
Viper Documentation
Release

Vitalik Buterin

Nov 10, 2017

Contents

1 Principles and Goals 3

2 Compatibility-breaking Changelog 5

3 Glossary 7
3.1 Installing Viper . 7
3.2 Compiling a Contract . 9
3.3 Viper by Example . 10
3.4 Viper in Depth . 27
3.5 Contributing . 31
3.6 Frequently Asked Questions . 32

i

ii

Viper Documentation, Release

Viper is an experimental, contract-oriented, pythonic programming language that targets the Ethereum Virtual Ma-
chine (EVM)

Contents 1

http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine

Viper Documentation, Release

2 Contents

CHAPTER 1

Principles and Goals

• Security: It should be possible and natural to build secure smart-contracts in Viper.

• Language and compiler simplicity: The language and the compiler implementation should strive to be simple.

• Auditability: Viper code should be maximally human-readable. Furthermore, it should be maximally difficult to
write misleading code. Simplicity for the reader is more important than simplicity for the writer, and simplicity
for readers with low prior experience with Viper (and low prior experience with programming in general) is
particularly important.

Because of this Viper aims to provide the following features:

• Bounds and overflow checking: On array accesses as well as on arithmetic level.

• Support for signed integers and decimal fixed point numbers

• Decidability: It should be possible to compute a precise upper bound for the gas consumption of any function
call.

• Strong typing: Including support for units (e.g. timestamp, timedelta, seconds, wei, wei per second, meters per
second squared).

• Small and understandable compiler code

• Limited support for pure functions: Anything marked constant is not allowed to change the state.

Following the principles and goals, Viper does not provide the following features:

• Modifiers: For example in Solidity you can define a function foo() mod1 { ... }, where mod1 can
be defined elsewhere in the code to include a check that is done before execution, a check that is done after
execution, some state changes, or possibly other things. Viper does not have this, because it makes it too easy
to write misleading code. mod1 just looks too innocuous for something that could add arbitrary pre-conditions,
post-conditions or state changes. Also, it encourages people to write code where the execution jumps around
the file, harming auditability. The usual use case for a modifier is something that performs a single check before
execution of a program; our recommendation is to simply inline these checks as asserts.

• Class inheritance: Class inheritance requires people to jump between multiple files to understand what a
program is doing, and requires people to understand the rules of precedence in case of conflicts (“Which class’s

3

Viper Documentation, Release

function ‘X’ is the one that’s actually used?”). Hence, it makes code too complicated to understand which
negatively impacts auditability.

• Inline assembly: Adding inline assembly would make it no longer possible to search for a variable name in
order to find all instances where that variable is read or modified.

• Operator overloading: Operator overloading makes writing misleading code possible. For example “+” could
be overloaded so that it executes commands the are not visible at first glance, such as sending funds the user did
not want to send.

• Recursive calling: Recursive calling makes it impossible to set an upper bound on gas limits, opening the door
for gas limit attacks.

• Infinite-length loops: Similar to recurisve calling, infinite-length loops make it impossible to set an upper
bound on gas limits, opening the door for gas limit attacks.

• Binary fixed point: Decimal fixed point is better, because any decimal fixed point value written as a literal in
code has an exact representation, whereas with binary fixed point approximations are often required (e.g. (0.2)10
= (0.001100110011...)2, which needs to be truncated), leading to unintuitive results, e.g. in Python 0.3 + 0.3 +
0.3 + 0.1 != 1.

4 Chapter 1. Principles and Goals

CHAPTER 2

Compatibility-breaking Changelog

• 2017.07.25: The def foo() -> num(const): ... syntax no longer works; you now need to do def
foo() -> num: ... with a @constant decorator on the previous line.

• 2017.07.25: Functions without a @payable decorator now fail when called with nonzero wei.

• 2017.07.25: A function can only call functions that are declared above it (that is, A can call B only if B appears
earlier in the code than A does). This was introduced to prevent infinite looping through recursion.

5

Viper Documentation, Release

6 Chapter 2. Compatibility-breaking Changelog

CHAPTER 3

Glossary

3.1 Installing Viper

Don’t panic if the installation fails. Viper is still under development and undergoes constant changes. Installation will
be much more simplified and optimized after a stable version release.

Take a deep breath, follow the instructions, and please create an issue if you encounter any errors.

Note: The easiest way to try out the language, experiment with examples, and compile code to bytecode or LLL
is to use the online compiler at https://viper.tools.

3.1.1 Prerequisites

Installing Python 3.6

Viper can only be built using Python 3.6 and higher. If you are already running Python 3.6, skip to the next section,
else follow the instructions here to make sure you have the correct Python version installed, and are using that version.

Ubuntu

16.04 and older

Start by making sure your packages are up-to-date:

sudo apt-get update
sudo apt-get -y upgrade

Install Python 3.6 and some necessary packages:

7

https://github.com/ethereum/viper/issues
https://viper.tools

Viper Documentation, Release

sudo apt-get install build-essential libssl-dev libffi-dev
wget https://www.python.org/ftp/python/3.6.2/Python-3.6.2.tgz
tar xfz Python-3.6.2.tgz
cd Python-3.6.2/
./configure --prefix /usr/local/lib/python3.6
sudo make
sudo make install

16.10 and newer

From Ubuntu 16.10 onwards, the Python 3.6 version is in the universe repository.

Run the following commands to install:

sudo apt-get update
sudo apt-get install python3.6

MacOS

Make sure you have Homebrew installed. If you don’t have the brew command available on the terminal, follow these
instructions to get Homebrew on your system.

To install Python 3.6, follow the instructions here: Installing Python 3 on Mac OS X

Also, ensure the GMP arithmetic library is installed using brew:

brew install gmp

Creating a virtual environment

It is strongly recommended to install Viper in a virtual Python environment, so that new packages installed and
dependencies built are strictly contained in your Viper project and will not alter or affect your other development
environment set-up.

To create a new virtual environment for Viper run the following commands:

virtualenv -p /usr/local/lib/python3.6/bin/python3 --no-site-packages ~/viper-venv
source ~/viper-venv/bin/activate

To find out more about virtual environments, check out: virtualenv guide.

3.1.2 Installation

Again, it is strongly recommended to install Viper in a virtual Python environment. This guide assumes you are
in a virtual environment containing Python 3.6.

Get the latest version of Viper by cloning the Github repository, and run the install and test commands:

git clone https://github.com/ethereum/viper.git
cd viper
make
make test

8 Chapter 3. Glossary

https://docs.brew.sh/Installation.html
https://docs.brew.sh/Installation.html
http://python-guide.readthedocs.io/en/latest/starting/install3/osx/
https://virtualenv.pypa.io/en/stable/

Viper Documentation, Release

Additionally, you may try to compile an example contract by running:

viper examples/crowdfund.v.py

If everything works correctly, you are now able to compile your own smart contracts written in Viper. However, please
keep in mind that Viper is still experimental and not ready for production!

Note: For MacOS users:

Apple has deprecated use of OpenSSL in favor of its own TLS and crypto libraries. This means that you will need to
export some OpenSSL settings yourself, before you can install Viper.

Use the following commands:

export CFLAGS="-I$(brew --prefix openssl)/include"
export LDFLAGS="-L$(brew --prefix openssl)/lib"
pip install scrypt

Now you can run the install and test commands again:

make install
make test

3.1.3 Docker

A Dockerfile is provided in the master branch of the repository. In order to build a Docker Image please run:

docker build https://github.com/ethereum/viper.git -t viper:1
docker run -it viper:1 /bin/bash

To ensure that everything works correctly after the installtion, please run the test commands and try compiling a
contract:

make test
viper examples/crowdfund.v.py

3.2 Compiling a Contract

To compile a contract, use:

viper yourFileName.v.py

Note: Since .vy is not official a language supported by any syntax highlighters or linters, it is recommended to name
your Viper file ending with .v.py in order to have Python syntax highlighting.

An online compiler is available as well, which lets you experiment with the language without having to install Viper.
The online compiler allows you to compile to bytecode and/or LLL.

3.2. Compiling a Contract 9

https://viper.tools/

Viper Documentation, Release

Note: While the viper version of the online compiler is updated on a regular basis it might be a bit behind the latest
version found in the master branch of the repository.

3.3 Viper by Example

3.3.1 Simple Open Auction

As an introductory example of a smart contract written in Viper, we will begin with a simple open auction contract.
As we dive into the code, it is important to remember that all Viper syntax is valid Python3 syntax, however not all
Python3 functionality is available in Viper.

In this contract, we will be looking at a simple open auction contract where participants can submit bids during a
limited time period. When the auction period ends, a predetermined beneficiary will receive the amount of the highest
bid.

1 # Open Auction
2

3 # Auction params
4 # Beneficiary recieves money from the highest bidder
5 beneficiary: public(address)
6 auction_start: public(timestamp)
7 auction_end: public(timestamp)
8

9 # Current state of auction
10 highest_bidder: public(address)
11 highest_bid: public(wei_value)
12

13 # Set to true at the end, disallows any change
14 ended: public(bool)
15

16 # Create a simple auction with `_bidding_time`
17 # seconds bidding time on behalf of the
18 # beneficiary address `_beneficiary`.
19 def __init__(_beneficiary: address, _bidding_time: timedelta):
20 self.beneficiary = _beneficiary
21 self.auction_start = block.timestamp
22 self.auction_end = self.auction_start + _bidding_time
23

24 # Bid on the auction with the value sent
25 # together with this transaction.
26 # The value will only be refunded if the
27 # auction is not won.
28 @payable
29 def bid():
30 # Check if bidding period is over.
31 assert block.timestamp < self.auction_end
32 # Check if bid is high enough
33 assert msg.value > self.highest_bid
34 if not self.highest_bid == 0:
35 # Sends money back to the previous highest bidder
36 send(self.highest_bidder,self.highest_bid)
37 self.highest_bidder = msg.sender
38 self.highest_bid = msg.value
39

10 Chapter 3. Glossary

Viper Documentation, Release

40

41 # End the auction and send the highest bid
42 # to the beneficiary.
43 def auction_end():
44 # It is a good guideline to structure functions that interact
45 # with other contracts (i.e. they call functions or send Ether)
46 # into three phases:
47 # 1. checking conditions
48 # 2. performing actions (potentially changing conditions)
49 # 3. interacting with other contracts
50 # If these phases are mixed up, the other contract could call
51 # back into the current contract and modify the state or cause
52 # effects (Ether payout) to be performed multiple times.
53 # If functions called internally include interaction with external
54 # contracts, they also have to be considered interaction with
55 # external contracts.
56

57 # 1. Conditions
58 # Check if auction endtime has been reached
59 assert block.timestamp >= self.auction_end
60 # Check if this function has already been called
61 assert not self.ended
62

63 # 2. Effects
64 self.ended = True
65

66 # 3. Interaction
67 send(self.beneficiary, self.highest_bid)

As you can see, this example only has a constructor, two methods to call, and a few variables to manage the contract
state. Believe it or not, this is all we need for a basic implementation of an auction smart contract.

Let’s get started!

Auction params
Beneficiary recieves money from the highest bidder
beneficiary: public(address)
auction_start: public(timestamp)
auction_end: public(timestamp)

Current state of auction
highest_bidder: public(address)
highest_bid: public(wei_value)

Set to true at the end, disallows any change
ended: public(bool)

We begin by declaring a few variables to keep track of our contract state. We initialize a global variable
beneficiary by calling public on the datatype address. The beneficiary will be the receiver of money
from the highest bidder. We also initialize the variables auction_start and auction_end with the datatype
timestamp to manage the open auction period and highest_bid with datatype wei_value, the smallest de-
nomination of ether, to manage auction state. The variable ended is a boolean to determine whether the auction is
officially over.

You may notice all of the variables being passed into the public function. By declaring the variable public, the
variable is callable by external contracts. Initializing the variables without the public function defaults to a private
declaration and thus only accessible to methods within the same contract. The public function additionally creates
a ‘getter’ function for the variable, accessible with a call such as self.get_beneficiary(some_address).

3.3. Viper by Example 11

Viper Documentation, Release

Now, the constructor.

Create a simple auction with `_bidding_time`
seconds bidding time on behalf of the
beneficiary address `_beneficiary`.
def __init__(_beneficiary: address, _bidding_time: timedelta):

self.beneficiary = _beneficiary
self.auction_start = block.timestamp
self.auction_end = self.auction_start + _bidding_time

The contract is initialized with two arguments: _beneficiary of type address and bidding_time with type
timedelta, the time difference between the start and end of the auction. We then store these two pieces of informa-
tion into the contract variables self.beneficiary and self.auction_end. Notice that we have access to the
current time by calling block.timestamp. block is an object available within any Viper contract and provides
information about the block at the time of calling. Similar to block, another important object available to us within
the contract is msg, which provides information on the method caller as we will soon see.

With initial setup out of the way, lets look at how our users can make bids.

Bid on the auction with the value sent
together with this transaction.
The value will only be refunded if the
auction is not won.
@payable
def bid():

Check if bidding period is over.
assert block.timestamp < self.auction_end
Check if bid is high enough
assert msg.value > self.highest_bid
if not self.highest_bid == 0:

Sends money back to the previous highest bidder
send(self.highest_bidder,self.highest_bid)

self.highest_bidder = msg.sender
self.highest_bid = msg.value

The @payable decorator will allow a user to send some ether to the contract in order to call the decorated method. In
this case, a user wanting to make a bid would call the bid() method while sending an amount equal to their desired
bid (not including gas fees). When calling any method within a contract, we are provided with a built-in variable msg
and we can access the public address of any method caller with msg.sender. Similarly, the amount of ether a user
sends can be accessed by calling msg.value.

Warning: msg.sender will change between internal function calls so that if you’re calling a function from the
outside, it’s correct for the first function call. But then, for the function calls after, msg.sender will reference
the contract itself as opposed to the sender of the transaction.

Here, we first check whether the current time is before the auction’s end time using the assert function which
takes any boolean statement. We also check to see if the new bid is greater than the highest bid. If the two assert
statements pass, we can safely continue to the next lines; otherwise, the bid() method will throw an error and revert
the transaction. If the two assert statements the check that the previous bid is not equal to zero pass, we can
safely conclude that we have a valid new highest bid. We will send back the previous highest_bid to the previous
highest_bidder and set our new highest_bid and highest_bidder.

End the auction and send the highest bid
to the beneficiary.
def auction_end():

It is a good guideline to structure functions that interact

12 Chapter 3. Glossary

Viper Documentation, Release

with other contracts (i.e. they call functions or send Ether)
into three phases:
1. checking conditions
2. performing actions (potentially changing conditions)
3. interacting with other contracts
If these phases are mixed up, the other contract could call
back into the current contract and modify the state or cause
effects (Ether payout) to be performed multiple times.
If functions called internally include interaction with external
contracts, they also have to be considered interaction with
external contracts.

1. Conditions
Check if auction endtime has been reached
assert block.timestamp >= self.auction_end
Check if this function has already been called
assert not self.ended

2. Effects
self.ended = True

3. Interaction
send(self.beneficiary, self.highest_bid)

With the auction_end() method, we check whether our current time is past the auction_end time we set upon
initialization of the contract. We also check that self.ended had not previously been set to True. We do this to
prevent any calls to the method if the auction had already ended, which could potentially be malicious if the check
had not been made. We then officially end the auction by setting self.ended to True and sending the highest bid
amount to the beneficiary.

And there you have it - an open auction contract. Of course, this is a simplified example with barebones functionality
and can be improved. Hopefully, this has provided some insight to the possibilities of Viper. As we move on to
exploring more complex examples, we will encounter more design patterns and features of the Viper language.

And of course, no smart contract tutorial is complete without a note on security.

Note: It’s always important to keep security in mind when designing a smart

contract. As any application becomes more complex, the greater the potential for introducing new risks. Thus, it’s
always good practice to keep contracts as readable and simple as possible.

Whenever you’re ready, let’s turn it up a notch in the next example.

3.3.2 Safe Remote Purchases

In this example, we have an escrow contract implementing a system for a trustless transaction between a buyer and a
seller. In this system, a seller posts an item for sale and makes a deposit to the contract of twice the item’s value. At
this moment, the contract has a balance of 2 * value. The seller can reclaim the deposit and close the sale as long
as a buyer has not yet made a purchase. If a buyer is interested in making a purchase, they would make a payment
and submit an equal amount for deposit (totaling 2 * value) into the contract and locking the contract from further
modification. At this moment, the contract has a balance of 4 * value and the seller would send the item to buyer.
Upon the buyer’s receipt of the item, the buyer will mark the item as received in the contract, thereby returning the
buyer’s deposit (not payment), releasing the remaining funds to the seller, and completing the transaction.

3.3. Viper by Example 13

Viper Documentation, Release

There are certainly others ways of designing a secure escrow system with less overhead for both the buyer and seller,
but for the purpose of this example, we want to explore one way how an escrow system can be implemented trustlessly.

Let’s go!

1 #Safe Remote Purchase (https://github.com/ethereum/solidity/blob/develop/docs/
→˓solidity-by-example.rst) ported to viper and optimized

2

3 #Rundown of the transaction:
4 #1. Seller posts item for sale and posts safety deposit of double the item value.

→˓Balance is 2*value.
5 #(1.1. Seller can reclaim deposit and close the sale as long as nothing was purchased.

→˓)
6 #2. Buyer purchases item (value) plus posts an additional safety deposit (Item value).

→˓ Balance is 4*value
7 #3. Seller ships item
8 #4. Buyer confirms receiving the item. Buyer's deposit (value) is returned. Seller's

→˓deposit (2*value) + items value is returned. Balance is 0.
9

10 value: public(wei_value) #Value of the item
11 seller: public(address)
12 buyer: public(address)
13 unlocked: public(bool)
14 #@constant
15 #def unlocked() -> bool: #Is a refund possible for the seller?
16 # return (self.balance == self.value*2)
17 #
18 @payable
19 def __init__():
20 assert (msg.value % 2) == 0
21 self.value = msg.value / 2 #Seller initializes contract by posting a safety

→˓deposit of 2*value of the item up for sale
22 self.seller = msg.sender
23 self.unlocked = true
24

25 def abort():
26 assert self.unlocked #Is the contract still refundable
27 assert msg.sender == self.seller #Only seller can refund his deposit before any

→˓buyer purchases the item
28 selfdestruct(self.seller) #Refunds seller, deletes contract
29

30 @payable
31 def purchase():
32 assert self.unlocked #Contract still open (item still up for sale)?
33 assert msg.value == (2*self.value) #Is the deposit of correct value?
34 self.buyer = msg.sender
35 self.unlocked = false
36

37 def received():
38 assert not self.unlocked #Is the item already purchased and pending confirmation

→˓of buyer
39 assert msg.sender == self.buyer
40 send(self.buyer, self.value) #Return deposit (=value) to buyer
41 selfdestruct(self.seller) #Returns deposit (=2*value) and the purchase price

→˓(=value)

This is also a moderately short contract, however a little more complex in logic. Let’s break down this contract bit by
bit.

14 Chapter 3. Glossary

Viper Documentation, Release

value: public(wei_value) #Value of the item
seller: public(address)
buyer: public(address)
unlocked: public(bool)

Like the other contracts, we begin by declaring our global variables public with their respective datatypes. Remember
that the public function allows the variables to be readable by an external caller, but not writeable.

@payable
def __init__():

assert (msg.value % 2) == 0
self.value = msg.value / 2 #Seller initializes contract by posting a safety

→˓deposit of 2*value of the item up for sale
self.seller = msg.sender
self.unlocked = true

With a @payable decorator on the constructor, the contract creator will be required to make an initial deposit equal to
twice the item’s value to initialize the contract, which will be later returned. This is in addition to the gas fees needed
to deploy the contract on the blockchain, which is not returned. We assert that the deposit is divisible by 2 to ensure
that the seller deposited a valid amount. The constructor stores the item’s value in the contract variable self.value
and saves the contract creator into self.seller. The contract variable self.unlocked is initialized to True.

def abort():
assert self.unlocked #Is the contract still refundable
assert msg.sender == self.seller #Only seller can refund his deposit before any

→˓buyer purchases the item
selfdestruct(self.seller) #Refunds seller, deletes contract

The abort() method is a method only callable by the seller and while the contract is still unlocked - meaning it
is callable only prior to any buyer making a purchase. As we will see in the purchase() method that when a buyer
calls the purchase() method and sends a valid amount to the contract, the contract will be locked and the seller
will no longer be able to call abort().

When the seller calls abort() and if the assert statements pass, the contract will call the selfdestruct()
function and refunds the seller and subsequently destroys the contract.

@payable
def purchase():

assert self.unlocked #Contract still open (item still up for sale)?
assert msg.value == (2*self.value) #Is the deposit of correct value?
self.buyer = msg.sender
self.unlocked = false

Like the constructor, the purchase() method has a @payable decorator, meaning it can be called with a payment.
For the buyer to make a valid purchase, we must first assert that the contract’s unlocked property is False and that
the amount sent is equal to twice the item’s value. We then set the buyer to the msg.sender and lock the contract.
At this point, the contract has a balance equal to 4 times the item value and the seller must send the item to the buyer.

def received():
assert not self.unlocked #Is the item already purchased and pending confirmation

→˓of buyer
assert msg.sender == self.buyer
send(self.buyer, self.value) #Return deposit (=value) to buyer
selfdestruct(self.seller) #Returns deposit (=2*value) and the purchase price

→˓(=value)

Finally, upon the buyer’s receipt of the item, the buyer can confirm their receipt by calling the received() method

3.3. Viper by Example 15

Viper Documentation, Release

to distribute the funds as intended - the seller receives 3/4 of the contract balance and the buyer receives 1/4.

By calling received(), we begin by checking that the contract is indeed locked, ensuring that a buyer had previ-
ously paid. We also ensure that this method is only callable by the buyer. If these two assert statements pass, we
refund the buyer their initial deposit and send the seller the remaining funds. The contract is finally destroyed and the
transaction is complete.

Whenever we’re ready, let’s move on to the next example.

3.3.3 Crowdfund

Now, let’s explore a straightforward example for a crowdfunding contract where prospective participants can contribute
funds to a campaign. If the total contribution to the campaign reaches or surpasses a predetermined funding goal, the
funds will be sent to the beneficiary at the end of the campaign deadline. Participants will be refunded their respective
contributions if the total funding does not reach its target goal.

1 funders: {sender: address, value: wei_value}[num]
2 nextFunderIndex: num
3 beneficiary: address
4 deadline: timestamp
5 goal: wei_value
6 refundIndex: num
7 timelimit: timedelta
8

9 # Setup global variables
10 def __init__(_beneficiary: address, _goal: wei_value, _timelimit: timedelta):
11 self.beneficiary = _beneficiary
12 self.deadline = block.timestamp + _timelimit
13 self.timelimit = _timelimit
14 self.goal = _goal
15

16 # Participate in this crowdfunding campaign
17 @payable
18 def participate():
19 assert block.timestamp < self.deadline
20 nfi = self.nextFunderIndex
21 self.funders[nfi] = {sender: msg.sender, value: msg.value}
22 self.nextFunderIndex = nfi + 1
23

24 # Enough money was raised! Send funds to the beneficiary
25 def finalize():
26 assert block.timestamp >= self.deadline and self.balance >= self.goal
27 selfdestruct(self.beneficiary)
28

29 # Not enough money was raised! Refund everyone (max 30 people at a time
30 # to avoid gas limit issues)
31 def refund():
32 assert block.timestamp >= self.deadline and self.balance < self.goal
33 ind = self.refundIndex
34 for i in range(ind, ind + 30):
35 if i >= self.nextFunderIndex:
36 self.refundIndex = self.nextFunderIndex
37 return
38 send(self.funders[i].sender, self.funders[i].value)
39 self.funders[i] = None
40 self.refundIndex = ind + 30

Most of this code should be relatively straightforward after going through our previous examples. Let’s dive right in.

16 Chapter 3. Glossary

Viper Documentation, Release

funders: {sender: address, value: wei_value}[num]
nextFunderIndex: num
beneficiary: address
deadline: timestamp
goal: wei_value
refundIndex: num
timelimit: timedelta

Like other examples, we begin by initiating our variables - except this time, we’re not calling them with the public
function. Variables initiated this way are, by default, private.

..note :: Unlike the existence of the function public(), there is no equivalent private() function. Variables
simply default to private if initiated without the public() function.

The funders variable is initiated as a mapping where the key is a number, and the value is a struct representing
the contribution of each participant. This struct contains each participant’s public address and their respective value
contributed to the fund. The key corresponding to each struct in the mapping will be represented by the variable
nextFunderIndex which is incremented with each additional contributing participant. Variables initialized with
num type without an explicit value, such as nextFunderIndex, defaults to 0. The beneficiary will be the
final receiver of the funds once the crowdfunding period is over - as determined by the deadline and timelimit
variables. The goal variable is the target total contribution of all participants. refundIndex is a variable for
bookkeeping purposes in order to avoid gas limit issues in the scenario of a refund.

Setup global variables
def __init__(_beneficiary: address, _goal: wei_value, _timelimit: timedelta):

self.beneficiary = _beneficiary
self.deadline = block.timestamp + _timelimit
self.timelimit = _timelimit
self.goal = _goal

Our constructor function takes 3 arguments: the beneficiary’s address, the goal in wei value, and the difference in time
from start to finish of the crowdfunding. We initialize the arguments as contract variables with their corresponding
names. Additionally, a self.deadline is initialized to set a definitive end time for the crowdfunding period.

Now lets take a look at how a person can participate in the crowdfund.

Participate in this crowdfunding campaign
@payable
def participate():

assert block.timestamp < self.deadline
nfi = self.nextFunderIndex
self.funders[nfi] = {sender: msg.sender, value: msg.value}
self.nextFunderIndex = nfi + 1

Once again, we see the @payable decorator on a method, which allows a person to send some ether along with a
call to the method. In this case, the participate() method accesses the sender’s address with msg.sender and
the corresponding amount sent with msg.value. This information is stored into a struct and then saved into the
funders mapping with self.nextFunderIndex as the key. As more participants are added to the mapping,
self.nextFunderIndex increments appropriately to properly index each participant.

Enough money was raised! Send funds to the beneficiary
def finalize():

assert block.timestamp >= self.deadline and self.balance >= self.goal
selfdestruct(self.beneficiary)

The finalize() method is used to complete the crowdfunding process. However, to complete the crowdfunding,
the method first checks to see if the crowdfunding period is over and that the balance has reached/passed its set goal.

3.3. Viper by Example 17

Viper Documentation, Release

If those two conditions pass, the contract calls the selfdestruct() function and sends the collected funds to the
beneficiary.

Note: Notice that we have access to the total amount sent to the contract by

calling self.balance, a variable we never explicitly set. Similar to msg and block, self.balance is a
built-in variable thats available in all Viper contracts.

We can finalize the campaign if all goes well, but what happens if the crowdfunding campaign isn’t successful? We’re
going to need a way to refund all the participants.

Not enough money was raised! Refund everyone (max 30 people at a time
to avoid gas limit issues)
def refund():

assert block.timestamp >= self.deadline and self.balance < self.goal
ind = self.refundIndex
for i in range(ind, ind + 30):

if i >= self.nextFunderIndex:
self.refundIndex = self.nextFunderIndex
return

send(self.funders[i].sender, self.funders[i].value)
self.funders[i] = None

self.refundIndex = ind + 30

In the refund() method, we first check that the crowdfunding period is indeed over and that the total collected
balance is less than the goal with the assert statement . If those two conditions pass, we then loop through every
participant and call send() to send each participant their respective contribution. For the sake of gas limits, we group
the number of contributors in batches of 30 and refund them one at a time. Unfortunately, if there’s a large number of
of participants, multiple calls to refund() may be necessary.

3.3.4 Voting

In this contract, we will implement a system for participants to vote on a list of proposals. The chairperson of the
contract will be able to give each participant the right to vote and each participant may choose to vote or delegate their
vote to another voter. Finally, a winning proposal will be determined upon calling the winning_proposals()
method, which iterates through all the proposals and returns the one with the greatest number of votes.

1 # Voting with delegation.
2

3 # Information about voters
4 voters: public({
5 # weight is accumulated by delegation
6 weight: num,
7 # if true, that person already voted
8 voted: bool,
9 # person delegated to

10 delegate: address,
11 # index of the voted proposal
12 vote: num
13 }[address])
14

15 # This is a type for a list of proposals.
16 proposals: public({
17 # short name (up to 32 bytes)
18 name: bytes32,

18 Chapter 3. Glossary

Viper Documentation, Release

19 # number of accumulated votes
20 vote_count: num
21 }[num])
22

23 voter_count: public(num)
24 chairperson: public(address)
25

26 # Setup global variables
27 def __init__(_proposalNames: bytes32[2]):
28 self.chairperson = msg.sender
29 self.voter_count = 0
30 for i in range(2):
31 self.proposals[i] = {
32 name: _proposalNames[i],
33 vote_count: 0
34 }
35

36 # Give `voter` the right to vote on this ballot.
37 # May only be called by `chairperson`.
38 def give_right_to_vote(voter: address):
39 # Throws if sender is not chairpers
40 assert msg.sender == self.chairperson
41 # Throws if voter has already voted
42 assert not self.voters[voter].voted
43 # Throws if voters voting weight isn't 0
44 assert self.voters[voter].weight == 0
45 self.voters[voter].weight = 1
46 self.voter_count += 1
47

48 # Delegate your vote to the voter `to`.
49 def delegate(_to: address):
50 to = _to
51 # Throws if sender has already voted
52 assert not self.voters[msg.sender].voted
53 # Throws if sender tries to delegate their vote to themselves
54 assert not msg.sender == to
55 # loop can delegate votes up to the current voter count
56 for i in range(self.voter_count, self.voter_count+1):
57 if self.voters[to].delegate:
58 # Because there are not while loops, use recursion to forward the delegation
59 # self.delegate(self.voters[to].delegate)
60 assert self.voters[to].delegate != msg.sender
61 to = self.voters[to].delegate
62 self.voters[msg.sender].voted = True
63 self.voters[msg.sender].delegate = to
64 if self.voters[to].voted:
65 # If the delegate already voted,
66 # directly add to the number of votes
67 self.proposals[self.voters[to].vote].vote_count += self.voters[msg.sender].

→˓weight
68 else:
69 # If the delegate did not vote yet,
70 # add to her weight.
71 self.voters[to].weight += self.voters[msg.sender].weight
72

73 # Give your vote (including votes delegated to you)
74 # to proposal `proposals[proposal].name`.
75 def vote(proposal: num):

3.3. Viper by Example 19

Viper Documentation, Release

76 assert not self.voters[msg.sender].voted
77 self.voters[msg.sender].voted = True
78 self.voters[msg.sender].vote = proposal
79 # If `proposal` is out of the range of the array,
80 # this will throw automatically and revert all
81 # changes.
82 self.proposals[proposal].vote_count += self.voters[msg.sender].weight
83

84 # Computes the winning proposal taking all
85 # previous votes into account.
86 @constant
87 def winning_proposal() -> num:
88 winning_vote_count = 0
89 for i in range(5):
90 if self.proposals[i].vote_count > winning_vote_count:
91 winning_vote_count = self.proposals[i].vote_count
92 winning_proposal = i
93 return winning_proposal
94

95 # Calls winning_proposal() function to get the index
96 # of the winner contained in the proposals array and then
97 # returns the name of the winner
98 @constant
99 def winner_name() -> bytes32:

100 return self.proposals[self.winning_proposal()].name

As we can see, this is contract of moderate length which we will dissect section by section. Let’s begin!

Information about voters
voters: public({

weight is accumulated by delegation
weight: num,
if true, that person already voted
voted: bool,
person delegated to
delegate: address,
index of the voted proposal
vote: num

}[address])

This is a type for a list of proposals.
proposals: public({

short name (up to 32 bytes)
name: bytes32,
number of accumulated votes
vote_count: num

}[num])

The variable voters is initialized as a mapping where the key is the voter’s public address and the value is a struct
describing the voter’s properties: weight, voted, delegate, and vote, along with their respective datatypes.

Similarly, the proposals variable is initialized as a public mapping with num as the key’s datatype and a struct
to represent each proposal with the properties name and vote_count. Like our last example, we can access any
value by key’ing into the mapping with a number just as one would with an index in an array.

Then, voter_count and chairperson are initialized as public with their respective datatypes.

Let’s move onto the constructor.

20 Chapter 3. Glossary

Viper Documentation, Release

Setup global variables
def __init__(_proposalNames: bytes32[2]):

self.chairperson = msg.sender
self.voter_count = 0
for i in range(2):

self.proposals[i] = {
name: _proposalNames[i],
vote_count: 0

}

Warning: Both msg.sender and msg.balance change between internal function calls so that if you’re
calling a function from the outside, it’s correct for the first function call. But then, for the function calls after,
msg.sender and msg.balance reference the contract itself as opposed to the sender of the transaction.

In the constructor, we hard-coded the contract to accept an array argument of exactly two proposal names of type
bytes32 for the contracts initialization. Because upon initialization, the __init__() method is called by the
contract creator, we have access to the contract creator’s address with msg.sender and store it in the contract
variable self.chairperson. We also initialize the contract variable self.voter_count to zero to initially
represent the number of votes allowed. This value will be incremented as each participant in the contract is given
the right to vote by the method give_right_to_vote(), which we will explore next. We loop through the two
proposals from the argument and insert them into proposals mapping with their respective index in the original
array as its key.

Now that the initial setup is done, lets take a look at the functionality.

Give `voter` the right to vote on this ballot.
May only be called by `chairperson`.
def give_right_to_vote(voter: address):

Throws if sender is not chairpers
assert msg.sender == self.chairperson
Throws if voter has already voted
assert not self.voters[voter].voted
Throws if voters voting weight isn't 0
assert self.voters[voter].weight == 0
self.voters[voter].weight = 1
self.voter_count += 1

We need a way to control who has the ability to vote. The method give_right_to_vote() is a method callable
by only the chairperson by taking a voter address and granting it the right to vote by incrementing the voter’s weight
property. We sequentially check for 3 conditions using assert. The assert not function will check for falsy
boolean values - in this case, we want to know that the voter has not already voted. To represent voting power, we will
set their weight to 1 and we will keep track of the total number of voters by incrementing voter_count.

Delegate your vote to the voter `to`.
def delegate(_to: address):

to = _to
Throws if sender has already voted
assert not self.voters[msg.sender].voted
Throws if sender tries to delegate their vote to themselves
assert not msg.sender == to
loop can delegate votes up to the current voter count
for i in range(self.voter_count, self.voter_count+1):

if self.voters[to].delegate:
Because there are not while loops, use recursion to forward the delegation
self.delegate(self.voters[to].delegate)

3.3. Viper by Example 21

Viper Documentation, Release

assert self.voters[to].delegate != msg.sender
to = self.voters[to].delegate

self.voters[msg.sender].voted = True
self.voters[msg.sender].delegate = to
if self.voters[to].voted:

If the delegate already voted,
directly add to the number of votes
self.proposals[self.voters[to].vote].vote_count += self.voters[msg.sender].

→˓weight
else:

If the delegate did not vote yet,
add to her weight.
self.voters[to].weight += self.voters[msg.sender].weight

In the method delegate, firstly, we check to see that msg.sender has not already voted and secondly, that the
target delegate and the msg.sender are not the same. Voters shouldn’t be able to delegate votes to themselves.
We, then, loop through all the voters to determine whether the person delegate to had further delegated their vote to
someone else in order to follow the chain of delegation. We then mark the msg.sender as having voted if they
delegated their vote. We increment the proposal’s vote_count directly if the delegate had already voted or increase
the delegate’s vote weight if the delegate has not yet voted.

Give your vote (including votes delegated to you)
to proposal `proposals[proposal].name`.
def vote(proposal: num):

assert not self.voters[msg.sender].voted
self.voters[msg.sender].voted = True
self.voters[msg.sender].vote = proposal
If `proposal` is out of the range of the array,
this will throw automatically and revert all
changes.
self.proposals[proposal].vote_count += self.voters[msg.sender].weight

Now, let’s take a look at the logic inside the vote() method, which is surprisingly simple. The method takes the key
of the proposal in the proposals mapping as an argument, check that the method caller had not already voted, sets
the voter’s vote property to the proposal key, and increments the proposals vote_count by the voter’s weight.

With all the basic functionality complete, what’s left is simply returning the winning proposal. To do this, we have two
methods: winning_proposal(), which returns the key of the proposal, and winner_name(), returning the
name of the proposal. Notice the @constant decorator on these two methods. We do this because the two methods
only read the blockchain state and do not modify it. Remember, reading the blockchain state is free; modifying the
state costs gas. By having the @constant decorator, we let the EVM know that this is a read-only function and we
benefit by saving gas fees.

Computes the winning proposal taking all
previous votes into account.
@constant
def winning_proposal() -> num:

winning_vote_count = 0
for i in range(5):

if self.proposals[i].vote_count > winning_vote_count:
winning_vote_count = self.proposals[i].vote_count
winning_proposal = i

return winning_proposal

The winning_proposal() method returns the key of proposal in the proposals mapping. We will keep
track of greatest number of votes and the winning proposal with the variables winning_vote_count and
winning_proposal, respectively by looping through all the proposals.

22 Chapter 3. Glossary

Viper Documentation, Release

Calls winning_proposal() function to get the index
of the winner contained in the proposals array and then
returns the name of the winner
@constant
def winner_name() -> bytes32:

return self.proposals[self.winning_proposal()].name

And finally, the winner_name()method returns the name of the proposal by key’ing into the proposalsmapping
with the return result of the winning_proposal() method.

And there you have it - a voting contract. Currently, many transactions are needed to assign the rights to vote to all
participants. As an exercise, can we try to optimize this?

Now that we’re familiar with basic contracts. Let’s step up the difficulty.

3.3.5 Company Stock

This contract is just a tad bit more thorough than the ones we’ve previously encountered. In this example, we are going
to look at a comprehensive contract that manages the holdings of all shares of a company. The contract allows for a
person to buy, sell, and transfer shares of a company as well as allowing for the company to pay a person in ether. The
company, upon initialization of the contract, holds all shares of the company at first but can sell them all.

Let’s get started.

1 # Own shares of a company!
2 company: public(address)
3 total_shares: public(currency_value)
4 price: public(num (wei / currency))
5

6 # Store ledger of stockholder holdings
7 holdings: currency_value[address]
8

9 # Setup company
10 def __init__(_company: address, _total_shares: currency_value,
11 initial_price: num(wei / currency)):
12 assert _total_shares > 0
13 assert initial_price > 0
14

15 self.company = _company
16 self.total_shares = _total_shares
17

18 self.price = initial_price
19

20 # Company holds all the shares at first, but can sell them all
21 self.holdings[self.company] = _total_shares
22

23 @constant
24 def stock_available() -> currency_value:
25 return self.holdings[self.company]
26

27 # Give value to company and get stock in return
28 @payable
29 def buy_stock():
30 # Note: full amount is given to company (no fractional shares),
31 # so be sure to send exact amount to buy shares
32 buy_order = msg.value / self.price # rounds down
33

3.3. Viper by Example 23

Viper Documentation, Release

34 # There are enough shares to buy
35 assert self.stock_available() >= buy_order
36

37 # Take the shares off the market and give to stockholder
38 self.holdings[self.company] -= buy_order
39 self.holdings[msg.sender] += buy_order
40

41 # So someone can find out how much they have
42 @constant
43 def get_holding(_stockholder: address) -> currency_value:
44 return self.holdings[_stockholder]
45

46 # The amount the company has on hand in cash
47 @constant
48 def cash() -> wei_value:
49 return self.balance
50

51 # Give stock back to company and get my money back!
52 def sell_stock(sell_order: currency_value):
53 assert sell_order > 0 # Otherwise, will fail at send() below
54 # Can only sell as much stock as you own
55 assert self.get_holding(msg.sender) >= sell_order
56 # Company can pay you
57 assert self.cash() >= (sell_order * self.price)
58

59 # Sell the stock, send the proceeds to the user
60 # and put the stock back on the market
61 self.holdings[msg.sender] -= sell_order
62 self.holdings[self.company] += sell_order
63 send(msg.sender, sell_order * self.price)
64

65 # Transfer stock from one stockholder to another
66 # (Assumes the receiver is given some compensation, but not enforced)
67 def transfer_stock(receiver: address, transfer_order: currency_value):
68 assert transfer_order > 0 # AUDIT revealed this!
69 # Can only trade as much stock as you own
70 assert self.get_holding(msg.sender) >= transfer_order
71

72 # Debit sender's stock and add to receiver's address
73 self.holdings[msg.sender] -= transfer_order
74 self.holdings[receiver] += transfer_order
75

76 # Allows the company to pay someone for services rendered
77 def pay_bill(vendor: address, amount: wei_value):
78 # Only the company can pay people
79 assert msg.sender == self.company
80 # And only if there's enough to pay them with
81 assert self.cash() >= amount
82

83 # Pay the bill!
84 send(vendor, amount)
85

86 # The amount a company has raised in the stock offering
87 @constant
88 def debt() -> wei_value:
89 return (self.total_shares - self.holdings[self.company]) * self.price
90

91 # The balance sheet of the company

24 Chapter 3. Glossary

Viper Documentation, Release

92 @constant
93 def worth() -> wei_value:
94 return self.cash() - self.debt()

The contract contains a number of methods that modify the contract state as well as a few ‘getter’ methods to read it.
As always, we begin by initiating our variables.

Own shares of a company!
company: public(address)
total_shares: public(currency_value)
price: public(num (wei / currency))

Store ledger of stockholder holdings
holdings: currency_value[address]

We initiate the company variable to be of type address that’s public. The total_shares variable is of type
currency_value, which in this case represents the total available shares of the company. The price variable
represents the wei value of a share and holdings is a mapping that maps an address to the number of shares the
address owns.

Setup company
def __init__(_company: address, _total_shares: currency_value,

initial_price: num(wei / currency)):
assert _total_shares > 0
assert initial_price > 0

self.company = _company
self.total_shares = _total_shares

self.price = initial_price

Company holds all the shares at first, but can sell them all
self.holdings[self.company] = _total_shares

In the constructor, we set up the contract to check for valid inputs during the initialization of the contract via the two
assert statements. If the inputs are valid, the contract variables are set accordingly and the company’s address is
initialized to hold all shares of the company in the holdings mapping.

@constant
def stock_available() -> currency_value:

return self.holdings[self.company]

We will be seeing a few @constant decorators in this contract - which is used to decorate methods that simply
read the contract state or return a simple calculation on the contract state without modifying it. Remember, reading
the blockchain is free, writing on it is not. Since Viper is a statically typed language, we see an arrow following
the definition of the stock_available() method, which simply represents the datatype which the function is
expected to return. In the method, we simply key into self.holdings with the company’s address and check it’s
holdings.

Now, lets take a look at a method that lets a person buy stock from the company’s holding.

Give value to company and get stock in return
@payable
def buy_stock():

Note: full amount is given to company (no fractional shares),
so be sure to send exact amount to buy shares
buy_order = msg.value / self.price # rounds down

3.3. Viper by Example 25

Viper Documentation, Release

There are enough shares to buy
assert self.stock_available() >= buy_order

Take the shares off the market and give to stockholder
self.holdings[self.company] -= buy_order
self.holdings[msg.sender] += buy_order

The buy_stock() method is a @payable method which takes an amount of ether sent and calculates the
buy_order (the stock value equivalence at the time of call). The number of shares is deducted from the company’s
holdings and transferred to the sender’s in the holdings mapping.

Now that people can buy shares, how do we check someone’s holdings?

So someone can find out how much they have
@constant
def get_holding(_stockholder: address) -> currency_value:

return self.holdings[_stockholder]

The get_holdings() is another @constant method that takes an address and returns its corresponding stock
holdings by keying into self.holdings.

The amount the company has on hand in cash
@constant
def cash() -> wei_value:

return self.balance

To check the ether balance of the company, we can simply call the getter method cash().

Give stock back to company and get my money back!
def sell_stock(sell_order: currency_value):

assert sell_order > 0 # Otherwise, will fail at send() below
Can only sell as much stock as you own
assert self.get_holding(msg.sender) >= sell_order
Company can pay you
assert self.cash() >= (sell_order * self.price)

Sell the stock, send the proceeds to the user
and put the stock back on the market
self.holdings[msg.sender] -= sell_order
self.holdings[self.company] += sell_order
send(msg.sender, sell_order * self.price)

To sell a stock, we have the sell_stock() method which takes a number of stocks a person wishes to sell, and
sends the equivalent value in ether to the seller’s address. We first assert that the number of stocks the person
wishes to sell is a value greater than 0. We also assert to see that the user can only sell as much as the user owns
and that the company has enough ether to complete the sale. If all conditions are met, the holdings are deducted from
the seller and given to the company. The ethers are then sent to the seller.

Transfer stock from one stockholder to another
(Assumes the receiver is given some compensation, but not enforced)
def transfer_stock(receiver: address, transfer_order: currency_value):

assert transfer_order > 0 # AUDIT revealed this!
Can only trade as much stock as you own
assert self.get_holding(msg.sender) >= transfer_order

Debit sender's stock and add to receiver's address

26 Chapter 3. Glossary

Viper Documentation, Release

self.holdings[msg.sender] -= transfer_order
self.holdings[receiver] += transfer_order

A stockholder can also transfer their stock to another stockholder with the transfer_stock() method. The
method takes a receiver address and the number of shares to send. It first asserts that the amount being sent is
greater than 0 and asserts whether the sender has enough stocks to send. If both conditions are satisfied, the
transfer is made.

Allows the company to pay someone for services rendered
def pay_bill(vendor: address, amount: wei_value):

Only the company can pay people
assert msg.sender == self.company
And only if there's enough to pay them with
assert self.cash() >= amount

Pay the bill!
send(vendor, amount)

The company is also allowed to pay out an amount in ether to an address by calling the pay_bill() method. This
method should only be callable by the company and thus first checks whether the method caller’s address matches that
of the company. Another important condition to check is that the company has enough funds to pay the amount. If
both conditions satisfy, the contract sends its ether to an address.

The amount a company has raised in the stock offering
@constant
def debt() -> wei_value:

return (self.total_shares - self.holdings[self.company]) * self.price

We can also check how much the company has raised by multiplying the number of shares the company has sold and
the price of each share. We can get this value by calling the debt() method.

The balance sheet of the company
@constant
def worth() -> wei_value:

return self.cash() - self.debt()

Finally, in this worth() method, we can check the worth of a company by subtracting its debt from its ether balance.

This contract has been the most thorough example so far in terms of its functionality and features. Yet despite the
thoroughness of such a contract, the logic remained simple. Hopefully, by now, the Viper language has convinced you
of its capabilities and readability in writing smart contracts.

3.4 Viper in Depth

This section should provide you with all you need to know about Viper. If something is missing here, please contact
us on Gitter or make a pull request on Github.

3.4.1 Structure of a Contract

Contracts in Viper are contained within files, with each file being one smart-contract. Files in Viper are similar to
classes in object-oriented languages. Each file can contain declarations of State Variables, Functions, and structure-
structs-types.

3.4. Viper in Depth 27

https://gitter.im/ethereum/viper
https://github.com/ethereum/viper/pulls

Viper Documentation, Release

State Variables

State variables are values which are permanently stored in contract storage.

storedData: num

See the Types section for valid state variable types and visibility-and-getters for possible choices for visibility.

Functions

Functions are the executable units of code within a contract.

@payable
function bid(): // Function

// ...
}

function-calls can happen internally or externally and have different levels of visibility (visibility-and-getters) towards
other contracts.

3.4.2 Types

Viper is a statically typed language, which means that the type of each variable (state and local) needs to be specified
or at least known at compile-time. Viper provides several elementary types which can be combined to form complex
types.

In addition, types can interact with each other in expressions containing operators.

Value Types

The following types are also called value types because variables of these types will always be passed by value, i.e.
they are always copied when they are used as function arguments or in assignments.

Booleans

bool: The possible values are constants true and false.

Operators:

• not (logical negation)

• and (logical conjunction, “&&”)

• or (logical disjunction, “||”)

• == (equality)

• not ... == ... ``, ``!= (inequality)

The operators or and and apply the common short-circuiting rules. This means that in the expression f(x) or
g(y), if f(x) evaluates to true, g(y) will not be evaluated even if it may have side-effects.

28 Chapter 3. Glossary

Viper Documentation, Release

Integers

num: equivalent to‘‘int128‘‘, a signed integer strictly between -2**127 and 2**127-1.

Operators:

• Comparisons: <=, <, ==, !=, >=, > (evaluate to bool)

• Arithmetic operators: +, -, unary -, unary +, *, /, % (remainder)

Decimals

decimal: a decimal fixed point value with the integer component represented as a num and the fractional component
supporting up to ten decimal places.

Time

timestamp: a timestamp value with a base unit of one second, represented as a num.

timedelta: a number of seconds (note: two timedeltas can be added together, as can a timedelta and a timestamp,
but not two timestamps), represented as a num.

Value

wei_value: an amount of ether with a base unit of one wei, represented as a num.

currency_value: represents an amount of currency and should be used to represent assets where ether is traded
for value, represented as a num.

Address

address: Holds an Ethereum address (20 byte value).

Members of Addresses

• balance and send

It is possible to query the balance of an address using the property balance and to send Ether (in units of wei) to an
address using the send function:

x: address

def foo(x: address):
if (x.balance < 10 and self.balance >= 10):

x.send(10)

Fixed-size byte arrays

bytes32: 32 bytes

3.4. Viper in Depth 29

http://ethdocs.org/en/latest/ether.html#denominations

Viper Documentation, Release

Declaration
hash: bytes32

Assignment
self.hash = _hash

bytes <= maxlen: a byte array with the given maximum length

Declaration
name: bytes <= 5

Assignment
self.name = _name

type[length]: finite list

Declaration
numbers: num[3]

Assignment
self.numbers[0] = _num1

Structs

Structs are custom defined types that can group several variables. They can be accessed via struct.argname.

Information about voters
voters: public({

weight is accumulated by delegation
weight: num,
if true, that person already voted
voted: bool,
person delegated to
delegate: address,
index of the voted proposal
vote: num

})

Mappings

Mapping types are declared as _ValueType[_KeyType]. Here _KeyType can be almost any type except for
mappings, a contract, or a struct. _ValueType can actually be any type, including mappings.

Mappings can be seen as hash tables which are virtually initialized such that every possible key exists and is mapped
to a value whose byte-representation is all zeros: a type’s default value. The similarity ends here, though: The key
data is not actually stored in a mapping, only its keccak256 hash used to look up the value.

Because of this, mappings do not have a length or a concept of a key or value being “set”.

Mappings are only allowed as state variables.

It is possible to mark mappings public and have Viper create a getter. The _KeyType will become a required
parameter for the getter and it will return _ValueType.

30 Chapter 3. Glossary

https://en.wikipedia.org/wiki/Hash_table

Viper Documentation, Release

Note: Mappings can only be accessed, not iterated over.

3.5 Contributing

Help is always appreciated!

To get started, you can try building-from-source in order to familiarize yourself with the components of Viper and the
build process. Also, it may be useful to become well-versed at writing smart-contracts in Viper.

3.5.1 Types of Contributions

In particular, we need help in the following areas:

• Improving the documentation

• Responding to questions from other users on StackExchange and the Viper Gitter

• Fixing and responding to Viper’s GitHub issues

3.5.2 How to Report Issues

To report an issue, please use the GitHub issues tracker. When reporting issues, please mention the following details:

• Which version of Viper you are using

• What was the source code (if applicable)

• Which platform are you running on

• Your operating system name and version

• Detailed steps to reproduce the issue

• What was the result of the issue

• What the expected behaviour is

Reducing the source code that caused the issue to a bare minimum is always very helpful and sometimes even clarifies
a misunderstanding.

3.5.3 Fix Bugs

Go through the GitHub issues or report bugs at https://github.com/ethereum/viper/issues for bugs. Anything tagged
with “bug” is open to whoever wants to implement it.

3.5.4 Workflow for Pull Requests

In order to contribute, please fork off of the master branch and make your changes there. Your commit messages
should detail why you made your change in addition to what you did (unless it is a tiny change).

If you need to pull in any changes from master after making your fork (for example, to resolve potential merge
conflicts), please avoid using git merge and instead, git rebase your branch.

Implement Features

3.5. Contributing 31

https://ethereum.stackexchange.com
https://gitter.im/ethereum/viper
https://github.com/ethereum/viper/issues
https://github.com/ethereum/viper/issues
https://github.com/ethereum/viper/issues
https://github.com/ethereum/viper/issues

Viper Documentation, Release

Additionally, if you are writing a new feature, please ensure you write appropriate Boost test cases and place them
under tests/.

However, if you are making a larger change, please consult with the Gitter channel, first.

Also, even though we do CI testing, please make sure that the tests pass for supported Python version and ensure that
it builds locally before submitting a pull request.

Thank you for your help!

3.6 Frequently Asked Questions

3.6.1 Basic Questions

3.6.2 Advanced Questions

32 Chapter 3. Glossary

Index

A
auction

open, 10

B
ballot, 18
bool, 28
byte array, 29
bytes32, 29

C
company stock, 23
contract, 27
crowdfund, 16

F
false, 28
function, 27

I
int, 28
integer, 28

M
mapping, 30

O
open auction, 10

P
purchases, 13

S
state variable, 27
stock

company, 23
structs, 30

T
true, 28
type, 28

U
uint, 28

V
voting, 18

33

	Principles and Goals
	Compatibility-breaking Changelog
	Glossary
	Installing Viper
	Compiling a Contract
	Viper by Example
	Viper in Depth
	Contributing
	Frequently Asked Questions

