
Events Documentation
Release 0.3

Nicola Iarocci

Jun 01, 2017

Contents

1 Usage 3
1.1 Introspection . 4
1.2 Event names . 5

2 Installing 7

3 Testing 9

4 Source Code 11

5 Attribution 13

6 Copyright Notice 15

i

ii

Events Documentation, Release 0.3

Bringing the elegance of C# EventHandler to Python

The concept of events is heavily used in GUI libraries and is the foundation for most implementations of the MVC
(Model, View, Controller) design pattern. Another prominent use of events is in communication protocol stacks, where
lower protocol layers need to inform upper layers of incoming data and the like. Here is a handy class that encapsulates
the core to event subscription and event firing and feels like a “natural” part of the language.

The package has been tested under Python 2.6, 2.7, 3.3 and 3.4.

Contents 1

Events Documentation, Release 0.3

2 Contents

CHAPTER 1

Usage

The C# language provides a handy way to declare, subscribe to and fire events. Technically, an event is a “slot” where
callback functions (event handlers) can be attached to - a process referred to as subscribing to an event. To subscribe
to an event:

>>> def something_changed(reason):
... print "something changed because %s" % reason
...

>>> from events import Events
>>> events = Events()
>>> events.on_change += something_changed

Multiple callback functions can subscribe to the same event. When the event is fired, all attached event handlers are
invoked in sequence. To fire the event, perform a call on the slot:

>>> events.on_change('it had to happen')
something changed because it had to happen

Usually, instances of Events will not hang around loosely like above, but will typically be embedded in model
objects, like here:

class MyModel(object):
def __init__(self):

self.events = Events()
...

Similarly, view and controller objects will be the prime event subscribers:

class MyModelView(SomeWidget):
def __init__(self, model):

...
self.model = model
model.events.on_change += self.display_value
...

3

Events Documentation, Release 0.3

def display_value(self):
...

Introspection

The Events and _EventSlot classes provide some introspection support. This is usefull for example for automatic
event subscription based on method name patterns.

>>> from events import Events
>>> events = Events()
>>> print events
<events.events.Events object at 0x104e5d5f0>

>>> def changed():
... print "something changed"
...

>>> def another_one():
... print "something changed here too"
...

>>> def deleted():
... print "something got deleted!"
...

>>> events.on_change += changed
>>> events.on_change += another_one
>>> events.on_delete += deleted

>>> print len(events)
2

>>> for event in events:
... print event.__name__
...
on_change
on_delete

>>> event = events.on_change
>>> print event
event 'on_change'

>>> print len(event)
2

>>> for handler in event:
... print handler.__name__
...
changed
another_one

>>> print event[0]
<function changed at 0x104e5c230>

4 Chapter 1. Usage

Events Documentation, Release 0.3

>>> print event[0].__name__
changed

>>> print len(events.on_delete)
1

>>> events.on_change()
something changed
somethind changed here too

>>> events.on_delete()
something got deleted!

Event names

Note that by default Events does not check if an event that is being subscribed to can actually be fired, unless the
class attribute __events__ is defined. This can cause a problem if an event name is slightly misspelled. If this is an
issue, subclass Events and list the possible events, like:

class MyEvents(Events):
__events__ = ('on_this', 'on_that',)

events = MyEvents()

this will raise an EventsException as `on_change` is unknown to MyEvents:
events.on_change += changed

You can also predefine events for a single Events instance by passing an iterator to the constructor.

events = Events(('on_this', 'on_that'))

this will raise an EventsException as `on_change` is unknown to MyEvents:
events.on_change += changed

It is recommended to use the constructor method for one time use cases. For more complicated use cases, it is
recommended to subclass Events and define __events__.

You can also leverage both the constructor method and the __events__ attribute to restrict events for specific
instances:

DatabaseEvents(Events):
__events__ = ('insert', 'update', 'delete', 'select')

audit_events = ('select')

AppDatabaseEvents = DatabaseEvents()

only knows the 'select' event from DatabaseEvents
AuditDatabaseEvents = DatabaseEvents(audit_events)

1.2. Event names 5

Events Documentation, Release 0.3

6 Chapter 1. Usage

CHAPTER 2

Installing

Events is on PyPI so all you need to do is:

pip install events

7

Events Documentation, Release 0.3

8 Chapter 2. Installing

CHAPTER 3

Testing

Just run:

python setup.py test

The package has been tested under Python 2.6, Python 2.7 and Python 3.3.

9

Events Documentation, Release 0.3

10 Chapter 3. Testing

CHAPTER 4

Source Code

Source code is available at GitHub.

11

https://github.com/pyeve/events

Events Documentation, Release 0.3

12 Chapter 4. Source Code

CHAPTER 5

Attribution

Based on the excellent recipe by Zoran Isailovski, Copyright (c) 2005.

13

http://code.activestate.com/recipes/410686/

Events Documentation, Release 0.3

14 Chapter 5. Attribution

CHAPTER 6

Copyright Notice

This is an open source project by Nicola Iarocci. See the original LICENSE for more informations.

15

http://nicolaiarocci.com
https://github.com/pyeve/events/blob/master/LICENSE

	Usage
	Introspection
	Event names

	Installing
	Testing
	Source Code
	Attribution
	Copyright Notice

