

Welcome to ExpAn’s documentation!

Contents:

	ExpAn: Experiment Analysis

	Tutorial

	API

	Glossary

	Change Log

	Contributing

ExpAn: Experiment Analysis

[image: Build status]
 [https://travis-ci.org/zalando/expan][image: Code coverage]
 [https://coveralls.io/github/zalando/expan][image: Latest PyPI version]
 [https://pypi.python.org/pypi/expan][image: Development Status]
 [https://pypi.python.org/pypi/expan][image: Python Versions]
 [https://pypi.python.org/pypi/expan][image: License]
 [https://pypi.python.org/pypi/expan/][image: Documentation Status]
 [http://expan.readthedocs.io/en/latest/?badge=latest]A/B tests (a.k.a. Randomized Controlled Trials or Experiments) have been widely
applied in different industries to optimize business processes and user
experience. ExpAn (Experiment Analysis) is a Python library
developed for the statistical analysis of such experiments and to standardise
the data structures used.

The data structures and functionality of ExpAn are generic such that they can be
used by both data scientists optimizing a user interface and biologists
running wet-lab experiments. The library is also standalone and can be
imported and used from within other projects and from the command line.

Documentation

The latest stable version is 1.4.0. Please check out our tutorial and documentation [http://expan.readthedocs.io/].

Installation

Stable release

To install ExpAn, run this command in your terminal:

$ pip install expan

From sources

The sources for ExpAn can be downloaded from the Github repo [https://github.com/zalando/expan].

You can either clone the public repository:

$ git clone git://github.com/zalando/expan

Or download the tarball [https://github.com/zalando/expan/tarball/master]:

$ curl -OL https://github.com/zalando/expan/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

License

The MIT License (MIT)

Copyright © [2016] Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Tutorial

Here is a tutorial to use ExpAn. Let’s get started!

Generate demo data

First, let’s generate some random data for the tutorial.

from expan.core.util import generate_random_data
data, metadata = generate_random_data()

data is a pandas DataFrame.
It must contain a column for entity identifier named entity,
a column for variant, and one column per kpi/feature.

metadata is a python dict. It should contain the following keys:

	experiment: Name of the experiment, as known to stakeholders. It can be anything meaningful to you.

	sources (optional): Names of the data sources used in the preparation of this data.

	experiment_id (optional): This uniquely identifies the experiment. Could be a concatenation of the experiment name and the experiment start timestamp.

	retrieval_time (optional): Time that data was fetched from original sources.

	primary_KPI (optional): Primary evaluation criteria.

Currently, metadata is only used for including more information about the experiment,
and is not taken into consideration for analysis.

Create an experiment

To use ExpAn for analysis, you first need to create an Experiment object.

from expan.core.experiment import Experiment
exp = Experiment(metadata=metadata)

This Experiment object has the following parameters:

	metadata: Specifies an experiment name as the mandatory and data source as the optional fields. Described above.

Create a statistical test

Now we need a StatisticalTest object to represent what statistical test to run.
Each statistical test consist of a dataset, one kpi, treatment and control variant names, and the optional features.
Dataset should contain necessary kpis, variants and features columns.

from expan.core.statistical_test import KPI, Variants, StatisticalTest

kpi = KPI('normal_same')
variants = Variants(variant_column_name='variant', control_name='B', treatment_name='A')
test = StatisticalTest(data=data, kpi=kpi, features=[], variants=variants)

Let’s start analyzing!

Running an analysis is very simple:

exp.analyze_statistical_test(test)

Currently analyze_statistical_test supports 4 test methods: fixed_horizon (default), group_sequential, bayes_factor and bayes_precision.
All methods requires different additional parameters.

If you would like to change any of the default values, just pass them as parameters to delta. For example:

exp.analyze_statistical_test(test, test_method='fixed_horizon', assume_normal=True, percentiles=[2.5, 97.5])
exp.analyze_statistical_test(test, test_method='group_sequential', estimated_sample_size=1000)
exp.analyze_statistical_test(test, test_method='bayes_factor', distribution='normal')

Here is the list of additional parameters.
You may also find the description in our API page.

fixed_horizon is the default method:

	assume_normal=True: Specifies whether normal distribution assumptions can be made. A t-test is performed under normal assumption. We use bootstrapping otherwise. Bootstrapping takes considerably longer time than assuming the normality before running experiment. If we do not have an explicit reason to use it, it is almost always better to leave it off.

	alpha=0.05: Type-I error rate.

	min_observations=20: Minimum number of observations needed.

	nruns=10000: Only used if assume normal is false.

	relative=False: If relative==True, then the values will be returned as distances below and above the mean, respectively, rather than the absolute values.

group_sequential is a frequentist approach for early stopping:

	spending_function='obrien_fleming': Currently we support only Obrient-Fleming alpha spending function for the frequentist early stopping decision.

	estimated_sample_size=None: Sample size to be achieved towards the end of experiment. In other words, the actual size of data should be always smaller than estimated_sample_size.

	alpha=0.05: Type-I error rate.

	cap=8: Upper bound of the adapted z-score.

bayes_factor is a Bayesian approach for delta analysis and early stopping:

	distribution='normal': The name of the KPI distribution model, which assumes a Stan model file with the same name exists. Currently we support normal and poisson models.

	num_iters=25000: Number of iterations of bayes sampling.

	inference=sampling: ‘sampling’ for MCMC sampling method or ‘variational’ for variational inference method to approximate the posterior distribution.

bayes_precision is another Bayesian approach similar as bayes_factor:

	distribution='normal': The name of the KPI distribution model, which assumes a Stan model file with the same name exists. Currently we support normal and poisson models.

	num_iters=25000: Number of iterations of bayes sampling.

	posterior_width=0.08: The stopping criterion, threshold of the posterior width.

	inference=sampling: ‘sampling’ for MCMC sampling method or ‘variational’ for variational inference method to approximate the posterior distribution.

Interpreting result

The output of the analyze_statistical_test method is an instance of class core.result.StatisticalTestResult.
Please refer to the API page for result structure as well as descriptions of all fields.
An example of the result is shown below:

{
 "result": {
 "confidence_interval": [
 {
 "percentile": 2.5,
 "value": 0.1
 },
 {
 "percentile": 97.5,
 "value": 1.1
 }],
 "control_statistics": {
 "mean": 0.0,
 "sample_size": 1000,
 "variance": 1.0
 },
 "delta": 1.0,
 "p": 0.04,
 "statistical_power": 0.8,
 "treatment_statistics": {
 "mean": 1.0,
 "sample_size": 1200,
 "variance": 1.0
 }
 },
 "test": {
 "features": [],
 "kpi": {
 "name": "revenue"
 },
 "variants": {
 "control_name": "control",
 "treatment_name": "treatment",
 "variant_column_name": "variant"
 }
 }
}

Subgroup analysis

Subgroup analysis in ExaAn will select subgroup (which is a segment of data) based on the input argument,
and then perform a regular delta analysis per subgroup as described before.
That is to say, we don’t compare between subgroups, but compare treatment with control within each subgroup.

If you wish to perform the test on a specific subgroup,
you can use the FeatureFilter object:

feature = FeatureFilter('feature', 'has')
test = StatisticalTest(data=data, kpi=kpi, features=[feature], variants=variants)

Statistical test suite

It is very common to run a suite of statistical tests.
In this case, you need to create a StatisticalTestSuite object to represent the test suite.
A StatisticalTestSuite object consists of a list of StatisticalTest and a correction method:

from expan.core.statistical_test import *

kpi = KPI('normal_same')
variants = Variants(variant_column_name='variant', control_name='B', treatment_name='A')

feature_1 = FeatureFilter('feature', 'has')
feature_2 = FeatureFilter('feature', 'non')
feature_3 = FeatureFilter('feature', 'feature that only has one data point')

test_subgroup1 = StatisticalTest(data, kpi, [feature_1], variants)
test_subgroup2 = StatisticalTest(data, kpi, [feature_2], variants)
test_subgroup3 = StatisticalTest(data, kpi, [feature_3], variants)

tests = [test_subgroup1, test_subgroup2, test_subgroup3]
test_suite = StatisticalTestSuite(tests=tests, correction_method=CorrectionMethod.BH)

And then you can use the `Experiment` instance to run the test suite.
Method analyze_statistical_test_suite has the same arguments as analyze_statistical_test. For example:

exp.analyze_statistical_test_suite(test_suite)
exp.analyze_statistical_test_suite(test_suite, test_method='group_sequential', estimated_sample_size=1000)
exp.analyze_statistical_test_suite(test_suite, test_method='bayes_factor', distribution='normal')

Result of statistical test suite

The output of the analyze_statistical_test_suite method is an instance of class core.result.MultipleTestSuiteResult.
Please refer to the API page for result structure as well as descriptions of all fields.

Following is an example of the analysis result of statistical test suite:

{
 "correction_method": "BH",
 "results": [
 {
 "test": {
 "features": [
 {
 "column_name": "device_type",
 "column_value": "desktop"
 }
],
 "kpi": {
 "name": "revenue"
 },
 "variants": {
 "control_name": "control",
 "treatment_name": "treatment",
 "variant_column_name": "variant"
 }
 },
 "result": {
 "corrected_test_statistics": {
 "confidence_interval": [
 {
 "percentile": 1.0,
 "value": -0.7
 },
 {
 "percentile": 99.0,
 "value": 0.7
 }
],
 "control_statistics": {
 "mean": 0.0,
 "sample_size": 1000,
 "variance": 1.0
 },
 "delta": 1.0,
 "p": 0.02,
 "statistical_power": 0.8,
 "treatment_statistics": {
 "mean": 1.0,
 "sample_size": 1200,
 "variance": 1.0
 }
 },
 "original_test_statistics": {
 "confidence_interval": [
 {
 "percentile": 2.5,
 "value": 0.1
 },
 {
 "percentile": 97.5,
 "value": 1.1
 }
],
 "control_statistics": {
 "mean": 0.0,
 "sample_size": 1000,
 "variance": 1.0
 },
 "delta": 1.0,
 "p": 0.04,
 "statistical_power": 0.8,
 "treatment_statistics": {
 "mean": 1.0,
 "sample_size": 1200,
 "variance": 1.0
 }
 }
 }
 },
 {
 "test": {
 "features": [
 {
 "column_name": "device_type",
 "column_value": "mobile"
 }
],
 "kpi": {
 "name": "revenue"
 },
 "variants": {
 "control_name": "control",
 "treatment_name": "treatment",
 "variant_column_name": "variant"
 }
 },
 "result": {
 "corrected_test_statistics": {
 "confidence_interval": [
 {
 "percentile": 1.0,
 "value": -0.7
 },
 {
 "percentile": 99.0,
 "value": 0.7
 }
],
 "control_statistics": {
 "mean": 0.0,
 "sample_size": 1000,
 "variance": 1.0
 },
 "delta": 1.0,
 "p": 0.02,
 "statistical_power": 0.8,
 "stop": false,
 "treatment_statistics": {
 "mean": 1.0,
 "sample_size": 1200,
 "variance": 1.0
 }
 },
 "original_test_statistics": {
 "confidence_interval": [
 {
 "percentile": 2.5,
 "value": 0.1
 },
 {
 "percentile": 97.5,
 "value": 1.1
 }
],
 "control_statistics": {
 "mean": 0.0,
 "sample_size": 1000,
 "variance": 1.0
 },
 "delta": 1.0,
 "p": 0.04,
 "statistical_power": 0.8,
 "stop": true,
 "treatment_statistics": {
 "mean": 1.0,
 "sample_size": 1200,
 "variance": 1.0
 }
 }
 }
 }
]
}

That’s it!

For API list and theoretical concepts, please read the next sections.

API

Architecture

core.experiment is the most important module to use ExpAn.
It provides interface for running different analysis.

core.statistics provides the underlying statistical functions.
Functionalities in this module includes bootstrap, delta,
pooled standard deviation, power analysis, etc.

core.early_stopping provides early stopping algorithms.
It supports group sequential, Bayes factor and Bayes precision.

core.correction implements methods for multiple testing correction.

core.statistical_test holds structures of statistical tests.
You will need the data structure in this module to run an experiment.

core.results holds structures of analysis result.
This will be the running structure of an experiment.

core.util contains supplied common functions used by other modules
such as generate random data and drop nan values, among many others.

core.version constructs versioning of the package.

data.csv_fetcher reads the raw data and constructs an experiment instance.

core.binning is now DEPRECATED. It implements categorical and numerical binning algorithms.
It supports binning implementations which can be applied to unseen data as well.

API

Please visit the API list for detailed usage.

Glossary

Assumptions used in analysis

	Sample-size estimation

	Treatment does not affect variance

	Variance in treatment and control is identical

	Mean of delta is normally distributed

	Equal or unequal sample sizes, equal variance t-test

	Mean of means is t-distributed (or normally distributed)

	Variance of two distributions are same (so the variance of two groups of sample should be similar)

	In general

	Sample represents underlying population

	Entities are independent

Derived KPIs, such as conversion rate

For each user, we have their number of orders and their number of sessions.
We estimate the orders-per-session (“conversion rate”) by computing
the total number of orders across all users and divide that by
the total number of sessions across all users.
Equivalently, we can use the ratio of the means:

\[\overline{CR} = \mbox{estimated conversion rate} = \frac{ \sum_{i=1}^n o_i }{ \sum_{i=1}^n s_i } = \frac{ \frac1{n} \sum_{i=1}^n o_i }{ \frac1{n} \sum_{i=1}^n s_i } = \frac{\bar{o}}{\bar{s}}\]

As a side comment, you might be tempted to compute the ratio for each individual, \(\frac{o_i}{s_i}\),
and compute the mean of those ratios, \(\overline{\left(\frac{o}{s}\right)_i}\).
The problem with this is that it’s an estimator with low accuracy; more formally, its variance is large.
Intuitively, we want to compute a mean by giving greater weight to ratios which have more sessions;
this is how we derive the formula for \(\overline{CR}\) above.

To calculate the variance of this estimate, and therefore apply a t-test, we need to compute the variance of this
estimator. If we used the same data again, but randomly reassigned every user to a group (treatment or control),
and recomputed \(\overline{CR}\) many times, how would this estimate vary?

We model that the \(s_i\) are given (i.e. non-random), and the \(o_i\) are random variables
whose distribution is a function of \(s_i\).

For each user, the “error” (think linear regression) is:

\[e_i = o_i - s_i{\cdot}\overline{CR}\]

The subtracted portion \((-s_i \cdot \overline{CR})\) is essentially non-random for our purposes,
allowing us to say - to a very good approximation - that \(Var[o_i]=Var[e_i]\).
Also, the e vector will have mean zero by construction.

Therefore, as input to the pooled variance calculation, we use this as the variance estimate:

\[\hat{Var}\left[\frac{ o_i }{ \bar{s} } \right]
= \hat{Var}\left[\frac{ e_i }{ \bar{s} } \right]
= \frac1{n-1} \sum_{i=1}^n \left(\frac{e_i - \bar{e}}{\bar{s}}\right)^2
= \frac1{n-1} \sum_{i=1}^n \left(\frac{e_i}{\bar{s}}\right)^2\]

The variances are calculated as above for both the control and the treatment and fed into
a pooled variance calculation as usual for a t-test.

See the test named test_using_lots_of_AA_tests() within expan/tests/test_derived.py
for a demonstration of how this method gives a uniform p-value under the null;
this confirms that the correct error rate is maintained.

Finally, this method doesn’t suffer from the problem described in
this blog post [https://towardsdatascience.com/the-second-ghost-of-experimentation-the-fallacy-of-session-based-metrics-fb65006d30ff].
In our notation, \(o_i\) is the sum of the orders for all session for user \(i\).
The method criticized in that blog post is to compute the variance estimate across every session, i.e. ignoring \(o_i\) and instead using
the per-session orders individually.
That is problematic because it ignores the fact that the sessions for a given user may be correlated with each other.
Our approach is different and follows the linear regression procedure closely,
and therefore is more robust to these issues.

Early stopping

Given samples x from treatment group, samples y from control group, we want to know whether there is a significant difference between the means \(\delta=\mu(y)−\mu(x)\).
To save the cost of long-running experiments, we want to stop the test early if we are already certain that there is a statistically significant result.

You can find links to our detailed documentations for
concept of early stopping [https://github.com/shansfolder/AB-Test-Early-Stopping/blob/master/docs/EarlyStoppingConcept/EarlyStoppingConcept.pdf] and
early stopping methods we investigated [https://github.com/shansfolder/AB-Test-Early-Stopping/blob/master/docs/EvaluateEarlyStopping/EvaluatingEarlyStopping.pdf].

Subgroup analysis

Subgroup analysis in ExpAn will select subgroup (which is a segment of data) based on the input argument, and then perform a regular delta analysis per subgroup as described before.

That is to say, we don’t compare between subgroups, but compare treatment with control within each subgroup.

To support automatic detection of those interesting subgroups, also known as Heterogeneous Treatment Effect, is under planning.

Multiple testing problem

Multiple testing problem occurs when one considers a set of statistical inferences simultaneously. Consider a set of \(20\) hypothesis that you wish to test at the
significance level of \(0.05\).
What is the probability of observing at least one significant result just due to chance?

\(\Pr \textrm{(at least one significant result)} = 1 - \Pr \textrm{(no significant results)} = 1 - (1 - 0.05)^{20} \approx 0.64\)

With \(20\) tests being considered, we have a \(64\%\) chance of observing at least one significant result, even if all of the tests are actually not significant.
Methods for dealing with multiple testing frequently call for adjusting \(\alpha\) in some way, so that the probability of observing at least one significant result due to chance
remains below your desired significance level.

ExpAn allows you to control the correction method for your set of statistical tests (statistical test suite) yourself.
There are three options for the correction method:

	CorrectionMethod.BONFERRONI- strict Bonferroni correction [https://en.wikipedia.org/wiki/Bonferroni_correction] which controls the family-wise error rate [https://en.wikipedia.org/wiki/Family-wise_error_rate].

	CorrectionMethod.BH - correction by Benjamini-Hochberg: less strict and more powerful correction method which decreases the false discovery rate [https://en.wikipedia.org/wiki/False_discovery_rate].

	CorrectionMethod.NONE - no correction is used. Even this option is available in ExpAn we strongly recommend to do not neglect the importance of correction for multiple testing and always correct for multiple testing using Benjamini-Hochberg correction, as a default one (as currently set up in ExpAn).

Correction is performed per each statistical test suite, but you can use the correction methods separately
by calling benjamini_hochberg(false_discovery_rate, original_p_values) or
bonferroni(false_positive_rate, original_p_values) providing corresponding p-values for the correction.

Read more about each correction method:

	Benjamini-Hochberg [https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini%E2%80%93Hochberg_procedure] or original paper “Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures.”

	Bonferroni [https://en.wikipedia.org/wiki/Bonferroni_correction]

Chi-square test (Multinomial Goodness of Fit Test).

In ExpAn we have the possibility to conduct multinomial goodness of fit test (chi-square test).
The test is applied when you have one categorical variable from a single population.
It is used to determine whether sample data are consistent with a hypothesized distribution
(allocation of traffic or split percentage).

This test, in our case, is used to check the variant split based on the claimed percentage.
For example, we want 50% of the users to be exposed to control variant (for example, green checkout button)
and 50% of the users to be exposed to treatment variant (for example, yellow checkout button).
We conduct a random assignment of variants and would like to check whether the random assignment did the right job and
we’ve got the correct split of the variants. We would also like to know whether the variant split consistent with the specified
percentage after the outlier filtering as well.

The Ho is: the data are consistent with a specified distribution (or the variant split corresponds to the expected percentage)
The Ha is: the data are not consistent with a specified distribution (or the variant split do not correspond to the expected percentage)
Typically, the null hypothesis (Ho) specifies the proportion of observations at each level of the categorical variable.
The alternative hypothesis (Ha) is that at least one of the specified proportions is not true.

Multinomial goodness of fit test is described with one intuitive formula:

\[{\chi}^2_{K-1} = \sum_{i=1}^{K} \frac{(O_i - E_i)^2}{E_i}\]

Here \(O\) denotes the observed number of users buckets in bucket \(i\), and \(E\) denotes the expected
number of users bucketed in each bucket. \(K\) - overall number of buckets. The statistics capture how much each bucket deviates from the expected value,
and the summation captures the overall deviation.
Source [https://blog.twitter.com/engineering/en_us/a/2015/detecting-and-avoiding-bucket-imbalance-in-ab-tests.html]

We use 0.05 significance level as the default one.
We compute p-value - the probability of observing a sample statistics as extreme as the test statistic - and compare it to the significance level.
We reject the null hypothesis when the p-value is less than the significance level.

We can use this test to check the correct split for the subgroups as well.

	Multiple testing problem for chi-square testing

Since chi-square testing is also a hypothesis testing, you need to keep in mind that multiple chi-square testing brings
the problem of increasing of false positives rate described in the previous section.
Let say, you want to test the correctness of your variants split 5 times at different times with 0.05 alpha.
For 5 tests your alpha is no longer 0.05, but \(1 - (1 - 0.05)^{5} \approx 0.23\). Correction for multiple chi-square testing is needed here.
In this case, you can run several chi-square tests and collect p-values, сorrect p-values with one of our correction
methods (CorrectionMethod.BONFERRONI, CorrectionMethod.BH) to get new corrected alpha, and make a decision
about correctness of the variants splits using that new alpha.

Change Log

v1.4.0 [https://github.com/zalando/expan/tree/v1.4.0] (2019-07-05)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.9...v1.4.0]

Closed issues:

	Why features are iterated in a for loop?
#243 [https://github.com/zalando/expan/issues/243]

Merged pull requests:

	Two-sided outlier filtering mode
#249 [https://github.com/zalando/expan/pull/249]
(gbordyugov [https://github.com/gbordyugov])

	Create .zappr.yaml
#248 [https://github.com/zalando/expan/pull/248]
(perploug [https://github.com/perploug])

	Correct documentation
#245 [https://github.com/zalando/expan/pull/245]
(shansfolder [https://github.com/shansfolder])

v1.3.9 [https://github.com/zalando/expan/tree/v1.3.9] (2018-09-10)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.8...v1.3.9]

v1.3.8 [https://github.com/zalando/expan/tree/v1.3.8] (2018-09-10)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.7...v1.3.8]

Merged pull requests:

	Changed chi-square test, removed frequencies computation
#240 [https://github.com/zalando/expan/pull/240]
(daryadedik [https://github.com/daryadedik])

v1.3.7 [https://github.com/zalando/expan/tree/v1.3.7] (2018-09-04)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.6...v1.3.7]

Merged pull requests:

	Added observed and expected frequencies to chi-square statistics
#239 [https://github.com/zalando/expan/pull/239]
(daryadedik [https://github.com/daryadedik])

	Stop warning about NaNs
#238 [https://github.com/zalando/expan/pull/238]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

	stop overriding the warning level
#237 [https://github.com/zalando/expan/pull/237]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

v1.3.6 [https://github.com/zalando/expan/tree/v1.3.6] (2018-08-06)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.5...v1.3.6]

Merged pull requests:

	If the number of *finite* samples is too small, then the data isn’t
valid for analysis
#236 [https://github.com/zalando/expan/pull/236]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

v1.3.5 [https://github.com/zalando/expan/tree/v1.3.5] (2018-08-02)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.3...v1.3.5]

Merged pull requests:

	Re-wrote chi-square, removed dropping buckets.
#234 [https://github.com/zalando/expan/pull/234]
(daryadedik [https://github.com/daryadedik])

	check if there are no p values to correct
#233 [https://github.com/zalando/expan/pull/233]
(gbordyugov [https://github.com/gbordyugov])

v1.3.3 [https://github.com/zalando/expan/tree/v1.3.3] (2018-07-26)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.2...v1.3.3]

Merged pull requests:

	Chi-squared test for the variant split check
#228 [https://github.com/zalando/expan/pull/228]
(daryadedik [https://github.com/daryadedik])

v1.3.2 [https://github.com/zalando/expan/tree/v1.3.2] (2018-07-23)

Full
Changelog [https://github.com/zalando/expan/compare/v1.3.1...v1.3.2]

Merged pull requests:

	Fix minor typos #231 [https://github.com/zalando/expan/pull/231]
(sdia [https://github.com/sdia])

	custom deepcopy() method for ‘StatisticalTest’, to save some memory
#230 [https://github.com/zalando/expan/pull/230]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

	Updated old multiple correction documentation
#229 [https://github.com/zalando/expan/pull/229]
(daryadedik [https://github.com/daryadedik])

	contributing.rst: Improve the release procedure to ensure that the
up… #226 [https://github.com/zalando/expan/pull/226]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

v1.3.1 [https://github.com/zalando/expan/tree/v1.3.1] (2018-07-01)

Full
Changelog [https://github.com/zalando/expan/compare/v1.2.6...v1.3.1]

v1.2.6 [https://github.com/zalando/expan/tree/v1.2.6] (2018-07-01)

Full
Changelog [https://github.com/zalando/expan/compare/v1.2.5...v1.2.6]

Merged pull requests:

	Ensure that outlier detection works if there is NaN in the data
#225 [https://github.com/zalando/expan/pull/225]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

	More powerful derived kpis
#222 [https://github.com/zalando/expan/pull/222]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

v1.2.5 [https://github.com/zalando/expan/tree/v1.2.5] (2018-06-22)

Full
Changelog [https://github.com/zalando/expan/compare/v1.2.4...v1.2.5]

Merged pull requests:

	Counting bugfix and save memory
#224 [https://github.com/zalando/expan/pull/224]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

	Fix for the possibility that both variances are zero
#221 [https://github.com/zalando/expan/pull/221]
(aaron-mcdaid-zalando [https://github.com/aaron-mcdaid-zalando])

v1.2.4 [https://github.com/zalando/expan/tree/v1.2.4] (2018-05-31)

Full
Changelog [https://github.com/zalando/expan/compare/v1.2.3...v1.2.4]

Merged pull requests:

	Remove null analysis results from the analysis results files
#219 [https://github.com/zalando/expan/pull/219]
(daryadedik [https://github.com/daryadedik])

v1.2.3 [https://github.com/zalando/expan/tree/v1.2.3] (2018-05-30)

Full
Changelog [https://github.com/zalando/expan/compare/v1.2.2...v1.2.3]

Merged pull requests:

	Removed deep copy of the data in statistical test construction
#218 [https://github.com/zalando/expan/pull/218]
(daryadedik [https://github.com/daryadedik])

v1.2.2 [https://github.com/zalando/expan/tree/v1.2.2] (2018-05-30)

Full
Changelog [https://github.com/zalando/expan/compare/v1.2.1...v1.2.2]

Merged pull requests:

	Fixing bugs and adding more logging
#217 [https://github.com/zalando/expan/pull/217]
(daryadedik [https://github.com/daryadedik])

v1.2.1 [https://github.com/zalando/expan/tree/v1.2.1] (2018-05-29)

Full
Changelog [https://github.com/zalando/expan/compare/v1.2.0...v1.2.1]

Merged pull requests:

	Added merge_with class method for merging two multiple test suite
results and tests
#216 [https://github.com/zalando/expan/pull/216]
(daryadedik [https://github.com/daryadedik])

	List of filtered columns as filtered_columns metadata information
#215 [https://github.com/zalando/expan/pull/215]
(daryadedik [https://github.com/daryadedik])

v1.2.0 [https://github.com/zalando/expan/tree/v1.2.0] (2018-05-25)

Full
Changelog [https://github.com/zalando/expan/compare/v1.1.0...v1.2.0]

Merged pull requests:

	Update outlier filter on derived kpis
#214 [https://github.com/zalando/expan/pull/214]
(shansfolder [https://github.com/shansfolder])

v1.1.0 [https://github.com/zalando/expan/tree/v1.1.0] (2018-05-24)

Full
Changelog [https://github.com/zalando/expan/compare/v1.0.1...v1.1.0]

Merged pull requests:

	Experiment data restructure
#213 [https://github.com/zalando/expan/pull/213]
(daryadedik [https://github.com/daryadedik])

	Original corrected results
#212 [https://github.com/zalando/expan/pull/212]
(daryadedik [https://github.com/daryadedik])

v1.0.1 [https://github.com/zalando/expan/tree/v1.0.1] (2018-04-23)

Full
Changelog [https://github.com/zalando/expan/compare/v1.0.0...v1.0.1]

Merged pull requests:

	Fixed docstring #211 [https://github.com/zalando/expan/pull/211]
(daryadedik [https://github.com/daryadedik])

	raise ValueError on zero pooled std for power calculations
#210 [https://github.com/zalando/expan/pull/210]
(gbordyugov [https://github.com/gbordyugov])

	Changed structure for statistics without correction
#209 [https://github.com/zalando/expan/pull/209]
(daryadedik [https://github.com/daryadedik])

v1.0.0 [https://github.com/zalando/expan/tree/v1.0.0] (2018-03-22)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.13...v1.0.0]

Merged pull requests:

	Finish Documentation
#204 [https://github.com/zalando/expan/pull/204]
(shansfolder [https://github.com/shansfolder])

	Fix logging sga error logging
#203 [https://github.com/zalando/expan/pull/203]
(igusher [https://github.com/igusher])

	Project Headache #194 [https://github.com/zalando/expan/pull/194]
(shansfolder [https://github.com/shansfolder])

v0.6.13 [https://github.com/zalando/expan/tree/v0.6.13] (2018-03-15)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.12...v0.6.13]

Implemented enhancements:

	Applying bins to data frames
#165 [https://github.com/zalando/expan/issues/165]

Fixed bugs:

	Sample size with an unequal split ratio
#187 [https://github.com/zalando/expan/issues/187]

	SGA Percentile Issue
#178 [https://github.com/zalando/expan/issues/178]

Merged pull requests:

	Wrap sga in try catch
#202 [https://github.com/zalando/expan/pull/202]
(igusher [https://github.com/igusher])

	Multiple correction method module
#201 [https://github.com/zalando/expan/pull/201]
(shansfolder [https://github.com/shansfolder])

	Adapted util module and util unit tests
#199 [https://github.com/zalando/expan/pull/199]
(daryadedik [https://github.com/daryadedik])

	Adapt early stopping
#198 [https://github.com/zalando/expan/pull/198]
(daryadedik [https://github.com/daryadedik])

	Adapt statistics.py
#197 [https://github.com/zalando/expan/pull/197]
(shansfolder [https://github.com/shansfolder])

	Adapt experiment module
#196 [https://github.com/zalando/expan/pull/196]
(shansfolder [https://github.com/shansfolder])

	Make result classes JSON serializable
#195 [https://github.com/zalando/expan/pull/195]
(shansfolder [https://github.com/shansfolder])

	Results data structure
#193 [https://github.com/zalando/expan/pull/193]
(shansfolder [https://github.com/shansfolder])

	fixed small typos in percentiles and doc text
#191 [https://github.com/zalando/expan/pull/191]
(daryadedik [https://github.com/daryadedik])

	fixing sample size estimation
#188 [https://github.com/zalando/expan/pull/188]
(gbordyugov [https://github.com/gbordyugov])

v0.6.12 [https://github.com/zalando/expan/tree/v0.6.12] (2018-01-24)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.11...v0.6.12]

Merged pull requests:

	Doc update #186 [https://github.com/zalando/expan/pull/186]
(shansfolder [https://github.com/shansfolder])

	AXO-103 include variance in delta / group-sequential reports
#185 [https://github.com/zalando/expan/pull/185]
(gbordyugov [https://github.com/gbordyugov])

v0.6.11 [https://github.com/zalando/expan/tree/v0.6.11] (2018-01-23)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.10...v0.6.11]

Merged pull requests:

	Axo-91 bug fix sga
#184 [https://github.com/zalando/expan/pull/184]
(shansfolder [https://github.com/shansfolder])

	added code coverage badge and reformatted README.rst a bit
#183 [https://github.com/zalando/expan/pull/183]
(mkolarek [https://github.com/mkolarek])

v0.6.10 [https://github.com/zalando/expan/tree/v0.6.10] (2018-01-12)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.9...v0.6.10]

v0.6.9 [https://github.com/zalando/expan/tree/v0.6.9] (2018-01-12)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.8...v0.6.9]

Merged pull requests:

	Update deployment flow
#182 [https://github.com/zalando/expan/pull/182]
(shansfolder [https://github.com/shansfolder])

v0.6.8 [https://github.com/zalando/expan/tree/v0.6.8] (2018-01-12)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.7...v0.6.8]

v0.6.7 [https://github.com/zalando/expan/tree/v0.6.7] (2018-01-10)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.6...v0.6.7]

Closed issues:

	Group Sequential - Percentile Issue
#176 [https://github.com/zalando/expan/issues/176]

Merged pull requests:

	Increase version to 0.6.7
#181 [https://github.com/zalando/expan/pull/181]
(shansfolder [https://github.com/shansfolder])

	fixed last command in “Deploying to PyPI” part of contributing.rst
#180 [https://github.com/zalando/expan/pull/180]
(mkolarek [https://github.com/mkolarek])

	Extended multiple correction for group sequential, added doc for
multiple correction.
#179 [https://github.com/zalando/expan/pull/179]
(daryadedik [https://github.com/daryadedik])

	Fix information fraction calculation
#177 [https://github.com/zalando/expan/pull/177]
(shansfolder [https://github.com/shansfolder])

v0.6.6 [https://github.com/zalando/expan/tree/v0.6.6] (2017-11-27)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.5...v0.6.6]

Closed issues:

	Infinitely large confidence intervals produced by
group_sequential_delta()
#172 [https://github.com/zalando/expan/issues/172]

Merged pull requests:

	Merging dev to master for new release
#175 [https://github.com/zalando/expan/pull/175]
(mkolarek [https://github.com/mkolarek])

	AXO-35 implemented estimate_sample_size() for estimating sample size
… #174 [https://github.com/zalando/expan/pull/174]
(mkolarek [https://github.com/mkolarek])

	Fix two-sided alpha value in power analysis
#173 [https://github.com/zalando/expan/pull/173]
(shansfolder [https://github.com/shansfolder])

	Docs/update contrib doc
#171 [https://github.com/zalando/expan/pull/171]
(mkolarek [https://github.com/mkolarek])

	Add some parameter checks
#170 [https://github.com/zalando/expan/pull/170]
(shansfolder [https://github.com/shansfolder])

	Make applying bins to data frames more agreeable
#169 [https://github.com/zalando/expan/pull/169]
(gbordyugov [https://github.com/gbordyugov])

	OCTO-2181: Implement over time analysis. Time-based SGA
#164 [https://github.com/zalando/expan/pull/164]
(daryadedik [https://github.com/daryadedik])

v0.6.5 [https://github.com/zalando/expan/tree/v0.6.5] (2017-10-24)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.3...v0.6.5]

Merged pull requests:

	updated version #168 [https://github.com/zalando/expan/pull/168]
(mkolarek [https://github.com/mkolarek])

	Bump version: 0.6.3 → 0.6.4
#167 [https://github.com/zalando/expan/pull/167]
(mkolarek [https://github.com/mkolarek])

	bump version to v0.6.3
#166 [https://github.com/zalando/expan/pull/166]
(mkolarek [https://github.com/mkolarek])

v0.6.3 [https://github.com/zalando/expan/tree/v0.6.3] (2017-10-24)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.2...v0.6.3]

Merged pull requests:

	OCTO-2214 Bugfix: Capping information fraction
#163 [https://github.com/zalando/expan/pull/163]
(shansfolder [https://github.com/shansfolder])

	OCTO-2088: Implement multiple testing correction in ExpAn
#161 [https://github.com/zalando/expan/pull/161]
(daryadedik [https://github.com/daryadedik])

	OCTO-1044 Improve readthedoc
#160 [https://github.com/zalando/expan/pull/160]
(shansfolder [https://github.com/shansfolder])

	OCTO-1933 Subgroup analysis
#159 [https://github.com/zalando/expan/pull/159]
(shansfolder [https://github.com/shansfolder])

	release 0.6.2 #156 [https://github.com/zalando/expan/pull/156]
(mkolarek [https://github.com/mkolarek])

	OCTO-1920, OCTO-1968, OCTO-1969 Refactor binning
#155 [https://github.com/zalando/expan/pull/155]
(shansfolder [https://github.com/shansfolder])

v0.6.2 [https://github.com/zalando/expan/tree/v0.6.2] (2017-08-29)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.1...v0.6.2]

Fixed bugs:

	Result statistics in Baeysian methods
#142 [https://github.com/zalando/expan/issues/142]

Closed issues:

	Default Parameters of Constructor of Experiment class
#151 [https://github.com/zalando/expan/issues/151]

	Update to ExpAn-Intro.ipynb
#141 [https://github.com/zalando/expan/issues/141]

Merged pull requests:

	make development requirements open ended
#154 [https://github.com/zalando/expan/pull/154]
(mkolarek [https://github.com/mkolarek])

	Octo 1930 implement quantile filtering
#153 [https://github.com/zalando/expan/pull/153]
(mkolarek [https://github.com/mkolarek])

	Not use empty list for method parameter
#152 [https://github.com/zalando/expan/pull/152]
(shansfolder [https://github.com/shansfolder])

	OCTO-1971 Add variational inference for early stopping
#150 [https://github.com/zalando/expan/pull/150]
(shansfolder [https://github.com/shansfolder])

	Updated intro documentation covering delta methods.
#149 [https://github.com/zalando/expan/pull/149]
(daryadedik [https://github.com/daryadedik])

	Release v0.6.1 #148 [https://github.com/zalando/expan/pull/148]
(shansfolder [https://github.com/shansfolder])

	Merge pull request #137 from zalando/dev
#147 [https://github.com/zalando/expan/pull/147]
(shansfolder [https://github.com/shansfolder])

	Add static html file from intro doc for v0.6.1
#146 [https://github.com/zalando/expan/pull/146]
(shansfolder [https://github.com/shansfolder])

v0.6.1 [https://github.com/zalando/expan/tree/v0.6.1] (2017-08-08)

Full
Changelog [https://github.com/zalando/expan/compare/v0.6.0...v0.6.1]

Implemented enhancements:

	Optimizing the control flow from Experiment to Results
#82 [https://github.com/zalando/expan/issues/82]

	more meaningful dict keys for results
#139 [https://github.com/zalando/expan/pull/139]
(gbordyugov [https://github.com/gbordyugov])

Fixed bugs:

	reenable means and bounds functions on Results object
#9 [https://github.com/zalando/expan/issues/9]

Closed issues:

	Results.to_json() implementation not flexible
#65 [https://github.com/zalando/expan/issues/65]

	Results.to_json() doesn’t support trend() results
#64 [https://github.com/zalando/expan/issues/64]

Merged pull requests:

	Documentation updates for Expan 0.6.x. Covers OCTO-1961, OCTO-1970
#145 [https://github.com/zalando/expan/pull/145]
(daryadedik [https://github.com/daryadedik])

	Fix delta/alpha model para inconsistency
#144 [https://github.com/zalando/expan/pull/144]
(shansfolder [https://github.com/shansfolder])

	Small improvement on default type of report_kpi_names
#140 [https://github.com/zalando/expan/pull/140]
(shansfolder [https://github.com/shansfolder])

	slightly different json structure for results
#138 [https://github.com/zalando/expan/pull/138]
(gbordyugov [https://github.com/gbordyugov])

	merging dev to master
#137 [https://github.com/zalando/expan/pull/137]
(gbordyugov [https://github.com/gbordyugov])

v0.6.0 [https://github.com/zalando/expan/tree/v0.6.0] (2017-07-26)

Full
Changelog [https://github.com/zalando/expan/compare/v0.5.3...v0.6.0]

Closed issues:

	Improve binning performance
#135 [https://github.com/zalando/expan/issues/135]

	Missing unit tests for to_json() on early stopping algos
#128 [https://github.com/zalando/expan/issues/128]

Merged pull requests:

	Octo 1616 no experimentdata
#134 [https://github.com/zalando/expan/pull/134]
(gbordyugov [https://github.com/gbordyugov])

	Attempt to fix pickling bug
#133 [https://github.com/zalando/expan/pull/133]
(shansfolder [https://github.com/shansfolder])

	Stan models compilation, exceptions catch, unit tests adaptation.
#131 [https://github.com/zalando/expan/pull/131]
(daryadedik [https://github.com/daryadedik])

	Added try-finally block for the compulsory clean-up of .pkl compiled
models #130 [https://github.com/zalando/expan/pull/130]
(daryadedik [https://github.com/daryadedik])

	OCTO-1837 fixed to_json()
#129 [https://github.com/zalando/expan/pull/129]
(gbordyugov [https://github.com/gbordyugov])

v0.5.3 [https://github.com/zalando/expan/tree/v0.5.3] (2017-06-26)

Full
Changelog [https://github.com/zalando/expan/compare/v0.5.2...v0.5.3]

Implemented enhancements:

	Weighted KPIs is only implemented in regular delta
#114 [https://github.com/zalando/expan/issues/114]

Fixed bugs:

	Assumption of nan when computing weighted KPIs
#119 [https://github.com/zalando/expan/issues/119]

	Weighted KPIs is only implemented in regular delta
#114 [https://github.com/zalando/expan/issues/114]

	Percentiles value is lost during computing group_sequential_delta
#108 [https://github.com/zalando/expan/issues/108]

Closed issues:

	Failing early stopping unit tests
#85 [https://github.com/zalando/expan/issues/85]

Merged pull requests:

	Release new version 0.5.3
#127 [https://github.com/zalando/expan/pull/127]
(mkolarek [https://github.com/mkolarek])

	OCTO-1804: Optimize the loading of .stan model in expan.
#126 [https://github.com/zalando/expan/pull/126]
(daryadedik [https://github.com/daryadedik])

	Test travis python version
#125 [https://github.com/zalando/expan/pull/125]
(shansfolder [https://github.com/shansfolder])

	OCTO-1619 Cleanup ExpAn code
#124 [https://github.com/zalando/expan/pull/124]
(shansfolder [https://github.com/shansfolder])

	OCTO-1748: Make number of iterations as a method argument in
_bayes_sampling #123 [https://github.com/zalando/expan/pull/123]
(daryadedik [https://github.com/daryadedik])

	OCTO-1615 Use Python builtin logging instead of our own debugging.py
#122 [https://github.com/zalando/expan/pull/122]
(shansfolder [https://github.com/shansfolder])

	OCTO-1711 Support weighted KPIs in early stopping
#121 [https://github.com/zalando/expan/pull/121]
(shansfolder [https://github.com/shansfolder])

	Fixed a few bugs #120 [https://github.com/zalando/expan/pull/120]
(shansfolder [https://github.com/shansfolder])

	OCTO-1614 cleanup module structure
#115 [https://github.com/zalando/expan/pull/115]
(shansfolder [https://github.com/shansfolder])

	OCTO-1677 : fix missing .stan files
#113 [https://github.com/zalando/expan/pull/113]
(gbordyugov [https://github.com/gbordyugov])

	Bump version 0.5.1 -> 0.5.2
#112 [https://github.com/zalando/expan/pull/112]
(mkolarek [https://github.com/mkolarek])

v0.5.2 [https://github.com/zalando/expan/tree/v0.5.2] (2017-05-11)

Full
Changelog [https://github.com/zalando/expan/compare/v0.5.1...v0.5.2]

Implemented enhancements:

	OCTO-1502: cleanup of call chains
#110 [https://github.com/zalando/expan/pull/110]
(gbordyugov [https://github.com/gbordyugov])

Merged pull requests:

	OCTO-1502 support **kwargs for four delta functions
#111 [https://github.com/zalando/expan/pull/111]
(shansfolder [https://github.com/shansfolder])

	new version 0.5.1
#107 [https://github.com/zalando/expan/pull/107]
(mkolarek [https://github.com/mkolarek])

v0.5.1 [https://github.com/zalando/expan/tree/v0.5.1] (2017-04-20)

Full
Changelog [https://github.com/zalando/expan/compare/v0.5.0...v0.5.1]

Implemented enhancements:

	Derived KPIs are passed to Experiment.fixed_horizon_delta() but never
used in there #96 [https://github.com/zalando/expan/issues/96]

Merged pull requests:

	updated CONTRIBUTING.rst with deployment flow
#106 [https://github.com/zalando/expan/pull/106]
(mkolarek [https://github.com/mkolarek])

	OCTO-1501: bugfix in Results.to_json()
#105 [https://github.com/zalando/expan/pull/105]
(gbordyugov [https://github.com/gbordyugov])

	OCTO-1502 removed variant_subset parameter…
#104 [https://github.com/zalando/expan/pull/104]
(gbordyugov [https://github.com/gbordyugov])

	OCTO-1540 cleanup handling of derived kpis
#102 [https://github.com/zalando/expan/pull/102]
(shansfolder [https://github.com/shansfolder])

	OCTO-1540: cleanup of derived kpi handling in Experiment.delta() and
… #97 [https://github.com/zalando/expan/pull/97]
(gbordyugov [https://github.com/gbordyugov])

	Small refactoring #95 [https://github.com/zalando/expan/pull/95]
(shansfolder [https://github.com/shansfolder])

	Merge dev to master for v0.5.0
#94 [https://github.com/zalando/expan/pull/94]
(mkolarek [https://github.com/mkolarek])

v0.5.0 [https://github.com/zalando/expan/tree/v0.5.0] (2017-04-05)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.5...v0.5.0]

Implemented enhancements:

	Bad code duplication in experiment.py
#81 [https://github.com/zalando/expan/issues/81]

	pip == 8.1.0 requirement
#76 [https://github.com/zalando/expan/issues/76]

Fixed bugs:

	Experiment.sga() assumes features and KPIs are merged in self.metrics
#87 [https://github.com/zalando/expan/issues/87]

	pctile can be undefined in Results.to_json\(\)
#78 [https://github.com/zalando/expan/issues/78]

Closed issues:

	Results.to_json() => TypeError: Object of type ‘UserWarning’ is not
JSON serializable
#77 [https://github.com/zalando/expan/issues/77]

	Rethink Results structure
#66 [https://github.com/zalando/expan/issues/66]

Merged pull requests:

	new dataframe tree traverser in to_json()
#92 [https://github.com/zalando/expan/pull/92]
(gbordyugov [https://github.com/gbordyugov])

	updated requirements.txt to have ‘greater than’ dependencies instead
… #89 [https://github.com/zalando/expan/pull/89]
(mkolarek [https://github.com/mkolarek])

	pip version requirement
#88 [https://github.com/zalando/expan/pull/88]
(gbordyugov [https://github.com/gbordyugov])

	Test #86 [https://github.com/zalando/expan/pull/86]
(s4826 [https://github.com/s4826])

	merging in categorical binning
#84 [https://github.com/zalando/expan/pull/84]
(gbordyugov [https://github.com/gbordyugov])

	Add documentation of the weighting logic
#83 [https://github.com/zalando/expan/pull/83]
(jbao [https://github.com/jbao])

	Early stopping #80 [https://github.com/zalando/expan/pull/80]
(jbao [https://github.com/jbao])

	a couple of minor cleanups
#79 [https://github.com/zalando/expan/pull/79]
(gbordyugov [https://github.com/gbordyugov])

	Merge to_json() changes
#75 [https://github.com/zalando/expan/pull/75]
(mkolarek [https://github.com/mkolarek])

	Feature/early stopping
#73 [https://github.com/zalando/expan/pull/73]
(jbao [https://github.com/jbao])

v0.4.5 [https://github.com/zalando/expan/tree/v0.4.5] (2017-02-10)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.4...v0.4.5]

Fixed bugs:

	Numbers cannot appear in variable names for derived metrics
#58 [https://github.com/zalando/expan/issues/58]

Merged pull requests:

	Feature/results and to json refactor
#74 [https://github.com/zalando/expan/pull/74]
(mkolarek [https://github.com/mkolarek])

	Merge to_json() and prob_uplift_over_zero changes
#72 [https://github.com/zalando/expan/pull/72]
(mkolarek [https://github.com/mkolarek])

	regex fix, see https://github.com/zalando/expan/issues/58
#70 [https://github.com/zalando/expan/pull/70]
(gbordyugov [https://github.com/gbordyugov])

v0.4.4 [https://github.com/zalando/expan/tree/v0.4.4] (2017-02-09)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.3...v0.4.4]

Implemented enhancements:

	Add argument assume_normal and treatment_cost to
calculate_prob_uplift_over_zero() and
prob_uplift_over_zero_single_metric()
#26 [https://github.com/zalando/expan/issues/26]

	host intro slides (from the ipython notebook) somewhere for public
viewing #10 [https://github.com/zalando/expan/issues/10]

Closed issues:

	migrate issues from github enterprise
#20 [https://github.com/zalando/expan/issues/20]

Merged pull requests:

	Feature/results and to json refactor
#71 [https://github.com/zalando/expan/pull/71]
(mkolarek [https://github.com/mkolarek])

	new to_json() functionality and improved vim support
#67 [https://github.com/zalando/expan/pull/67]
(mkolarek [https://github.com/mkolarek])

v0.4.3 [https://github.com/zalando/expan/tree/v0.4.3] (2017-02-07)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.2...v0.4.3]

Closed issues:

	coverage % is misleading
#23 [https://github.com/zalando/expan/issues/23]

Merged pull requests:

	Vim modelines #63 [https://github.com/zalando/expan/pull/63]
(gbordyugov [https://github.com/gbordyugov])

	Feature/octo 1253 expan results in json
#62 [https://github.com/zalando/expan/pull/62]
(mkolarek [https://github.com/mkolarek])

	0.4.2 release #60 [https://github.com/zalando/expan/pull/60]
(mkolarek [https://github.com/mkolarek])

v0.4.2 [https://github.com/zalando/expan/tree/v0.4.2] (2016-12-08)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.1...v0.4.2]

Fixed bugs:

	frequency table in the chi square test doesn’t respect the order of
categories #56 [https://github.com/zalando/expan/issues/56]

Merged pull requests:

	OCTO-1143 Review outlier filtering
#59 [https://github.com/zalando/expan/pull/59]
(domheger [https://github.com/domheger])

	Workaround to fix #56
#57 [https://github.com/zalando/expan/pull/57]
(jbao [https://github.com/jbao])

v0.4.1 [https://github.com/zalando/expan/tree/v0.4.1] (2016-10-18)

Full
Changelog [https://github.com/zalando/expan/compare/v0.4.0...v0.4.1]

Merged pull requests:

	small doc cleanup #55 [https://github.com/zalando/expan/pull/55]
(jbao [https://github.com/jbao])

	Add comments to cli.py
#54 [https://github.com/zalando/expan/pull/54]
(igusher [https://github.com/igusher])

	Feature/octo 545 add consolidate documentation
#53 [https://github.com/zalando/expan/pull/53]
(mkolarek [https://github.com/mkolarek])

	added os.path.join instead of manual string concatenations with ‘/’
#52 [https://github.com/zalando/expan/pull/52]
(mkolarek [https://github.com/mkolarek])

	Feature/octo 958 outlier filtering
#50 [https://github.com/zalando/expan/pull/50]
(mkolarek [https://github.com/mkolarek])

	Sort KPIs in reverse order before matching them in the formula
#49 [https://github.com/zalando/expan/pull/49]
(jbao [https://github.com/jbao])

v0.4.0 [https://github.com/zalando/expan/tree/v0.4.0] (2016-08-19)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.4...v0.4.0]

Closed issues:

	Support ‘overall ratio’ metrics (e.g. conversion rate/return rate) as
opposed to per-entity ratios
#44 [https://github.com/zalando/expan/issues/44]

Merged pull requests:

	merging dev to master
#48 [https://github.com/zalando/expan/pull/48]
(jbao [https://github.com/jbao])

	OCTO-825 overall metric
#47 [https://github.com/zalando/expan/pull/47]
(jbao [https://github.com/jbao])

	Bump version: 0.3.2 → 0.3.4
#46 [https://github.com/zalando/expan/pull/46]
(mkolarek [https://github.com/mkolarek])

	Bug/fix dependencies
#45 [https://github.com/zalando/expan/pull/45]
(mkolarek [https://github.com/mkolarek])

v0.3.4 [https://github.com/zalando/expan/tree/v0.3.4] (2016-08-08)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.3...v0.3.4]

Closed issues:

	perform trend analysis cumulatively
#31 [https://github.com/zalando/expan/issues/31]

	Python3 #21 [https://github.com/zalando/expan/issues/21]

Merged pull requests:

	Feature/2to3 #43 [https://github.com/zalando/expan/pull/43]
(mkolarek [https://github.com/mkolarek])

v0.3.3 [https://github.com/zalando/expan/tree/v0.3.3] (2016-08-02)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.2...v0.3.3]

Merged pull requests:

	Merge pull request #41 from zalando/master
#42 [https://github.com/zalando/expan/pull/42]
(jbao [https://github.com/jbao])

	master to dev #41 [https://github.com/zalando/expan/pull/41]
(mkolarek [https://github.com/mkolarek])

	Bump version: 0.3.1 → 0.3.2
#40 [https://github.com/zalando/expan/pull/40]
(mkolarek [https://github.com/mkolarek])

	Revert “Merge pull request #35 from zalando/dev”
#39 [https://github.com/zalando/expan/pull/39]
(mkolarek [https://github.com/mkolarek])

	Merge pull request #35 from zalando/dev
#38 [https://github.com/zalando/expan/pull/38]
(mkolarek [https://github.com/mkolarek])

v0.3.2 [https://github.com/zalando/expan/tree/v0.3.2] (2016-08-02)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.1...v0.3.2]

Merged pull requests:

	Bugfix/trend analysis bin label
#37 [https://github.com/zalando/expan/pull/37]
(jbao [https://github.com/jbao])

	Added cumulative trends analysis OCTO-814
#36 [https://github.com/zalando/expan/pull/36]
(domheger [https://github.com/domheger])

	Merging 0.3.1 to master
#35 [https://github.com/zalando/expan/pull/35]
(domheger [https://github.com/domheger])

v0.3.1 [https://github.com/zalando/expan/tree/v0.3.1] (2016-07-15)

Full
Changelog [https://github.com/zalando/expan/compare/v0.3.0...v0.3.1]

Merged pull requests:

	Bugfix/prob uplift over 0
#34 [https://github.com/zalando/expan/pull/34]
(jbao [https://github.com/jbao])

	Master #30 [https://github.com/zalando/expan/pull/30]
(mkolarek [https://github.com/mkolarek])

v0.3.0 [https://github.com/zalando/expan/tree/v0.3.0] (2016-06-23)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.5...v0.3.0]

Implemented enhancements:

	Add P(uplift>0) as a statistic
#2 [https://github.com/zalando/expan/issues/2]

	Added function to calculate P(uplift>0)
#24 [https://github.com/zalando/expan/pull/24]
(jbao [https://github.com/jbao])

Merged pull requests:

	updated travis.yml #29 [https://github.com/zalando/expan/pull/29]
(mkolarek [https://github.com/mkolarek])

	Master #28 [https://github.com/zalando/expan/pull/28]
(mkolarek [https://github.com/mkolarek])

	Master #27 [https://github.com/zalando/expan/pull/27]
(mkolarek [https://github.com/mkolarek])

	only store the p-value in the chi-square test result object
#22 [https://github.com/zalando/expan/pull/22]
(jbao [https://github.com/jbao])

v0.2.5 [https://github.com/zalando/expan/tree/v0.2.5] (2016-05-30)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.4...v0.2.5]

Implemented enhancements:

	Implement __version__
#14 [https://github.com/zalando/expan/issues/14]

Closed issues:

	upload full documentation!
#1 [https://github.com/zalando/expan/issues/1]

Merged pull requests:

	implement expan.__version__
#19 [https://github.com/zalando/expan/pull/19]
(pangeran-bottor [https://github.com/pangeran-bottor])

	Mainly documentation changes, as well as travis config updates
#17 [https://github.com/zalando/expan/pull/17]
(robertmuil [https://github.com/robertmuil])

	Update README.rst #16 [https://github.com/zalando/expan/pull/16]
(pangeran-bottor [https://github.com/pangeran-bottor])

	added cli module #11 [https://github.com/zalando/expan/pull/11]
(mkolarek [https://github.com/mkolarek])

	new travis config specifying that only master and dev should be built
#4 [https://github.com/zalando/expan/pull/4]
(mkolarek [https://github.com/mkolarek])

v0.2.4 [https://github.com/zalando/expan/tree/v0.2.4] (2016-05-16)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.3...v0.2.4]

Closed issues:

	No module named experiment and test_data
#13 [https://github.com/zalando/expan/issues/13]

Merged pull requests:

	new travis config specifying that only master and dev should be built
#5 [https://github.com/zalando/expan/pull/5]
(mkolarek [https://github.com/mkolarek])

v0.2.3 [https://github.com/zalando/expan/tree/v0.2.3] (2016-05-06)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.2...v0.2.3]

v0.2.2 [https://github.com/zalando/expan/tree/v0.2.2] (2016-05-06)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.1...v0.2.2]

v0.2.1 [https://github.com/zalando/expan/tree/v0.2.1] (2016-05-06)

Full
Changelog [https://github.com/zalando/expan/compare/v0.2.0...v0.2.1]

v0.2.0 [https://github.com/zalando/expan/tree/v0.2.0] (2016-05-06)

Merged pull requests:

	Added detailed documentation with data formats
#3 [https://github.com/zalando/expan/pull/3]
(robertmuil [https://github.com/robertmuil])

* This Change Log was automatically generated
bygithub_changelog_generator [https://github.com/skywinder/Github-Changelog-Generator]

Contributing

Style guide

We follow PEP8 standards [https://www.python.org/dev/peps/pep-0008]
with the following exceptions:

	Use tabs instead of spaces - this allows all individuals to have visual depth of indentation they prefer, without changing the source code at all, and it is simply smaller

Testing

Easiest way to run tests is by running the command tox from the terminal. The default Python environments for testing are python 2.7 and python 3.6.
You can also specify your own by running e.g. tox -e py35.

Branching

We currently use the gitflow workflow. Feature branches are created from
and merged back to the master branch. Please always make a Pull Request
when you contribute.

See also the much simpler github flow
here [http://scottchacon.com/2011/08/31/github-flow.html]

Release

To make a release and deploy to PyPI, please follow these steps (we highly suggest to leave the release to admins of ExpAn):

	assuming you have a master branch that is up to date, create a pull request from your feature branch to master (a travis job will be started for the pull request)

	once the pull request is approved, merge it (another travis job will be started because a push to master happened)

	checkout master

	create a new tag

	run documentation generation which includes creation of changelog

	push tags to master (a third travis job will be started, but this time it will also push to PyPI because tags were pushed)

The flow would then look like follows:

	bumpversion patch or bumpversion minor

	git describe --tags, and note this tag name. We will need to edit this tag later.

	make docs, which will extend the changelog by reading information from github.com/zalando/expan .

	git add CHANGELOG.*

	git commit --amend --no-edit

	git show. Carefully review this commit before proceeding. Ensure the changelog is updated with the expected text, in particular a fully up-to-date version number.

	git tag -d {TAGNAME}, where {TAGNAME} is the tag name from step 2.

	git tag {TAGNAME} to recreate the tag in the correct place.

	git push

	git push --tags

You can then check if the triggered Travis CI job is tagged (the name should be eg. ‘v1.2.3’ instead of ‘master’).

Note that this workflow has a flaw that changelog generator will not put the changes of the current release,
because it reads the commit messages from git remote.

Solution: We need to run make docs on master once more after the release to update the documentation page.

A better solution could be to discard the automatic changelog generator and manually write the changelog before step 1,
and then config make docs to use this changelog file.

We explain the individual steps below.

Sphinx documentation

make docs will create the html documentation if you have sphinx installed.
You might need to install our theme explicitly by pip install sphinx_rtd_theme.

If you have encountered an error like this:
API rate limit exceeded for github_username, you need to create a git token and set an environment variable for it.
See instructions here [https://github.com/skywinder/github-changelog-generator#github-token].

Versioning

For the sake of reproducibility, always be sure to work with a release
when doing the analysis. We use semantic versioning [http://semver.org].

The version is maintained in setup.cfg, and propagated from there to various files
by the bumpversion program. The most important propagation destination is
in version.py where it is held in the string __version__ with
the form:

'{major}.{minor}.{patch}'

Bumping Version

We use bumpversion to maintain the __version__ in version.py:

$ bumpversion patch

or

$ bumpversion minor

This will update the version number, create a new tag in git, and commit
the changes with a standard commit message.

Travis CI

We use Travis CI for testing builds and deploying our PyPI package.

A build with unit tests is triggered either

	a commit is pushed to master

	or a pull request to master is opened.

A release to PyPI will be triggered if a new tag is pushed to master.

If you wish to skip triggering a CI task (for example when you change documentation), please include [ci skip] in your commit message.

 Python Module Index

 b |
 c |
 d |
 e |
 r |
 s |
 u |
 v

 		 	

 		
 b	

 	
 	
 expan.core.binning	

 		 	

 		
 c	

 	
 	
 expan.core	

 	
 	
 expan.core.correction	

 	
 	
 expan.data.csv_fetcher	

 		 	

 		
 d	

 	
 	
 expan.data	

 		 	

 		
 e	

 	
 	
 expan	

 	
 	
 expan.core.early_stopping	

 	
 	
 expan.core.experiment	

 		 	

 		
 r	

 	
 	
 expan.core.results	

 		 	

 		
 s	

 	
 	
 expan.core.statistical_test	

 	
 	
 expan.core.statistics	

 		 	

 		
 u	

 	
 	
 expan.core.util	

 		 	

 		
 v	

 	
 	
 expan.core.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	analyze_statistical_test() (expan.core.experiment.Experiment method)

 	analyze_statistical_test_suite() (expan.core.experiment.Experiment method)

 	
 	apply_to_data() (expan.core.binning.CategoricalRepresentation method)

 	(expan.core.binning.NumericalRepresentation method)

 	(expan.core.statistical_test.FeatureFilter method)

B

 	
 	BaseTestStatistics (class in expan.core.results)

 	bayes_factor() (in module expan.core.early_stopping)

 	bayes_precision() (in module expan.core.early_stopping)

 	benjamini_hochberg() (in module expan.core.correction)

 	
 	BH (expan.core.statistical_test.CorrectionMethod attribute)

 	Bin (class in expan.core.binning)

 	BONFERRONI (expan.core.statistical_test.CorrectionMethod attribute)

 	bonferroni() (in module expan.core.correction)

 	bootstrap() (in module expan.core.statistics)

C

 	
 	CategoricalRepresentation (class in expan.core.binning)

 	chi_square() (in module expan.core.statistics)

 	CombinedTestStatistics (class in expan.core.results)

 	compute_p_value() (in module expan.core.statistics)

 	
 	compute_p_value_from_samples() (in module expan.core.statistics)

 	compute_statistical_power() (in module expan.core.statistics)

 	compute_statistical_power_from_samples() (in module expan.core.statistics)

 	CorrectionMethod (class in expan.core.statistical_test)

 	create_bins() (in module expan.core.binning)

D

 	
 	delta() (in module expan.core.statistics)

 	
 	DerivedKPI (class in expan.core.statistical_test)

 	drop_nan() (in module expan.core.util)

E

 	
 	EarlyStoppingTestStatistics (class in expan.core.results)

 	estimate_sample_size() (in module expan.core.statistics)

 	expan (module)

 	expan.core (module)

 	expan.core.binning (module)

 	expan.core.correction (module)

 	expan.core.early_stopping (module)

 	expan.core.experiment (module)

 	
 	expan.core.results (module)

 	expan.core.statistical_test (module)

 	expan.core.statistics (module)

 	expan.core.util (module)

 	expan.core.version (module)

 	expan.data (module)

 	expan.data.csv_fetcher (module)

 	Experiment (class in expan.core.experiment)

F

 	
 	FeatureFilter (class in expan.core.statistical_test)

 	
 	find_value_by_key_with_condition() (in module expan.core.util)

G

 	
 	generate_random_data() (in module expan.core.util)

 	get_data() (in module expan.data.csv_fetcher)

 	get_or_compile_stan_model() (in module expan.core.early_stopping)

 	get_trace_normalized_effect_size() (in module expan.core.early_stopping)

 	
 	get_variant() (expan.core.statistical_test.Variants method)

 	git_commit_count() (in module expan.core.version)

 	git_latest_commit() (in module expan.core.version)

 	group_sequential() (in module expan.core.early_stopping)

H

 	
 	HDI_from_MCMC() (in module expan.core.early_stopping)

I

 	
 	is_nan() (in module expan.core.util)

J

 	
 	JsonSerializable (class in expan.core.util)

K

 	
 	KPI (class in expan.core.statistical_test)

M

 	
 	make_bayes_factor() (in module expan.core.early_stopping)

 	make_bayes_precision() (in module expan.core.early_stopping)

 	make_delta() (in module expan.core.statistics)

 	
 	make_derived_kpi() (expan.core.statistical_test.DerivedKPI method)

 	make_group_sequential() (in module expan.core.early_stopping)

 	merge_with() (expan.core.results.MultipleTestSuiteResult method)

 	MultipleTestSuiteResult (class in expan.core.results)

N

 	
 	NONE (expan.core.statistical_test.CorrectionMethod attribute)

 	normal_difference() (in module expan.core.statistics)

 	
 	normal_sample_difference() (in module expan.core.statistics)

 	normal_sample_weighted_difference() (in module expan.core.statistics)

 	NumericalRepresentation (class in expan.core.binning)

O

 	
 	obrien_fleming() (in module expan.core.early_stopping)

 	
 	outlier_filter() (expan.core.experiment.Experiment method)

P

 	
 	pooled_std() (in module expan.core.statistics)

R

 	
 	run_goodness_of_fit_test() (expan.core.experiment.Experiment method)

S

 	
 	sample_size() (in module expan.core.statistics)

 	SampleStatistics (class in expan.core.results)

 	SimpleTestStatistics (class in expan.core.results)

 	
 	size (expan.core.statistical_test.StatisticalTestSuite attribute)

 	StatisticalTest (class in expan.core.statistical_test)

 	StatisticalTestResult (class in expan.core.results)

 	StatisticalTestSuite (class in expan.core.statistical_test)

T

 	
 	toBinObject() (in module expan.core.binning)

 	
 	toJson() (expan.core.util.JsonSerializable method)

V

 	
 	Variants (class in expan.core.statistical_test)

 	version() (in module expan.core)

 	(in module expan.core.version)

 	
 	version_numbers() (in module expan.core.version)

expan.core package

Submodules

expan.core.binning module

NB: This module is deprecated.

	
class expan.core.binning.Bin(bin_type, *repr_args)

	Bases: object

Constructor for a bin object.
:param id: identifier (e.g. bin number) of the bin
:param bin_type: “numerical” or “categorical”
:param repr_args: arguments to represent this bin.
args for numerical bin includes lower, upper, lower_closed, upper_closed
args for categorical bin includes a list of categories for this bin.

	
class expan.core.binning.CategoricalRepresentation(categories)

	Bases: object

Constructor for representation of a categorical bin.
:param categories: list of categorical values that belong to this bin

	
apply_to_data(data, feature)

	Apply the bin to data.
:param data: pandas data frame
:param feature: feature name on which this bin is defined
:return: subset of input dataframe which belongs to this bin

	
class expan.core.binning.NumericalRepresentation(lower, upper, lower_closed, upper_closed)

	Bases: object

Constructor for representation of a numerical bin.
:param upper: upper bound of the bin (exclusive)
:param lower: lower bound of the bin (inclusive)
:param lower_closed: boolean indicator whether lower bound is closed
:param upper_closed: boolean indicator whether upper bound is closed

	
apply_to_data(data, feature)

	Apply the bin to data.
:param data: pandas data frame
:param feature: feature name on which this bin is defined
:return: subset of input dataframe which belongs to this bin

	
expan.core.binning.create_bins(data, n_bins)

	Create bins from the data value
:param data: a list or a 1-dim array of data to determine the bins
:param n_bins: number of bins to create
:return: a list of Bin object

	
expan.core.binning.toBinObject(bins)

	

expan.core.correction module

	
expan.core.correction.benjamini_hochberg(false_discovery_rate, original_p_values)

	Benjamini-Hochberg procedure.

	Parameters

	
	false_discovery_rate (float) – proportion of significant results that are actually false positives

	original_p_values (list[float]) – p values from all the tests

	Returns

	new critical value (i.e. the corrected alpha)

	Return type

	float

	
expan.core.correction.bonferroni(false_positive_rate, original_p_values)

	Bonferrnoi correction.

	Parameters

	
	false_positive_rate (float) – alpha value before correction

	original_p_values (list[float]) – p values from all the tests

	Returns

	new critical value (i.e. the corrected alpha)

	Return type

	float

expan.core.early_stopping module

	
expan.core.early_stopping.HDI_from_MCMC(posterior_samples, credible_mass=0.95)

	Computes highest density interval from a sample of representative values,
estimated as the shortest credible interval.
Takes Arguments posterior_samples (samples from posterior) and credible mass (normally .95).
http://stackoverflow.com/questions/22284502/highest-posterior-density-region-and-central-credible-region

	Parameters

	
	posterior_samples (array-like) – sample of data points from posterior distribution of some parameter

	credible_mass (float) – the range of credible interval. 0.95 means 95% represents credible interval.

	Returns

	corresponding lower and upper bound for the credible interval

	Return type

	tuple[float]

	
expan.core.early_stopping.bayes_factor(x, y, distribution='normal', num_iters=25000, inference='sampling')

	Bayes factor computation.

	Parameters

	
	x (pd.Series or list (array-like)) – sample of a treatment group

	y (pd.Series or list (array-like)) – sample of a control group

	distribution (str) – name of the KPI distribution model, which assumes a Stan model file with the same name exists

	num_iters (int) – number of iterations of bayes sampling

	inference (str) – sampling or variational inference method for approximation the posterior

	Returns

	results of type EarlyStoppingTestStatistics (without p-value and stat. power)

	Return type

	EarlyStoppingTestStatistics

	
expan.core.early_stopping.bayes_precision(x, y, distribution='normal', posterior_width=0.08, num_iters=25000, inference='sampling')

	Bayes precision computation.

	Parameters

	
	x (pd.Series or list (array-like)) – sample of a treatment group

	y (pd.Series or list (array-like)) – sample of a control group

	distribution (str) – name of the KPI distribution model, which assumes a Stan model file with the same name exists

	posterior_width (float) – the stopping criterion, threshold of the posterior width

	num_iters (int) – number of iterations of bayes sampling

	inference (str) – sampling or variational inference method for approximation the posterior

	Returns

	results of type EarlyStoppingTestStatistics (without p-value and stat. power)

	Return type

	EarlyStoppingTestStatistics

	
expan.core.early_stopping.get_or_compile_stan_model(model_file, distribution)

	Creates Stan model. Compiles a Stan model and saves it to .pkl file to the folder selected by tempfile module if
file doesn’t exist yet and load precompiled model if there is a model file in temporary dir.

Note: compiled_model_file is the hardcoded file path which may cause some issues in future.
There are 2 alternative implementations for Stan models handling:

	Using global variables

	Pre-compiling stan models and adding them as a part of ExpAn project

Using temporary files with tempfile module is not currently possible,
since it generates a unique file name which is difficult to track.
However, compiled modules are saved in temporary directory using tempfile module
which vary based on the current platform and settings. Cleaning up a temp dir is done on boot.

	Parameters

	
	model_file (str) – model file location

	distribution (str) – name of the KPI distribution model, which assumes a Stan model file with the same name exists

	Returns

	compiled Stan model for the selected distribution or normal distribution as a default option

	Return type

	Class representing a compiled Stan model

	
expan.core.early_stopping.get_trace_normalized_effect_size(distribution, traces)

	Obtaining a Stan model statistics for ‘normal’ or ‘poisson’ distribution

	Parameters

	
	distribution (str) – name of the KPI distribution model, which assumes a Stan model file with the same name exists

	traces (dict) – sampling statistics

	Returns

	sample of data points from posterior distribution of some parameter

	Return type

	array-like

	
expan.core.early_stopping.group_sequential(x, y, spending_function='obrien_fleming', estimated_sample_size=None, alpha=0.05, cap=8)

	Group sequential method to determine whether to stop early.

	Parameters

	
	x (pd.Series or array-like) – sample of a treatment group

	y (pd.Series or array-like) – sample of a control group

	spending_function (str) – name of the alpha spending function, currently supports only ‘obrien_fleming’.

	estimated_sample_size (int) – sample size to be achieved towards the end of experiment

	alpha (float) – type-I error rate

	cap (int) – upper bound of the adapted z-score

	Returns

	results of type EarlyStoppingTestStatistics

	Return type

	EarlyStoppingTestStatistics

	
expan.core.early_stopping.make_bayes_factor(distribution='normal', num_iters=25000, inference='sampling')

	Closure method for the bayes_factor

	
expan.core.early_stopping.make_bayes_precision(distribution='normal', posterior_width=0.08, num_iters=25000, inference='sampling')

	Closure method for the bayes_precision

	
expan.core.early_stopping.make_group_sequential(spending_function='obrien_fleming', estimated_sample_size=None, alpha=0.05, cap=8)

	A closure to the group_sequential function.

	
expan.core.early_stopping.obrien_fleming(information_fraction, alpha=0.05)

	Calculate an approximation of the O’Brien-Fleming alpha spending function.

	Parameters

	
	information_fraction (float) – share of the information amount at the point of evaluation,
e.g. the share of the maximum sample size

	alpha (float) – type-I error rate

	Returns

	redistributed alpha value at the time point with the given information fraction

	Return type

	float

expan.core.experiment module

	
class expan.core.experiment.Experiment(metadata)

	Bases: object

Class which adds the analysis functions to experimental data.

Constructor of the experiment object.

	Parameters

	metadata (dict) – additional information about the experiment. (e.g. primary KPI, source, etc)

	
analyze_statistical_test(test, test_method='fixed_horizon', include_data=False, **worker_args)

	Runs delta analysis on one statistical test and returns statistical results.

	Parameters

	
	test (StatisticalTest) – a statistical test to run

	test_method (str) – analysis method to perform.
It can be ‘fixed_horizon’, ‘group_sequential’, ‘bayes_factor’ or ‘bayes_precision’.

	include_data (bool) – True if test results should include data, False - if no data should be included

	worker_args – additional arguments for the analysis method

	Returns

	statistical result of the test

	Return type

	StatisticalTestResult

	
analyze_statistical_test_suite(test_suite, test_method='fixed_horizon', **worker_args)

	Runs delta analysis on a set of tests and returns statistical results for each statistical test in the suite.

	Parameters

	
	test_suite (StatisticalTestSuite) – a suite of statistical test to run

	test_method (str) – analysis method to perform.
It can be ‘fixed_horizon’, ‘group_sequential’, ‘bayes_factor’ or ‘bayes_precision’.

	worker_args – additional arguments for the analysis method (see signatures of corresponding methods)

	Returns

	statistical result of the test suite

	Return type

	MultipleTestSuiteResult

	
outlier_filter(data, kpis, thresholds=None)

	Method that filters out entities whose KPIs exceed the value at a given percentile.
If any of the KPIs exceeds its threshold the entity is filtered out.
If kpis contains derived kpi, this method will first create these columns,
and then perform outlier filtering on all given kpis.

	Parameters

	
	kpis (list[KPI]) – list of KPI instances

	thresholds (dict) – dict of thresholds mapping KPI names to (type, percentile) tuples

	Returns

	Will return data with filtered outliers.

	
run_goodness_of_fit_test(observed_freqs, expected_freqs, alpha=0.01, min_counts=5)

	Checks the validity of observed and expected counts and runs chi-square test for goodness of fit.

	Parameters

	
	observed_freqs (pd.Series) – observed frequencies

	expected_freqs (pd.Series) – expected frequencies

	alpha (float) – significance level

	min_counts (int) – minimum number of observations to run chi-square test

	Return split_is_unbiased

	False is split is biased and True if split is correct
p_value: corresponding chi-square p-value

	Return type

	bool, float

expan.core.results module

	
class expan.core.results.BaseTestStatistics(control_statistics, treatment_statistics)

	Bases: expan.core.util.JsonSerializable

Holds only statistics for the control and treatment group.

	Parameters

	
	control_statistics (SampleStatistics) – statistics within the control group

	treatment_statistics (SampleStatistics) – statistics within the treatment group

	
class expan.core.results.CombinedTestStatistics(original_test_statistics, corrected_test_statistics)

	Bases: expan.core.util.JsonSerializable

Holds original and corrected statistics. This class should be used to hold statistics for multiple testing.
original_test_statistics and corrected_test_statistics should have the same type.
In case there is no correction specified, corrected_test_statistics == original_test_statistics.

	Parameters

	
	original_test_statistics (SimpleTestStatistics or EarlyStoppingTestStatistics) – test result before correction

	corrected_test_statistics (SimpleTestStatistics or EarlyStoppingTestStatistics) – test result after correction or same as original_test_statistics if no correction

	
class expan.core.results.EarlyStoppingTestStatistics(control_statistics, treatment_statistics, delta, ci, p, statistical_power, stop)

	Bases: expan.core.results.SimpleTestStatistics

Additionally to SimpleTestStatistics, holds boolean flag for early stopping.

	Parameters

	
	control_statistics (SampleStatistics) – sample size, mean, variance for the control group

	treatment_statistics (SampleStatistics) – sample size, mean, variance for the treatment group

	ci (dict) – a dict where keys are percentiles and values are the corresponding value for the statistic.

	stop (bool) – early-stopping flag

	
class expan.core.results.MultipleTestSuiteResult(results, correction_method=<CorrectionMethod.NONE: 1>)

	Bases: expan.core.util.JsonSerializable

This class holds the results of a MultipleTestSuite.

	Parameters

	
	results (list[StatisticalTestResult]) – test results for all statistical testing unit

	correction_method (CorrectionMethod) – method used for multiple testing correction

	
merge_with(multiple_test_suite_result)

	Merges two multiple test suite results.
:param multiple_test_suite_result: multiple test suite result
:type multiple_test_suite_result: MultipleTestSuiteResult

:return merged multiple test suite results
:rtype MultipleTestSuiteResult

	
class expan.core.results.SampleStatistics(sample_size, mean, variance)

	Bases: expan.core.util.JsonSerializable

This class holds sample size, mean and variance.

	Parameters

	
	sample_size (int) – samples size of the control or treatment group

	mean (float) – mean of the control or treatment group

	variance (float) – variance of the control or treatment group

	
class expan.core.results.SimpleTestStatistics(control_statistics, treatment_statistics, delta, ci, p, statistical_power)

	Bases: expan.core.results.BaseTestStatistics

Additionally to BaseTestStatistics, holds delta, confidence interval, statistical power, and p value.

	Parameters

	
	control_statistics (SampleStatistics) – sample size, mean, variance for the control group

	treatment_statistics (SampleStatistics) – sample size, mean, variance for the treatment group

	delta (float) – delta (relative or absolute difference between control and treatment, uplift)

	p (float) – p value

	statistical_power (float) – statistical power value

	ci (dict) – a dict where keys are percentiles and values are the corresponding value for the statistic.

	
class expan.core.results.StatisticalTestResult(test, result)

	Bases: expan.core.util.JsonSerializable

This class holds the results of a single statistical test.

	Parameters

	
	test (StatisticalTest) – information about the statistical test

	result (CombinedTestStatistics) – result of this statistical test

expan.core.statistical_test module

	
class expan.core.statistical_test.CorrectionMethod

	Bases: enum.Enum

Correction methods.

	
BH = 3

	

	
BONFERRONI = 2

	

	
NONE = 1

	

	
class expan.core.statistical_test.DerivedKPI(name, numerator, denominator)

	Bases: expan.core.statistical_test.KPI

This class represents a derived KPI which is a ratio of two columns.
Names of the the two columns are passed as numerator and denominator.

	Parameters

	
	name (str) – name of the kpi

	numerator (str) – the numerator for the derived KPI

	denominator (str) – the denominator for the derived KPI

	
make_derived_kpi(data)

	Create the derived kpi column if it is not yet created.

	
class expan.core.statistical_test.FeatureFilter(column_name, column_value)

	Bases: expan.core.util.JsonSerializable

This class represents a filter, restricting a DataFrame to rows with column_value in column_name.

It can be used to specify subgroup conditions.
:param column_name: name of the column to perform filter on
:type column_name: str
:param column_value: value of the column to perform filter on
:type column_value: str

	
apply_to_data(data)

	

	
class expan.core.statistical_test.KPI(name)

	Bases: expan.core.util.JsonSerializable

This class represents a basic kpi.
:param name: name of the kpi
:type name: str

	
class expan.core.statistical_test.StatisticalTest(data, kpi, features, variants)

	Bases: expan.core.util.JsonSerializable

This class describes what has to be tested against what and represent a unit of statistical testing.

	Parameters

	
	data (DataFrame) – data for statistical test

	kpi (KPI or its subclass) – the kpi to perform on

	features (list[FeatureFilter]) – list of features used for subgroups

	variants (Variants) – variant column name and their values

	
class expan.core.statistical_test.StatisticalTestSuite(tests, correction_method=<CorrectionMethod.NONE: 1>)

	Bases: expan.core.util.JsonSerializable

This class consists of a number of tests plus choice of the correction method.

	Parameters

	
	tests (list[StatisticalTest]) – list of statistical tests in the suite

	correction_method (CorrectionMethod) – method used for multiple testing correction

	
size

	

	
class expan.core.statistical_test.Variants(variant_column_name, control_name, treatment_name)

	Bases: expan.core.util.JsonSerializable

This class represents information of variants.

	Parameters

	
	variant_column_name (str) – name of the column that represents variant

	control_name (str) – value of the variant that represents control group

	treatment_name (str) – value of the variant that represents control group

	
get_variant(data, variant_name)

	

expan.core.statistics module

	
expan.core.statistics.bootstrap(x, y, func=<function _delta_mean>, nruns=10000, percentiles=[2.5, 97.5], min_observations=20, return_bootstraps=False, relative=False)

	Bootstraps the Confidence Intervals for a particular function comparing two samples.
NaNs are ignored (discarded before calculation).

	Parameters

	
	x (pd.Series or list (array-like)) – sample of the treatment group

	y (pd.Series or list (array-like)) – sample of the control group

	func (function) – function of which the distribution is to be computed.
The default comparison metric is the difference of means.
For bootstraping correlation: func=lambda x,y: np.stats.pearsonr(x,y)[0].

	nruns (int) – number of bootstrap runs to perform

	percentiles (list) – The values corresponding to the given percentiles are returned.
The default percentiles (2.5% and 97.5%) correspond to an alpha of 0.05.

	min_observations (int) – minimum number of observations necessary

	return_bootstraps (bool) – If this variable is set the bootstrap sets are returned,
otherwise the first return value is empty.

	relative (bool) – if relative==True, then the values will be returned as distances below and above the mean,
respectively, rather than the absolute values.
In this case, the interval is mean-ret_val[0] to mean+ret_val[1].
This is more useful in many situations because it corresponds with the sem() and std() functions.

	Return (c_val, bootstraps)

	c_val is a dict which contains percentile levels (index) and values
bootstraps is a np.array containing the bootstrapping results per run

	Return type

	tuple

	
expan.core.statistics.chi_square(observed_freqs, expected_freqs, ddof=0)

	Computes chi-square statistics and p-values given observed and expected frequencies and degrees of freedom.

	Parameters

	
	observed_freqs (pd.Series or array-like) – observed frequencies

	expected_freqs (pd.Series or array-like) – expected frequencies

	ddof (int) – delta degrees of freedom, 0 by default

	Returns

	chi-square statistics and p-value

	Return type

	float, float

	
expan.core.statistics.compute_p_value(mean1, std1, n1, mean2, std2, n2)

	Compute two-tailed p value for statistical Student’s T-test given statistics of control and treatment.

	Parameters

	
	mean1 (float) – mean value of the treatment distribution

	std1 (float) – standard deviation of the treatment distribution

	n1 (int) – number of samples of the treatment distribution

	mean2 (float) – mean value of the control distribution

	std2 (float) – standard deviation of the control distribution

	n2 (int) – number of samples of the control distribution

	Returns

	two-tailed p-value

	Return type

	float

	
expan.core.statistics.compute_p_value_from_samples(x, y)

	Calculates two-tailed p value for statistical Student’s T-test based on pooled standard deviation.

	Parameters

	
	x (pd.Series or array-like) – samples of a treatment group

	y (pd.Series or array-like) – samples of a control group

	Returns

	two-tailed p-value

	Return type

	float

	
expan.core.statistics.compute_statistical_power(mean1, std1, n1, mean2, std2, n2, z_1_minus_alpha)

	Compute statistical power given statistics of control and treatment.

	Parameters

	
	mean1 (float) – mean value of the treatment distribution

	std1 (float) – standard deviation of the treatment distribution

	n1 (int) – number of samples of the treatment distribution

	mean2 (float) – mean value of the control distribution

	std2 (float) – standard deviation of the control distribution

	n2 (int) – number of samples of the control distribution

	z_1_minus_alpha (float) – critical value for significance level alpha. That is, z-value for 1-alpha.

	Returns

	statistical power—the probability of a test to detect an effect if the effect actually exists
or -1 if std is less or equal to 0

	Return type

	float

	
expan.core.statistics.compute_statistical_power_from_samples(x, y, alpha=0.05)

	Compute statistical power given data samples of control and treatment.

	Parameters

	
	x (pd.Series or array-like) – samples of a treatment group

	y (pd.Series or array-like) – samples of a control group

	alpha (float) – Type I error (false positive rate)

	Returns

	statistical power—the probability of a test to detect an effect if the effect actually exists

	Return type

	float

	
expan.core.statistics.delta(x, y, x_denominators=1, y_denominators=1, assume_normal=True, alpha=0.05, min_observations=20, nruns=10000, relative=False)

	Calculates the difference of means between the samples in a statistical sense.
Computation is done in form of treatment minus control, i.e. x-y.
Note that NaNs are treated as if they do not exist in the data.

	Parameters

	
	x (pd.Series or array-like) – sample of the treatment group

	y (pd.Series or array-like) – sample of the control group

	x_denominators (pd.Series or array-like) – sample of the treatment group

	y_denominators (pd.Series or array-like) – sample of the control group

	assume_normal (boolean) – specifies whether normal distribution assumptions can be made

	alpha (float) – significance level (alpha)

	min_observations (int) – minimum number of observations needed

	nruns (int) – only used if assume normal is false

	relative – if relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Type

	relative: boolean

	Returns

	results of type SimpleTestStatistics

	Return type

	SimpleTestStatistics

	
expan.core.statistics.estimate_sample_size(x, mde, r, alpha=0.05, beta=0.2)

	Estimates sample size based on sample mean and variance given MDE (Minimum Detectable effect),
number of variants and variant split ratio

	Parameters

	
	x (pd.Series or pd.DataFrame) – sample to base estimation on

	mde (float) – minimum detectable effect

	r (float) – variant split ratio

	alpha (float) – significance level

	beta (float) – type II error

	Returns

	estimated sample size

	Return type

	float or pd.Series

	
expan.core.statistics.make_delta(assume_normal=True, alpha=0.05, min_observations=20, nruns=10000, relative=False)

	A closure to the delta function.

	
expan.core.statistics.normal_difference(mean1, std1, n1, mean2, std2, n2, percentiles=[2.5, 97.5], relative=False)

	Calculates the difference distribution of two normal distributions.
Computation is done in form of treatment minus control. It is assumed that
the standard deviations of both distributions do not differ too much.

	For further information visit:

	http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals5.html

	Parameters

	
	mean1 (float) – mean value of the treatment distribution

	std1 (float) – standard deviation of the treatment distribution

	n1 (int) – number of samples of the treatment distribution

	mean2 (float) – mean value of the control distribution

	std2 (float) – standard deviation of the control distribution

	n2 (int) – number of samples of the control distribution

	percentiles (list) – list of percentile values to compute

	relative (bool) – If relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns

	percentiles and corresponding values

	Return type

	dict

	
expan.core.statistics.normal_sample_difference(x, y, percentiles=[2.5, 97.5], relative=False)

	Calculates the difference distribution of two normal distributions given by their samples.

Computation is done in form of treatment minus control.
It is assumed that the standard deviations of both distributions do not differ too much.

	Parameters

	
	x (pd.Series or list (array-like)) – sample of a treatment group

	y – sample of a control group

	percentiles (list) – list of percentile values to compute

	relative (bool) – If relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns

	percentiles and corresponding values

	Return type

	dict

	
expan.core.statistics.normal_sample_weighted_difference(x_numerators, y_numerators, x_denominators, y_denominators, percentiles=[2.5, 97.5], relative=False)

	Calculates the difference distribution of two distributions given by their samples.

Computation is done in form of treatment(x) minus control(y).
It is assumed that the standard deviations of both distributions do not differ too much.

The estimate of the mean difference is \(\frac{mean(x_{numerators})}{mean(x_{denominators})}-\frac{mean(y_{numerators})}{mean(y_{denominators})}\).
For non-derived KPIs, the denominators will be exactly 1, and hence this will simplify to \(mean(x_{numerators})-mean(y_{numerators})\).
For details on the variance calcuation, see the Glossary.

	Parameters

	
	x_numerators (pd.Series or list (array-like)) – sample of a treatment group

	y_numerators (pd.Series or list (array-like)) – sample of a control group

	x_denominators (pd.Series or list (array-like), or simply 1 as an int/float if a non-derived KPI) – sample of a treatment group

	y_denominators (pd.Series or list (array-like), or simply 1 as an int/float if a non-derived KPI) – sample of a control group

	percentiles (list) – list of percentile values to compute

	relative (bool) – If relative==True, then the values will be returned
as distances below and above the mean, respectively, rather than the
absolute values. In this case, the interval is mean-ret_val[0] to
mean+ret_val[1]. This is more useful in many situations because it
corresponds with the sem() and std() functions.

	Returns

	percentiles and corresponding values

	Return type

	dict with multiple entries:

	c_i: confidence_interval

	mean1: \(\frac{mean(x_{numerators})}{mean(x_{denominators})}\)

	mean2: \(\frac{mean(y_{numerators})}{mean(y_{denominators})}\)

	n1: sample size of x, after discarding NaNs

	n2: sample size of y, after discarding NaNs

	var1: \(var\left(\frac{x_{numerators}[i] - mean1 \cdot x_{denominators}[i]}{mean(x_{denominators})}\right)\)

	var2: \(var\left(\frac{y_{numerators}[i] - mean2 \cdot y_{denominators}[i]}{mean(y_{denominators})}\right)\)

	
expan.core.statistics.pooled_std(std1, n1, std2, n2)

	Returns the pooled estimate of standard deviation.

	For further information visit:

	http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals5.html

	Parameters

	
	std1 (float) – standard deviation of first sample

	n1 (int) – size of first sample

	std2 (float) – standard deviation of second sample

	n2 (int) – size of second sample

	Returns

	pooled standard deviation

	Type

	float

	
expan.core.statistics.sample_size(x)

	Calculates valid sample size given the data.

	Parameters

	x (pd.Series or list (array-like)) – sample to calculate the sample size

	Returns

	sample size of the sample excluding nans

	Return type

	int

expan.core.util module

	
class expan.core.util.JsonSerializable

	Bases: object

Interface for serializable classes.

	
toJson()

	

	
expan.core.util.drop_nan(array)

	Drop Nan values from the given numpy array.

	Parameters

	array (np.ndarray) – input array

	Returns

	a new array without NaN values

	Return type

	np.ndarray

	
expan.core.util.find_value_by_key_with_condition(items, condition_key, condition_value, lookup_key)

	Find the value of lookup key where the dictionary contains condition key = condition value.

	Parameters

	
	items (list) – list of dictionaries

	condition_key (str) – condition key

	condition_value – a value for the condition key

	lookup_key (str) – lookup key or key you want to find the value for

	Returns

	lookup value or found value for the lookup key

	
expan.core.util.generate_random_data()

	Generate random data for two variants. It can be used in unit tests or demo.

	
expan.core.util.is_nan(obj)

	Checks whether the input is NaN. It uses the trick that NaN is not equal to NaN.

expan.core.version module

	
expan.core.version.git_commit_count()

	Returns the output of git rev-list –count HEAD as an int.
Note: http://programmers.stackexchange.com/a/151558

	
expan.core.version.git_latest_commit()

	Returns output of git rev-parse HEAD.
Note: http://programmers.stackexchange.com/a/151558.

	
expan.core.version.version(format_str='{short}')

	Returns current version number in specified format.

	Parameters

	format_str (str) – format string for the version

	Returns

	version number in the specified format

	Return type

	str

	
expan.core.version.version_numbers()

	Returns ExpAn version.

Module contents

ExpAn core module.

	
expan.core.version(format_str='{short}')

	Returns current version number in specified format.

	Parameters

	format_str (str) – format string for the version

	Returns

	version number in the specified format

	Return type

	str

expan.data package

Submodules

expan.data.csv_fetcher module

	
expan.data.csv_fetcher.get_data(folder_path)

	Expects as input a folder containing the following files:

	one .csv or .csv.gz with ‘data’ in the filename

	one .json containing ‘metadata’ in the filename

Opens the files and uses them to create an Experiment object which it then returns.

	Parameters

	folder_path (str) – path to the Experiment data

	Returns

	Experiment object with data

	Return type

	Experiment

Module contents

ExpAn data module.

expan package

Subpackages

	expan.core package
	Submodules

	expan.core.binning module

	expan.core.correction module

	expan.core.early_stopping module

	expan.core.experiment module

	expan.core.results module

	expan.core.statistical_test module

	expan.core.statistics module

	expan.core.util module

	expan.core.version module

	Module contents

	expan.data package
	Submodules

	expan.data.csv_fetcher module

	Module contents

Module contents

Main ExpAn module that contains core and data modules.

expan

	expan package
	Subpackages
	expan.core package
	Submodules

	expan.core.binning module

	expan.core.correction module

	expan.core.early_stopping module

	expan.core.experiment module

	expan.core.results module

	expan.core.statistical_test module

	expan.core.statistics module

	expan.core.util module

	expan.core.version module

	Module contents

	expan.data package
	Submodules

	expan.data.csv_fetcher module

	Module contents

	Module contents

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to ExpAn’s documentation!

 		
 ExpAn: Experiment Analysis

 		
 Documentation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 License

 		
 Tutorial

 		
 Generate demo data

 		
 Create an experiment

 		
 Create a statistical test

 		
 Let’s start analyzing!

 		
 Interpreting result

 		
 Subgroup analysis

 		
 Statistical test suite

 		
 Result of statistical test suite

 		
 API

 		
 Architecture

 		
 API

 		
 Glossary

 		
 Assumptions used in analysis

 		
 Derived KPIs, such as conversion rate

 		
 Early stopping

 		
 Subgroup analysis

 		
 Multiple testing problem

 		
 Chi-square test (Multinomial Goodness of Fit Test).

 		
 Change Log

 		
 v1.4.0 (2019-07-05)

 		
 v1.3.9 (2018-09-10)

 		
 v1.3.8 (2018-09-10)

 		
 v1.3.7 (2018-09-04)

 		
 v1.3.6 (2018-08-06)

 		
 v1.3.5 (2018-08-02)

 		
 v1.3.3 (2018-07-26)

 		
 v1.3.2 (2018-07-23)

 		
 v1.3.1 (2018-07-01)

 		
 v1.2.6 (2018-07-01)

 		
 v1.2.5 (2018-06-22)

 		
 v1.2.4 (2018-05-31)

 		
 v1.2.3 (2018-05-30)

 		
 v1.2.2 (2018-05-30)

 		
 v1.2.1 (2018-05-29)

 		
 v1.2.0 (2018-05-25)

 		
 v1.1.0 (2018-05-24)

 		
 v1.0.1 (2018-04-23)

 		
 v1.0.0 (2018-03-22)

 		
 v0.6.13 (2018-03-15)

 		
 v0.6.12 (2018-01-24)

 		
 v0.6.11 (2018-01-23)

 		
 v0.6.10 (2018-01-12)

 		
 v0.6.9 (2018-01-12)

 		
 v0.6.8 (2018-01-12)

 		
 v0.6.7 (2018-01-10)

 		
 v0.6.6 (2017-11-27)

 		
 v0.6.5 (2017-10-24)

 		
 v0.6.3 (2017-10-24)

 		
 v0.6.2 (2017-08-29)

 		
 v0.6.1 (2017-08-08)

 		
 v0.6.0 (2017-07-26)

 		
 v0.5.3 (2017-06-26)

 		
 v0.5.2 (2017-05-11)

 		
 v0.5.1 (2017-04-20)

 		
 v0.5.0 (2017-04-05)

 		
 v0.4.5 (2017-02-10)

 		
 v0.4.4 (2017-02-09)

 		
 v0.4.3 (2017-02-07)

 		
 v0.4.2 (2016-12-08)

 		
 v0.4.1 (2016-10-18)

 		
 v0.4.0 (2016-08-19)

 		
 v0.3.4 (2016-08-08)

 		
 v0.3.3 (2016-08-02)

 		
 v0.3.2 (2016-08-02)

 		
 v0.3.1 (2016-07-15)

 		
 v0.3.0 (2016-06-23)

 		
 v0.2.5 (2016-05-30)

 		
 v0.2.4 (2016-05-16)

 		
 v0.2.3 (2016-05-06)

 		
 v0.2.2 (2016-05-06)

 		
 v0.2.1 (2016-05-06)

 		
 v0.2.0 (2016-05-06)

 		
 Contributing

 		
 Style guide

 		
 Testing

 		
 Branching

 		
 Release

 		
 Sphinx documentation

 		
 Versioning

 		
 Bumping Version

 		
 Travis CI

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

