

EthPM Package Manifest Documentation

Contents:

	Overview
	Background

	Glossary

	Package Specification
	Guiding Principles

	Keywords

	Format

	Document Specification

	Definitions

Indices and tables

	Index

	Module Index

	Search Page

Overview

Background

These docs are meant to provide insight into the EVM Smart Contract Packaging
Specification and facilitate implementation and adoption of these standards.

Glossary

	ABI

	The JSON representation of the application binary interface.
See the official specification [https://solidity.readthedocs.io/en/develop/abi-spec.html]
for more information.

	Address

	A public identifier for an account on a particular chain

	Bytecode

	The set of EVM instructions as produced by a compiler. Unless otherwise
specified this should be assumed to be hexadecimal encoded, representing
a whole number of bytes, and prefixed with a '0x'.

Bytecode can either be linked or unlinked. (see Linking)

	Unlinked Bytecode

	The hexadecimal representation of a contract’s EVM
instructions that contains sections of code that requires linking
for the contract to be functional.

The sections of code which are unlinked must be filled in with zero bytes.

Example: 0x606060405260e060007300634d536f

	Linked Bytecode

	The hexadecimal representation of a contract’s EVM
instructions which has had all Link References replaced with the
desired Link Values.

Example: 0x606060405260e06000736fe36000604051602001526040518160e060020a634d536f

	Contract Instance

	A contract instance a specific deployed version of a Contract Type.

All contract instances have an Address on some specific chain.

	Contract Type

	Refers to a specific contract in the package source.
This term can be used to refer to an abstract contract, a normal
contract, or a library. Two contracts are of the same contract type if
they have the same bytecode.

Example:

contract Wallet {
 ...
}

A deployed instance of the Wallet contract would be of of type
Wallet.

	Link Reference

	A location within a contract’s bytecode which needs to be linked. A link
reference has the following properties.

	offset

	Defines the location within the bytecode where the
link reference begins.

	length

	Defines the length of the reference.

	name

	(optional.) A string to identify the reference

	Link Value

	A link value is the value which can be inserted in place of a
Link Reference

	Linking

	The act of replacing Link References with Link Values within some
Bytecode.

	Package

	Distribution of an application’s source or compiled bytecode along with
metadata related to authorship, license, versioning, et al.

For brevity, the term Package is often used metonymously to mean
Package Manifest.

	Package Manifest

	A machine-readable description of a package (See
Package Specification for information about the format for package
manifests.)

Package Specification

This document defines the specification for a Package. The Package
JSON document provides metadata about itself and in most cases should
provide sufficient information about the packaged contracts and its
dependencies to do bytecode verification of its contracts.

Guiding Principles

The Package specification makes the following assumptions about the
document lifecycle.

	Packages are intended to be generated programatically by package
management software as part of the release process.

	Packages will be consumed by package managers during tasks like
installing package dependencies or building and deploying new
releases.

	Packages will typically not be stored alongside the source, but
rather by package registries or referenced by package registries
and stored in something akin to IPFS.

Keywords

RFC2119

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

	https://www.ietf.org/rfc/rfc2119.txt

Custom

Prefixed vs Unprefixed

A prefixed hexadecimal value begins with '0x'. Unprefixed values
have no prefix. Unless otherwise specified, all hexadecimal values
should be represented with the '0x' prefix.

	Prefixed

	0xdeadbeef

	Unprefixed

	deadbeef

Contract Name

The name found in the source code which defines a specific Contract Type.
These names must conform to the regular expression
[a-zA-Z][-a-zA-Z0-9_]{0,255}

There can be multiple contracts with the same contract name in a
projects source files.

Contract Alias

This is a name used to reference a specific Contract Type. Contract
aliases must be unique within a single Package.

The contract alias must use one of the following naming schemes.

	<contract-name>

	<contract-name>[<identifier>]

The <contract-name> portion must be the same as the contract
name for this contract type.

The [<identifier>] portion must match the regular expression
\[[-a-zA-Z0-9]{1,256}\].

Contract Instance Name

A name which refers to a specific Contract Instance on a specific
chain from the deployments of a single Package. This name must be
unique across all other contract instances for the given chain. The
name must conform to the regular expression
[a-zA-Z][a-zA-Z0-9_]{0,255}

In cases where there is a single deployed instance of a given Contract Type,
package managers should use the contract alias for that
contract type for this name.

In cases where there are multiple deployed instances of a given
contract type, package managers should use a name which provides
some added semantic information as to help differentiate the two
deployed instances in a meaningful way.

Identifier

A string matching the regular expression
[a-zA-Z][-_a-zA-Z0-9]{0,255}

Package Name

A string matching the regular expression
[a-zA-Z][-_a-zA-Z0-9]{0,255}

Content Addressable URI

Any URI which contains a cryptographic hash which can be used to verify
the integrity of the content found at the URI.

The URI format is defined in RFC3986

It is recommended that tools support IPFS and Swarm.

Chain Definition

This definition originates from BIP122 URI [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki].

A URI in the format blockchain://<chain_id>/block/<block_hash>

	chain_id is the unprefixed hexadecimal representation of the
genesis hash for the chain.

	block_hash is the unprefixed hexadecimal representation of the
hash of a block on the chain.

A chain is considered to match a chain definition if the the genesis
block hash matches the chain_id and the block defined by
block_hash can be found on that chain. It is possible for multiple
chains to match a single URI, in which case all chains are considered
valid matches

Format

The canonical format for the Package JSON document containing a single
JSON object. Packages must conform to the following serialization
rules.

	The document must be tightly packed, meaning no linebreaks or
extra whitespace.

	The keys in all objects must be sorted alphabetically.

	Duplicate keys in the same object are invalid.

	The document must use UTF-8 [https://en.wikipedia.org/wiki/UTF-8] encoding.

	The document must not have a trailing newline.

Document Specification

The following fields are defined for the Package. Custom fields may be
included. Custom fields should be prefixed with x- to prevent
name collisions with future versions of the specification.

EthPM Manifest Version: manifest_version

The manifest_version field defines the specification version that
this document conforms to. Packages must include this field.

	Required

	Yes

	Key

	manifest_version

	Type

	String

	Allowed Values

	2

Package Name: package_name

The package_name field defines a human readable name for this
package. Packages must include this field. Package names must
begin with a lowercase letter and be comprised of only lowercase
letters, numeric characters, and the dash character '-'. Package
names must not exceed 214 characters in length.

	Required

	Yes

	Key

	package_name

	Type

	String

	Format

	must be a valid package name.

Package Meta: meta

The meta field defines a location for metadata about the package
which is not integral in nature for package installation, but may be
important or convenient to have on-hand for other reasons. This field
should be included in all Packages.

	Required

	No

	Key

	meta

	Type

	Object (String: Package Meta object)

Version: version

The version field declares the version number of this release. This
value must be included in all Packages. This value should
conform to the semver [http://semver.org/] version numbering
specification.

	Required

	Yes

	Key

	version

	Type

	String

Sources: sources

The sources field defines a source tree that should comprise the
full source tree necessary to recompile the contracts contained in this
release. Sources are declared in a key/value mapping.

	Key

	sources

	Type

	Object (String: String)

	Format

	
	Keys must be relative filesystem paths beginning with a ./. Paths must resolve to a path that is within the current working directory.

	Values must conform to one of the following formats.

	Source string.

	When the value is a source string the key should be interpreted
as a file path.

	Content Addressable URI.

	If the resulting document is a directory the key should be
interpreted as a directory path.

	If the resulting document is a file the key should be
interpreted as a file path.

Contract Types: contract_types

The contract_types field holds the Contract Types which have been
included in this release. Packages should only include contract types
that can be found in the source files for this package. Packages
should not include contract types from dependencies.

	Key

	contract_types

	Type

	Object (String: Contract Type Object)

	Format

	
	Keys must be valid contract aliases.

	Values must conform to the Contract Type Object definition.

Packages should not include abstract contracts in the contract types
section of a release.

Deployments: deployments

The deployments field holds the information for the chains on which
this release has Contract Instances as well as the Contract Types
and other deployment details for those deployed contract instances.
The set of chains defined by the BIP122 URI keys for this object
must be unique.

	Key

	deployments

	Type

	Object (String: Object(String: Contract Instance Object))

	Format

	
	Keys must be a valid BIP122 URI chain definition.

	Values must be objects which conform to the format:

	Keys must be a valid Contract Instance Name.

	Values must be a valid Contract Instance Object.

Build Dependencies: build_dependencies

The build_dependencies field defines a key/value mapping of ethereum
packages that this project depends on.

	Key

	dependencies

	Type

	Object (String: String)

	Format

	
	Keys must be valid package names matching the regular
expression [a-z][-a-z0-9]{0,213}

	Values must be valid IPFS URIs which resolve to a valid
Package

Definitions

Definitions for different objects used within the Package. All objects
allow custom fields to be included. Custom fields should be prefixed
with x- to prevent name collisions with future versions of the
specification.

The Link Reference Object

A |LinkReference| object has the following key/value pairs. All
link references are assumed to be associated with some corresponding bytecode.

Offsets: offsets

The offsets field is an array of integers, corresponding to each of the
start positions where the link reference appears in the bytecode.
Locations are 0-indexed from the beginning of the bytes representation of
the corresponding bytecode. This field is invalid if it references a position
that is beyond the end of the bytecode.

	Required

	Yes

	Type

	Array

Length: length

The length field is an integer which defines the length in bytes
of the link reference. This field is invalid if the end of the defined
link reference exceeds the end of the bytecode.

	Required

	Yes

	Type

	Integer

Name: name

The name field is a string which must be a valid Identifier.
Any link references which should be linked with the same
link value should be given the same name.

	Required

	No

	Type

	String

	Format

	must conform to the Identifier format.

The Link Value Object

A |LinkValue| object is defined to have the following key/value pairs.

Offsets: offsets

The offsets field defines the locations within the corresponding bytecode
where the value for this link value was written. These locations are
0-indexed from the beginning of the bytes representation of the
corresponding bytecode.

	Required

	Yes

	Type

	Integer

	Format

	Array of integers, where each integer must conform to all of the following:

	be greater than or equal to zero

	strictly less than the length of the unprefixed hexadecimal
representation of the corresponding bytecode.

Type: type

The type field defines the value type for determining what is encoded
when linking the corresponding bytecode.

	Required

	Yes

	Type

	String

	Allowed Values

	
	'literal' for bytecode literals

	'reference' for named references to a particular Contract Instance

Value: value

The value field defines the value which should be written when
linking the corresponding bytecode.

	Required

	Yes

	Type

	String

	Format

	determined based on type:

	Type literal

	For static value literals (e.g. address), value must be a
byte string

	Type reference

	To reference the address of a Contract Instance from the current
package the value should be the name of that contract instance.

	This value must be a valid contract instance name.

	The chain definition under which the contract instance that this
link value belongs to must contain this value within its keys.

	This value may not reference the same contract instance that
this link value belongs to.

To reference a contract instance from a Package from somewhere
within the dependency tree the value is constructed as follows.

	Let [p1, p2, .. pn] define a path down the dependency tree.

	Each of p1, p2, pn must be valid package names.

	p1 must be present in keys of the build_dependencies for
the current package.

	For every pn where n > 1, pn must be present in the
keys of the build_dependencies of the package for pn-1.

	The value is represented by the string
<p1>:<p2>:<...>:<pn>:<contract-instance> where all of <p1>,
<p2>, <pn> are valid package names and
<contract-instance> is a valid contract name.

	The <contract-instance> value must be a valid
contract instance name.

	Within the package of the dependency defined by
<pn>, all of the following must be satisfiable:

	There must be exactly one chain defined under the
deployments key which matches the chain definition that this
link value is nested under.

	The <contract-instance> value must be present in the keys
of the matching chain.

The Bytecode Object

A bytecode object has the following key/value pairs.

Bytecode: bytecode

The bytecode field is a string containing the 0x prefixed
hexadecimal representation of the bytecode.

	Required

	Yes

	Type

	String

	Format

	0x prefixed hexadecimal.

Link References: link_references

The link_references field defines the locations in the corresponding
bytecode which require linking.

	Required

	No

	Type

	Array

	Format

	All values must be valid Link Reference objects

This field is considered invalid if any of the Link References are
invalid when applied to the corresponding bytecode field, or if
any of the link references intersect.

Intersection is defined as two link references which overlap.

Link Dependencies: link_dependencies

The link_dependencies defines the Link Values that have been used
to link the corresponding bytecode.

	Required: No

	Type: Array

	Format: All values must be valid Link Value objects

Validation of this field includes the following:

	No two link value objects may contain any of the same values for offsets.

	Each link value object must have a corresponding link reference
object under the link_references field.

	The length of the resolved value must be equal to the
length of the corresponding Link Reference.

The Package Meta Object

The Package Meta object is defined to have the following key/value
pairs.

Authors: authors

The authors field defines a list of human readable names for the
authors of this package. Packages may include this field.

	Required

	No

	Key

	authors

	Type

	List of Strings

License: license

The license field declares the license under which this package is
released. This value should conform to the
SPDX [https://en.wikipedia.org/wiki/Software_Package_Data_Exchange]
format. Packages should include this field.

	Required

	No

	Key

	license

	Type

	String

Description: description

The description field provides additional detail that may be
relevant for the package. Packages may include this field.

	Required

	No

	Key

	description

	Type

	String

Keywords: keywords

The keywords field provides relevant keywords related to this
package.

	Required

	No

	Key

	keywords

	Type

	List of Strings

Links: links

The links field provides URIs to relevant resources associated with
this package. When possible, authors should use the following keys
for the following common resources.

	website

	Primary website for the package.

	documentation

	Package Documentation

	repository

	Location of the project source code.

	Key

	links

	Type

	Object (String: String)

The Contract Type Object

A Contract Type object is defined to have the following key/value
pairs.

Contract Name: contract_name

The contract_name field defines the contract name for this
Contract Type.

	Required

	If the contract name and contract alias are not the
same.

	Type

	String

	Format

	must be a valid contract name.

Deployment Bytecode: deployment_bytecode

The deployment_bytecode field defines the bytecode for this Contract Type.

	Required

	No

	Type

	Object

	Format

	must conform to the Bytecode Object format.

Runtime Bytecode: runtime_bytecode

The runtime_bytecode field defines the unlinked '0x' prefixed
runtime portion of Bytecode for this Contract Type.

	Required

	No

	Type

	Object

	Format

	must conform to the Bytecode Object format.

ABI: abi

	Required

	No

	Type

	List

	Format

	see https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#json

Natspec: natspec

	Required

	No

	Type

	Object

	Format

	The Merged UserDoc and DevDoc

	UserDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#user-documentation]

	DevDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#developer-documentation]

Compiler: compiler

	Required

	No

	Type

	Object

	Format

	must conform to the Compiler Information object
format.

The Contract Instance Object

A |ContractInstance| Object is defined to have the following key/value
pairs.

Contract Type: contract_type

The contract_type field defines the Contract Type for this
Contract Instance. This can reference any of the contract types
included in this Package or any of the contract types found in any
of the package dependencies from the build_dependencies section of
the Package Manifest.

	Required

	Yes

	Type

	String

	Format

	must conform to one of the following formats

To reference a contract type from this Package, use the format
<contract-alias>.

	The <contract-alias> value must be a valid contract alias.

	The value must be present in the keys of the contract_types
section of this Package.

To reference a contract type from a dependency, use the format
<package-name>:<contract-alias>.

	The <package-name> value must be present in the keys of the
build_dependencies of this Package.

	The <contract-alias> value must be be a valid contract
alias.

	The resolved package for <package-name> must contain the
<contract-alias> value in the keys of the contract_types
section.

Address: address

The address field defines the Address of the Contract Instance.

	Required

	Yes

	Type

	String

	Format

	Hex encoded '0x' prefixed Ethereum address matching the
regular expression 0x[0-9a-fA-F]{40}.

Transaction: transaction

The transaction field defines the transaction hash in which this
Contract Instance was created.

	Required

	No

	Type

	String

	Format

	0x prefixed hex encoded transaction hash.

Block: block

The block field defines the block hash in which this the transaction
which created this contract instance was mined.

	Required

	No

	Type

	String

	Format

	0x prefixed hex encoded block hash.

Runtime Bytecode: runtime_bytecode

The runtime_bytecode field defines the runtime portion of bytecode for this
Contract Instance. When present, the value from this field supersedes
the runtime_bytecode from the Contract Type for this Contract Instance.

	Required

	No

	Type

	Object

	Format

	must conform to the Bytecode Object format.

Every entry in the link_references for this bytecode must have a
corresponding entry in the link_dependencies section.

Compiler: compiler

The compiler field defines the compiler information that was used
during compilation of this Contract Instance. This field should be
present in all Contract Types which include bytecode or
runtime_bytecode.

	Required

	No

	Type

	Object

	Format

	must conform to the Compiler Information Object
format.

The Compiler Information Object

The compiler field defines the compiler information that was used
during compilation of this Contract Instance. This field should be
present in all contract instances that locally declare runtime_bytecode.

A Compiler Information object is defined to have the following
key/value pairs.

Name name

The name field defines which compiler was used in compilation.

	Required

	Yes

	Key

	type:

	Type

	String

Version: version

The version field defines the version of the compiler. The field
should be OS agnostic (OS not included in the string) and take the
form of either the stable version in semver [http://semver.org/] format or if built on a
nightly should be denoted in the form of <semver>-<commit-hash> ex:
0.4.8-commit.60cc1668.

	Required

	Yes

	Key

	version:

	Type

	String

Settings: settings

The settings field defines any settings or configuration that was
used in compilation. For the 'solc' compiler, this should conform
to the Compiler Input and Output Description [http://solidity.readthedocs.io/en/latest/using-the-compiler.html#compiler-input-and-output-json-description].

	Required

	No

	Key

	settings:

	Type

	Object

BIP122 URIs

BIP122 URIs are used to define a blockchain via a subset of the
BIP-122 [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki]
spec.

blockchain://<genesis_hash>/block/<latest confirmed block hash>

The <genesis hash> represents the blockhash of the first block on
the chain, and <latest confirmed block hash> represents the hash of
the latest block that’s been reliably confirmed (package managers should
be free to choose their desired level of confirmations).

Index

 A
 | B
 | C
 | L
 | P

A

 	
 	ABI

 	
 	Address

B

 	
 	Bytecode

C

 	
 	Contract Instance

 	
 	Contract Type

L

 	
 	Link Reference

 	
 	Link Value

 	Linking

P

 	
 	Package

 	
 	Package Manifest

 nav.xhtml

 Table of Contents

 		
 EthPM Package Manifest Documentation

 		
 Overview

 		
 Background

 		
 Glossary

 		
 Package Specification

 		
 Guiding Principles

 		
 Keywords

 		
 RFC2119

 		
 Custom

 		
 Format

 		
 Document Specification

 		
 EthPM Manifest Version: manifest_version

 		
 Package Name: package_name

 		
 Package Meta: meta

 		
 Version: version

 		
 Sources: sources

 		
 Contract Types: contract_types

 		
 Deployments: deployments

 		
 Build Dependencies: build_dependencies

 		
 Definitions

 		
 The Link Reference Object

 		
 The Link Value Object

 		
 The Bytecode Object

 		
 The Package Meta Object

 		
 The Contract Type Object

 		
 The Contract Instance Object

 		
 The Compiler Information Object

 		
 BIP122 URIs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

