,c $CB, $59 2F X X
bit 3,d $CB, $5A 2F X X
bit 3,e $CB, $5B 2F X X
bit 3,h $CB, $5C 2F X X
bit 3,l $CB, $5D 2F X X
bit 3,(hl) $CB, $5E 2F + 1R 3F + 1R 3F + 1R
bit 3,(ix+n) $DD, $CB, n, $5E 4F + 1R 5F + 1R 5F + 1R
bit 3,(iy+n) $FD, $CB, n, $5E 4F + 1R 5F + 1R 5F + 1R
bit 4,a $CB, $67 2F X X
bit 4,b $CB, $60 2F X X
bit 4,c $CB, $61 2F X X
bit 4,d $CB, $62 2F X X
bit 4,e $CB, $63 2F X X
bit 4,h $CB, $64 2F X X
bit 4,l $CB, $65 2F X X
bit 4,(hl) $CB, $66 2F + 1R 3F + 1R 3F + 1R
bit 4,(ix+n) $DD, $CB, n, $66 4F + 1R 5F + 1R 5F + 1R
bit 4,(iy+n) $FD, $CB, n, $66 4F + 1R 5F + 1R 5F + 1R
bit 5,a $CB, $6F 2F X X
bit 5,b $CB, $68 2F X X
bit 5,c $CB, $69 2F X X
bit 5,d $CB, $6A 2F X X
bit 5,e $CB, $6B 2F X X
bit 5,h $CB, $6C 2F X X
bit 5,l $CB, $6D 2F X X
bit 5,(hl) $CB, $6E 2F + 1R 3F + 1R 3F + 1R
bit 5,(ix+n) $DD, $CB, n, $6E 4F + 1R 5F + 1R 5F + 1R
bit 5,(iy+n) $FD, $CB, n, $6E 4F + 1R 5F + 1R 5F + 1R
bit 6,a $CB, $77 2F X X

Continued on next page

28 Chapter 9. Bit Manipulation

eZ80 Heaven, Release 1.0

Table 9.1 – continued from previous page
Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
bit 6,b $CB, $70 2F X X
bit 6,c $CB, $71 2F X X
bit 6,d $CB, $72 2F X X
bit 6,e $CB, $73 2F X X
bit 6,h $CB, $74 2F X X
bit 6,l $CB, $75 2F X X
bit 6,(hl) $CB, $76 2F + 1R 3F + 1R 3F + 1R
bit 6,(ix+n) $DD, $CB, n, $76 4F + 1R 5F + 1R 5F + 1R
bit 6,(iy+n) $FD, $CB, n, $76 4F + 1R 5F + 1R 5F + 1R
bit 7,a $CB, $7F 2F X X
bit 7,b $CB, $78 2F X X
bit 7,c $CB, $79 2F X X
bit 7,d $CB, $7A 2F X X
bit 7,e $CB, $7B 2F X X
bit 7,h $CB, $7C 2F X X
bit 7,l $CB, $7D 2F X X
bit 7,(hl) $CB, $7E 2F + 1R 3F + 1R 3F + 1R
bit 7,(ix+n) $DD, $CB, n, $7E 4F + 1R 5F + 1R 5F + 1R
bit 7,(iy+n) $FD, $CB, n, $7E 4F + 1R 5F + 1R 5F + 1R

Notes

• Interestingly enough, the index registers IXH, IXL, IYH, and IYL cannot be used in this instruction, yet
(IX+n) and (IY+n) are allowed as operands.

• The Z flag is set as follows:

– Z means the bit is zero

– NZ means the bit is one (non-zero)

See Also RES, SET

RES

RES b,M Reset Bit

Description

Sets the b``th bit of ``M to zero. b must be a hard-coded number between 0 and 7.

Results

Register/Flag 8-bit 16-bit (non-ADL) 24-bit (ADL)
M The ‘‘b‘‘th bit of M is set to zero
S flag Not affected
Z flag Not affected
H flag Not affected
P/V flag Not affected
N flag Not affected
C flag Not affected

Allowed Instructions

9.2. RES 29

eZ80 Heaven, Release 1.0

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
res 0,a $CB, $87 2F X X
res 0,b $CB, $80 2F X X
res 0,c $CB, $81 2F X X
res 0,d $CB, $82 2F X X
res 0,e $CB, $83 2F X X
res 0,h $CB, $84 2F X X
res 0,l $CB, $85 2F X X
res 0,(hl) $CB, $86 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 0,(ix+n) $DD, $CB, $86, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 0,(iy+n) $FD, $CB, $86, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 1,a $CB, $8F 2F X X
res 1,b $CB, $88 2F X X
res 1,c $CB, $89 2F X X
res 1,d $CB, $8A 2F X X
res 1,e $CB, $8B 2F X X
res 1,h $CB, $8C 2F X X
res 1,l $CB, $8D 2F X X
res 1,(hl) $CB, $8E 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 1,(ix+n) $DD, $CB, $8E, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 1,(iy+n) $FD, $CB, $8E, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 2,a $CB, $97 2F X X
res 2,b $CB, $90 2F X X
res 2,c $CB, $91 2F X X
res 2,d $CB, $92 2F X X
res 2,e $CB, $93 2F X X
res 2,h $CB, $94 2F X X
res 2,l $CB, $95 2F X X
res 2,(hl) $CB, $96 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 2,(ix+n) $DD, $CB, $96, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 2,(iy+n) $FD, $CB, $96, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 3,a $CB, $9F 2F X X
res 3,b $CB, $98 2F X X
res 3,c $CB, $99 2F X X
res 3,d $CB, $9A 2F X X
res 3,e $CB, $9B 2F X X
res 3,h $CB, $9C 2F X X
res 3,l $CB, $9D 2F X X
res 3,(hl) $CB, $9E 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 3,(ix+n) $DD, $CB, $9E, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 3,(iy+n) $FD, $CB, $9E, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 4,a $CB, $A7 2F X X
res 4,b $CB, $A0 2F X X
res 4,c $CB, $A1 2F X X
res 4,d $CB, $A2 2F X X
res 4,e $CB, $A3 2F X X
res 4,h $CB, $A4 2F X X
res 4,l $CB, $A5 2F X X
res 4,(hl) $CB, $A6 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 4,(ix+n) $DD, $CB, $A6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 4,(iy+n) $FD, $CB, $A6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Continued on next page

30 Chapter 9. Bit Manipulation

eZ80 Heaven, Release 1.0

Table 9.2 – continued from previous page
Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
res 5,a $CB, $AF 2F X X
res 5,b $CB, $A8 2F X X
res 5,c $CB, $A9 2F X X
res 5,d $CB, $AA 2F X X
res 5,e $CB, $AB 2F X X
res 5,h $CB, $AC 2F X X
res 5,l $CB, $AD 2F X X
res 5,(hl) $CB, $AE 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 5,(ix+n) $DD, $CB, $AE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 5,(iy+n) $FD, $CB, $AE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 6,a $CB, $B7 2F X X
res 6,b $CB, $B0 2F X X
res 6,c $CB, $B1 2F X X
res 6,d $CB, $B2 2F X X
res 6,e $CB, $B3 2F X X
res 6,h $CB, $B4 2F X X
res 6,l $CB, $B5 2F X X
res 6,(hl) $CB, $B6 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 6,(ix+n) $DD, $CB, $B6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 6,(iy+n) $FD, $CB, $B6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 7,a $CB, $BF 2F X X
res 7,b $CB, $B8 2F X X
res 7,c $CB, $B9 2F X X
res 7,d $CB, $BA 2F X X
res 7,e $CB, $BB 2F X X
res 7,h $CB, $BC 2F X X
res 7,l $CB, $BD 2F X X
res 7,(hl) $CB, $BE 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
res 7,(ix+n) $DD, $CB, $BE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
res 7,(iy+n) $FD, $CB, $BE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• Interestingly enough, the index registers IXH, IXL, IYH, and IYL cannot be used in this instruction, yet
(IX+n) and (IY+n) are allowed as operands.

See Also BIT, SET

SET

SET b,M Set Bit

Description

Sets the b``th bit of ``M to one. b must be a hard-coded number between 0 and 7.

9.3. SET 31

eZ80 Heaven, Release 1.0

Results

Register/Flag 8-bit 16-bit (non-ADL) 24-bit (ADL)
M The ‘‘b‘‘th bit of M is set to one
S flag Not affected
Z flag Not affected
H flag Not affected
P/V flag Not affected
N flag Not affected
C flag Not affected

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
set 0,a $CB, $C7 2F X X
set 0,b $CB, $C0 2F X X
set 0,c $CB, $C1 2F X X
set 0,d $CB, $C2 2F X X
set 0,e $CB, $C3 2F X X
set 0,h $CB, $C4 2F X X
set 0,l $CB, $C5 2F X X
set 0,(hl) $CB, $C6 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 0,(ix+n) $DD, $CB, $C6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 0,(iy+n) $FD, $CB, $C6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 1,a $CB, $CF 2F X X
set 1,b $CB, $C8 2F X X
set 1,c $CB, $C9 2F X X
set 1,d $CB, $CA 2F X X
set 1,e $CB, $CB 2F X X
set 1,h $CB, $CC 2F X X
set 1,l $CB, $CD 2F X X
set 1,(hl) $CB, $CE 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 1,(ix+n) $DD, $CB, $CE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 1,(iy+n) $FD, $CB, $CE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 2,a $CB, $D7 2F X X
set 2,b $CB, $D0 2F X X
set 2,c $CB, $D1 2F X X
set 2,d $CB, $D2 2F X X
set 2,e $CB, $D3 2F X X
set 2,h $CB, $D4 2F X X
set 2,l $CB, $D5 2F X X
set 2,(hl) $CB, $D6 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 2,(ix+n) $DD, $CB, $D6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 2,(iy+n) $FD, $CB, $D6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 3,a $CB, $DF 2F X X
set 3,b $CB, $D8 2F X X
set 3,c $CB, $D9 2F X X
set 3,d $CB, $DA 2F X X
set 3,e $CB, $DB 2F X X
set 3,h $CB, $DC 2F X X
set 3,l $CB, $DD 2F X X
set 3,(hl) $CB, $DE 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 3,(ix+n) $DD, $CB, $DE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 3,(iy+n) $FD, $CB, $DE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Continued on next page

32 Chapter 9. Bit Manipulation

eZ80 Heaven, Release 1.0

Table 9.3 – continued from previous page
Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
set 4,a $CB, $E7 2F X X
set 4,b $CB, $E0 2F X X
set 4,c $CB, $E1 2F X X
set 4,d $CB, $E2 2F X X
set 4,e $CB, $E3 2F X X
set 4,h $CB, $E4 2F X X
set 4,l $CB, $E5 2F X X
set 4,(hl) $CB, $E6 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 4,(ix+n) $DD, $CB, $E6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 4,(iy+n) $FD, $CB, $E6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 5,a $CB, $EF 2F X X
set 5,b $CB, $E8 2F X X
set 5,c $CB, $E9 2F X X
set 5,d $CB, $EA 2F X X
set 5,e $CB, $EB 2F X X
set 5,h $CB, $EC 2F X X
set 5,l $CB, $ED 2F X X
set 5,(hl) $CB, $EE 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 5,(ix+n) $DD, $CB, $EE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 5,(iy+n) $FD, $CB, $EE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 6,a $CB, $F7 2F X X
set 6,b $CB, $F0 2F X X
set 6,c $CB, $F1 2F X X
set 6,d $CB, $F2 2F X X
set 6,e $CB, $F3 2F X X
set 6,h $CB, $F4 2F X X
set 6,l $CB, $F5 2F X X
set 6,(hl) $CB, $F6 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 6,(ix+n) $DD, $CB, $F6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 6,(iy+n) $FD, $CB, $F6, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 7,a $CB, $FF 2F X X
set 7,b $CB, $F8 2F X X
set 7,c $CB, $F9 2F X X
set 7,d $CB, $FA 2F X X
set 7,e $CB, $FB 2F X X
set 7,h $CB, $FC 2F X X
set 7,l $CB, $FD 2F X X
set 7,(hl) $CB, $FE 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
set 7,(ix+n) $DD, $CB, $FE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
set 7,(iy+n) $FD, $CB, $FE, n 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• Interestingly enough, the index registers IXH, IXL, IYH, and IYL cannot be used in this instruction, yet
(IX+n) and (IY+n) are allowed as operands.

See Also BIT, RES

9.3. SET 33

eZ80 Heaven, Release 1.0

34 Chapter 9. Bit Manipulation

CHAPTER 10

Bit Shifts

RL

RL M Rotate Left

Description

Performs a left shift on M; the 7th bit of M is moved into the carry, and the carry is moved into the 0th bit of M.

Uses

• Quickly multiplying by two

• Retrieving consecutive bits of a byte in a loop, starting from the left

Results

Register/Flag 8-bit

M
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Reset
P/V flag Set if the result has even parity; else reset
N flag Reset
C flag 7th bit of M

35

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
rl a $CB, $17 2F X X
rl b $CB, $10 2F X X
rl c $CB, $11 2F X X
rl d $CB, $12 2F X X
rl e $CB, $13 2F X X
rl h $CB, $14 2F X X
rl l $CB, $15 2F X X
rl (hl) $CB, $16 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
rl (ix+n) $DD, $CB, n, $16 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
rl (iy+n) $FD, $CB, n, $16 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• When using RL to multiply a number by 2, first make sure the carry flag is reset or the result will be (M

* 2) + Carry.

See Also RLA, RLC, RR, SLA

RLA

RLA Rotate Left Accumulator

Description

Performs a very fast RL A; the 7th bit of A is moved into the carry, and the carry is moved into the 0th bit of A.

Uses

• Quickly multiplying A by two

• Retrieving consecutive bits of a byte in a loop, starting from the left

Results

Register/Flag 8-bit

A
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Not affected
N flag Reset
C flag 7th bit of A

Allowed Instructions Instruction Opcode CC (ADL/non-ADL)
rla $17 1F

36 Chapter 10. Bit Shifts

eZ80 Heaven, Release 1.0

Notes

• When using RLA to multiply A by 2, first make sure the carry flag is reset the result will be (A * 2)
+ Carry.

• Unlike RL A, this instruction does not meaningfully affect any flags except C.

See Also RLA, RLC, RR, SLA

RLC

RLC M Rotate Left Circular

Description

Performs a left shift on M; the 7th bit of M is copied into the carry and into the 0th bit of M.

Uses

• Retrieving consecutive bits of a byte in a loop, starting from the left, without affecting the source data
(after eight iterations

Results

Register/Flag 8-bit

M
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Reset
P/V flag Set if the result has even parity; else reset
N flag Reset
C flag 7th bit of M

10.3. RLC 37

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
rlc a $CB, $07 2F X X
rlc b $CB, $00 2F X X
rlc c $CB, $01 2F X X
rlc d $CB, $02 2F X X
rlc e $CB, $03 2F X X
rlc h $CB, $04 2F X X
rlc l $CB, $05 2F X X
rlc (hl) $CB, $06 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
rlc (ix+n) $DD, $CB, n, $06 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
rlc (iy+n) $FD, $CB, n, $06 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• Unlike RL, the initial state of the carry flag has no effect on the result of this instruction.

See Also RL, RLCA, RRC, SLA

RLCA

RLCA Rotate Left Circular Accumulator

Description

Performs a very fast RLC A; the 7th bit of A is copied into the carry and into the 0th bit of A.

Uses

• Retrieving consecutive bits of a byte in a loop, starting from the left, without affecting the source data
(after eight iterations)

Results

Register/Flag 8-bit

A
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Not affected
N flag Reset
C flag 7th bit of A

38 Chapter 10. Bit Shifts

eZ80 Heaven, Release 1.0

Allowed Instructions Instruction Opcode CC (ADL/non-ADL)
rlca $07 1F

Notes

• Unlike RL, the initial state of the carry flag has no effect on the result of this instruction.

• Unlike RLC A, this instruction does not meaningfully affect any flags except C.

See Also RLA, RLC, RRCA

RLD

RLD Rotate Left Decimal

Description

Moves the lower four bits of HL (0-3) into the upper four bits of (HL) (4-7); moves the upper four bits of
(HL) (4-7) into the lower four bits of A (0-3); moves the lower four bits of A (0-3) into the lower four bits of
(HL) (0-3).

Uses

• Shifting digits around with binary-coded decimal?

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)

A and (HL)
S flag Set if A is negative; else reset
Z flag Set if A is 0; else reset
H flag Reset
P/V flag Set if A has even parity; else reset
N flag Reset
C flag Not affected

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
rrd $ED, $6F 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1

See Also DAA, RL, RLC, RRD

RR

RR M Rotate Right

Description

10.5. RLD 39

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Performs a right shift on M; the 0th bit of M is moved into the carry, and the carry is moved into the 7th bit of M.

Uses

• Quickly dividing by two (carry flag is set if there was a remainder)

• Retrieving consecutive bits of a byte in a loop, starting from the right

Results

Register/Flag 8-bit

M
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Reset
P/V flag Set if the result has even parity; else reset
N flag Reset
C flag 0th bit of M

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
rr a $CB, $1F 2F X X
rr b $CB, $18 2F X X
rr c $CB, $19 2F X X
rr d $CB, $1A 2F X X
rr e $CB, $1B 2F X X
rr h $CB, $1C 2F X X
rr l $CB, $1D 2F X X
rr (hl) $CB, $1E 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
rr (ix+n) $DD, $CB, n, $1E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
rr (iy+n) $FD, $CB, n, $1E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• When using RR to divide a number by 2, first make sure the carry flag is reset or the result will be (M *
2) + (128 * Carry).

See Also RL, RRA, RRC, SRA, SRL

RRA

RRA Rotate Right Accumulator

Description

Performs a very fast RR A; the 0th bit of A is moved into the carry, and the carry is moved into the 7th bit of A.

40 Chapter 10. Bit Shifts

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Uses

• Quickly dividing A by two (carry flag is set if there was a remainder)

• Retrieving consecutive bits of a byte in a loop, starting from the right

Results

Register/Flag 8-bit

A
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Not affected
N flag Reset
C flag 0th bit of A

Allowed Instructions Instruction Opcode CC (ADL/non-ADL)
rra $1F 1F

Notes

• When using RRA to divide A by 2, first make sure the carry flag is reset or the result will be (A * 2)
+ (128 * Carry).

• Unlike RR A, this instruction does not meaningfully affect any flags except C.

See Also RLA, RR, RRCA

RRC

RRC M Rotate Right Circular

Description

Performs a right shift on M; the 0th bit of M is copied into the carry and into the 7th bit of M.

Uses

10.8. RRC 41

eZ80 Heaven, Release 1.0

• Retrieving consecutive bits of a byte in a loop, starting from the right, without affecting the source data
(after eight iterations)

Results

Register/Flag 8-bit

M
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Reset
P/V flag Set if the result has even parity; else reset
N flag Reset
C flag 0th bit of M

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
rr a $CB, $0F 2F X X
rr b $CB, $08 2F X X
rr c $CB, $09 2F X X
rr d $CB, $0A 2F X X
rr e $CB, $0B 2F X X
rr h $CB, $0C 2F X X
rr l $CB, $0D 2F X X
rr (hl) $CB, $0E 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
rr (ix+n) $DD, $CB, n, $0E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
rr (iy+n) $FD, $CB, n, $0E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• Unlike RR, the initial state of the carry flag has no effect on the result of this instruction.

See Also RLC, RR, RRCA, SRA, SRL

RRCA

RRCA Rotate Right Circular Accumulator

Description

Performs a very fast RRC A; the 0th bit of A is copied into the carry and into the 7th bit of A.

Uses

42 Chapter 10. Bit Shifts

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

• Retrieving consecutive bits of a byte in a loop, starting from the right, without affecting the source data
(after eight iterations)

Results

Register/Flag 8-bit

A
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Not affected
N flag Reset
C flag 0th bit of A

Allowed Instructions Instruction Opcode CC (ADL/non-ADL)
rra $0F 1F

Notes

• Unlike RR, the initial state of the carry flag has no effect on the result of this instruction.

• Unlike RRC A, this instruction does not meaningfully affect any flags except C.

See Also RLCA, RRA, RRC

RRD

RRD Rotate Right Decimal

Description

Moves the lower four bits of A (0-3) into the upper four bits of (HL) (4-7); moves the upper four bits of (HL)
(4-7) into the lower four bits of (HL) (0-3); moves the lower four bits of (HL) (0-3) into the lower four bits of
A (0-3).

Uses

• Shifting digits around with binary-coded decimal?

10.10. RRD 43

eZ80 Heaven, Release 1.0

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)

A and (HL)
S flag Set if A is negative; else reset
Z flag Set if A is 0; else reset
H flag Reset
P/V flag Set if A has even parity; else reset
N flag Reset
C flag Not affected

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
rrd $ED, $67 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1

See Also DAA, RLD, RR, RRC

SLA

SLA M Shift Left Arithmetic

Description

Performs a left shift on M; the 7th bit of M is moved into the carry, and a zero is placed in the 0th bit of M.

Uses

• Quickly multiplying by two

Results

Register/Flag 8-bit

M
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Reset
P/V flag Set if the result has even parity; else reset
N flag Reset
C flag 7th bit of M

44 Chapter 10. Bit Shifts

https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
sla a $CB, $27 2F X X
sla b $CB, $20 2F X X
sla c $CB, $21 2F X X
sla d $CB, $22 2F X X
sla e $CB, $23 2F X X
sla h $CB, $24 2F X X
sla l $CB, $25 2F X X
sla (hl) $CB, $26 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
sla (ix+n) $DD, $CB, n, $26 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
sla (iy+n) $FD, $CB, n, $26 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• Unlike RL, the initial state of the carry flag has no effect on the result of this instruction, so a number can
be easily doubled without worrying about the state of the carry flag.

• Despite the mnemonics, SLA has more in common with SRL (Shift Right Logical) than SRA (Shift Right
Arithmetic). This is because SRA is intended for use with signed integers, whereas SLA and SRL are more
useful with unsigned integers.

See Also RL, RLC, SRA, SRL

SRA

SRA M Shift Right Arithmetic

Description

Performs a right shift on M; the 7th bit of M remains unchanged, and the 0th bit of M is moved into the carry.

Uses

• Quickly dividing a signed integer by two

Results

Register/Flag 8-bit

M
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Reset
P/V flag Set if the result has even parity; else reset
N flag Reset
C flag 0th bit of M

10.12. SRA 45

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
sra a $CB, $2F 2F X X
sra b $CB, $28 2F X X
sra c $CB, $29 2F X X
sra d $CB, $2A 2F X X
sra e $CB, $2B 2F X X
sra h $CB, $2C 2F X X
sra l $CB, $2D 2F X X
sra (hl) $CB, $2E 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
sra (ix+n) $DD, $CB, n, $2E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
sra (iy+n) $FD, $CB, n, $2E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• Unlike RR, the initial state of the carry flag has no effect on the result of this instruction, so a signed
number can be easily halved without worrying about the state of the carry flag.

• Despite the mnemonics, SRA is not very similar to SLA (Shift Left Arithmetic), which is meant for un-
signed integers. For a right-shifting version of SLA, use SRL (Shift Right Logical).

See Also RR, RRC, SLA, SRL

SRL

SRL M Shift Right Logical

Description

Performs a right shift on M; the 0th bit of M is moved into the carry, and a zero is placed in the 7th bit of M.

Uses

• Quickly dividing a number by two

Results

Register/Flag 8-bit

M
S flag Set if the result is negative; else reset
Z flag Set if the result is 0; else reset
H flag Reset
P/V flag Set if the result has even parity; else reset
N flag Reset
C flag 0th bit of M

46 Chapter 10. Bit Shifts

https://en.wikipedia.org/wiki/Parity_bit

eZ80 Heaven, Release 1.0

Allowed Instructions

Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
srl a $CB, $3F 2F X X
srl b $CB, $38 2F X X
srl c $CB, $39 2F X X
srl d $CB, $3A 2F X X
srl e $CB, $3B 2F X X
srl h $CB, $3C 2F X X
srl l $CB, $3D 2F X X
srl (hl) $CB, $3E 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1
srl (ix+n) $DD, $CB, n, $3E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1
srl (iy+n) $FD, $CB, n, $3E 4F + 1R + 1W + 1 5F + 1R + 1W + 1 5F + 1R + 1W + 1

Notes

• Unlike RR, the initial state of the carry flag has no effect on the result of this instruction, so a number can
be easily halved without worrying about the state of the carry flag.

• Despite the mnemonics, the reverse of SRL is actually SLA (Shift Left Arithmetic).

See Also RL, RLC, SRA, SRL

10.13. SRL 47

eZ80 Heaven, Release 1.0

48 Chapter 10. Bit Shifts

CHAPTER 11

Block Operations

CPD

CPD Compare and Decrement

Description

Performs cp a,(hl), then decrements HL and BC.

cp a,(hl)
dec hl
dec bc

Uses

• This instruction is not very useful on its own, as cp a,(hl) is both smaller and faster than a single CPD,
but more often used is the repeating version of CPD: CPDR

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Set if result is negative; else reset
Z flag Set if A = (HL); else reset
H flag Set if borrow from bit 4; else reset
P/V flag Set if BC 0 after the operation; else reset
N flag Set
C flag Not affected

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
cpd $ED, $A9 2F + 1R 3F + 1R 3F + 1R

See Also CP, CPDR, CPI, CPIR, LDD

CPDR

CPDR Compare and Decrement with Repeat

49

eZ80 Heaven, Release 1.0

Description

Performs cpd until either A = (HL) or BC = 0.

cp a,(hl)
dec hl
dec bc
jr nz,-7
ret po
jr -10

Uses

• Finding a certain letter in a string (or other similar tasks)

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Set if result is negative; else reset
Z flag Set if A = (HL); else reset
H flag Set if borrow from bit 4; else reset
P/V flag Set if BC 0 after the operation; else reset
N flag Set
C flag Not affected

Allowed Instructions

In-
struc-
tion

Op-
code

CC (ADL/non-ADL) CC (.S) CC (.L)

cpir $ED,
$B1

2F + (Iterations)*(1R + 2) - 1 where
Iterations is the number of iterations of cpd before
either A = (HL) or BC = 0

3F + (Itera-
tions)*(1R +
2) - 1

3F + (Itera-
tions)*(1R +
2) - 1

Notes

• Interrupts can be triggered while this instruction is in progress (unless they are disabled using DI, of
course).

See Also CP, CPD, CPI, CPIR, LDDR

CPI

CPI Compare and Increment

Description

Performs cp a,(hl), then increments HL and decrements BC.

cp a,(hl)
inc hl
dec bc

Uses

• This instruction is not very useful on its own, as cp a,(hl) is both smaller and faster than a single CPI,
but more often used is the repeating version of CPI: CPIR

50 Chapter 11. Block Operations

eZ80 Heaven, Release 1.0

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Set if result is negative; else reset
Z flag Set if A = (HL); else reset
H flag Set if borrow from bit 4; else reset
P/V flag Set if BC 0 after the operation; else reset
N flag Set
C flag Not affected

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
cpi $ED, $A1 2F + 1R 3F + 1R 3F + 1R

Notes

• Although this instruction increments HL, it decrements BC.

See Also CP, CPD, CPDR, CPIR, LDI

CPIR

CPIR Compare and Increment with Repeat

Description

Performs cpi until either A = (HL) or BC = 0.

cp a,(hl)
inc hl
dec bc
jr nz,-7
ret po
jr -10

Uses

• Finding a certain letter in a string (or other similar tasks)

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Set if result is negative; else reset
Z flag Set if A = (HL); else reset
H flag Set if borrow from bit 4; else reset
P/V flag Set if BC 0 after the operation; else reset
N flag Set
C flag Not affected

Allowed Instructions

In-
struc-
tion

Op-
code

CC (ADL/non-ADL) CC (.S) CC (.L)

cpir $ED,
$B9

2F + (Iterations)*(1R + 2) - 1 where
Iterations is the number of iterations of cpi before
either A = (HL) or BC = 0

3F + (Itera-
tions)*(1R +
2) - 1

3F + (Itera-
tions)*(1R +
2) - 1

Notes

• Interrupts can be triggered while this instruction is in progress (unless they are disabled using DI, of
course).

See Also CP, CPD, CPDR, CPI, LDIR

11.4. CPIR 51

eZ80 Heaven, Release 1.0

LDD

LDD Load and Decrement

Description

Copies one byte from (HL) to (DE), then decrements HL, DE, and BC.

ld (de),(hl) ; Not normally a valid instruction
dec hl
dec de
dec bc

Uses

• This instruction is not very useful on its own, but more often used is the repeating version of LDD: LDDR

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Set if BC 0 after the operation; else reset
N flag Reset
C flag Not affected

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
ldi $ED, $A8 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1

Notes

• If all you want to accomplish is ld (de),(hl), consider ld a,(hl) \ ld (de),a. It is the same
size but is one clock cycle less and doesn’t modify any of the registers except A.

See Also CPD, LD, LDI, LDDR, LDIR

LDDR

LDDR Load and Decrement with Repeat

Description

Performs ldd until BC = 0, effectively copying BC bytes of data from HL to DE, where HL and DE point to the
end of their respective blocks.

ldd
ret po
jr -5

Uses

• Copying lots of data

– Sprite routines

– Copying graphical data from some buffer to the actual screen

– Filling lots of space with one (or more) bytes

52 Chapter 11. Block Operations

eZ80 Heaven, Release 1.0

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Set if BC 0 after the operation; else reset
N flag Reset
C flag Not affected

Allowed Instructions

Instruc-
tion

Opcode CC (ADL/non-ADL) CC (.S) CC (.L)

lddr $ED,
$B8

2F + (1R + 1W + 1)* BC 3F + (1R + 1W + 1)* BC 3F + (1R + 1W + 1)* BC

Notes

• Interrupts can be triggered while this instruction is in progress (unless they are disabled using DI, of
course).

• Since most of the time it’s more convenient to specify the beginning of a block of data than the end, LDIR
is significantly more popular than LDDR.

• Assuming you are copying hard-coded data and BC is NOT already set to the desired number of bytes,
it is only faster to use hard-coded LDD s instead of ld bc,BytesToCopy \ lddr if you are copy-
ing two bytes. Copying three bytes, the cycle times and size of the code are exactly the same (6 bytes,
6F+3R+3W+3).

• If you want to copy a few more bytes than whatever number is in BC, it is both smaller and significantly
faster to use INC BC several times before LDDR than a few LDD s after it. (INC BC is one byte and only
1F (plus the extra 1R + 1W + 1 from LDDR) whereas LDD is two bytes and 2F+1R+1W+1. So you just
save one byte and 1F.)

Examples

• Filling a block of memory with a single byte

ld hl,EndOfBlock
ld de,EndOfBlock-1
ld bc,SizeOfBlock-1
ld (hl),ByteToCopy
lddr

See Also CPDR, LD, LDD, LDI, LDIR

LDI

LDI Load and Increment

Description

Copies one byte from (HL) to (DE), then increments HL, increments DE, and decrements BC.

ld (de),(hl) ; Not normally a valid instruction
inc hl
inc de
dec bc

Uses

• This instruction is not very useful on its own, but more often used is the repeating version of LDI: LDIR

11.7. LDI 53

eZ80 Heaven, Release 1.0

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Set if BC 0 after the operation; else reset
N flag Reset
C flag Not affected

Allowed Instructions Instruction Opcode CC (ADL/non-ADL) CC (.S) CC (.L)
ldi $ED, $A0 2F + 1R + 1W + 1 3F + 1R + 1W + 1 3F + 1R + 1W + 1

Notes

• Although this instruction increments HL and DE, it decrements BC.

• If all you want to accomplish is ld (de),(hl), consider ld a,(hl) \ ld (de),a. It is the same
size but is one clock cycle less and doesn’t modify any of the registers except A.

See Also CPI, LD, LDD, LDDR, LDIR

LDIR

The Legendary LDIR Load And Increment with Style

Description

Performs ldi until BC = 0, effectively copying BC bytes of data from HL to DE, where HL and DE point to the
start of their respective blocks.

ldi
ret po
jr -5

Uses

• Copying lots of data

– Sprite routines

– Copying graphical data from some buffer to the actual screen

– Filling lots of space with one (or more) bytes

Results

Register/Flag 16-bit (non-ADL) 24-bit (ADL)
S flag Not affected
Z flag Not affected
H flag Reset
P/V flag Set if BC 0 after the operation; else reset
N flag Reset
C flag Not affected

Allowed Instructions

Instruc-
tion

Opcode CC (ADL/non-ADL) CC (.S) CC (.L)

ldir $ED,
$B0

2F + (1R + 1W + 1)* BC 3F + (1R + 1W + 1)* BC 3F + (1R + 1W + 1)* BC

Notes

• Interrupts can be triggered while this instruction is in progress (unless they are disabled using DI, of
course).

54 Chapter 11. Block Operations

eZ80 Heaven, Release 1.0

• Assuming you are copying hard-coded data and BC is NOT already set to the desired number of bytes,
it is only faster to use hard-coded LDI s instead of ld bc,BytesToCopy \ ldir if you are copy-
ing two bytes. Copying three bytes, the cycle times and size of the code are exactly the same (6 bytes,
6F+3R+3W+3).

• If you want to copy a few more bytes than whatever number is in BC, it is both smaller and significantly
faster to use INC BC several times before LDIR than a few LDI s after it. (INC BC is one byte and only
1F (plus the extra 1R + 1W + 1 from LDIR) whereas LDI is two bytes and 2F+1R+1W+1. So you just
save one byte and 1F.)

Examples

• Filling a block of memory with a single byte

ld hl,StartOfData
ld de,StartOfData+1
ld bc,SizeOfData-1
ld (hl),ByteToCopy
ldir

• Copy graphical data from vBuf2 to vBuf1

ld hl,vBuf2
ld de,vBuf1
ld bc,320*240
ldir

• Set up a hard-coded 8bpp palette

ld hl,Palette_Start
ld de,mpLcdPalette
ld bc,Palette_End-Palette_Start
ldir

• A simple 8bpp rectangle drawing routine (credit: MateoConLechuga)

; INPUTS
; BC Width
; DE X-position
; H Height
; L Y-position
; (FillRect_Color) Color
FillRect:

ld a,h ; Store the height in A to be used as a loop counter
ld h,160
mlt hl
add hl,hl ; HL now contains the Y position multiplied by 320
add hl,de ; Add in the X position...
ld de,vBuf1
add hl,de ; And the LCD memory location...
; Now HL is pointing to the first pixel of the rectangle
dec bc ; Get the rectangle width minus 1 in BC (more on that

→˓later)
FillRect_Loop:
FillRect_Color = $+1

ld (hl),0 ; This is self-modifying code
push hl
pop de
inc de ; Now DE = HL + 1

11.8. LDIR 55

eZ80 Heaven, Release 1.0

push bc ; Save BC for later
ldir ; Copy BC (width-1) bytes from HL (first pixel of this

→˓row of the rectangle) to DE (next pixel)
; Now one row of the rectangle is done
pop bc ; Grab BC again
ld de,320
add hl,de ; Advanced HL one pixel down...
sbc hl,bc ; And return to the left edge of the rectangle
dec a ; Decrement our loop counter...
jr nz,FillRect_Loop ; And repeat if we haven't finished
ret

See Also CPIR, LD, LDD, LDDR, LDI

56 Chapter 11. Block Operations

CHAPTER 12

IO

57

eZ80 Heaven, Release 1.0

58 Chapter 12. IO

CHAPTER 13

Load And Exchange

59

eZ80 Heaven, Release 1.0

60 Chapter 13. Load And Exchange

CHAPTER 14

Logic

61

eZ80 Heaven, Release 1.0

62 Chapter 14. Logic

CHAPTER 15

Program Flow

63

eZ80 Heaven, Release 1.0

64 Chapter 15. Program Flow

CHAPTER 16

Processor Control

65

eZ80 Heaven, Release 1.0

66 Chapter 16. Processor Control

CHAPTER 17

Hexcodes

What are hex codes?

Hex codes are little assembly programs that TI-BASIC programmers can use to add functionality to their programs.
Here is an example of how to use a hexcode.

Asm84CEPrgm
3A8705D0CD080B02CD300F02C9

Each hex code will have the program and the source in assembly, along with a brief description of the functionality.

Make sure you have the FULL, correct hexcode. These programs can clear your ram if not entered correctly!

General

Toggle Program Mode

When used in a program, it allows you to use Archive and UnArchive on other programs. Make sure to switch back
to “program mode” when you’re done by running the program again. When used on the home screen, it allows you to
use programming commands like If and For(; this has limited utility, but maybe it’s useful to check a short bit of code
without creating a new program for it.

FD7E08EE02FD7708C9

ld a,(iy+8)
xor 2
ld (iy+8),a
ret

67

eZ80 Heaven, Release 1.0

Quick Key

This is a getKey routine that makes all keys repeat, not just arrows and there is no delay between repeats. The key
codes are different, so you might need to experiment.

3A8705D0CD080B02CD300F02C9

ld a,(kbdScanCode)
call _SetXXOP1
call _StoAns
ret

Text Inverse

This will switch from normal text mode to inverse (white text on black background) and vice versa.

FD7E05EE08FD7705C9

ld a,(iy+textFlags)
xor 1<<textInverse
ld (iy+textFlags),a
ret

LCD

LCD Clear

This only clears the LCD, it doesn’t actually clear the graph screen or homescreen

CD080802C9

call _ClrLCDFull
ret

Fill Color

This fills the LCD with pixels of the color you specify. Replace XX with the palettized color, list of available colors
here: http://ce-programming.github.io/documentation/images/tutorials/asm/rgbhlpalette.png.

3EXX210000D401005802CDE01002C9

ld a,$XX
ld hl,vRam
ld bc,320*240*2
call _MemSet
ret

68 Chapter 17. Hexcodes

http://ce-programming.github.io/documentation/images/tutorials/asm/rgbhlpalette.png

eZ80 Heaven, Release 1.0

Black

This fills the LCD with black pixels

3E00210000D401005802CDE01002C9

ld a,$00
ld hl,vRam
ld bc,320*240*2
call _MemSet
ret

White

This fills the LCD with white pixels

3EFF210000D401005802CDE01002C9

ld a,$FF
ld hl,vRam
ld bc,320*240*2
call _MemSet
ret

Run Indicator

On

This turns on the run indicator.

CD440802C9

call _RunIndicOn
ret

Off

This turns off the run indicator.

CD480802C9

call _RunIndicOff
ret

Hexcode descriptions originally from TI-BD.

17.4. Run Indicator 69

http://tibasicdev.wikidot.com/hexcodes

eZ80 Heaven, Release 1.0

70 Chapter 17. Hexcodes

CHAPTER 18

Resources

More Websites

CE Programming Documentation: TI 84+CE Assembly and C Tutorials
Learn Assembly In 28 Days: TI 83+ Assembly Tutorial
Cemetech: Forums and Archives
WikiTI: 84+CE Technical Info

Notepad++

Download Here: Notepad++
Syntax Highlighting: Notepad++ eZ80 Syntax Highlighting

SPASM-ng

Download Here: SPASM-ng

TI Connect CE

Download Here: TI Connect CE

TI 84+CE Equates File

Download Here: ti84pce.inc

71

http://ce-programming.github.io/documentation/
http://media.taricorp.net/83pa28d/welcome.html
https://cemetech.net
http://wikiti.brandonw.net
https://notepad-plus-plus.org/download/
http://cemete.ch/p243171
https://github.com/alberthdev/spasm-ng/releases
https://education.ti.com/en/us/software/details/en/CA9C74CAD02440A69FDC7189D7E1B6C2/swticonnectcesoftware
http://wikiti.brandonw.net/index.php?title=84PCE:OS:Include_File

eZ80 Heaven, Release 1.0

TI 83+ System Routines PDF

Download here

72 Chapter 18. Resources

https://education.ti.com/~/media/01E6AF2CADF84171B6F2E2039357BAAC

	Introduction to Assembly
	What is assembly?
	Setting up

	Program Structure
	Hex, Binary, and Decimal
	Registers and Indirection
	The Registers
	Addresses
	Indirection

	Labels
	Romcalls
	Hooks
	Arithmetic Instructions
	ADC
	ADD
	CP
	DAA
	DEC
	INC

	Bit Manipulation
	BIT
	RES
	SET

	Bit Shifts
	RL
	RLA
	RLC
	RLCA
	RLD
	RR
	RRA
	RRC
	RRCA
	RRD
	SLA
	SRA
	SRL

	Block Operations
	CPD
	CPDR
	CPI
	CPIR
	LDD
	LDDR
	LDI
	LDIR

	IO
	Load And Exchange
	Logic
	Program Flow
	Processor Control
	Hexcodes
	What are hex codes?
	General
	LCD
	Run Indicator

	Resources
	More Websites
	Notepad++
	SPASM-ng
	TI Connect CE
	TI 84+CE Equates File
	TI 83+ System Routines PDF

