

eventful: Event Sourcing in Haskell

eventful is a set of Haskell packages that are building blocks to event
sourced applications. You should use eventful if you want to explore event
sourcing, or if you already have experience with event sourcing and you want
pre-built event storage and other convenient abstractions for your application.

	Introduction
	What is Event Sourcing?

	General Event Sourcing Resources

	Features

	Tutorial
	Manipulating state with events

	Event Stores

Introduction

eventful is a Haskell library for building event sourced applications.

What is Event Sourcing?

At its core, event sourcing is the following: instead of simply storing the
current state of your application, you store a sequence of state-changing
events. Events become the atomic unit of storage in your application, and the
current state is computed from this sequence of events.

General Event Sourcing Resources

We could explain event sourcing in detail here, but if you’ve got far enough to
google “haskell event sourcing” and you found this library, chances are you
have a decent idea of what event sourcing is. In lieu of a more complete
explanation, here are some great introduction materials:

	This first article [https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying]
isn’t specifically about event sourcing per se, but it is a very compelling
and thorough introduction to storing your data in a log and using logs as a
communication mechanism between multiple consumers. I highly recommend
starting here.

	Introductory talk [https://www.youtube.com/watch?v=8JKjvY4etTY] by Greg
Young.

	Great, but slightly dated overview by Martin Fowler [https://martinfowler.com/eaaDev/EventSourcing.html].

	Article by Martin Kleppmann [https://www.confluent.io/blog/making-sense-of-stream-processing/] about
stream processing in general, but also specifically about event sourcing.

Features

The goal of eventful is not to be a framework that imposes design decisions
on application developers. It is meant to be a toolbox from which you can
choose specific features to construct your application. Some features include:

	Robust event stream storage using our EventStore type. There are multiple
backends implemented, including in-memory, SQLite, PostgreSQL, and AWS
DynamoDB.

	Simple EventStore API so you can easily construct new event store
backends.

	Convenience layer with common ES/CQRS abstractions, including Projection,
CommandHandler, and ProcessManager. All of these integrate with
EventStore so you get transparent integration with your underlying event
storage.

	Extremely flexible serialization system. All eventful components that do
serialization use a type parameter called serialized. You provide the
serialized type and functions to serialize/deserialize your events, and
we handle storage to one of the available backends.

	The EventStore type exposes the monad it operates in as a type parameter;
we don’t force the use of any particular monad stack on you. If your event
store’s monad supports transactions, like SqlPersistT or STM does,
then you get transactional semantics for free.

	eventful aims to use the most vanilla Haskell possible. We prefer value
types over type classes, avoid any type-level computations, etc. This makes
the core API extensible and easy to understand. If you want, you can easily
add more advanced type system features to your application while still
maintaining the ability to use the core eventful constructs.

Tutorial

This tutorial will introduce new users to the concepts behind eventful.
Additionally, once you read this tutorial you will know how to build a simple
event sourced application using eventful.

	Manipulating state with events

	Event Stores

Manipulating state with events

The core concept behind event sourcing is your current state should be derived
from past events. To illustrate this, we will use an extremely simple example
of an integer "counter". The user can increment, decrement, or reset the
counter to zero. The purpose of this example is not to present a compelling
business use case for event sourcing. It is here to simply introduce event
sourcing.

Counter State

The state for our counter is laughably simple:

module Counter where

import Eventful

newtype Counter = Counter { unCounter :: Int }
 deriving (Show, Eq)

Our Counter is just a simple newtype wrapper around an Int.

In a non event sourced world, interacting with the Counter would probably
involve a few functions on the Counter:

incrementCounter :: Counter -> Int -> Counter
incrementCounter (Counter count) amount = Counter (count + amount)

decrementCounter :: Counter -> Int -> Counter
decrementCounter (Counter count) amount = Counter (count - amount)

resetCounter :: Counter -> Counter
resetCounter _ = Counter 0

You could imagine these functions being wrapped in some sort of CLI or a REST
API. Note how the functions are written in an imperative tone, and they
directly modify the state. You could imagine the integer representing the count
being stored directly as in integer in some database.

Moving to events

Now what if your boss comes up to you one day and says "hey, we think users
often make mistakes when incrementing the counter. We want to know how often an
increment is followed by a decrement of a smaller amount." With our current
model, this is simply not possible without some detective work (hello log
analysis! That is, if you have logs...).

If we had stored our state changes as events, we could easily give our boss
what he/she wants! What would some events look like in our case? How about this:

data CounterEvent
 = CounterIncremented Int
 | CounterDecremented Int
 | CounterReset
 deriving (Show, Eq)

Note the parallels with our previous state modifying function. In this case, we
use the past tense to describe events. That is, an event is something that
has already occurred, and we are simply storing that fact.

Using events to replay state

So we have some events, how do we use them? If events are records of what
happened in the past, then we want out internal state to be a function of these
facts. Let's write a function that can handle each event:

handleCounterEvent :: Counter -> CounterEvent -> Counter
handleCounterEvent (Counter count) (CounterIncremented amount) = Counter (count + amount)
handleCounterEvent (Counter count) (CounterDecremented amount) = Counter (count - amount)
handleCounterEvent _ (CounterReset) = Counter 0

Easy right?

Now, let's introduce the concept of a Projection in eventful. First we'll
create one for a Counter and then we can discuss details:

counterProjection :: Projection Counter CounterEvent
counterProjection =
 Projection
 { projectionSeed = Counter 0
 , projectionEventHandler = handleCounterEvent
 }

A Projection is a pair of a "seed" and an event handler. A seed is simply the
default value for the projection; we always have to know what to start with
when we don't have events. The event handler tells the projection how to apply
events to state. Note that the projection has two type parameters for the state
and event types.

Convenience functions for Projection

eventful comes with some convenience functions to rebuilt the current state
for a Projection from a list of events, and to show all Projection states.

myEvents :: [CounterEvent]
myEvents =
 [CounterIncremented 3
 , CounterDecremented 1
 , CounterReset
]

myLatestCounter :: Counter
myLatestCounter = latestProjection counterProjection myEvents
-- Counter {unCounter = 0}

allMyCounters :: [Counter]
allMyCounters = allProjections counterProjection myEvents
-- [Counter {unCounter = 0}
-- , Counter {unCounter = 3}
-- , Counter {unCounter = 2}
-- , Counter {unCounter = 0}
--]

Event Stores

Using events to change state is no good unless we can actually persist the
events somewhere. In eventful, we do that using
an
EventStore [https://hackage.haskell.org/package/eventful-core/docs/Eventful-Store-Class.html#t:EventStore].
Before diving into the API, lets discuss some concepts related to event streams.

Streams of events

Events don't exist in a vacuum; in most real-world scenarios the events we
receive have some natural association with other events. An example unrelated
to event sourcing is a stream of pricing data from a particular stock in the
stock market. For example, we could have a stream of bid quotes from Google's
stock (GOOG):

{
 "price": 34.5,
 "time": "2017-05-17T12:00:00",
 "instrument": "GOOG"
}
{
 "price": 34.7,
 "time": "2017-05-17T13:00:00",
 "instrument": "GOOG"
}
{
 "price": 34.9,
 "time": "2017-05-17T14:00:00",
 "instrument": "GOOG"
}

There are a couple notable properties from this stream of events:

	The stream has an identity. In this case, it is "bid quotes for GOOG". If we
were to store this stream in a database, a natural primary key would be the
string "GOOG".

	There is a natural ordering among the events; they can be ordered by
"time".

Event sourced streams of events

In event sourcing, it's natural to think of the events for a particular piece
of state (a Projection) as a stream. Following the lead of the example above,
we can give the stream an identity and also a natural ordering:

	It is common to use
a UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier] to
identify event sourced state streams.

	For each stream, we can order the events by a strictly increasing sequence of
integers. In eventful, this is represented by
the
EventVersion [https://hackage.haskell.org/package/eventful-core/docs/Eventful-Store-Class.html#t:EventVersion] type.

Here's an example of a possible event stream for our Counter:

{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "type": "CounterIncremented",
 "amount": 3,
 "eventVersion": 0
}
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "type": "CounterDecremented",
 "amount": 1,
 "eventVersion": 1
}
{
 "uuid": "123e4567-e89b-12d3-a456-426655440000",
 "type": "CounterReset",
 "eventVersion": 2
}

Basic EventStore usage

The EventStore interface in eventful has two primary functions:

	storeEvents: Store a list of events to a given stream specified by the
UUID

	getEvents: Retrieve events from the given UUID stream

Simple right? There are multiple event store backends included in eventful.
In the following example we are going to use the in-memory store from
eventful-memory.

The event store type EventStore serialized m has two type parameters:

	serialized is the serialization type. In our case, we don't really need to
serialize so we can just use CounterEvent.

	m is the monad the event store operates in. For the in-memory store, that
is the STM monad.

{-# LANGUAGE ScopedTypeVariables #-}

module EventStore where

import Control.Concurrent.STM
import Eventful
import Eventful.Store.Memory

import Counter

counterStoreExample :: IO ()
counterStoreExample = do
 -- First we need to create our in-memory event store.
 tvar <- eventMapTVar
 let
 writer = tvarEventStoreWriter tvar
 reader = tvarEventStoreReader tvar

 -- Lets store some events. Note that the 'atomically' functions is how we
 -- execute STM actions.
 let
 uuid = read "123e4567-e89b-12d3-a456-426655440000"
 events =
 [CounterIncremented 3
 , CounterDecremented 1
 , CounterReset
]
 _ <- atomically $ storeEvents writer uuid AnyPosition events

 -- Now read the events back and print
 events' <- atomically $ getEvents reader (allEvents uuid)
 print events'

Output:

[StreamEvent
 { streamEventProjectionId = 123e4567-e89b-12d3-a456-426655440000
 , streamEventVersion = EventVersion {unEventVersion = 0}
 , streamEventEvent = CounterIncremented 3
 }
, StreamEvent
 { streamEventProjectionId = 123e4567-e89b-12d3-a456-426655440000
 , streamEventVersion = EventVersion {unEventVersion = 1}
 , streamEventEvent = CounterDecremented 1
 }
, StreamEvent
 { streamEventProjectionId = 123e4567-e89b-12d3-a456-426655440000
 , streamEventVersion = EventVersion {unEventVersion = 2}
 , streamEventEvent = CounterReset
 }
]

This section of the tutorial obviously glossed over many details of the
EventStore. The main part of the documentation will cover those details.

Index

 nav.xhtml

 Table of Contents

 		
 eventful: Event Sourcing in Haskell

 		
 Introduction

 		
 What is Event Sourcing?

 		
 General Event Sourcing Resources

 		
 Features

 		
 Tutorial

 		
 Manipulating state with events

 		
 Counter State

 		
 Moving to events

 		
 Using events to replay state

 		
 Convenience functions for Projection

 		
 Event Stores

 		
 Streams of events

 		
 Event sourced streams of events

 		
 Basic EventStore usage

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

