eventfd Documentation
Release 0.2

Aviv Palivoda

March 01, 2016

Contents

5

Event Objects
EXAMPLES
Obtaining the Module

Development and Support

4.1 ReleaseHistory

Indices and tables

Python Module Index

eventfd Documentation, Release 0.2

Module author: Aviv Palivoda <palaviv@ gmail.com>

The python standard library threading.Event class provides a simple mechanisms for communication between
threads: one thread signals an event and other threads wait for it. In many cases you would like to signal a thread
that is currently waiting on a other events to happen using select/poll. The EventFD class provides a extension to the
threading.Event class and can be used to stop the select/poll when signaled.

Note: EventFD support the windows operating system but it is not tested in the CI.

Note: EventFD use the linux eventfd but is not a python binding for eventfd. You might want to try:
* https://pypi.python.org/pypi/linuxfd/
* https://pypi.python.org/pypi/butter/

Contents 1

mailto:palaviv@gmail.com
http://docs.python.org/library/threading.html#threading.Event
http://docs.python.org/library/threading.html#threading.Event
https://pypi.python.org/pypi/linuxfd/
https://pypi.python.org/pypi/butter/

eventfd Documentation, Release 0.2

2 Contents

CHAPTER 1

Event Objects

The EventFD class is currently implemented with linux eventfd or os . pipe (). the EventFD class inherits from
the event fd. eventfd.BaseEventFD class.

class eventfd._eventfd.BaseEventFD
Class implementing event objects that has a fd that can be selected.

This EventFD class implements the same functions as a regular Event but it has a file descriptor. The file
descriptor can be accessed using the fileno function. This event can be passed to select, poll and it will block
until the event will be set.

clear ()
Reset the internal flag to false.

Subsequently, threads calling wait() will block until set() is called to set the internal flag to true again.

fileno ()
Return a file descriptor that can be selected.

You should not use this directly pass the EventFD object instead.
is_set ()
Return true if and only if the internal flag is true.

set ()
Set the internal flag to true.

All threads waiting for it to become true are awakened. Threads that call wait() once the flag is true will
not block at all.

wait (timeout=None)
Block until the internal flag is true.

If the internal flag is true on entry, return immediately. Otherwise, block until another thread calls set() to
set the flag to true, or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof).

This method returns the internal flag on exit, so it will always return True except if a timeout is given and
the operation times out.

eventfd Documentation, Release 0.2

4 Chapter 1. Event Objects

CHAPTER 2

EXAMPLES

We will implement socketserver.TCPServer without polling using EventFD:

"""This is an example of python HTTP server without polling using the EventFD to sHutdown the se

import threading

import select

from socketserver import TCPServer, BaseRequestHandler
import socket

import time

from eventfd import EventFD

class NonPollingHTTPServer (TCPServer) :

def _ _init__ (self, server_address, RequestHandlerClass, bind_and_activate=True)|:
self.server_address = server_address
self.RequestHandlerClass = RequestHandlerClass
self.__is_shut_down = threading.Event ()
using an EventFD to signal the server_forever to stop
self.__ shutdown_event = EventFD ()
self.socket = socket.socket (self.address_family,

self.socket_type)
if bind_and_activate:
try:
self.server_bind()
self.server_activate ()
except:
self.server_close()
raise

overriding the server._forever class to not poll.
def serve_forever (self):

self.__is_shut_down.clear ()
self.__ shutdown_event.clear ()
try:
while True:
r, w, e = select.select([self._ shutdown_event, self]l, [], [1])
if self._ shutdown_event in r:
break

if self in r:

eventfd Documentation, Release 0.2

self._handle_request_noblock ()

self.service_actions ()
finally:
self.__is_shut_down.set ()

def shutdown (self):
self._ shutdown_event.set ()
self.__is_shut_down.wait ()

#HAF AR FAAEAFAFEAHAFEAHAF A AR A AR A A HAF A HAA S
MyTCPHandler class and client function are
from the python socketserver documentation.
HEAF AR FAFHAFAFEAHAFEAHAF A HAF A AR A A HAF A HAH S

class MyTCPHandler (BaseRequestHandler) :

def

def

def handle (self):
self.request is the TCP socket connected to the client
self.data = self.request.recv(1024) .strip()
print ("{} wrote:".format (self.client_address([0]))
print (self.data)
just send back the same data, but upper-cased
self.request.sendall (self.data.upper())

client (ip, port, message):
sock = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
sock.connect ((ip, port))
try:
sock.sendall (message)
response = sock.recv(1024)
print ("Received: {}".format (response))
finally:
sock.close ()

test () :
server = NonPollingHTTPServer (("localhost", 0), MyTCPHandler)
ip, port = server.server_address

server_thread = threading.Thread (target=server.serve_forever)
server_thread.daemon = True
server_thread.start ()

client (ip, port, b"Hello World 1")
client (ip, port, b"Hello World 2")
client (ip, port, b"Hello World 3")

print ("requesting server shutdown at {}".format (time.time()))
server.shutdown ()

print ("server was shutdown at {}".format (time.time()))
server.server_close ()

if name == "__main__":

test ()

Chapter 2. EXAMPLES

eventfd Documentation, Release 0.2

eventfd Documentation, Release 0.2

8 Chapter 2. EXAMPLES

CHAPTER 3

Obtaining the Module

This module can be installed directly from the Python Package Index with pip:

pip install eventfd

Alternatively, you can download and unpack it manually from the eventfd PyPI page.

http://pypi.python.org
http://www.pip-installer.org
http://pypi.python.org/pypi/eventfd

eventfd Documentation, Release 0.2

10 Chapter 3. Obtaining the Module

CHAPTER 4

Development and Support

eventfd is developed and maintained on Github.

Problems and suggested improvements can be posted to the issue tracker.

4.1 Release History

4.1.1 0.2 (01-03-2016)

* Using linux eventfd where eventfd is avaiable.
¢ Travis CI using tox.

* Support for windows using socket (only sockets can be selected in windows).

4.1.2 0.1 (27-02-2016)

» EventFD using pipe.

11

https://github.com/palaviv/eventfd
https://github.com/palaviv/eventfd/issues

eventfd Documentation, Release 0.2

12 Chapter 4. Development and Support

CHAPTER 5

Indices and tables

¢ genindex
* modindex

e search

13

eventfd Documentation, Release 0.2

14 Chapter 5. Indices and tables

Python Module Index

e
eventfd, 3

15

eventfd Documentation, Release 0.2

16 Python Module Index

Index

B

BaseEventFD (class in eventfd._eventfd), 3

C

clear() (eventfd._eventfd.BaseEventFD method), 3

E

eventfd (module), 1

F

fileno() (eventfd._eventfd.BaseEventFD method), 3

is_set() (eventfd._eventfd.BaseEventFD method), 3

S

set() (eventfd._eventfd.BaseEventFD method), 3

W

wait() (eventfd._eventfd.BaseEventFD method), 3

17

	Event Objects
	EXAMPLES
	Obtaining the Module
	Development and Support
	Release History

	Indices and tables
	Python Module Index

