

Codename: Everthing Platform

Everthing Platform is an open-source IoT-enabled automation platform.
It allows to operate different types of devices, set-up automation
rules (if-this-than-that), store and process a history of events and
all of that autonomously from cloud services and Internet connection
(if you want it).

Documentation on Everthing Platform is slitted into a couple of sections:

	User Documentation

	External API Documentation

	Developer Documentation

Platform itself is hosted on GitHub: https://github.com/s-kostyuk/adpl/

User Documentation

	Getting Started

	Installation
	Preface

	System Requirements

	Automatic Installation Steps

	Manual Installation Steps

	First Run

	Integrations

	Client Applications

External API Documentation

	Local network discovery
	General information

	How to discover an everpl hub

	REST API
	General information

	Protected resources

	Authentication

	Things

	Placements

	Handling Errors
	Error Response Format

	General

	Authorization and authentication

	Things

	Placements

	Streaming API

Developer Documentation

	Capabilities

	Possible Capabilities
	Actuators

	Has State

	Is Active

	On/Off

	Open/Closed

	Multimode

	Has Brightness

	Has Color HSB

	Has Color RGB

	Has Value

	Has Volume

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Actually, to use Everthing Platform you will need to have two main
components installed:

	the platform itself;

	and some client applications.

Platform is just an application that directly controls every object
in your system: devices, other applications, their interconnection and
interaction. It is in charge of setting-up and connection of all
components, reading of their states and sending commands. And provides
all its functions to client applications.

Client application is a some software that makes interaction with the
platform and end-user itself possible. It is connected to the platform
and allows to use all its features via some user-friendly interface.

If you are a developer, you can develop own client application based
on API section of this documentation. Otherwise, you can choose one
on the Client Applications page.

In the next chapters you will find how to install 1 Everthing
Platform and how to run it 2 for the first time. Just click ‘next’
button to continue.

Footnotes

	1

	Documentation page: Installation

	2

	Documentation page: First Run

Installation

Preface

As was mentioned 1, you need two pieces of software to use
the platform:

	the platform itself;

	and some client application.

This tutorial is mostly related to the platform itself. For details
about the installation and usage of client applications, please
visit the Client Applications page.

System Requirements

Minimum System Requirements:

	Python 3.5 2

	bash

Recommended System Requirements:

	Python 3.5 or newer

	UNIX-like operating system (like macOS and Linux-based systems)

	hardware support of protocols like Bluetooth, ZigBee and so on
for different Integrations

Automatic Installation Steps

	Download an archive with the latest stable release of platform
from its repository: https://github.com/s-kostyuk/adpl/releases

Note

You can also download the latest development (unstable) version
here: https://github.com/s-kostyuk/adpl by clicking a ‘clone or
download’ button.

	Extract archive content to some directory. Remember its
placement (path).

	Open terminal emulator, switch to the everpl’s project directory:

cd /path/to/everpls/directory

	Install an everpl package using pip:

pip3 install .

	Now it’s possible to run everpl application by simply calling
an everpl command:

everpl

Installation finished!

Note

You can also install everpl package in the “Development Mode”.
Why you may need it and what with mode provides is described
by the following link: 4

Manual Installation Steps

	Download an archive with the latest stable release of platform
from its repository: https://github.com/s-kostyuk/adpl/releases

	Extract archive content to some directory. Remember its
placement (path).

	Open terminal emulator, switch to the platform’s directory:

cd /path/to/platforms/directory

	Install all needed dependencies that are listed in
requirements.txt 3 file. The most simple way to do this
is to use pip:

pip3 install -r requirements.txt

	Now it’s possible to run the main execution file:

bash ./dpl/run.sh

Installation finished!

Footnotes

	1

	Documentation page: Getting Started

	2

	async/await expressions which are commonly used
in the platform was introduced only in Python 3.5.

In a case if you need a support of older versions of python -
please, endorse this issue: #22 [https://github.com/s-kostyuk/adpl/issues/22].

	3

	Requirements file is placed in the root of platform’s directory,
for example: https://github.com/s-kostyuk/adpl/blob/devel/requirements.txt

	4

	Information about “Development Mode” of package
installation process:
https://packaging.python.org/tutorials/distributing-packages/#working-in-development-mode

First Run

Integrations

Client Applications

For now there are only two official cleint applications for everpl: an Android and single-page web application.

An Android client is an open-source application located at https://github.com/dot-cat/creative_assistant_android.
It’s supported by the project author and is developed carefully with attention to software architecture, libraries
and used software development approaches.

A web-client is much less production-ready. The only task it was created for is to test and demonstrate the newest
features of everpl. Therefore it’s quite unstable and much less elaborate. Frankly speaking, web-client was
originally started as a laboratory work :). The client is hosted at https://srgk.gitlab.io/test-bootstrap2/.
Its source code is available at https://gitlab.com/srgk/test-bootstrap2

Local network discovery

General information

Starting from v0.3 of the platform all everpl instances (everpl hubs)
are able to be discovered in a local network by default.

Hubs announce their presence and can be discovered using a Zeroconf
(Avahi/Bonjour) protocol - Zero Configuration Networking protocol.
This protocol allows services to announce their presence in the system,
to assign constant domain names in a “.local” domain zone, to resolve
such domain names and to look for a specific service in the system.

For more information about Zeroconf you can read an article on Medium
titled “Bonjour Android, it’s Zeroconf” [https://medium.com/@_tiwiz/bonjour-android-its-zeroconf-8e3d3fde760e]. It tells about Zeroconf
protocols in general, about Bonjour/Avahi approach and how it relates
with client applications and service discovery.

Unfortunately, Zeroconf (and UDP multicast in general) isn’t supported
by modern web browsers.

For more detailed information see:

	DNS-SD protocol website: http://www.dns-sd.org/, covers service
discovery part of functionality;

	mDNS protocol website: http://www.multicastdns.org/, covers
domain name association in “.local” domain zone;

	and corresponding RFCs.

For testing purposes you can use such handy tools as:

	Avahi-Discover GUI utility for Linux:
https://linux.die.net/man/1/avahi-discover

	Service browser for Android:
https://play.google.com/store/apps/details?id=com.druk.servicebrowser&hl=en_US

	dns-sd CLI tool for macOS

How to discover an everpl hub

In order to discover an everpl hub you need to use one of the Zeroconf
libraries (like build-in NSD for Android) and search for a service type
_everpl._tcp. By default such devices will have a name defined as
“everpl hub @ hostname”. To access an everpl REST API on a device you
can use name and port, defined in Hostname (Server) and Port fields of
a discovery response correspondingly.

Here is an example of a complete discovery response (as displayed by
console avahi-browse utility):

= virbr0 IPv4 everpl hub @ hostname_was_here _everpl._tcp local
 hostname = [hostname_was_here.local]
 address = [192.168.20.1]
 port = [10800]
 txt = []

REST API

General information

REST API is the base external API that is provided by platform.
It is recommended to use with unstable network connections, for
getting of access tokens and for occasional updates of resource
statuses. For receiving of instant notifications on resource
updates please take a look in Streaming API section of
documentation.

In this documentation you will also find such value as BASE_URL.
The BASE_URL is a value that points to the base URL of REST API.
It consists of protocol specification (http or https), hostname or
an IP address of platform instance, port and the rest of REST API
path. Keep in mind that the hostname and port of platform instance
can be changed in various circumstances (like ip address renewal,
moving between different networks and so on).

The BASE_URL may look like this: http://localhost:10800/api/v1/

or like this: https://hostname.local/api/v1/

Protected resources

There are two types of API resources in the platform:

	protected;

	and unprotected.

Protected resources are resources that can be viewed or modified only
by an authorized user. Unprotected resources are resources that can be
accessed by any user, including anonymous users.

To access protected resources you will need to authenticate and obtain
a special access token 1. Then this token must to be passed in
Authorization HTTP header on each request to protected resource.

The process of obtaining of access token is described in
Authentication section. Related error responses are described in
Handling Errors section of documentation.
Possible errors: 2100, 2101, 2110.

Authentication

As was mentioned in the previous section, you need to obtain an access
token to read or modify protected resources (which are the majority of
resources). An access token itself is a unique secret alphanumeric
string that is specific exactly to one user on exactly one client
application instance. As a usual username-password combination it
allows to uniquely identify the user and to perform all operations on
his or her behalf. So threat it with care and store securely.

To retrieve an access token you need to send user credentials on
/auth endpoint in POST request.

	URL structure

	BASE_URL/auth

	Method

	POST

	Headers

	
	Content-Type

	application/json

	Request Body

	{
 "username": "your_username_here",
 "password": "your_password_here"
}

In a case of success you will get the similar response:

	Status Code

	200

	Headers

	
	Content-Type

	application/json

	Response Body

	{
 "message": "authorized",
 "token": "90ff4ba085545c1735ab6c29a916f9cb8c0b7222"
}

In a case of authentication error you will receive one of the responses
listed in Handling Errors section of documentation.
Possible errors: 1000, 1001, 1003, 2000, 2001, 2002.

Things

Thing is a sort of basic concept in platform. Thing represent some item
of the system, i.e. some physical device or software application.

Thing object

General thing object has the following structure:

	commands

	A list of commands that can be sent to this Thing

	is_active

	A boolean field that indicates if this Thing is in one of the
‘active’ states (like ‘playing’ for player or ‘on’ for lighting).

	is_available

	A boolean field that indicates if this Thing is available for
communication (like fetching data, updating Things state and
sending commands).

	last_updated

	A floating-point value, UNIX time that indicates the
time of latest update (of state field or any other field)

	state

	A string, indicates the current state of Thing (type-specific).
For example, for lighting it can take on the following values:
‘on’, ‘off’ and ‘unknown’.

	friendly_name

	Some user-friendly name of this particular thing that can be
modified and directly displayed to user.

	type

	Some type-related information. Its format is still unstable.

	id

	A string (for now), some machine-friendly unique identifier of
specific thing.

	placement

	A string (for now), an identifier of placement where this Thing
is currently placed (positioned). See Placements section for
detailed information about placements.

The exact set of fields and their values may vary for different types
of things. For detailed information, please refer to the FIXME section
of documentation.

Example of Thing object:

{
 "commands": [
 "activate",
 "deactivate",
 "toggle",
 "on",
 "off"
],
 "is_active": false,
 "is_available": true,
 "last_updated": 1505768807.4725718,
 "state": "unknown",
 "friendly_name": "Kitchen cooker hood",
 "type": "switch",
 "id": "F1",
 "placement": "R2"
}

Fetching all Things

To fetch all Things, you need to perform the following request:

	URL structure

	BASE_URL/things/

	Parameters

	
	placement

	Enables filtering of things by placement. Use it like
?placement=R1 to get a list of things positioned in
R1 placement.

	type

	Enables filtering of things by their type. Use it like
?type=lighting to get a list of things that have a
type of lighting.

	Method

	GET

	Headers

	
	Authorization

	your_auth_token_here

An example of response body is placed here: https://git.io/v5xz3.

Fetching specific Thing

To fetch a specific Thing, you need to perform the following request:

	URL structure

	BASE_URL/things/{id}

	Method

	GET

	Headers

	
	Authorization

	your_auth_token_here

	Notes

	Replace {id} part of the URL with an identifier of requested
Thing object.

Sending commands to a Thing

Starting from the v0.3 of everpl it’s possible to send commands to
the Actuators - to the Things that are able to execute some commands.

Each command can have its own set of arguments, the list of the allowed
commands is specified in the commands field for each Actuator Thing.
The list of available commands and their set of possible arguments is
determined by the list of capabilities implemented by the specified Thing.

To send a command to an Actuator Thing you need to send a POST request
using an /execute sub-resource of a Thing in question:

	URL structure

	BASE_URL/things/{id}/execute

	Method

	POST

	Headers

	
	Authorization

	your_auth_token_here

	Content-Type

	application/json

	Request Body

	{
 "command": "the_name_of_the_command",
 "command_args": {}
}

	Notes

	Replace {id} part of the URL with an identifier of requested
Thing object.

The presence of the both command and command_args fields is mandatory.

The value of the command field must to be a string - the name of the
command to be executed; this value is must to be an element from the
commands field of the specified Thing.

The value of the command_args field must to be a dictionary of keyword-
arguments for the command with keys as strings and values as specified in
the Thing’s documentation. It’s allowed to pass an empty dictionary as the
value of the command_args field if there is no additional arguments needed
for an execution of the specified command.

In a case of success your command will be send on execution and you will get
a similar response:

	Status Code

	202

	Headers

	
	Content-Type

	application/json

	Response Body

	{
 "message": "accepted"
}

In a case of an pre-execution (validation) error you will receive
one of the responses listed in Handling Errors section of
documentation. Possible errors: 1000, 1001, 1003, 1005, 2100, 2101,
2110, 3100, 3101, 3102, 3103, 3110.

Placements

Placement is a some static position in a building / city / other area.
In homes it usually corresponds to one room.

Placement object

Placement object has the following structure:

	id

	A string (for now), some machine-friendly unique identifier of
specific thing.

	friendly_name

	Some user-friendly name of this particular placement that can be
modified and directly displayed to user.

	image_url

	A URL to related picture of this placement (room).

Example of Placement object:

{
 "id": "R1",
 "friendly_name": "Corridor",
 "image_url": "http://www.gesundheittipps.net/wp-content/uploads/2016/02/Flur_547-1024x610.jpg"
}

Fetching all Placements

To fetch all Placements, you need to perform the following request:

	URL structure

	BASE_URL/placements/

	Method

	GET

	Headers

	
	Authorization

	your_auth_token_here

An example of response body is placed here: https://git.io/v5x6S.

Fetching specific Placement

To fetch a specific Placement, you need to perform the following
request:

	URL structure

	BASE_URL/placements/{id}

	Method

	GET

	Headers

	
	Authorization

	your_auth_token_here

	Notes

	Replace {id} part of the URL with an identifier of requested
Placement object.

Footnotes

	1

	See also: Access token definition in OAuth specs [https://tools.ietf.org/html/rfc6749#section-1.4]

Handling Errors

Unfortunately, always there is something that could go wrong while
processing of API requests. Connection can be lost, token can be
expired, some exception can be unhandled and so on. Stuff happens.
And you must be ready to that.

Here is the complete list of responses for different types of API
errors. Errors are grouped by main platform’s subsystems and each
error type has its own identifier.

Error Response Format

If some request resulted in an error, than platform instance returns
a response with HTTP status code not less than 400 and JSON-encoded
body with an additional information about an error.

A format of request body is the following:

{
 "error_id": "int, an identifier of an error",
 "devel_message": "Some message for developers",
 "user_message": "Some message that can be directly displayed to the user",
 "docs_url": "A link to the related section in platform's documentation"
}

Regarding HTTP status codes:

	codes starting from 400 are error codes;

	codes >= 400 and < 500 indicate client-side errors;

	codes >= 500 indicate server-side errors.

General

Error 1000: Unsupported content-type

This error can be thrown on POST requests. It may indicate that:

	a client application forgot to set Content-Type request
header;

	or Content-Type header value points to unsupported type of
content.

This error indicates some issue with the client-side code and should
be fixed by client’s developer.

For now only one type of request content is supported and can be
read: application/json. In future additional
content-types may be supported like application/xml. Extra
information about content-types in general can be found on
Wikipedia [https://en.wikipedia.org/wiki/Media_type] and
MDN [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type].

HTTP status code: 400.

Error 1001: Failed to decode request body

This error can be thrown on POST requests. It may indicate that:

	a passed request body is not a valid JSON, XML or other file format
that was declared in Content-Type header;

	the value of Content-Type header doesn’t correspond to the
content of request body.

This error indicates some issue with the client-side code and should
be fixed by client’s developer.

HTTP status code: 400.

Error 1003: Server-side issue

This error can be thrown on any request. It may indicate that:

	a request was completely valid but server caught some internal
error.

In this situation there is nothing to do from the client-side. Please,
contact an administrator of the platform and platform’s developers
if needed to resolve this issue.

HTTP status code: 500.

Error 1004: Method not allowed

This error can be thrown on all requests. It may indicate that:

	a request method like GET, POST, PUT and so own is not supported
for this resource (URL, endpoint).

This error indicates some issue with the client-side code and should
be fixed by client’s developer. For the full list of available resources
and corresponding HTTP methods, please take a look in REST API
page of documentation.

HTTP status code: 405.

Error 1005: Resource not found

This error can be thrown on all requests. It may indicate that:

	the specified resource was deleted, moved or was not existing
at all.

In case of this error please double-check the specified URL. For
example, you can have a spelling error, an extra slash symbol
or a missing one. If you are sure that the specified URL is valid,
than it means that the corresponding resource or object was
deleted. This is fine. Just be ready to that.

HTTP status code: 404.

Authorization and authentication

This section is related to the errors in authorization and
authentication processes.

Error 2000: Missing username

This error can be thrown on POST requests on /auth endpoint.
It may indicate that:

	a client application forgot to pass ‘username’ field in request body;

	a client application passed a username that is equal to null.

This error indicates some issue with the client-side code and should
be fixed by client’s developer. Do not allow to user to send an empty
username field.

Warning

This behaviour may be changed if ‘insecure’ mode will be introduced.
Please, take a look in this pull request to get more information:
pull#15 [https://github.com/s-kostyuk/adpl/pull/15].

HTTP status code: 400.

Error 2001: Missing password

This error can be thrown on POST requests on /auth endpoint.
It may indicate that:

	a client application forgot to pass ‘password’ field in request body;

	a client application passed a password that is equal to null.

This error indicates some issue with the client-side code and should
be fixed by client’s developer. Do not allow to user to send an empty
password field.

Warning

This behaviour may be changed if ‘insecure’ mode will be introduced.
Please, take a look in this pull request to get more information:
pull#15 [https://github.com/s-kostyuk/adpl/pull/15].

HTTP status code: 400.

Error 2002: Invalid username and password combination

This error can be thrown on POST requests on /auth endpoint.
It may indicate that:

	the user specified a non-existing username;

	the user specified an invalid password value.

This error indicates some issue from the user-side. In this case please,
help to user to log into system and provide some related suggestions.

HTTP status code: 401.

Error 2100: Missing Authorization header

This error can be thrown on all requests on protected resources.
It may indicate that:

	the client application forgot to pass an Authorization header in
HTTP request;

	the value of this header is null.

This error indicates some issue with the client-side code and should
be fixed by client’s developer. You must to pass a non-empty
authorization header while accessing to protected resources. To get
more information about the authorization process, please take a look
into Protected resources section of documentation.

Warning

This behaviour may be changed if ‘insecure’ mode will be introduced.
Please, take a look in this pull request to get more information:
pull#15 [https://github.com/s-kostyuk/adpl/pull/15].

HTTP status code: 400.

Error 2101: Invalid access token

This error can be thrown on all requests on protected resources.
It may indicate that:

	the access token was revoked;

	the access token was invalid from the start.

This error indicates that the access token must to be renewed. In this
case it is recommended to redirect user to authorization page. To get
more information about the authorization process, plese take a look
into Protected resources section of documentation.

Warning

This behaviour may be changed if ‘insecure’ mode will be introduced.
Please, take a look in this pull request to get more information:
pull#15 [https://github.com/s-kostyuk/adpl/pull/15].

HTTP status code: 400.

Error 2110: Permission Denied

This error can be thrown on all requests on protected resources.
It may indicate that:

	the user doesn’t have an access to this resource;

	the user doesn’t have a permission to modify this resource;

	the specified access token doesn’t permit to process this
request for some other reason.

This error indicates that the user doesn’t have an access to this
resource for some reason. There is nothing to do from the client-
side. In this situation please describe what was happened to user
and help him/her to contact an administrator of platform’s instance
and to get a corresponding rights.

Warning

This behaviour may be changed if ‘insecure’ mode will be introduced.
Please, take a look in this pull request to get more information:
pull#15 [https://github.com/s-kostyuk/adpl/pull/15].

HTTP status code: 403.

Things

Error 3100: Not an Actuator

This error can be thrown on attempts to send a command on execution
to the Thing. It may indicate that:

	the /execute sub-resource is not available for this instance;

	this instance isn’t capable of command execution.

This error indicates some issue with the client-side code and should
be fixed by client’s developer. Do not allow to user to send any
commands to the non-actuator objects.

HTTP status code: 404.

Error 3101: Missing ‘command’ value

This error can be thrown on attempts to send a command on execution
to the Thing. It may indicate that:

	the client application forgot to pass a command value in a
body of HTTP request;

	the value of this header is not a string (i.e. is a number, null
or a value of some other type).

This error indicates some issue with the client-side code and should
be fixed by client’s developer. You must to pass a valid command
value while sending of commands on execution to Actuators. To get
more information about the /execute request and its format,
please take a look into Sending commands to a Thing section of
documentation.

HTTP status code: 400.

Error 3102: Missing ‘command_args’ value

This error can be thrown on attempts to send a command on execution
to the Thing. It may indicate that:

	the client application forgot to pass a command_args value in a
body of HTTP request;

	the value of the command_args key is not a mapping (dictionary).

This error indicates some issue with the client-side code and should
be fixed by client’s developer. You must to pass a valid command_args
value while sending of commands on execution to Actuators. To get
more information about the /execute request and its format,
please take a look into Sending commands to a Thing section of
documentation.

HTTP status code: 400.

Error 3103: Unacceptable command arguments

This error can be thrown on attempts to send a command on execution
to the Thing. It may indicate that:

	the client application forgot to pass some non-optional argument in
the command_args field of a body of HTTP request;

	the client application passed an unexpected extra (additional)
command argument in the command_args field of a body of HTTP request;

	one of the command arguments haves an invalid type;

	one of the command arguments haves an invalid value.

This error indicates some issue with the client-side code and should
be fixed by client’s developer. You must to pass a valid command_args
value while sending of commands on execution to Actuators. To get
more information about the /execute request and its format,
please take a look into Sending commands to a Thing section of
documentation.

HTTP status code: 400.

Error 3110: Unsupported command

This error can be thrown on attempts to send a command on execution
to the Thing. It may indicate that:

	the specified instance of Actuator doesn’t support the requested
command.

This error indicates some issue with the client-side code and should
be fixed by client’s developer. You must to pass the name of a command
which is supported by the specified Thing instance in command
field in request body. To get more information about the /execute
request and its format, please take a look into
Sending commands to a Thing section of documentation.

HTTP status code: 400.

Placements

There is no Placement-specific exceptions for now.

Streaming API

Nothing is here (yet)

Capabilities

As known, different devices implement different functionality.
Some devices report current climate conditions like humidity,
temperature and atmospheric pressure. Other devices like air
conditioners, humidifiers and climate systems are able to change
such conditions in the building. Other devices allow to play music,
videos, display photos and so on.

In everpl such pieces of functionality which are implemented by specific
devices (Things) are called Capabilities.

Each Capability is an abstract atomic piece of functionality which can
be implemented or provided by some device (Thing). Each Capability
can define some new properties (fields, data) of a Thing and/or commands
that can be send to device for execution.

One device can have several different Capabilities. For example, there
are already mentioned climatic devices which are capable of measuring
temperature, relative humidity and, maybe, CO2 levels. There are RGB Lamps
which can be turned on and off, change their brightness and even change
their color. There are Smart-TVs which is capable of doing… a lot of
stuff.

In general, different Capabilities can be mixed in arbitrary combinations.
In REST API and internal representation of the Thing the list of supported
capabilities is specified in capabilities property of a Thing.

The list of all Capabilities that can be provided by a Thing, the list of
properties and commands they provide is specified on the
next page.

Possible Capabilities

So, here is the list of all Capabilities possible in the system.

Actuators

	Formal Capability Name

	actuator

	Provided Fields

	No fields provided

	Provided Commands

	The list of provided commands is specified by other Capabilities

Actuators are devices that can “act”, i.e. execute some commands,
to change their state and the state of the outside world. For those
devices the /execute endpoint is available in REST API and the
corresponding execute method is available in the internal
representation of a Thing.

All Things that are able to execute some commands must to support an
actuator capability. Otherwise all commands, even if they are
specified in “Provided Commands” section of this documentation, are
supposed to be unavailable.

Has State

	Formal Capability Name

	has_state

	Provided Fields

	
	Field Name

	state

	Field Values

	The set of possible values is specified by other Capabilities

	Field Description

	Some sign of the current Thing state

	Provided Commands

	No specific commands are provided

Has State devices are devices that have the state property. The
value of the property is some string which is directly mapped to one
of the device states. The exact set of possible states is defined by
a set of Capabilities provided by the device.

Is Active

	Formal Capability Name

	is_active

	Provided Fields

	
	Field Name

	is_active

	Field Values

	boolean: true or false

	Field Description

	Signs if this Thing is in one of the “active” states.

	Provided Commands

	
	Command Name

	activate

	Command Params

	No params needed

	Command Description

	Sets this Thing to the one of the “active” states

	Command Name

	deactivate

	Command Params

	No params needed

	Command Description

	Sets this Thing to the one of the “inactive” states

	Command Name

	toggle

	Command Params

	No params needed

	Command Description

	Toggles the Thing between the opposite states. Activates
the Thing if the current state isn’t active and deactivates
otherwise.

Is Active devices are devices that have the is_active property.
The value of this property is a boolean with true mapped to the
set of “active” states (i.e. working, acting, turned on) and false
mapped to the set of “inactive” states (i.e. not working, not acting,
turned off, stopped).

Is Active Capability must to be implemented if and only if the current
state of the device can be clearly mapped to either “active” or
“inactive” state.

Actuator Is Active devices must to implement such methods as toggle,
activate and deactivate.

On/Off

	Formal Capability Name

	on_off

	Provided Fields

	
	Field Name

	is_powered_on

	Field Values

	boolean: true or false

	Field Description

	Signs if this Thing is powered on.

	Provided Commands

	
	Command Name

	on

	Command Params

	No params needed

	Command Description

	Powers the Thing on

	Command Name

	off

	Command Params

	No params needed

	Command Description

	Powers the Thing off

On/Off devices are devices that can be either powered “on” or “off”.
The current state of those devices can be determined by the value of
the is_powered_on field. Actuator On/Off devices are able to be turned
on and off with the on and off commands correspondingly.

If the device provides both on_off and is_active capabilities, then
the on state is usually mapped to true value of is_active
field and off state is mapped to false. on command is also
mapped to the activate and off command is mapped to the
deactivate command.

Open/Closed

	Formal Capability Name

	open_closed

	Provided Fields

	
	Field Name

	state

	Field Values

	string: opened, closed, opening, closing

	Field Description

	Signs if this Thing (door, valve, lock, etc.) is opened,
closed or in one of the transition states.

	Provided Commands

	
	Command Name

	open

	Command Params

	No params needed

	Command Description

	Opens the Thing

	Command Name

	close

	Command Params

	No params needed

	Command Description

	Closes the Thing

Open/Closed devices are devices that can be in either “opened” or
“closed” state. The current state of those devices can be determined bу
the value of the state field. In addition to the “opened” and “closed”
states there are two transitional states possible: “opening” and “closing”.
Actuator Open/Closed devices are able to be opened and closed with the
open and close commands correspondingly.

If the device provides both open_closed and is_active capabilities,
then the open and opening states are usually mapped to true
value of is_active field and close with closing states are
mapped to false. Also generic activate and deactivate commands
are available for such devices with activate mapped to open,
deactivate mapped to close and toggle toggles between the
opposite states (from opened to closed, from closed to opened,
from opening to closed, from closing to opened).

Multimode

	Formal Capability Name

	multimode

	Provided Fields

	
	Field Name

	mode

	Field Values

	The list of provided values is specified by other Capabilities

	Field Description

	Signs the current mode of functioning for this Thing.

	Provided Commands

	
	Command Name

	set_mode

	Command Params

	mode - new value for the mode

	Command Description

	Changes the mode of functioning of this Thing to
the specified one.

If the device provides both open_closed and is_active capabilities,
Multimode devices are able to work in different modes. By switching the mode
of the device some Capabilities may become available for usage and some may
gone. The current mode of the device is specified in the mode field. If
the mode of the device was changed, then the list of capabilities and a set
of available fields are altered to correspond to the current mode
(FIXME: Is it reasonable?). Only one device mode сan be chosen at a time.
The current mode of the device can be set via set_mode command.

Has Brightness

	Formal Capability Name

	has_brightness

	Provided Fields

	
	Field Name

	brightness

	Field Values

	integer values in the range between 0 and 100 (including)

	Field Description

	Specified the current level of brightness of a Thing

	Provided Commands

	
	Command Name

	set_brightness

	Command Params

	brightness - the new value of brightness

	Command Description

	Sets the specified level of brightness for the Thing

Has Brightness devices are devices that have the brightness property.
The brightness property is an integer value in the range from
0 (zero) to 100. Actuator Has Brightness devices are able to change their
brightness with a set_brightness command. Usually normal people call
Actuator Has Brightness devices as “dimmable” devices.

Has Color HSB

	Formal Capability Name

	has_color_hsb

	Provided Fields

	
	Field Name

	color_hue

	Field Values

	An integer value between 0 and 359 including.

	Field Description

	Specifies the current color of a Thing in HSB format.

	Field Name

	color_saturation

	Field Values

	An integer value between 0 and 100 including.

	Field Description

	Specifies the current color of a Thing in HSB format.

	Provided Commands

	
	Command Name

	set_color

	Command Params

	hue, saturation - the new value of hue and saturation
correspondingly

	Command Description

	Sets the specified color hue and saturation for the Thing

Has Color HSB devices are devices that have the “color” property. The color
property value can be specified in HSB (hue, saturation, brightness) system.
Actuator Has Color devices are able to change their color with a set_color
command. Usually Color HSB profile is implemented by RGB Light Bulbs.

Has Color RGB

	Formal Capability Name

	has_color_rgb

	Provided Fields

	
	Field Name

	color_rgb

	Field Values

	A mapping with three keys: red, green, blue. The value for
each key of the RGB mapping is an integer between 0 and 255 including.

	Field Description

	Specifies the current color of a Thing in RGB format.

	Provided Commands

	
	Command Name

	set_color

	Command Params

	reg, green, blue - the values of three color components:
red, green and blue correspondingly

	Command Description

	Sets the color for the Thing in RGB format.

Has Color RGB devices are devices that have the “color” property. The color
property value can be specified in RGB (red, green, blue) system.
Actuator Has Color devices are able to change their color with a set_color
command. Usually Color RGB profile is implemented by color sensors.

Has Value

	Formal Capability Name

	has_value

	Provided Fields

	
	Field Name

	value

	Field Values

	Unspecified

	Field Description

	Expresses some property of the Thing that can be specified as a
single value.

	Provided Commands

	
	Command Name

	set_value

	Command Params

	Unspecified

	Command Description

	Sets the specified value for this Thing.

Has Value devices are devices that have the “value” property. This field and
a corresponding property is rarely used in the real life. See
has_brightness, has_temperature, has_volume and other similar
Capabilities instead.

Has Volume

	Formal Capability Name

	has_volume

	Provided Fields

	
	Field Name

	volume

	Field Values

	The integer value between 0 and 100 including.

	Field Description

	The value of volume (loudness) for this Thing.

	Provided Commands

	
	Command Name

	set_volume

	Command Params

	volume - a new value of the volume for this Thing.

	Command Description

	Sets the specified volume (loudness level) for this Thing.

Has Value devices are devices that have the “volume” property - the measure
of loudness of how loud its sound is. Volume is an integer value in the range
from 0 (zero) to 100. Actuator Has Volume devices are able to change their
volume with a set_volume command.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Codename: Everthing Platform

 		
 Getting Started

 		
 Installation

 		
 Preface

 		
 System Requirements

 		
 Automatic Installation Steps

 		
 Manual Installation Steps

 		
 First Run

 		
 Integrations

 		
 Client Applications

 		
 Local network discovery

 		
 General information

 		
 How to discover an everpl hub

 		
 REST API

 		
 General information

 		
 Protected resources

 		
 Authentication

 		
 Things

 		
 Thing object

 		
 Fetching all Things

 		
 Fetching specific Thing

 		
 Sending commands to a Thing

 		
 Placements

 		
 Placement object

 		
 Fetching all Placements

 		
 Fetching specific Placement

 		
 Handling Errors

 		
 Error Response Format

 		
 General

 		
 Error 1000: Unsupported content-type

 		
 Error 1001: Failed to decode request body

 		
 Error 1003: Server-side issue

 		
 Error 1004: Method not allowed

 		
 Error 1005: Resource not found

 		
 Authorization and authentication

 		
 Error 2000: Missing username

 		
 Error 2001: Missing password

 		
 Error 2002: Invalid username and password combination

 		
 Error 2100: Missing Authorization header

 		
 Error 2101: Invalid access token

 		
 Error 2110: Permission Denied

 		
 Things

 		
 Error 3100: Not an Actuator

 		
 Error 3101: Missing ‘command’ value

 		
 Error 3102: Missing ‘command_args’ value

 		
 Error 3103: Unacceptable command arguments

 		
 Error 3110: Unsupported command

 		
 Placements

 		
 Streaming API

 		
 Capabilities

 		
 Possible Capabilities

 		
 Actuators

 		
 Has State

 		
 Is Active

 		
 On/Off

 		
 Open/Closed

 		
 Multimode

 		
 Has Brightness

 		
 Has Color HSB

 		
 Has Color RGB

 		
 Has Value

 		
 Has Volume

_static/comment-bright.png

_static/ajax-loader.gif

