

Welcome to ExpAn’s documentation!

Contents:

	ExpAn: Experiment Analysis
	Installation

	Usage

	Documentation

	License

	Installation
	Stable release

	From sources

	Usage
	Some mock-up data

	Per-entity ratio vs. ratio of totals

	Contributing
	Style guide

	Testing

	Branching / Release

	Versioning

	Bumping Version

	Travis CI and PyPI deployment

	TODOs

	Related Projects

	Credits
	Development Lead

	Contributors

	Change Log
	v0.5.3 (2017-06-26)

	v0.5.2 (2017-05-11)

	v0.5.1 (2017-04-20)

	v0.5.0 (2017-04-05)

	v0.4.5 (2017-02-10)

	v0.4.4 (2017-02-09)

	v0.4.3 (2017-02-07)

	v0.4.2 (2016-12-08)

	v0.4.1 (2016-10-18)

	v0.4.0 (2016-08-19)

	v0.3.4 (2016-08-08)

	v0.3.3 (2016-08-02)

	v0.3.2 (2016-08-02)

	v0.3.1 (2016-07-15)

	v0.3.0 (2016-06-23)

	v0.2.5 (2016-05-30)

	v0.2.4 (2016-05-16)

	v0.2.3 (2016-05-06)

	v0.2.2 (2016-05-06)

	v0.2.1 (2016-05-06)

	v0.2.0 (2016-05-06)

Indices and tables

	Index

	Module Index

	Search Page

ExpAn: Experiment Analysis

[image: Build status]
 [https://travis-ci.org/zalando/expan][image: Latest PyPI version]
 [https://pypi.python.org/pypi/expan][image: Development Status]
 [https://pypi.python.org/pypi/expan][image: Python Versions]
 [https://pypi.python.org/pypi/expan][image: License]
 [https://pypi.python.org/pypi/expan/][image: Documentation Status]
 [http://expan.readthedocs.io/en/latest/?badge=latest]A/B tests (a.k.a. Randomized Controlled Trials or Experiments) have been widely
applied in different industries to optimize business processes and user
experience. ExpAn (Experiment Analysis) is a Python library
developed for the statistical analysis of such experiments and to standardise
the data structures used.

The data structures and functionality of ExpAn are generic such that they can be
used by both data scientists optimizing a user interface and biologists
running wet-lab experiments. The library is also standalone and can be
imported and used from within other projects and from the command line.

Major statistical functionalities include:

	feature check

	delta

	subgroup analysis

	trend

Installation

To install ExpAn, run this command in your terminal:

$ pip install expan

Usage

To use ExpAn in a project:

import expan

Some mock-up data:

from expan.core.experiment import Experiment
from expan.core.util import generate_random_data

exp = Experiment('B', *generate_random_data())
exp.delta()

Documentation

The latest stable version is 0.6.0.

ExpAn main documentation [http://expan.readthedocs.io/]

ExpAn Description [https://github.com/zalando/expan/blob/master/ExpAn-Description.mediawiki] - details about the concept of the library and data structures.

ExpAn Introduction [https://github.com/zalando/expan/blob/dev/ExpAn-Intro.ipynb] - a full jupyter (iPython) notebook. You can view it as slides with jupyter [http://jupyter.org]:

sh serve_intro_slides

License

The MIT License (MIT)

Copyright © [2016] Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Installation

Stable release

To install ExpAn, run this command in your terminal:

$ pip install expan

This is the preferred method to install ExpAn, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for ExpAn can be downloaded from the Github repo [https://github.com/zalando/expan].

You can either clone the public repository:

$ git clone git://github.com/zalando/expan

Or download the tarball [https://github.com/zalando/expan/tarball/master]:

$ curl -OL https://github.com/zalando/expan/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use ExpAn in a project:

import expan

Some mock-up data

from expan.core.experiment import Experiment
from expan.core.util import generate_random_data

exp = Experiment('B', *generate_random_data())
exp.delta()

Per-entity ratio vs. ratio of totals

There are two different definitions of a ratio metric (think of e.g. conversion rate, which is the ratio between the number of orders and the number of visits): 1) one that is based on the entity level or 2) ratio between the total sums, and ExpAn supports both of them.

In a nutshell, one can reweight the individual per-entity ratio to calculate the ratio of totals. This enables to use the existing statistics.delta() function to calculate both ratio statistics (either using normal assumtion or bootstraping).

Calculating the conversion rate

As an example let’s look at how to calculate the conversion rate, which might be typically defined per-entity as the average ratio between the number of orders and the number of visits:

\[\overline{CR}^{(pe)} = \frac{1}{n} \sum_{i=1}^n CR_i = \frac{1}{n} \sum_{i=1}^n \frac{O_i}{V_i}\]

The ratio of totals is a reweighted version of \(CR_i\) to reflect not the entities’ contributions (e.g. contribution per custormer) but overall equal contributions to the conversion rate, which can be formulated as:

\[CR^{(rt)} = \frac{\sum_{i=1}^n O_i}{\sum_{i=1}^n V_i}\]

Overall as reweighted Individual

One can calculate the \(CR^{(rt)}\) from the \(\overline{CR}^{(pe)}\) using the following weighting factor (easily proved by paper and pencile):

\[CR^{(rt)} = \frac{1}{n} \sum_{i=1}^n \alpha_i \frac{O_i}{V_i}\]

with

\[\alpha_i = n \frac{V_i}{\sum_{i=1}^n V_i}\]

Weighted delta function

To have such functionality as a more generic approach in ExpAn, we can introduce a weighted delta function. Its input are

	The per-entity metric, e.g. \(O_i/V_i\)

	A reference metric, on which the weighting factor is based, e.g. \(V_i\)

With this input it calculates \(\alpha\) as described above and outputs the result of statistics.delta().

Contributing

Style guide

We follow PEP8 standards [https://www.python.org/dev/peps/pep-0008]
with the following exceptions:

	Use tabs instead of spaces - this allows all individuals to have visual depth of indentation they prefer, without changing the source code at all, and it is simply smaller

Testing

Easiest way to run tests is by running the command tox from the terminal. The default Python environments for testing with are py27 and py34, but you can specify your own by running e.g. tox -e py35.

Branching / Release

We currently use the gitflow workflow. Feature branches are created from
and merged back to the dev branch, and the master branch stores
snapshots/releases of the dev branch.

See also the much simpler github flow
here [http://scottchacon.com/2011/08/31/github-flow.html]

Versioning

For the sake of reproducibility, always be sure to work with a release
when doing the analysis!

We use semantic versioning (http://semver.org), and the current version of
ExpAn is: v0.4.0.

The version is maintained in setup.cfg, and propagated from there to various files
by the bumpversion program. The most important propagation destination is
in version.py where it is held in the string __version__ with
the form:

'{major}.{minor}.{patch}'

The __version__ string and a version() function is imported by
core.__init__ and so is accessible to imported functions in expan.

The version(format_str) function generates version strings of any
form. It can use git’s commit count and revision number to generate a
long version string which may be useful for pip versioning? Examples:
NB: caution using this... it won’t work if not in the original git
repository.

>>> import core.binning
>>> core.version()
'v0.4.0'
>>> core.version('{major}.{minor}..{commits}')
'0.0..176'
>>> core.version('{commit}')
'a24730a42a4b5ae01bbdb05f6556dedd453c1767'

See: StackExchange
151558 [http://programmers.stackexchange.com/a/151558]

Bumping Version

Can use bumpversion to maintain the __version__ in version.py:

$ bumpversion patch

or

$ bumpversion minor

This will update the version number, create a new tag in git, and commit
the changes with a standard commit message.

When you have done this, you must push the commit and new tag to the
repository with:

$ git push --tags

Travis CI and PyPI deployment

We use Travis CI for testing builds and deploying our PyPI package.

A build and test is triggered when a commit is pushed to either

	dev,

	master

	or a pull request branch to dev or master.

If you want to deploy to PyPI, then follow these steps:

	assuming you have a dev branch that is up to date, create a pull request from dev to master (a travis job will be started for the pull request)

	once the pull request is approved, merge it (another travis job will be started because a push to master happened)

	checkout master

	push tags to master (a third travis job will be started, but this time it will also push to PyPI because tags were pushed)

If you wish to skip triggering a CI task (for example when you change documentation), please include [ci skip] in your commit message.

The flow would then look like follows:

	git fetch

	git checkout dev

	git pull

	bumpversion (patch|minor)

	make docs

	git push --tags

	git push

	create pull request from dev to master

	merge pull request

TODOs

	parallelization, eg. for the bootstrapping code

	Bayesian updating/early stopping

	multiple comparison correction, definitely relevant for delta and SGA, have to think about how to correct for time dependency in the trend analysis

	implement from_json and to_json methods in the Binning class, in order to convert the Python object to a json format for persisting in the Results metadata and reloading from a script

Related Projects

There may be alternative libraries providing similar functionality, and these
should be collected here. Very incomplete list so far...

	abba (https://github.com/thumbtack/abba)

Mainly handles binomial distributions.

	bootstrapped (https://github.com/facebookincubator/bootstrapped)

Calculates bootstrapped confidence intervals, with A/B test as an example.

Credits

Development Lead

	Octopus McSquid <team-octopus@zalando.de>

Contributors

	Grigory Bordyugov <grigory.bordyugov@zalando.de>

	Dominic Heger <dominic.heger@zalando.de>

	Jie Bao <jie.bao@zalando.de>

	Marko Kolarek <marko.kolarek@zalando.de>

	Robert Muil <robert.muil@zalando.de>

	Till Riffert <till.riffert@zalando.de>

Change Log

v0.5.3 [https://github.com/zalando/expan/tree/v0.5.3] (2017-06-26)

Full
Changelog [https://github.com/zalando/expan/compare/v0.5.2...v0.5.3]

Implemented enhancements:

	Weighted KPIs is only implemented in regular delta
#114 [https://github.com/zalando/expan/issues/114]

Fixed bugs:

	Assumption of nan when computing weighted KPIs
#119 [https://github.com/zalando/expan/issues/119]

	Weighted KPIs is only implemented in regular delta
#114 [https://github.com/zalando/expan/issues/114]

	Percentiles value is lost during computing group_sequential_delta
#108 [https://github.com/zalando/expan/issues/108]

Closed issues:

	Failing early stopping unit tests
#85 [https://github.com/zalando/expan/issues/85]

Merged pull requests:

	OCTO-1804: Optimize the loading of .stan model in expan.
#126 [https://github.com/zalando/expan/pull/126]
(daryadedik [https://github.com/daryadedik])

	Test travis python version
#125 [https://github.com/zalando/expan/pull/125]
(shansfolder [https://github.com/shansfolder])

	OCTO-1619 Cleanup ExpAn code
#124 [https://github.com/zalando/expan/pull/124]
(shansfolder [https://github.com/shansfolder])

	OCTO-1748: Make number of iterations as a method argument in
_bayes_sampling
#123 [https://github.com/zalando/expan/pull/123]
(daryadedik [https://github.com/daryadedik])

	OCTO-1615 Use Python builtin logging instead of our own debugging.py
#122 [https://github.com/zalando/expan/pull/122]
(shansfolder [https://github.com/shansfolder])

	OCTO-1711 Support weighted KPIs in early stopping
#121 [https://github.com/zalando/expan/pull/121]
(shansfolder [https://github.com/shansfolder])

	Fixed a few bugs #120 [https://github.com/zalando/expan/pull/120]
(shansfolder [https://github.com/shansfolder])

	OCTO-1614 cleanup module structure
#115 [https://github.com/zalando/expan/pull/115]
(shansfolder [https://github.com/shansfolder])

	OCTO-1677 : fix missing .stan files
#113 [https://github.com/zalando/expan/pull/113]
(gbordyugov [https://github.com/gbordyugov])

	Bump version 0.5.1 -> 0.5.2
#112 [https://github.com/zalando/expan/pull/112]
(mkolarek [https://github.com/mkolarek])

v0.5.2 [https://github.com/zalando/expan/tree/v0.5.2] (2017-05-11)

Full
Changelog [https://github.com/zalando/expan/compare/v0.5.1...v0.5.2]

Merged pull requests:

	OCTO-1502 support **kwargs for four delta functions
#111 [https://github.com/zalando/expan/pull/111]
(shansfolder [https://github.com/shansfolder])

	new version 0.5.1
#107 [https://github.com/zalando/expan/pull/107]
(mkolarek [https://github.com/mkolarek])

v0.5.1 [https://github.com/zalando/expan/tree/v0.5.1] (2017-04-20)

Full
Changelog [https://github.com/zalando/expan/compare/v0.5.0...v0.5.1]

Implemented enhancements:

	Derived KPIs are passed to Experiment.fixed_horizon_delta() but
never used in there
#96 [https://github.com/zalando/expan/issues/96]

Merged pull requests:

	OCTO-1501: bugfix in Results.to_json()
#105 [https://github.com/zalando/expan/pull/105]
(gbordyugov [https://github.com/gbordyugov])

	OCTO-1502 removed variant_subset parameter...
#104 [https://github.com/zalando/expan/pull/104]
(gbordyugov [https://github.com/gbordyugov])

	OCTO-1540 cleanup handling of derived kpis
#102 [https://github.com/zalando/expan/pull/102]
(shansfolder [https://github.com/shansfolder])

	OCTO-1540: cleanup of derived kpi handling in Experiment.delta() and
… #97 [https://github.com/zalando/expan/pull/97]
(gbordyugov [https://github.com/gbordyugov])

	Merge dev to master for v0.5.0
#94 [https://github.com/zalando/expan/pull/94]
(mkolarek [https://github.com/mkolarek])

v0.5.0 [https://github.com/zalando/expan/tree/v0.5.0] (2017-04-05)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.5...v0.5.0]

Implemented enhancements:

	Bad code duplication in experiment.py
#81 [https://github.com/zalando/expan/issues/81]

	pip == 8.1.0 requirement
#76 [https://github.com/zalando/expan/issues/76]

Fixed bugs:

	Experiment.sga() assumes features and KPIs are merged in self.metrics
#87 [https://github.com/zalando/expan/issues/87]

	pctile can be undefined in Results.to_json\(\)
#78 [https://github.com/zalando/expan/issues/78]

Closed issues:

	Results.to_json() => TypeError: Object of type ‘UserWarning’ is not
JSON serializable
#77 [https://github.com/zalando/expan/issues/77]

	Rethink Results structure
#66 [https://github.com/zalando/expan/issues/66]

Merged pull requests:

	new dataframe tree traverser in to_json()
#92 [https://github.com/zalando/expan/pull/92]
(gbordyugov [https://github.com/gbordyugov])

	updated requirements.txt to have ‘greater than’ dependencies instead
… #89 [https://github.com/zalando/expan/pull/89]
(mkolarek [https://github.com/mkolarek])

	pip version requirement
#88 [https://github.com/zalando/expan/pull/88]
(gbordyugov [https://github.com/gbordyugov])

	Test #86 [https://github.com/zalando/expan/pull/86]
(s4826 [https://github.com/s4826])

	merging in categorical binning
#84 [https://github.com/zalando/expan/pull/84]
(gbordyugov [https://github.com/gbordyugov])

v0.4.5 [https://github.com/zalando/expan/tree/v0.4.5] (2017-02-10)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.4...v0.4.5]

Fixed bugs:

	Numbers cannot appear in variable names for derived metrics
#58 [https://github.com/zalando/expan/issues/58]

v0.4.4 [https://github.com/zalando/expan/tree/v0.4.4] (2017-02-09)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.3...v0.4.4]

Implemented enhancements:

	Add argument assume_normal and treatment_cost to
calculate_prob_uplift_over_zero() and
prob_uplift_over_zero_single_metric()
#26 [https://github.com/zalando/expan/issues/26]

	host intro slides (from the ipython notebook) somewhere for public
viewing #10 [https://github.com/zalando/expan/issues/10]

Closed issues:

	migrate issues from github enterprise
#20 [https://github.com/zalando/expan/issues/20]

v0.4.3 [https://github.com/zalando/expan/tree/v0.4.3] (2017-02-07)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.2...v0.4.3]

Closed issues:

	coverage % is misleading
#23 [https://github.com/zalando/expan/issues/23]

v0.4.2 [https://github.com/zalando/expan/tree/v0.4.2] (2016-12-08)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.1...v0.4.2]

Fixed bugs:

	frequency table in the chi square test doesn’t respect the order of
categories #56 [https://github.com/zalando/expan/issues/56]

v0.4.1 [https://github.com/zalando/expan/tree/v0.4.1] (2016-10-18)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.0...v0.4.1]

v0.4.0 [https://github.com/zalando/expan/tree/v0.4.0] (2016-08-19)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.4...v0.4.0]

Closed issues:

	Support ‘overall ratio’ metrics (e.g. conversion rate/return rate) as
opposed to per-entity ratios
#44 [https://github.com/zalando/expan/issues/44]

v0.3.4 [https://github.com/zalando/expan/tree/v0.3.4] (2016-08-08)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.3...v0.3.4]

Closed issues:

	perform trend analysis cumulatively
#31 [https://github.com/zalando/expan/issues/31]

	Python3 #21 [https://github.com/zalando/expan/issues/21]

v0.3.3 [https://github.com/zalando/expan/tree/v0.3.3] (2016-08-02)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.2...v0.3.3]

v0.3.2 [https://github.com/zalando/expan/tree/v0.3.2] (2016-08-02)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.1...v0.3.2]

v0.3.1 [https://github.com/zalando/expan/tree/v0.3.1] (2016-07-15)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.0...v0.3.1]

v0.3.0 [https://github.com/zalando/expan/tree/v0.3.0] (2016-06-23)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.5...v0.3.0]

Implemented enhancements:

	Add P(uplift>0) as a statistic
#2 [https://github.com/zalando/expan/issues/2]

v0.2.5 [https://github.com/zalando/expan/tree/v0.2.5] (2016-05-30)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.4...v0.2.5]

Implemented enhancements:

	Implement __version__
#14 [https://github.com/zalando/expan/issues/14]

Closed issues:

	upload full documentation!
#1 [https://github.com/zalando/expan/issues/1]

v0.2.4 [https://github.com/zalando/expan/tree/v0.2.4] (2016-05-16)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.3...v0.2.4]

Closed issues:

	No module named experiment and test_data
#13 [https://github.com/zalando/expan/issues/13]

v0.2.3 [https://github.com/zalando/expan/tree/v0.2.3] (2016-05-06)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.2...v0.2.3]

v0.2.2 [https://github.com/zalando/expan/tree/v0.2.2] (2016-05-06)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.1...v0.2.2]

v0.2.1 [https://github.com/zalando/expan/tree/v0.2.1] (2016-05-06)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.0...v0.2.1]

v0.2.0 [https://github.com/zalando/expan/tree/v0.2.0] (2016-05-06)

* This Change Log was automatically generated by
`github_changelog_generator <https://github.com/skywinder/Github-Changelog-Generator>`__

 Python Module Index

 b |
 c |
 d |
 e |
 s |
 u |
 v

 		 	

 		
 b	

 	
 	
 expan.core.binning	

 		 	

 		
 c	

 	
 	
 expan.cli	

 	
 	
 expan.core	

 	
 	
 expan.data.csv_fetcher	

 		 	

 		
 d	

 	
 	
 expan.data	

 		 	

 		
 e	

 	
 	
 expan	

 	
 	
 expan.core.experiment	

 		 	

 		
 s	

 	
 	
 expan.core.statistics	

 		 	

 		
 u	

 	
 	
 expan.core.util	

 		 	

 		
 v	

 	
 	
 expan.core.version	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | P
 | S
 | U
 | V

A

 	
 	alpha_to_percentiles() (in module expan.core.statistics)

B

 	
 	Binning (class in expan.core.binning)

 	
 	bootstrap() (in module expan.core.statistics)

C

 	
 	CategoricalBinning (class in expan.core.binning)

 	categories (expan.core.binning.CategoricalBinning attribute)

 	
 	chi_square() (in module expan.core.statistics)

 	create_binning() (in module expan.core.binning)

D

 	
 	delta() (expan.core.experiment.Experiment method)

 	(in module expan.core.statistics)

 	
 	drop_nan() (in module expan.core.util)

E

 	
 	estimate_std() (in module expan.core.statistics)

 	expan (module)

 	expan.cli (module)

 	expan.core (module)

 	expan.core.binning (module)

 	expan.core.experiment (module)

 	
 	expan.core.statistics (module)

 	expan.core.util (module)

 	expan.core.version (module)

 	expan.data (module)

 	expan.data.csv_fetcher (module)

 	Experiment (class in expan.core.experiment)

G

 	
 	generate_random_data() (in module expan.core.util)

 	generate_random_data_n_variants() (in module expan.core.util)

 	get_column_names_by_type() (in module expan.core.util)

 	
 	get_data() (in module expan.data.csv_fetcher)

 	get_kpi_by_name_and_variant() (expan.core.experiment.Experiment method)

 	git_commit_count() (in module expan.core.version)

 	git_latest_commit() (in module expan.core.version)

I

 	
 	is_number_and_nan() (in module expan.core.util)

L

 	
 	label() (expan.core.binning.Binning method)

 	(expan.core.binning.CategoricalBinning method)

 	(expan.core.binning.NumericalBinning method)

 	labels() (expan.core.binning.CategoricalBinning method)

 	(expan.core.binning.NumericalBinning method)

 	
 	lo_closed (expan.core.binning.NumericalBinning attribute)

 	lower() (expan.core.binning.NumericalBinning method)

 	lowers (expan.core.binning.NumericalBinning attribute)

M

 	
 	make_delta() (in module expan.core.statistics)

 	
 	mid() (expan.core.binning.CategoricalBinning method)

 	(expan.core.binning.NumericalBinning method)

N

 	
 	normal_difference() (in module expan.core.statistics)

 	normal_percentiles() (in module expan.core.statistics)

 	
 	normal_sample_difference() (in module expan.core.statistics)

 	normal_sample_percentiles() (in module expan.core.statistics)

 	NumericalBinning (class in expan.core.binning)

P

 	
 	pooled_std() (in module expan.core.statistics)

S

 	
 	sample_size() (in module expan.core.statistics)

 	
 	scale_range() (in module expan.core.util)

U

 	
 	up_closed (expan.core.binning.NumericalBinning attribute)

 	
 	upper() (expan.core.binning.NumericalBinning method)

 	uppers (expan.core.binning.NumericalBinning attribute)

V

 	
 	version() (in module expan.core)

 	(in module expan.core.version)

 	
 	version_numbers() (in module expan.core.version)

expan

	expan package
	Subpackages
	expan.cli package
	Submodules

	expan.cli.cli module

	Module contents

	expan.core package
	Submodules

	expan.core.binning module

	expan.core.experiment module

	expan.core.experimentdata module

	expan.core.results module

	expan.core.statistics module

	expan.core.util module

	expan.core.version module

	Module contents

	expan.data package
	Submodules

	expan.data.csv_fetcher module

	Module contents

	Module contents

expan package

Subpackages

	expan.cli package
	Submodules

	expan.cli.cli module

	Module contents

	expan.core package
	Submodules

	expan.core.binning module

	expan.core.experiment module

	expan.core.experimentdata module

	expan.core.results module

	expan.core.statistics module

	expan.core.util module

	expan.core.version module

	Module contents

	expan.data package
	Submodules

	expan.data.csv_fetcher module

	Module contents

Module contents

Main ExpAn module that contains the cli, core and data modules.

expan.data package

Submodules

expan.data.csv_fetcher module

CSV fetcher module.

	
expan.data.csv_fetcher.get_data(controlVariantName, folder_path)

	
	Expects as input a folder containing the following files:

	
	one .csv or .csv.gz with ‘metrics’ in the filename

	one .txt containing ‘metadata’ in the filename

Opens the files and uses them to create an ExperimentData object which it then returns.

	Parameters:	folder_path –

	Returns:	ExperimentData object with loaded csv data

	Return type:	ExperimentData

Module contents

ExpAn data module.

expan.core package

Submodules

expan.core.binning module

	
class expan.core.binning.Binning

	Bases: object

The Binning class has two subclasses: CategoricalBinning and NumericalBinning.

	
label(data, format_str=None)

	This returns the bin labels associated with each data point in the series,
essentially ‘applying’ the binning to data.

	Parameters:	
	data (array-like) – array of datapoints to be binned

	format_str (str) – string defining the format of the label to apply

	Returns:	array of the bin label corresponding to each data point.

	Return type:	array-like

Note

Implemented in subclass.

	
class expan.core.binning.CategoricalBinning(data=None, nbins=None)

	Bases: expan.core.binning.Binning

A CategoricalBinning is essentially a list of lists of categories.
Each bin within a Binning is an ordered list of categories.

CategoricalBinning constructor

	Parameters:	
	data (array-like) – array of datapoints to be binned

	nbins (int) – number of bins

	
categories

	Returns list of categories.

	Returns:	list of categories

	Return type:	array-like

	
label(data, format_str='{standard}')

	This returns the bin labels associated with each data point in the series,
essentially ‘applying’ the binning to data.

	Parameters:	
	data (array-like) – array of datapoints to be binned

	format_str (str) – string defining the format of the label to apply

Options:

	{iter.uppercase}, {iter.lowercase}, {iter.integer}

	{set_notation} - all categories, comma-separated, surrounded by curly braces

	{standard} - a shortcut for: {set_notation}

	Returns:	array of the bin label corresponding to each data point

	Return type:	array-like

	
labels(format_str='{standard}')

	Returns the labels of the bins defined by this binning.

	Parameters:	format_str (str) – string defining the format of the label to return

Options:

	{iter.uppercase}, {iter.lowercase}, {iter.integer}

	{set_notation} - all categories, comma-separated, surrounded by curly braces

	{standard} - a shortcut for: {set_notation}

	Returns:	labels of the bins defined by this binning

	Return type:	array-like

Note

This is not the same as label (which applies the bins to data and returns the labels of the data).

	
mid(data)

	Returns the middle category of every bin.

	Parameters:	data – data on which the binning is to be applied

	Returns:	the middle category of every bin

	Return type:	array-like

	
class expan.core.binning.NumericalBinning(data=None, nbins=None, uppers=None, lowers=None, up_closed=None, lo_closed=None)

	Bases: expan.core.binning.Binning

The Binning class for numerical variables.

Todo

Think of a good way of exposing the _apply() method, because with the returned indices,
it can then get uppers/lowers/mids/labels (ie reformat) without doing the apply again.
And experimenting with maintaining the lists with a single element tacked onto the end representing non-matching entries.

All access then are through properties which drop this end list,
except when using the indices returned by _apply.

This means that the -1 indices just works, so using the indices to get labels, bounds, etc.,
is straightforward and fast because it is just integer-based array slicing.

NumericalBinning constructor.

	Parameters:	
	data (array-like) – array of datapoints to be binned

	nbins (int) – number of bins

	uppers (array-like) – a list of upper bounds

	lowers (array-like) – a list of lower bounds

	up_closed (array-like) – a list of booleans indicating whether the
upper bounds are closed

	lo_closed (array-like) – a list of booleans indicating whether the
lower bounds are closed

	
label(data, format_str='{standard}')

	Returns the bin labels associated with each data point in the series,
essentially ‘applying’ the binning to data.

	Parameters:	
	data (array-like) – array of datapoints to be binned

	format_str (str) – string defining the format of the label to apply

Options:

	{iter.uppercase} and {iter.lowercase} = labels the bins with letters

	{iter.integer} = labels the bins with integers

	{up} and {lo} = the bounds themselves (can specify precision: {up:.1f})

	{up_cond} and {lo_cond} = ‘<’, ‘<=’ etc.

	{up_bracket} and {lo_bracket} = ‘(‘, ‘[‘ etc.

	{mid} = the midpoint of the bin (can specify precision: {mid:.1f}

	{conditions} = {lo:.1f}{lo_cond}x{up_cond}{up:.1f}

	{set_notation} = {lo_bracket}{lo:.1f},{up:.1f}{up_bracket}

	{standard} = {conditions}

	{simple} = {lo:.1f}_{up:.1f}

	{simplei} = {lo:.0f}_{up:.0f} (same as simple but for integers)

	see:

	
	Binning.label.__doc__

	NumericalBinning._labels.__doc__

When format_str is None, the label is the midpoint of the bin.
This may not be the most convenient. Might be better to make
the default format_str ‘{standard}’ and then have the client use mid()
directly if midpoints are desired.

	
labels(format_str='{standard}')

	Returns the labels of the bins defined by this binning.

	Returns:	array of labels of the bins defined by this binning
Options:
	{iter.uppercase} and {iter.lowercase} = labels the bins with letters

	{iter.integer} = labels the bins with integers

	{up} and {lo} = the bounds themselves (can specify precision: {up:.1f})

	{up_cond} and {lo_cond} = ‘<’, ‘<=’ etc.

	{up_bracket} and {lo_bracket} = ‘(‘, ‘[‘ etc.

	{mid} = the midpoint of the bin (can specify precision: {mid:.1f}

	{conditions} = {lo:.1f}{lo_cond}x{up_cond}{up:.1f}

	{set_notation} = {lo_bracket}{lo:.1f},{up:.1f}{up_bracket}

	{standard} = {conditions}

	{simple} = {lo:.1f}_{up:.1f}

	{simplei} = {lo:.0f}_{up:.0f} (same as simple but for integers)

	Return type:	array-like

Note

This is not the same as label (which applies the bins to data and returns the labels of the data)

	
lo_closed

	Return a list of booleans indicating whether the lower bounds are
closed.

	
lower(data)

	see upper()

	
lowers

	Return a list of lower bounds.

	
mid(data)

	Returns the midpoints of the bins associated with the data

	Parameters:	data (array-like) – array of datapoints to be binned

	Returns:	
	array containing midpoints of bin

	corresponding to each data point.

	Return type:	array-like

Note

Currently doesn’t take into account whether bounds are closed or open.

	
up_closed

	Return a list of booleans indicating whether the upper bounds are
closed.

	
upper(data)

	Returns the upper bounds of the bins associated with the data

	Parameters:	data (array-like) – array of datapoints to be binned

	Returns:	
	array containing upper bound of bin

	corresponding to each data point.

	Return type:	array-like

	
uppers

	Return a list of upper bounds.

	
expan.core.binning.create_binning(x, nbins=8)

	Determines bins for the input values - suitable for doing SubGroup Analyses.

	Parameters:	
	x (array_like) – input array

	nbins (integer) – number of bins

	Returns:	binning object

expan.core.experiment module

	
class expan.core.experiment.Experiment(control_variant_name, data, metadata, report_kpi_names=None, derived_kpis=[])

	Bases: object

Class which adds the analysis functions to experimental data.

	
delta(method='fixed_horizon', **worker_args)

	

	
get_kpi_by_name_and_variant(name, variant)

	

expan.core.experimentdata module

expan.core.results module

expan.core.statistics module

	
expan.core.statistics.alpha_to_percentiles(alpha)

	Transforms alpha value to corresponding percentile.

	Parameters:	alpha (float) – alpha values to transform

	Returns:	list of percentiles corresponding to given alpha

	
expan.core.statistics.bootstrap(x, y, func=<function _delta_mean>, nruns=10000, percentiles=[2.5, 97.5], min_observations=20, return_bootstraps=False, relative=False)

	Bootstraps the Confidence Intervals for a particular function comparing
two samples. NaNs are ignored (discarded before calculation).

	Parameters:	
	x (array like) – sample of treatment group

	y (array like) – sample of control group

	func (function) – function of which the distribution is to be computed.
The default comparison metric is the difference of means. For
bootstraping correlation: func=lambda x,y: np.stats.pearsonr(x,y)[0]

	nruns (integer) – number of bootstrap runs to perform

	percentiles (list) – The values corresponding to the given percentiles
are returned. The default percentiles (2.5% and 97.5%) correspond to
an alpha of 0.05.

	min_observations (integer) – minimum number of observations necessary

	return_bootstraps (boolean) – If this variable is set the bootstrap sets
are returned otherwise the first return value is empty.

	relative (boolean) – if relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns:	
	dict: percentile levels (index) and values

	np.array (nruns): array containing the bootstraping results per run

	Return type:	tuple

	
expan.core.statistics.chi_square(x, y, min_counts=5)

	Performs the chi-square homogeneity test on categorical arrays x and y

	Parameters:	
	x (array_like) – sample of the treatment variable to check

	y (array_like) – sample of the control variable to check

	min_counts (int) – drop categories where minimum number of observations
or expected observations is below min_counts for x or y

	Returns:	
	float: p-value

	float: chi-square value

	int: number of attributes used (after dropping)

	Return type:	tuple

	
expan.core.statistics.delta(x, y, assume_normal=True, percentiles=[2.5, 97.5], min_observations=20, nruns=10000, relative=False, x_weights=1, y_weights=1)

	Calculates the difference of means between the samples (x-y) in a
statistical sense, i.e. with confidence intervals.

NaNs are ignored: treated as if they weren’t included at all. This is done
because at this level we cannot determine what a NaN means. In some cases,
a NaN represents missing data that should be completely ignored, and in some
cases it represents inapplicable (like PCII for non-ordering customers) - in
which case the NaNs should be replaced by zeros at a higher level. Replacing
with zeros, however, would be completely incorrect for return rates.

Computation is done in form of treatment minus control, i.e. x-y

	Parameters:	
	x (array_like) – sample of a treatment group

	y (array_like) – sample of a control group

	assume_normal (boolean) – specifies whether normal distribution
assumptions can be made

	percentiles (list) – list of percentile values for confidence bounds

	min_observations (integer) – minimum number of observations needed

	nruns (integer) – only used if assume normal is false

	relative (boolean) – if relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	x_weights (list) – weights for the x vector, in order to calculate
the weighted mean and confidence intervals, which is equivalent
to the overall metric. This weighted approach is only relevant
for ratios.

	y_weights (list) – weights for the y vector, in order to calculate
the weighted mean and confidence intervals, which is equivalent
to the overall metric. This weighted approach is only relevant
for ratios.

	Returns:	DeltaStatistics object

	
expan.core.statistics.estimate_std(x, mu, pctile)

	Estimate the standard deviation from a given percentile, according to
the z-score:

z = (x - mu) / sigma

	Parameters:	
	x (float) – cumulated density at the given percentile

	mu (float) – mean of the distribution

	pctile (float) – percentile value (between 0 and 100)

	Returns:	estimated standard deviation of the distribution

	Return type:	float

	
expan.core.statistics.make_delta(assume_normal=True, percentiles=[2.5, 97.5], min_observations=20, nruns=10000, relative=False)

	a closure to the below delta function

	
expan.core.statistics.normal_difference(mean1, std1, n1, mean2, std2, n2, percentiles=[2.5, 97.5], relative=False)

	Calculates the difference distribution of two normal distributions.

Computation is done in form of treatment minus control. It is assumed that
the standard deviations of both distributions do not differ too much.

	Parameters:	
	mean1 (float) – mean value of the treatment distribution

	std1 (float) – standard deviation of the treatment distribution

	n1 (integer) – number of samples of the treatment distribution

	mean2 (float) – mean value of the control distribution

	std2 (float) – standard deviation of the control distribution

	n2 (integer) – number of samples of the control distribution

	percentiles (list) – list of percentile values to compute

	relative (boolean) – If relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns:	percentiles and corresponding values

	Return type:	dict

	For further information vistit:

	http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals5.html

	
expan.core.statistics.normal_percentiles(mean, std, n, percentiles=[2.5, 97.5], relative=False)

	Calculate the percentile values for a normal distribution with parameters
estimated from samples.

	Parameters:	
	mean (float) – mean value of the distribution

	std (float) – standard deviation of the distribution

	n (integer) – number of samples

	percentiles (list) – list of percentile values to compute

	relative (boolean) – if relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns:	percentiles and corresponding values

	Return type:	dict

	For more information visit:

	http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm
http://www.boost.org/doc/libs/1_46_1/libs/math/doc/sf_and_dist/html/math_toolkit/dist/stat_tut/weg/st_eg/tut_mean_intervals.html
http://www.stat.yale.edu/Courses/1997-98/101/confint.htm

	
expan.core.statistics.normal_sample_difference(x, y, percentiles=[2.5, 97.5], relative=False)

	Calculates the difference distribution of two normal distributions given
by their samples.

Computation is done in form of treatment minus control. It is assumed that
the standard deviations of both distributions do not differ too much.

	Parameters:	
	x (array-like) – sample of a treatment group

	y (array-like) – sample of a control group

	percentiles (list) – list of percentile values to compute

	relative (boolean) – If relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns:	percentiles and corresponding values

	Return type:	dict

	
expan.core.statistics.normal_sample_percentiles(values, percentiles=[2.5, 97.5], relative=False)

	Calculate the percentile values for a sample assumed to be normally
distributed. If normality can not be assumed, use bootstrap_ci instead.
NaNs are ignored (discarded before calculation).

	Parameters:	
	values (array-like) – sample for which the normal distribution
percentiles are computed.

	percentiles (list) – list of percentile values to compute

	relative (boolean) – if relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns:	percentiles and corresponding values

	Return type:	dict

	For further information visit:

	http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm
http://www.boost.org/doc/libs/1_46_1/libs/math/doc/sf_and_dist/html/math_toolkit/dist/stat_tut/weg/st_eg/tut_mean_intervals.html
http://www.stat.yale.edu/Courses/1997-98/101/confint.htm

	
expan.core.statistics.pooled_std(std1, n1, std2, n2)

	Returns the pooled estimate of standard deviation. Assumes that population
variances are equal (std(v1)**2==std(v2)**2) - this assumption is checked
for reasonableness and an exception is raised if this is strongly violated.

	Parameters:	
	std1 (float) – standard deviation of first sample

	n1 (integer) – size of first sample

	std2 (float) – standard deviation of second sample

	n2 (integer) – size of second sample

	Returns:	Pooled standard deviation

	Return type:	float

	For further information visit:

	http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals5.html

Todo

Also implement a version for unequal variances.

	
expan.core.statistics.sample_size(x)

	Calculates sample size of a sample x
:param x: sample to calculate sample size
:type x: array_like

	Returns:	sample size of the sample excluding nans

	Return type:	int

expan.core.util module

	
expan.core.util.drop_nan(np_array)

	

	
expan.core.util.generate_random_data()

	

	
expan.core.util.generate_random_data_n_variants(n_variants=3)

	

	
expan.core.util.get_column_names_by_type(df, dtype)

	

	
expan.core.util.is_number_and_nan(obj)

	

	
expan.core.util.scale_range(x, new_min=0.0, new_max=1.0, old_min=None, old_max=None, squash_outside_range=True, squash_inf=False)

	
Scales a sequence to fit within a new range.

If squash_inf is set, then infinite values will take on the
extremes of the new range (as opposed to staying infinite).

	Args:

	x:
new_min:
new_max:
old_min:
old_max:
squash_outside_range:
squash_inf:

	Note:

	Infinity in the input is disregarded in the construction of the scale of the mapping.

>>> scale_range([1,3,5])
array([0. , 0.5, 1.])

>>> scale_range([1,2,3,4,5])
array([0. , 0.25, 0.5 , 0.75, 1.])

>>> scale_range([1,3,5, np.inf])
array([0. , 0.5, 1. , inf])

>>> scale_range([1,3,5, -np.inf])
array([0. , 0.5, 1. , -inf])

>>> scale_range([1,3,5, -np.inf], squash_inf=True)
array([0. , 0.5, 1. , 0.])

>>> scale_range([1,3,5, np.inf], squash_inf=True)
array([0. , 0.5, 1. , 1.])

>>> scale_range([1,3,5], new_min=0.5)
array([0.5 , 0.75, 1.])

>>> scale_range([1,3,5], old_min=1, old_max=4)
array([0. , 0.66666667, 1.])

>>> scale_range([5], old_max=4)
array([1.])

expan.core.version module

	
expan.core.version.git_commit_count()

	Returns the output of git rev-list –count HEAD as an int.

Note

http://programmers.stackexchange.com/a/151558

	
expan.core.version.git_latest_commit()

	”
Returns output of git rev-parse HEAD.

Note

http://programmers.stackexchange.com/a/151558

	
expan.core.version.version(format_str='{short}')

	Returns current version number in specified format.

	Parameters:	format_str (str) –

Returns:

	
expan.core.version.version_numbers()

	

Module contents

ExpAn core module.

	
expan.core.version(format_str='{short}')

	Returns current version number in specified format.

	Parameters:	format_str (str) –

Returns:

expan.cli package

Submodules

expan.cli.cli module

Module contents

ExpAn Command Line Interface module.

 _static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to ExpAn's documentation!

 		ExpAn: Experiment Analysis

 		Installation

 		Usage

 		Documentation

 		License

 		Installation

 		Stable release

 		From sources

 		Usage

 		Some mock-up data

 		Per-entity ratio vs. ratio of totals

 		Calculating the conversion rate

 		Overall as reweighted Individual

 		Weighted delta function

 		Contributing

 		Style guide

 		Testing

 		Branching / Release

 		Versioning

 		Bumping Version

 		Travis CI and PyPI deployment

 		TODOs

 		Related Projects

 		Credits

 		Development Lead

 		Contributors

 		Change Log

 		v0.5.3 (2017-06-26)

 		v0.5.2 (2017-05-11)

 		v0.5.1 (2017-04-20)

 		v0.5.0 (2017-04-05)

 		v0.4.5 (2017-02-10)

 		v0.4.4 (2017-02-09)

 		v0.4.3 (2017-02-07)

 		v0.4.2 (2016-12-08)

 		v0.4.1 (2016-10-18)

 		v0.4.0 (2016-08-19)

 		v0.3.4 (2016-08-08)

 		v0.3.3 (2016-08-02)

 		v0.3.2 (2016-08-02)

 		v0.3.1 (2016-07-15)

 		v0.3.0 (2016-06-23)

 		v0.2.5 (2016-05-30)

 		v0.2.4 (2016-05-16)

 		v0.2.3 (2016-05-06)

 		v0.2.2 (2016-05-06)

 		v0.2.1 (2016-05-06)

 		v0.2.0 (2016-05-06)

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

