

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	php-common 1.1.6 documentation

Expressly PHP Common documentation:

Contents:

	Overview
	Requirements

	Include

	Create a Client

	Configuration

	Checklist

	Roadmap

	Requests
	Ping

	Register Merchant

	Get Campaign Migration Popup

	Get Campaign Migration Data

	Migration Success

	Get Campaign Banner

	Routes
	Ping Store

	Show Popup

	Migrate User

	Get User

	Invoices for Customer Purchases

	Customers on Store

	Exceptions
	GenericException

	Flows
	Merchant Registration

	User Campaign Migration

	Check Purchases

	Check Customer Migration

	Campaign Banner

	Integrations
	WooCommerce

	PrestaShop

	Magento

	Magento 2

	OpenCart 1.5

	osCommerce 2.3

	VirtueMart

	Need Help?

	License

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	php-common 1.1.6 documentation

Overview

Requirements

	PHP 5.3+

	composer

All composer dependencies are included in the Expressly provided integration releases on GitHub.

Include

Inside your composer.json, you need to include:

"require": {
 "expressly/php-common": "2.4.1""
}

Or, run the command:

composer require expressly/php-common:2.4.1

Create a Client

In order to make use of the DI container, to include, override, or extend any code we provide, a new instance of the Expressly Client is required.

use Expressly;

/*
 * $merchantType is a string to help us identify your system type in logs.
 * Example constants in: Expressly\Entity\MerchantType
 */
$client = new Client($merchantType, array());
$app = $client->getApp();

Configuration

All configuration values associated with the repository are contained within config.yml.

To run the application in development mode, you can override the Expressly\Client parameters:

$client = new Expressly\Client(
 $merchantType,
 array(
 'external' => array(
 'hosts' => array(
 'default' => 'http://dev.expresslyapp.com/api/v2',
 'admin' => 'http://dev.expresslyapp.com/api/admin'
)
)
)
);

You can override any part of the container configuration defined in config.yml using the above method.

Checklist

For a working Expressly integration, using this library, the following need to be checked off:

	Include the project via composer (or alternative).

	Change Configuration if needed (for development purposes).

	Create a Client.

	Create a localized MerchantProvider: must extend MerchantProviderInterface, and register it with the application:

use Expressly\Provider\MerchantProviderInterface;

class MyMerchantProvider implements MerchantProviderInterface {
 // your implementation
}

$app['merchant.provider'] = $app->share(function ($app) {
 return new MyMerchantProvider();
});

Roadmap

	Dependency drill down: restructure so Pimple is the base product instead of Silex.

	[composer]	PHP package manager: https://getcomposer.org/

	[config.yml]	src/Resources/config/config.yml

	[Silex]	Silex PHP Microframework: http://silex.sensiolabs.org/

	[Pimple]	DI implementation: http://pimple.sensiolabs.org/

	[DI]	Dependency Injection

	[MerchantProviderInterface]	src/Provider/MerchantProviderInterface.php (ExpresslyProviderMerchantProviderInterface)

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	php-common 1.1.6 documentation

Requests

All dispatchable requests will use one of the following external hosts.
Routing, and host definitions are defined in config.yml.

Ping

	
GET /api/admin/ping

	Ping the API to see if the server is currently running.

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Server": "Live",
 "DB Status": "Live"
}

PHP Implementation Example:

use Expressly\Event\ResponseEvent;
use Expressly\Subscriber\UtilitySubscriber;

$event = new ResponseEvent();
$app['dispatcher']->dispatch(UtilitySubscriber::UTILITY_PING, $event);

if ($event->isSuccessful()) {

}

Register Merchant

	
POST /api/v2/plugin/merchant

	Register a store with the server.

	Request JSON Object:

		
	apiBaseUrl (string) – see merchant_url; if there isn’t any special base routing the value should be the exact same as the shop url

	apiKey (string) – api key retrieved from the Portal (see <https://buyexpressly.com/#/install>)

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Registered successfully

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid data/request

PHP Implementation Example:

use Expressly\Event\MerchantEvent;
use Expressly\Subscriber\MerchantSubscriber;

$event = new MerchantEvent(...);
$app['dispatcher']->dispatch(MerchantSubscriber::MERCHANT_REGISTER, $event);

if ($event->isSuccessful()) {

}

Get Campaign Migration Popup

	
GET /api/v2/migration/(string: uuid)

	Request the popup to start a campaign migration for the unique user.

	Parameters:	
	uuid – Unique campaign migration uuid

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – text/html

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – campaign migration found, html for popup returned

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid data/request

PHP Implementation Example:

use Expressly\Event\CustomerMigrateEvent;
use Expressly\Subscriber\CustomerMigrationSubscriber;

$event = new CustomerMigrateEvent(...);
$app['dispatcher']->dispatch(CustomerMigrationSubscriber::CUSTOMER_MIGRATE_POPUP, $event);

if ($event->isSuccessful()) {

}

Get Campaign Migration Data

	
GET /api/v2/migration/(string: uuid)/user

	User has accepted popup, or been forced here directly; request, and start data migration.

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully returns user information

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid data/request

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "meta": {
 "locale": "UKR",
 "sender": "https://expresslyapp.com/api/v1/migration/{uuid}"
 },
 "data": {
 "email": "john.smith@gmail.com",
 "customerData": {
 "firstName": "John",
 "lastName": "Smith",
 "gender": "M",
 "billingAddress": 0,
 "shippingAddress": 1,
 "company": "Expressly",
 "dob": "1987-08-07",
 "taxNumber": "GB0249894821",
 "onlinePresence": [
 {
 "field": "website",
 "value": "http://www.myblog.com"
 }
],
 "dateUpdated": "2015-07-10T11:42:00+01:00",
 "emails": [
 {
 "email": "john.smith@gmail.com",
 "alias": "default"
 },
 {
 "email": "john@smithcorp.com",
 "alias": "work"
 }
],
 "phones": [
 {
 "type": "M",
 "number": "020734581250",
 "countryCode": 44
 },
 {
 "type": "L",
 "number": "020731443250",
 "countryCode": 44
 }
],
 "addresses": [
 {
 "firstName": "John",
 "lastName": "Smith",
 "address1": "12 Piccadilly",
 "address2": "Room 14",
 "city": "London",
 "companyName": "WorkHard Ltd",
 "zip": "W1C 34U",
 "phone": 1,
 "alias": "Work address",
 "stateProvince": "LND",
 "country": "GBR"
 },
 {
 "firstName": "John C.",
 "lastName": "Smith",
 "address1": "23 Sallsberry Ave",
 "address2": "Flat 3",
 "city": "London",
 "companyName": "",
 "zip": "NW3 4HG",
 "phone": 0,
 "alias": "Home address",
 "stateProvince": "LND",
 "country": "GBR"
 }
]
 },
 "cart": {
 "productId": "491",
 "couponCode": "20OFF"
 }
 }
}

PHP Implementation Example:

use Expressly\Event\CustomerMigrateEvent;
use Expressly\Subscriber\CustomerMigrationSubscriber;

$event = new CustomerMigrateEvent(...);
$app['dispatcher']->dispatch(CustomerMigrationSubscriber::CUSTOMER_MIGRATE_DATA, $event);

if ($event->isSuccessful()) {

}

Migration Success

	
POST /api/v2/migration/(string: uuid)/success

	Tells the server if the migration was successful, or if the user already existed on this store.

	Parameters:	
	uuid – Unique campaign migration uuid

	Request JSON Object:

		
	status (enum) – enum to tell server is migration was successful; can be: ‘migrated’, ‘existing_customer’

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Migration status acknowledged

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid data/request

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "success": "true",
 "msg": ""
}

PHP Implementation Example:

use Expressly\Event\CustomerMigrateEvent;
use Expressly\Subscriber\CustomerMigrationSubscriber;

$event = new CustomerMigrateEvent(...);
$app['dispatcher']->dispatch(CustomerMigrationSubscriber::CUSTOMER_MIGRATE_SUCCESS, $event);

if ($event->isSuccessful()) {

}

Get Campaign Banner

	
GET /api/v2/banner/(string: uuid)?email=(string: email)

	If banner campaign is setup, get banner for a specified store, and email combination.

	Parameters:	
	uuid – Unique banner uuid

	email – Email for the currently logged in user

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully found valid data for campaign banner

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid data/request

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "bannerImageUrl": "https://buyexpressly.com/assets/banner/awesome-banner.jpg",
 "migrationLink": "https://www.myblog.com/expressly/api/3aff1880-b0f5-45bd-8f33-247f55981f2c
}

PHP Implementation Example:

use Expressly\Event\BannerEvent;
use Expressly\Subscriber\BannerSubscriber;

$event = new BannerEvent(...);
$app['dispatcher']->dispatch(BannerSubscriber::BANNER_REQUEST, $event);

if ($event->isSuccessful()) {

}

	[config.yml]	src/Resources/config/config.yml

	[merchant_url]	the location to execute/catch our paths;
example: https://www.example.com/route?action=/expressly/api/ping

	[Portal]	Expressly Portal: https://buyexpressly.com/#/portal/login

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	php-common 1.1.6 documentation

Routes

All routes are dispatched using the included RouteResolver. If you platform has a built in parser, the associated regex is attached (statically) to each route in the Expressly\Routes namespace.
The RouteResolver will check if the required header(s), method, and route were passed through, and return the valid data (if any) inside a matched Route object, or null.

$query = '/expressly/api/*';
// @type Expressly\Entity\Route|null
$route = $app['route.resolver']->process($query);

Every single expected endpoint will be prefixed with the registered merchant_url.
All Endpoints that must have hooks created in the mother system have a corresponding Presenter.

Ping Store

	
GET /expressly/api/ping

	

	Route class:	Expressly\Route\Ping

Simple response message to note that the plugin has been installed.

	Request Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "expressly": "Stuff is happening!"
}

Show Popup

	
GET /expressly/api/(string: uuid)

	

	Route class:	Expressly\Route\CampaignPopup

Start the user migration process. This uri should invoke the Get Campaign Migration Popup request.
The Popup can be shown over any page you wish, we recommend appending the html to your homepage.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – text/html

Migrate User

	
GET /expressly/api/(string: uuid)/migrate

	

	Route class:	Expressly\Route\CampaignMigration

End of the user migration process. This uri should invoke the Get Campaign Migration Data request.
The method should add all data for the provided user to the store, and if provided, add a product and/or coupon to the users’ cart.
The user should be logged in directly after this migration, and a welcome email (if not part of your stores’ initial flow) should be dispatched.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – text/html

Get User

	
GET /expressly/api/user/(string: email)

	

	Route class:	Expressly\Route\UserData

Returns user, via your application facilities, conforming to our defined entities.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "meta": {
 "locale": "UKR",
 "sender": "https://yourstore.com/",
 "issuerData": []
 },
 "data": {
 "email": "john.smith@gmail.com",
 "customerData": {
 "firstName": "John",
 "lastName": "Smith",
 "gender": "M",
 "billingAddress": 0,
 "shippingAddress": 1,
 "company": "Expressly",
 "dob": "1987-08-07",
 "taxNumber": "GB0249894821",
 "onlinePresence": [
 {
 "field": "website",
 "value": "www.myblog.com"
 }
],
 "dateUpdated": "2015-07-10T11:42:00+01:00",
 "dateLastOrder": "2015-07-10T11:42:00+01:00",
 "numberOrdered": 5,
 "emails": [
 {
 "email": "john.smith@gmail.com",
 "alias": "default"
 },
 {
 "email": "john@smithcorp.com",
 "alias": "work"
 }
],
 "phones": [
 {
 "type": "M",
 "number": "020734581250",
 "countryCode": 44
 },
 {
 "type": "L",
 "number": "020731443250",
 "countryCode": 44
 }
],
 "addresses": [
 {
 "firstName": "John",
 "lastName": "Smith",
 "address1": "12 Piccadilly",
 "address2": "Room 14",
 "city": "London",
 "companyName": "WorkHard Ltd",
 "zip": "W1C 34U",
 "phone": 1,
 "alias": "Work address",
 "stateProvince": "LND",
 "country": "GBR"
 },
 {
 "firstName": "John C.",
 "lastName": "Smith",
 "address1": "23 Sallsberry Ave",
 "address2": "Flat 3",
 "city": "London",
 "companyName": "",
 "zip": "NW3 4HG",
 "phone": 0,
 "alias": "Home address",
 "stateProvince": "LND",
 "country": "GBR"
 }
]
 }
 }
}

PHP Implementation Example:

$customer = new Customer();
/*
 * fill in as many applicable setters as possible
 * $customer
 * ->setFirstName('John')
 * ->setLastName('Smith');
 */
$response = new CustomerMigratePresenter($merchant, $customer, $email, $id);
// display content however your application prefers
echo json_encode($response->toArray());

Invoices for Customer Purchases

	
POST /expressly/api/batch/invoice

	

	Route class:	Expressly\Route\BatchInvoice

Given a list of date ranges, and emails checks to see if the associated campaign users have had any transactions during the specified period.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

Example Request:

POST /expressly/api/batch/invoice
Host: prod.expresslyapp.com
Authorization: Basic token

{
 "customers": [
 {
 "email": "john.smith@gmail.com",
 "from": "2015-07-01T00:00:00+00:00",
 "to": "2015-08-01T00:00:00+00:00"
 }
]
}

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "invoices": [
 {
 "email": "john.smith@gmail.com",
 "orderCount": 1,
 "preTaxTotal": 100.00,
 "tax": 10.00,
 "orders": [
 {
 "id": "ORDER-5321311",
 "date": "2015-07-10T11:42:00+01:00",
 "itemCount": 2,
 "coupon": "",
 "currency": "GBP",
 "preTaxTotal": 100.00,
 "postTaxTotal": 110.00,
 "tax": 10.00
 }
]
 }
]
}

PHP Implementation Example:

use Expressly\Entity\Invoice;
use Expressly\Entity\Order;
use Expressly\Presenter\BatchInvoicePresenter;

$invoices = array();

foreach ($json->customers as $customer) {
 $invoice = new Invoice();
 $invoice->setEmail($customer->email);

 foreach ($userOrders as $userOrder) {
 $order = new Order();
 $order
 ->setId($userOrder->getId())
 ->setDate(new \DateTime($userOrder->getOrderDate())
 ->setItemCount($userOrder->getQuantity())
 ->setTotal($userOrder->getTotalPreTax(), $userOrder->getTax())
 ->setCoupon($userOrder->getCoupon());

 $invoice->addOrder($order);
 }

 $invoices[] = $invoice;
}

$presenter = new BatchInvoicePresenter($invoices);
// display content however your application prefers
echo json_encode($presenter->toArray());

Customers on Store

	
POST /expressly/api/batch/customer

	

	Route class:	Expressly\Route\BatchCustomer

Given a list of emails, checks to see if a user has completed the migration process.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – Basic token

	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

Example Request:

POST /expressly/api/batch/customer
Host: prod.expresslyapp.com
Authorization: Basic token

{
 "emails": [
 "john.smith@gmail.com"
]
}

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "existing": [
 "john.smith@gmail.com"
],
 "deleted": [],
 "pending": []
}

PHP Implementation Example:

use Expressly\Presenter\BatchCustomerPresenter;

$existingUsers = array();
$deletedUsers = array();
$pendingUsers = array();

foreach ($json->emails as $email) {
 // add user to certain sector of array, depending on state
}

$presenter = new BatchCustomerPresenter($existingUsers, $deletedUsers, $pendingUsers);
// display content however your application prefers
echo json_encode($presenter->toArray());

	[RouteResolver]	src/Resolver/RouteResolver (namespace ExpresslyResolverRouteResolver)

	[merchant_url]	the location to execute/catch our paths;
example: https://www.example.com/route?action=/expressly/api/ping

	[Route]	src/Entity/Route (namespace ExpresslyEntityRoute)

	[Presenter]	src/Presenter (namespace ExpresslyPresenter)

	[entities]	src/Entity (namespace ExpresslyEntity)

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	php-common 1.1.6 documentation

Exceptions

All exceptions caught within our code are logged to a redis server hosted by us.

GenericException

src/Exception/GenericException.php (ExpresslyExceptionGenericException)

	[redis]	NoSQL data store: http://redis.io/

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	php-common 1.1.6 documentation

Flows

For all flows, the following Actors have been used:

	SERVER

	Expressly API server;

	STORE

	The store Expressly is being configured with;

	CUSTOMER

	The customer interacting with the store.

Merchant Registration

Pre-conditions:

	Expressly plugin has been integrated, ticking all boxes of Checklist.

	API key exists, and has been created on the Portal (see <https://buyexpressly.com/#/install>).

Main Flow:

	STORE calls Register Merchant with appropriate body, and header.

	SERVER pings store to make sure you have the plugin installed correctly.

	SERVER returns response successfully to STORE

Alternate Flows:

3-1. SERVER cannot ping STORE, returns error message.

2-2. SERVER received invalid credentials, returns error message.

User Campaign Migration

Pre-conditions:

	Merchant Registration.

	Campaign has been created on the Portal.

Main Flow:

	CUSTOMER navigates to provided link with unique uuid attached (Show Popup).

	STORE requests popup for unique uuid (Get Campaign Migration Popup).

	SERVER returns popup html rendered for the given campaign, and CUSTOMER.

	STORE renders html atop any given store page (e.g. homepage).

	CUSTOMER accepts terms & conditions, and privacy policy provided by pressing ‘ok’.

	STORE navigates to Migrate User, and requests information.

	SERVER returns information associated with CUSTOMER.

	STORE adds customer to their store; adds product, and coupon (if provided, and supported) to cart.

	STORE tells SERVER that CUSTOMER has been migrated correctly (Migration Success).

	STORE logs user in, and navigates to homepage.

Alternate Flows:

7-1. CUSTOMER already exists, STORE tells SERVER that customer has been migrated previously (Migration Success).
8-1. STORE adds product, and coupon (if provided, and supported) to cart.
9-1. STORE shows CUSTOMER message that they already exist, asking if they want to go to the login page.
10-1. CUSTOMER accepts confirm message, and is redirected to the STORE login page.

Check Purchases

Pre-conditions:

	Merchant Registration.

Main Flow:

	SERVER requests endpoint (Invoices for Customer Purchases) with JSON of emails, and date period to STORE.

	STORE compares emails, and period to gather purchase information for given CUSTOMERs’.

	STORE returns compiled data to SERVER.

Check Customer Migration

Pre-conditions:

	Merchant Registration.

Main Flow:

	SERVER requests endpoint (Customers on Store) with JSON of emails to STORE.

	STORE compares emails to determine whether CUSTOMER has been migrated.

	STORE returns compiled data to SERVER.

Campaign Banner

Pre-conditions:

	Merchant Registration.

	Campaign for serving banners has been created on the Portal.

	CUSTOMER is logged in.

Main Flow:

	STORE requests banner from SERVER (Get Campaign Banner).

	SERVER returns image, and url.

	STORE displays banner on page (in the location it was called from) on page render.

	Banner clicked on, redirecting to associated route starting flow-migration off-site.

	[Portal]	Expressly management Portal: https://buyexpressly.com/#/portal/login

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	php-common 1.1.6 documentation

Integrations

WooCommerce

WooCommerce repository [https://github.com/expressly/woocommerce]

PrestaShop

PrestaShop repository [https://github.com/expressly/prestashop16]

Magento

Magento repository [https://github.com/expressly/magento]

Magento 2

Magento 2 repository [https://github.com/expressly/magento2]

OpenCart 1.5

OpenCart 1.5 repository [https://github.com/expressly/opencart15]

osCommerce 2.3

osCommerce 2.3 repository [https://github.com/expressly/oscommerce]

VirtueMart

VirtueMart repository [https://github.com/expressly/virtuemart]

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	php-common 1.1.6 documentation

Need Help?

For any help with integration, questions, or bugs please contact info@buyexpressly.com

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	php-common 1.1.6 documentation

License

The MIT License (MIT)

Copyright (c) 2015 expressly

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	php-common 1.1.6 documentation

 HTTP Routing Table

 /api |
 /expressly

 			

 		
 /api	

 	
 	
 GET /api/admin/ping	

 	
 	
 GET /api/v2/banner/(string:uuid)?email=(string:email)	

 	
 	
 GET /api/v2/migration/(string:uuid)	

 	
 	
 GET /api/v2/migration/(string:uuid)/user	

 	
 	
 POST /api/v2/migration/(string:uuid)/success	

 	
 	
 POST /api/v2/plugin/merchant	

 			

 		
 /expressly	

 	
 	
 GET /expressly/api/(string:uuid)	

 	
 	
 GET /expressly/api/(string:uuid)/migrate	

 	
 	
 GET /expressly/api/ping	

 	
 	
 GET /expressly/api/user/(string:email)	

 	
 	
 POST /expressly/api/batch/customer	

 	
 	
 POST /expressly/api/batch/invoice	

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	php-common 1.1.6 documentation

Index

 Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		php-common 1.1.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Sam Pratt.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

