
Ethereum Alarm Clock Documentation
Release 1.0.0

Piper Merriam

Jan 22, 2019

Contents

1 Introduction 3
1.1 What problem does this solve? . 3
1.2 How transactions are executed . 4
1.3 Execution guarantees . 4
1.4 How scheduling transactions works . 4

2 Quickstart 5
2.1 Introduction . 5
2.2 Scheduling your first transaction . 5

3 Architecture 9
3.1 Overview . 9
3.2 RequestTracker . 10
3.3 RequestFactory . 10
3.4 BlockScheduler and TimestampScheduler . 10

4 Transaction Request 11
4.1 Interface . 12
4.2 Events . 12
4.3 Data Model . 13
4.4 Actions . 16
4.5 Retrieval of Ether . 18

5 Claiming 19
5.1 The Problem . 19
5.2 The Solution . 20
5.3 Claim Deposit . 20
5.4 How claiming effects payment . 20
5.5 Gas Costs . 21

6 Execution 23
6.1 Important Windows of Blocks/Time . 24
6.2 The Execution Lifecycle . 25
6.3 Sending the Execution Transaction . 27

7 Request Factory 29
7.1 Introduction . 29

i

7.2 Interface . 30
7.3 Events . 30
7.4 Function Arguments . 30
7.5 Validation . 31
7.6 Creation of Transaction Requests . 32
7.7 Tracking API . 33

8 Request Tracker 35
8.1 Introduction . 35
8.2 Interface . 35
8.3 Database Structure . 35
8.4 Chain of Trust . 36
8.5 API . 36

9 Scheduler 39
9.1 Introduction . 39
9.2 Interface . 39
9.3 Defaults . 40
9.4 API . 40
9.5 Endowments . 41

10 Changelog 43
10.1 0.9.1 . 43
10.2 0.9.0-beta . 43
10.3 0.8.0 (unreleased) . 44
10.4 0.7.0 . 44
10.5 0.6.0 . 44
10.6 0.5.0 . 44
10.7 0.4.0 . 45
10.8 0.3.0 . 45
10.9 0.2.0 . 45
10.10 0.1.0 . 45

ii

Ethereum Alarm Clock Documentation, Release 1.0.0

The Ethereum Alarm Clock (EAC for short) is a collection of smart contracts on Ethereum that aims to allow for the
scheduling of transactions to be executed at a later time. It is a “ÐApp” in the truest sense of the word since it has the
qualities of being trustless, censorship resistant and decentralized. No matter who you are or where you are located,
there is no way for anyone to stop you from scheduling a transaction or running an execution client. There is no
priviledged access given to any party, not even to the developers =)

On a high level it works by some users scheduling transactions and providing the execution details and payments
up front, while other users run execution clients that scan the blockchain looking for upcoming transactions. When
the execution clients find upcoming transactions they keep track of them and compete to claim and execute them –
whoever gets the rights to the execution gets paid the exeuction reward.

The code for this service is open source under the MIT license and can be viewed on the github repository. Each
release of the alarm service includes details on verifying the contract source code.

For a more complete explanation of what this service does check out the Introduction.

If you are a smart contract developer and would like to see an example for how you can use the EAC smart contracts
from your own code see Quickstart.

If you are looking to acquire a deeper understanding of the architecture then it is recommnended you skim the docu-
mentation in full. It is recommnended to also view the source code.

Contents:

Contents 1

https://github.com/pipermerriam/ethereum-alarm-clock

Ethereum Alarm Clock Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Introduction

• What problem does this solve?

• How transactions are executed

• Execution guarantees

• How scheduling transactions works

1.1 What problem does this solve?

The simplest way to explain the utility of the EAC is to explain the problem it solves.

We will begin with a refresher about the two types of accounts on Ethereum and the differences between them. There
exists:

1. User accounts (controlled by the holder of the private key)

2. Contracts (which are not controlled by a private key)

User accounts are the accounts that humans control and operate. The controller of a user account is always the person
who holds the private key. In contrast, contract accounts are not controlled by a private key but are instead deployed
code which execute in a determined way when they are called.

All code execution in the Ethreum Virtual Machine (the EVM) must be triggered by a private key based account. This
is done by sending a transaction, which may do something simple like transfering ether, or it may do something more
complex like calling a function on a contract account.

Whenever a user account initiates a contract account, the execution of the contract is immediate. Therefore all calls to
contract accounts are included in the same block as the initial call.

The Ethereum protocol does not provide any way to create a transaction to be executed at a later time. So, if a developer
is creating an application that needs to fire off transactions that must happen at a future date or if a user would like to
perform an action at a specific time without being present, there is no inherent way to do this on Ethereum.

3

Ethereum Alarm Clock Documentation, Release 1.0.0

The EAC service aims to solve these issues while also creating a decentralized incentive based protocol that ensures
pretty good guarantees that someone will execute all scheduled transactions.

1.2 How transactions are executed

When a user schedules a new transaction, they are deploying a new smart contract that holds all of the information
necessary for the execution of the transaction. A good analogy to compare this smart contract to is an order on an
exchange. When this contract “order” is called during the specified execution window, the contract will send the
transaction as set by the user. It will also pay the account that triggered the execution and if a fee was specified in the
data, a transaction to the fee recipient.

These contracts are of the type called TransactionRequest and are written to provide strong guarantees of
correctness to both parties.

The creator of the TransactionRequest contract can know that their transaction will only be sent during the
window they specified and that the transaction parameters will be sent exactly as specified.

Similarly, the account that executes the TransactionRequest contract can know that no matter what occurs
during the execution of the transaction (including if the transaction fails) that they will receive full gas reimbursement
as well as their payment for execution.

1.3 Execution guarantees

You may have noted at this point that this service relies on external parties to initiate the execution of these transactions.
This means that it is possible that your transaction will not be executed at all. Indeed, if no one is running an execution
client then your transaction will not be executed and will expire. However, incentives have been baked into the system
to encourage the running of execution clients and the hope is that many parties will compete for the rights to execute
transactions.

In an ideal situation, there is a sufficient volume of scheduled transactions that operating a server to execute these
transactions is a profitable endeavor.

1.4 How scheduling transactions works

A transaction is scheduled by providing some or all of the following information.

• Details about the transaction itself such as which address the transaction should be sent to, or how much ether
should be sent with the transaction.

• Details about when the transaction can be executed. This includes things like the window of time or blocks
during which this transaction can be executed.

• Ether to pay for the transaction gas costs as well as the payment that will be paid to the account that triggers the
transaction.

Scheduling is done by calling a Scheduler contract which handles creation of the individual
TransactionRequest contract.

4 Chapter 1. Introduction

CHAPTER 2

Quickstart

• Introduction

• Scheduling your first transaction

2.1 Introduction

This guide is inteded for smart contract developers that may want to use the EAC services from within their own
applications. Since all the functionality of the Alarm Clock is built into the Ethereum chain via smart contracts, it can
be accessed from other contracts. This makes it useful as a foundational tool to design and implement more complex
utilities that depend on future transactions. For this guide we will be using the Solidity language. If you are unfamiliar
with Solidity we recommend you familiarize yourself with its documentation first.

2.2 Scheduling your first transaction

The first step is to establish how we will interact with the EAC service’s Scheduler contract. We can use the
Scheduler Interface to accomplish this. The Scheduler interface contract contains some logic that is shared between
both the Block Scheduler and the Timestamp Scheduler. The function that we are interested in is the schedule()
function. See the signature of this function below:

function schedule(address _toAddress,
bytes _callData,
uint[8] _uintArgs)

public payable returns (address);

SchedulerInterface.sol is an abstract contract that exposes the API for the Schedulers including the
schedule() function that we will use in the contract we write.

5

https://solidity.readthedocs.io/en/develop/

Ethereum Alarm Clock Documentation, Release 1.0.0

function schedule which will return the address of the newly created TransactionRequestInterface con-
tract.

Now lets write a simple contract that can use the scheduling service.

pragma solidity 0.4.24;

import "contracts/Interface/SchedulerInterface.sol";

/// Example of using the Scheduler from a smart contract to delay a payment.
contract DelayedPayment {

SchedulerInterface public scheduler;

address recipient;
address owner;
address public payment;

uint lockedUntil;
uint value;
uint twentyGwei = 20000000000 wei;

constructor(
address _scheduler,
uint _numBlocks,
address _recipient,
uint _value

) public payable {
scheduler = SchedulerInterface(_scheduler);
lockedUntil = block.number + _numBlocks;
recipient = _recipient;
owner = msg.sender;
value = _value;

uint endowment = scheduler.computeEndowment(
twentyGwei,
twentyGwei,
200000,
0,
twentyGwei

);

payment = scheduler.schedule.value(endowment)(// 0.1 ether is to pay for gas,
→˓ bounty and fee

this, // send to self
"", // and trigger fallback function
[

200000, // The amount of gas to be sent with the
→˓transaction.

0, // The amount of wei to be sent.
255, // The size of the execution window.
lockedUntil, // The start of the execution window.
twentyGwei, // The gasprice for the transaction (aka 20 gwei)
twentyGwei, // The fee included in the transaction.
twentyGwei, // The bounty that awards the executor of the

→˓transaction.
twentyGwei * 2 // The required amount of wei the claimer must

→˓send as deposit.

(continues on next page)

6 Chapter 2. Quickstart

Ethereum Alarm Clock Documentation, Release 1.0.0

(continued from previous page)

]
);

assert(address(this).balance >= value);
}

function () public payable {
if (msg.value > 0) { //this handles recieving remaining funds sent while

→˓scheduling (0.1 ether)
return;

} else if (address(this).balance > 0) {
payout();

} else {
revert();

}
}

function payout()
public returns (bool)

{
require(block.number >= lockedUntil);

recipient.transfer(value);
return true;

}

function collectRemaining()
public returns (bool)

{
owner.transfer(address(this).balance);

}
}

The contract above is designed to lock away and then send to receiver whatever ether it is given for numBlocks
blocks. In its constructor, it makes a call to the schedule method on the scheduler contract. We would
pass in the address of the scheduler we would want to interact with as the first parameter of the constructor. For
instance, if we wanted to use the Block Scheduler that is deployed on the Kovan test net we would use address
0x1afc19a7e642761ba2b55d2a45b32c7ef08269d1.

The schedule function takes 10 arguments, each of which we will go over in order.

• address toAddress: The address which the transaction will be sent to.

• bytes callData: The bytes that will be used as the data for the transaction.

• uint callGas: The amount of gas that will be sent with the transaction.

• uint callValue: The amount of ether (in wei) that will be sent with the transaction.

• uint8 windowSize: The number of blocks after windowSize during which the transaction will still be
executable.

• uint windowStart: The first block number that the transaction will be executable.

• uint gasPrice: The gas price (in wei) which must be sent by the executing party to execute the transaction.

• uint fee: The fee amount (in wei) included in the transaction for protocol maintainers.

• uint bounty: The payment (in wei)included in the transaction to incentivse the executing arguments

• uint deposit: (optional) Required amount of ether (in wei) to be staked by executing agents

2.2. Scheduling your first transaction 7

Ethereum Alarm Clock Documentation, Release 1.0.0

The 0.1 ether amount passed as value to schedule method pays for gas, fee and bounty. The remaining amount
of ether will be returned automatically to the deployed DelayedPayment.

Let’s look at the other function on this contract. For those unfamiliar with solidity, the function without a name is
known as the fallback function. The fallback function is what triggers if no method is found on the contract that
matches the sent data, or if data is not included. Usually, sending a simple value transfer function will trigger the
fallback function. In this case, we explicitly pass an empty string as the callData variable so that the scheduled
transaction will trigger this function when it is executed.

In this example we are locking the sent ether in DelayedPayment contract and using scheduling to trigger the
fallback function. When the fallback function is executed, it will route the call into the payout() function. The
payout() function will check the current block number and check if it is not below the lockedUntil time or
else it reverts the transaction. After it checks that the current block number is greater than or equal to the lockedUntil
variable, the function will transfer the entrie balance of the contract to the specified recipient.

As can be seen, this will make it so that a payment is scheduled for a future date but won’t actually be sent until
that date. This example uses a simple payment, but the EAC will work with arbritrary logic. As the logic for a
scheduled transaction increases, be sure to increase the required callGas in accordance. Right now, the gas limit for
a transaction is somewhere in the ballpark of 8,000,000 so there’s plenty of wiggle room for experimentation.

8 Chapter 2. Quickstart

CHAPTER 3

Architecture

• Overview

• RequestTracker

• RequestFactory

• BlockScheduler and TimestampScheduler

3.1 Overview

The Ethereum Alarm Clock infrastructure consists of the following contracts:

• TransactionRequest: Represents a single scheduled transaction.

• RequestFactory: Low level API for creating TransactionRequest contracts.

• RequestTracker: Tracks the scheduled transactions.

• BlockScheduler: High level API for creating TransactionRequest contracts configured to be exe-
cuted at a specified block number.

• TimestampScheduler: High level API for creating TransactionRequest contracts configured to be
executed at a certain time, as specified by a timestamp.

Note: Actual functionality of most of the contracts is housed separately in various libraries.

class RequestTracker

9

Ethereum Alarm Clock Documentation, Release 1.0.0

3.2 RequestTracker

The RequestTracker is a database contract which tracks upcoming transaction requests. It exposes an API suitable
for someone wishing to execute transaction requests to be able to query which requests are scheduled next as well as
other common needs.

The RequestTracker database indexes requests based on the address that submits them. Therefore, the
RequestTracker is un-permissioned and allows any address to report scheduled transactions and to have them
stored in their own personal index. The address which submits the transaction request is referred to as the scheduler
address.

The flexibility of the RequestTracker storage enables those executing transaction requests to choose which scheduler
addresses they wish to watch for upcoming transactions.

class RequestFactory

3.3 RequestFactory

The RequestFactory contract is designed to be a low-level interface for developers who need fine-grained control
over all of the various parameters that the TransactionRequest can be configured with.

Parameter validation is available, but not mandatory.

It provides an API for creating new TransactionRequest contracts.

class BlockScheduler

class TimestampScheduler

3.4 BlockScheduler and TimestampScheduler

The BlockScheduler and TimestampScheduler contracts are a higher-level interface that most developers
should want to use in order to schedule a transaction for a future block or timestamp.

Both contracts present an identical API for creating new TransactionRequest contracts. Different from
RequestFactory , request parameters are always validated.

BlockScheduler treats all of the scheduling parameters as meaning block numbers, while
TimestampScheduler treats them as meaning timestamps and seconds.

10 Chapter 3. Architecture

CHAPTER 4

Transaction Request

• Interface

• Events

• Data Model

– Retrieving Data

– Transaction Data

– Payment Data

– Claim Data

– Schedule Data

– Meta Data

• Actions

– Cancellation

– Claiming

– Execution

– Proxy

• Retrieval of Ether

– Returning the Claim Deposit

– Retrieving the Payment

– Retrieving the Fee

– Return any extra Ether

class TransactionRequest

11

Ethereum Alarm Clock Documentation, Release 1.0.0

Each TransactionRequest contract represents one transaction that has been scheduled for future execution.
This contract is not intended to be used directly as the RequestFactory contract can be used to create new
TransactionRequest contracts with full control over all of the parameters.

4.1 Interface

pragma solidity 0.4.24;

contract TransactionRequestInterface {

// Primary actions
function execute() public returns (bool);
function cancel() public returns (bool);
function claim() public payable returns (bool);

// Proxy function
function proxy(address recipient, bytes callData) public payable returns (bool);

// Data accessors
function requestData() public view returns (address[6], bool[3], uint[15],

→˓uint8[1]);
function callData() public view returns (bytes);

// Pull mechanisms for payments.
function refundClaimDeposit() public returns (bool);
function sendFee() public returns (bool);
function sendBounty() public returns (bool);
function sendOwnerEther() public returns (bool);
function sendOwnerEther(address recipient) public returns (bool);

}

4.2 Events

TransactionRequest.Cancelled(uint rewardPayment, uint measuredGasConsumption)

When a request is cancelled, the Cancelled event will be logged. The rewardPayment is the amount that was
paid to the party that cancelled the request. This will always be 0 when the owner of the request cancels the request.

TransactionRequest.Claimed()

When a request is claimed this event is logged.

TransactionRequest.Aborted(uint8 reason);

When an attempt is made to execute a request but one of the pre-execution checks fails, this event is logged. The
reason is an error code which maps to the following errors.

• 0 => WasCancelled

• 1 => AlreadyCalled

• 2 => BeforeCallWindow

• 3 => AfterCallWindow

• 4 => ReservedForClaimer

12 Chapter 4. Transaction Request

Ethereum Alarm Clock Documentation, Release 1.0.0

• 5 => InsufficientGas

• 6 => MismatchGasPrice

TransactionRequest.Executed(uint payment, uint fee, uint measuredGasConsumption)

When a request is successfully executed this event is logged. The payment is the total payment amount
that was awarded for execution. The fee is the amount that was awarded to the feeRecipient. The
measuredGasConsumption is the amount of gas that was reimbursed which should always be slightly greater
than the actual gas consumption.

4.3 Data Model

The data for the transaction request is split into 5 main sections.

• Transaction Data: Information specific to the execution of the transaction.

• Payment Data: Information related to the payment and fee associated with this request.

• Claim Data: Information about the claim status for this request.

• Schedule Data: Information about when this request should be executed.

• Meta Data: Information about the result of the request as well as which address owns this request and which
address created this request.

4.3.1 Retrieving Data

The data for a request can be retrieved using two methods.

TransactionRequest.requestData()

This function returns the serialized request data (excluding the callData) in a compact format spread across four
arrays. The data is returned alphabetical, first by type, and then by section, then by field.

The return value of this function is four arrays.

• address[6] addressValues

• bool[3] boolValues

• uint256[15] uintValues

• uint8[1] uint8Values

These arrays then map to the following data fields on the request.

• Addresses (address)

– addressValues[0] => claimData.claimedBy

– addressValues[1] => meta.createdBy

– addressValues[2] => meta.owner

– addressValues[3] => paymentData.feeRecipient

– addressValues[4] => paymentData.paymentBenefactor

– addressValues[5] => txnData.toAddress

• Booleans (bool)

– boolValues[0] => meta.isCancelled

4.3. Data Model 13

Ethereum Alarm Clock Documentation, Release 1.0.0

– boolValues[1] => meta.wasCalled

– boolValues[2] => meta.wasSuccessful

• Unsigned 256 bit Integers (uint aka uint256)

– uintValues[0] => claimData.claimDeposit

– uintValues[1] => paymentData.anchorGasPrice

– uintValues[2] => paymentData.fee

– uintValues[3] => paymentData.feeOwed

– uintValues[4] => paymentData.payment

– uintValues[5] => paymentData.paymentOwed

– uintValues[6] => schedule.claimWindowSize

– uintValues[7] => schedule.freezePeriod

– uintValues[8] => schedule.reservedWindowSize

– uintValues[9] => schedule.temporalUnit

– uintValues[10] => schedule.windowStart

– uintValues[11] => schedule.windowSize

– uintValues[12] => txnData.callGas

– uintValues[13] => txnData.callValue

– uintValues[14] => txnData.gasPrice

• Unsigned 8 bit Integers (uint8)

– uint8Values[0] => claimData.paymentModifier

TransactionRequest.callData()

Returns the bytes value of the callData from the request’s transaction data.

4.3.2 Transaction Data

This portion of the request data deals specifically with the transaction that has been requested to be sent at a future
block or time. It has the following fields.

address toAddress
The address that the transaction will be sent to.

bytes callData
The bytes that will be sent as the data section of the transaction.

uint callValue
The amount of ether, in wei, that will be sent with the transaction.

uint callGas
The amount of gas that will be sent with the transaction.

uint gasPrice
The gas price required to send when executing the transaction.

14 Chapter 4. Transaction Request

Ethereum Alarm Clock Documentation, Release 1.0.0

4.3.3 Payment Data

Information surrounding the payment and fee for this request.

uint anchorGasPrice
The gas price that was used during creation of this request. This is used to incentivise the use of an adequately
low gas price during execution.

See gas-multiplier for more information on how this is used.

uint payment
The amount of ether in wei that will be paid to the account that executes this transaction at the scheduled time.

address paymentBenefactor
The address that the payment will be sent to. This is set during execution.

uint paymentOwed
The amount of ether in wei that is owed to the paymentBenefactor. In most situations this will be zero at
the end of execution, however, in the event that sending the payment fails the payment amount will be stored
here and retrievable via the sendPayment() function.

uint fee
The amount of ether, in wei, that will be sent to the feeRecipient upon execution.

address feeRecipient
The address that the fee will be sent to.

uint feeOwed
The amount of ether in wei that is owed to the feeRecipient. In most situations this will be zero at the end
of execution, however, in the event that sending the fee fails the fee amount will be stored here and retrievable
via the sendFee() function.

4.3.4 Claim Data

Information surrounding the claiming of this request. See Claiming for more information.

address claimedBy
The address that has claimed this request. If unclaimed this value will be set to the zero address
0x00

uint claimDeposit
The amount of ether, in wei, that has been put down as a deposit towards claiming. This amount is included in
the payment that is sent during request execution.

uint8 paymentModifier
A number constrained between 0 and 100 (inclusive) which will be applied to the payment for this request. This
value is determined based on the time or block that the request is claimed.

4.3.5 Schedule Data

Information related to the window of time during which this request is scheduled to be executed.

uint temporalUnit
Determines if this request is scheduled based on block numbers or timestamps.

• Set to 1 for block based scheduling.

• Set to 2 for timestamp based scheduling.

All other values are interpreted as being blocks or timestamps depending on what this value is set as.

4.3. Data Model 15

Ethereum Alarm Clock Documentation, Release 1.0.0

uint windowStart
The block number or timestamp on which this request may first be executed.

uint windowSize
The number of blocks or seconds after the windowStart during which the request may still be executed. This
period of time is referred to as the execution window. This period is inclusive of it’s endpoints meaning that the
request may be executed on the block or timestamp windowStart + windowSize.

uint freezePeriod
The number of blocks or seconds prior to the windowStart during which no activity may occur.

uint reservedWindowSize
The number of blocks or seconds during the first portion of the the execution window during which the request
may only be executed by the address that address that claimed the call. If the call is not claimed, then this
window of time is treated no differently.

uint claimWindowSize
The number of blocks prior to the freezePeriod during which the call may be claimed.

4.3.6 Meta Data

Information about ownership, creation, and the result of the transaction request.

address owner
The address that scheduled this transaction request.

address createdBy
The address that created this transaction request. This value is set by the RequestFactory meaning that
if the request is known by the request factory then this value can be trusted to be the address that created the
contract. When using either the BlockScheduler or TimestampScheduler this address will be set to
the respective scheduler contract..

bool isCancelled
Whether or not this request has been cancelled.

bool wasCalled
Whether or not this request was executed.

bool wasSuccessful
Whether or not the execution of this request returned true or false. In most cases this can be an indicator
that an execption was thrown if set to false but there are also certain cases due to quirks in the EVM where
this value may be true even though the call technically failed.

4.4 Actions

The TransactionRequest contract has three primary actions that can be performed and a fourth action, proxy,
which will be called in certain circumstances.

• Cancellation: Cancels the request.

• Claiming: Reserves exclusive execution rights during a portion of the execution window.

• Execution: Sends the requested transaction.

16 Chapter 4. Transaction Request

Ethereum Alarm Clock Documentation, Release 1.0.0

4.4.1 Cancellation

TransactionRequest.cancel()

Cancellation can occur if either of the two are true.

• The current block or time is before the freeze period and the request has not been claimed.

• The current block or time is after the execution window and the request was not executed.

When cancelling prior to the execution window, only the owner of the call may trigger cancellation.

When cancelling after the execution window, anyone may trigger cancellation. To ensure that funds are not forever
left to rot in these contracts, there is an incentive layer for this function to be called by others whenever a request fails
to be executed. When cancellation is executed by someone other than the owner of the contract, 1% of what would
have been paid to someone for execution is paid to the account that triggers cancellation.

4.4.2 Claiming

TransactionRequest.claim()

Claiming may occur during the claimWindowSize number of blocks or seconds prior to the freeze period. For
example, if a request was configured as follows:

• windowStart: block #500

• freezePeriod: 10 blocks

• claimWindowSize: 100 blocks

In this case, the call would first be claimable at block 390. The last block in which it could be claimed would be block
489.

See the Claiming section of the documentation for details about the claiming process.

4.4.3 Execution

TransactionRequest.execute()

Execution may happen beginning at the block or timestamp denoted by the windowStart value all the way through
and including the block or timestamp denoted by windowStart + windowSize.

See the Execution section of the documentation for details about the execution process.

4.4.4 Proxy

TransactionRequest.proxy(address _to, bytes _data)

Proxy can only be called by the user who scheduled the TransactionRequest and only after the execution window
has passed. It exposes two fields, _to which will be the address of that the call will send to, and _data which is the
encoded data to be sent with the transaction. The purpose of this function is to call another contract to do things like
for example, transfer tokens. In the case a user schedules a call to buy from an ICO with the EAC, they will need to
proxy call the token contract after the execution in order to move the tokens they bought out of the TransactionRequest
contract.

4.4. Actions 17

Ethereum Alarm Clock Documentation, Release 1.0.0

4.5 Retrieval of Ether

All payments are automatically returned as part of normal request execution and cancellation. Since it is possible for
these payments to fail, there are backup methods that can be called individually to retrieve these different payment or
deposit values.

All of these functions may be called by anyone.

4.5.1 Returning the Claim Deposit

TransactionRequest.refundClaimDeposit()

This method will return the claim deposit if either of the following conditions are met.

• The request was cancelled.

• The execution window has passed.

4.5.2 Retrieving the Payment

TransactionRequest.sendPayment()

This function will send the paymentOwed value to the paymentBenefactor. This is only callable after the
execution window has passed.

4.5.3 Retrieving the Fee

TransactionRequest.sendFee()

This function will send the feeOwed value to the feeRecipient. This is only callable after the execution window
has passed.

4.5.4 Return any extra Ether

This function will send any exta ether in the contract that is not owed as a fee or payment and that is not part of the
claim deposit back to the owner of the request. This is only callable if one of the following conditions is met.

• The request was cancelled.

• The execution window has passed.

18 Chapter 4. Transaction Request

CHAPTER 5

Claiming

• The Problem

• The Solution

• Claim Deposit

• How claiming effects payment

• Gas Costs

class TransactionRequest

5.1 The Problem

The claiming mechanism solves a very important problem contained within the incentive scheme of the EAC. It’s best
to provide an example first then go into the specifics of the solution later.

Consider a situation where there are two people, Alice and Bob, competing to execute the same request. The request
will issue a payment of 100 wei to whomever executes it.

Suppose that Alice and Bob both send their execution transactions at approximately the same time, but out of luck,
Alice’s transaction is included before Bob’s.

Alice will receive the 100 wei payment, while Bob will receive no payment as well as having paid the gas costs for his
execution transaction that was rejected. Suppose that the gas cost Bob has now incurred is 25 wei.

In this situation we could assume that Alice and Bob have a roughly 50% chance of successfully executing any given
transaction request, but since 50% of their attempts end up costing them money, their overall profits are being reduced
by each failed attempt.

In this model, their expected payout is 75 wei for every two transaction requests they try to execute.

Now suppose that we add more competition via three additional people attempting to execute each transaction. Now
Bob and Alice will only end up executing an average of 1 out of every 5 transaction requests, with the other 4 costing

19

Ethereum Alarm Clock Documentation, Release 1.0.0

them 25 wei each. Now the result is that nobody is making a profit because the cost of the failed transactions cancel
out any profit they are making.

5.2 The Solution

The claiming process is the current solution to this issue.

Prior to the execution window there is a section of time referred to as the claim window during which the request may
be claimed by a single party for execution. An essiential part of claiming is that the claimer must put down a claim
deposit in order to attain the rights to execute the request.

When a request has been claimed, the claimer is granted exclusive rights to execute the request during a window of
blocks at the beginning of the execution window.

Whomever ends up executing the request receives the claim deposit as part of their payment. This means that if the
claimer fulfills their commitment to execute the request their deposit is returned to them intact. Otherwise, if someone
else executes the request then they will receive the deposit as an additional reward.

5.3 Claim Deposit

In order to claim a request you must put down a deposit. This deposit amount is specified by the scheduler of the
transaction. The account claiming the transaction request must send at least the claimDeposit amount when they
attempt to claim an execution.

The claimDeposit is returned to the claiming account when they execute the transaction request or when the call
is cancelled. However, if the account that claims the call later fails to execute then they will lose their claim deposit to
whoever executes instead.

5.4 How claiming effects payment

A claimed request does not pay the same as an unclaimed request. The earlier the request is claimed, the less it will
pay, and conversely, the later the request is claimed, the more it pays.

This is a linear transition from getting paid 0% of the total payment if the request is claimed at the earliest possible
time up to 100% of the total payment at the very end of the claim window. This multiplier is referred to as the payment
modifier. Refer to the code block pasted below to see how the smart contract calculates the multiplier. This examples
is taken from lines 71 - 79 of RequestScheduleLib.sol.

function computePaymentModifier(ExecutionWindow storage self)
internal view returns (uint8)

{
uint paymentModifier = (getNow(self).sub(firstClaimBlock(self)))

.mul(100).div(self.claimWindowSize);
assert(paymentModifier <= 100);

return uint8(paymentModifier);
}

It is important to note that the payment modifier does not apply to gas reimbursements which are always paid in full.
No matter when a call is claimed, or how it is executed, it will always provide a full gas reimbursement.

20 Chapter 5. Claiming

Ethereum Alarm Clock Documentation, Release 1.0.0

Note: In the past, this was not always the case since the EAC used a slightly different scheme to calculate an anchor
gas price. In version 0.9.0 the anchor gas price was removed in favor of forcing the scheduler of the transaction to
explicitly specify an exact gas price. So the gas to execute a transaction is always reimbursed exactly to the executor
of the transaction.

For clarification of the payment modifier let’s consider an example. Assume that a transaction request has a payment
set to 2000 wei, a claimWindowSize of 255 blocks, a freezePeriod of 10 blocks, and a windowStart set at
block 500. The first claimable block is calculated by subtracting the claimWindowSize and the freezePeriod
from the windowStart like so:

first_claim_block = 500 - 255 - 10 = 235

In this case, the request would have a payment of 0 at block 235.

(235 - 235) * 100 // 255 = 0

At block 245 it would pay 60 wei or 3% of the total payment.

(245 - 235) * 100 // 255 = 3

At block 489 it would pay 1980 wei or 99% of the total payment.

(489 - 235) * 100 // 255 = 99

5.5 Gas Costs

The gas costs for claim transactions are not reimbursed. They are considered the cost of doing business and should be
taken into consideration when claiming a request. If the request is claimed sufficiently early in the claim window it is
possible that the payment will not fully offset the transaction costs of claiming the request. EAC clients should take
precaution that they do not claim transaction requests without estimating whether they will be profitable first.

5.5. Gas Costs 21

Ethereum Alarm Clock Documentation, Release 1.0.0

22 Chapter 5. Claiming

CHAPTER 6

Execution

• Important Windows of Blocks/Time

– Freeze Window

– The Execution Window

– Reserved Execution Window

• The Execution Lifecycle

– Part 1: Validation

* Check #1: Not already called

* Check #2: Not Cancelled

* Check #3: Not before execution window

* Check #4: Not after execution window

* Check #5 and #6: Within the execution window and authorized

* Check #8: Sufficient Call Gas

– Part 2: Execution

– Part 3: Accounting

• Sending the Execution Transaction

– Gas Reimbursement

– Minimum ExecutionGas

class TransactionRequest

23

Ethereum Alarm Clock Documentation, Release 1.0.0

Warning: Anyone wishing to write their own execution client should be sure they fully understand all of the
intricacies related to the execution of transaction requests. The guarantees in place for those executing requests are
only in place if the executing client is written appropriately. Reading this documentation is a good start.

6.1 Important Windows of Blocks/Time

6.1.1 Freeze Window

Each request may specify a freezePeriod. This defines a number of blocks or seconds prior to the windowStart
during which no actions may be performed against the request. This is primarily in place to provide some level of
guarantee to those executing the request. For anyone executing requests, once the request enters the freezePeriod
they can know that it will not be cancelled and that they can send the executing transaction without fear of it being
cancelled at the last moment before the execution window starts.

6.1.2 The Execution Window

The execution window is the range of blocks or timestamps during which the request may be executed. This window
is defined as the range of blocks or timestamps from windowStart till windowStart + windowSize.

For example, if a request was scheduled with a windowStart of block 2100 and a windowSize of 255 blocks,
the request would be allowed to be executed on any block such that windowStart <= block.number <=
windowStart + windowSize.

As another example, if a request was scheduled with a windowStart of block 2100 and a windowSize of 0
blocks, the request would only be allowed to be executed at block 2100.

Very short windowSize configurations likely lower the chances of your request being executed at the desired time
since it is not possible to force a transaction to be included in a specific block. The party executing your request may
either fail to get the transaction included in the correct block or they may choose to not try for fear that their transaction
will not be mined in the correct block, thereby not receiving their reimbursment for their gas costs.

Similarly, very short ranges of time for timestamp based calls may even make it impossible to execute the call. For
example, if you were to specify a windowStart at 1480000010 and a windowSize of 5 seconds then the re-
quest would only be executable on blocks whose block.timestamp satisfied the conditions 1480000010 <=
block.timestamp <= 1480000015. Given that it is entirely possible that no blocks are mined within this
small range of timestamps there would never be a valid block for your request to be executed.

Note: It is worth pointing out that actual size of the execution window will always be windowSize + 1 since the
bounds are inclusive.

6.1.3 Reserved Execution Window

Each request may specify a claimWindowSize which defines a number of blocks or seconds at the beginning of
the execution window during which the request may only be executed by the address which has claimed the request.
Once this window has passed the request may be executed by anyone.

Note: If the request has not been claimed this window is treated no differently than the remainder of the execution
window.

24 Chapter 6. Execution

Ethereum Alarm Clock Documentation, Release 1.0.0

For example, if a request specifies a windowStart of block 2100, a windowSize of 100 blocks, and a
reservedWindowSize of 25 blocks then in the case that the request was claimed then the request would only
be executable by the claimer for blocks satisfying the condition 2100 <= block.number < 2125.

Note: It is worth pointing out that unlike the execution window the reserved execution window is not inclusive of it’s
righthand bound.

If the reservedWindowSize is set to 0, then there will be no window of blocks during which the execution rights
are exclusive to the claimer. Similarly, if the reservedWindowSize is set to be equal to the full size of the
execution window or windowSize + 1 then there will be not window after the reserved execution window during
which execution can be triggered by anyone.

The RequestFactory will allow a reservedWindowSize of any value from 0 up to windowSize + 1,
however, it is highly recommended that you pick a number around 16 blocks or 270 seconds, leaving at least the same
amount of time unreserved during the second portion of the execution window. This ensures that there is sufficient
motivation for your call to be claimed because the person claiming the call knows that they will have ample opportunity
to execute it when the execution window comes around. Conversely, leaving at least as much time unreserved ensures
that in the event that your request is claimed but the claimer fails to execute the request that someone else has plenty
of of time to fulfill the execution before the execution window ends.

6.2 The Execution Lifecycle

When the :method:‘TransactionRequest.execute()‘ function is called the contract goes through three main sections
of logic which are referred to as a whole as the execution lifecycle.

1. Validation: Handles all of the checks that must be done to ensure that all of the conditions are correct for the
requested transaction to be executed.

2. Execution: The actual sending of the requested transaction.

3. Accounting: Computing and sending of all payments to the necessary parties.

6.2.1 Part 1: Validation

During the validation phase all of the following validation checks must pass.

Check #1: Not already called

Requires the wasCalled attribute of the transaction request to be false.

Check #2: Not Cancelled

Requires the isCancelled attribute of the transaction request to be false.

Check #3: Not before execution window

Requires block.number or block.timestamp to be greater than or equal to the windowStart attribute.

6.2. The Execution Lifecycle 25

Ethereum Alarm Clock Documentation, Release 1.0.0

Check #4: Not after execution window

Requires block.number or block.timestamp to be less than or equal to windowStart + windowSize.

Check #5 and #6: Within the execution window and authorized

• If the request is claimed

– If the current time is within the reserved execution window

* Requires that msg.sender to be the claimedBy address

– Otherwise during the remainder of the execution window

* Always passes.

• If the request is not claimed.

– Always passes if the current time is within the execution window

Check #8: Sufficient Call Gas

Requires that the current value of msg.gas be greater than the minimum call gas. See minimum-call-gas for details
on how to compute this value as it includes both the callGas amount as well as some extra for the overhead involved
in execution.

6.2.2 Part 2: Execution

The execution phase is very minimalistic. It marks the request as having been called and then dispatches the requested
transaction, storing the success or failure on the wasSuccessful attribute.

6.2.3 Part 3: Accounting

The accounting phase accounts for all of the payments and reimbursements that need to be sent.

The fee payment is the mechanism through which developers can earn a return on their development efforts on the
Alarm service. When a person schedules a transaction they may choose to enter a fee amount which will get sent
to the developer. This value is multiplied by the gas multiplier (see gas-multiplier) and sent to the feeRecipient
address.

Next the payment for the actual execution is computed. The formula for this is as follows:

totalPayment = payment * gasMultiplier + gasUsed * tx.gasprice +
claimDeposit

The three components of the totalPayment are as follows.

• payment * gasMultiplier: The actual payment for execution.

• gasUsed * tx.gasprice: The reimbursement for the gas costs of execution. This is not going to exactly
match the actual gas costs, but it will always err on the side of overpaying slightly for gas consumption.

• claimDeposit: If the request is not claimed this will be 0. Otherwise, the claimDeposit is always given
to the executor of the request.

After these payments have been calculated and sent, the Executed event is logged, and any remaining ether that is
not allocated to be paid to any party is sent back to the address that scheduled the request.

26 Chapter 6. Execution

Ethereum Alarm Clock Documentation, Release 1.0.0

6.3 Sending the Execution Transaction

In addition to the pre-execution validation checks, the following things should be taken into considuration when
sending the executing transaction for a request.

6.3.1 Gas Reimbursement

If the gasPrice of the network has increased significantly since the request was scheduled it is possible that it no
longer has sufficient ether to pay for gas costs. The following formula can be used to compute the maximum amount
of gas that a request is capable of paying:

(request.balance - 2 * (payment + fee)) / tx.gasprice

If you provide a gas value above this amount for the executing transaction then you are not guaranteed to be fully
reimbursed for gas costs.

6.3.2 Minimum ExecutionGas

When sending the execution transaction, you should use the following rules to determine the minimum gas to be sent
with the transaction:

• Start with a baseline of the callGas attribute.

• Add 180000 gas to account for execution overhead.

• If you are proxying the execution through another contract such that during execution msg.sender != tx.
origin then you need to provide an additional 700 * requiredStackDepth gas for the stack depth
checking.

For example, if you are sending the execution transaction directly from a private key based address, and the request
specified a callGas value of 120000 gas then you would need to provide 120000 + 180000 => 300000 gas.

If you were executing the same request, except the execution transaction was being proxied through a contract, and the
request specified a requiredStackDepth of 10 then you would need to provide 120000 + 180000 + 700

* 10 => 307000 gas.

6.3. Sending the Execution Transaction 27

Ethereum Alarm Clock Documentation, Release 1.0.0

28 Chapter 6. Execution

CHAPTER 7

Request Factory

• Introduction

• Interface

• Events

• Function Arguments

• Validation

– Check #1: Insufficient Endowment

– Check #2: Invalid Reserved Window

– Check #3: Invalid Temporal Unit

– Check #4: Execution Window Too Soon

– Check #5: Call Gas too high

– Check #6: Empty To Address

• Creation of Transaction Requests

• Tracking API

class RequestFactory

7.1 Introduction

The RequestFactory contract is the lowest level API for creating transaction requests. It handles:

• Validation and Deployment of TransactionRequest contracts

• Tracking of all addresses that it has deployed.

29

Ethereum Alarm Clock Documentation, Release 1.0.0

This contract is designed to allow tuning of all transaction parameters and is probably the wrong API to integrate with
if your goal is to simply schedule transactions for later execution. The Scheduler API is likely the right solution for
these use cases.

7.2 Interface

pragma solidity 0.4.24;

contract RequestFactoryInterface {
event RequestCreated(address request, address indexed owner, int indexed bucket,

→˓uint[12] params);

function createRequest(address[3] addressArgs, uint[12] uintArgs, bytes callData)
→˓public payable returns (address);

function createValidatedRequest(address[3] addressArgs, uint[12] uintArgs, bytes
→˓callData) public payable returns (address);

function validateRequestParams(address[3] addressArgs, uint[12] uintArgs, uint
→˓endowment) public view returns (bool[6]);

function isKnownRequest(address _address) public view returns (bool);
}

7.3 Events

RequestFactory.RequestCreated(address request)

The RequestCreated event will be logged for each newly created TransactionRequest.

RequestFactory.ValidationError(uint8 error)

The ValidationError event will be logged when an attempt is made to create a new TransactionRequest
which fails due to validation errors. The error represents an error code that maps to the following errors.

• 0 => InsufficientEndowment

• 1 => ReservedWindowBiggerThanExecutionWindow

• 2 => InvalidTemporalUnit

• 3 => ExecutionWindowTooSoon

• 4 => CallGasTooHigh

• 5 => EmptyToAddress

7.4 Function Arguments

Because of the call stack limitations imposed by the EVM, all of the following functions on the RequestFactory
contract take their arguments in the form of the following form.

• address[3] _addressArgs

• uint256[11] _uintArgs

• bytes _callData

The arrays map to to the following TransactionRequest attributes.

30 Chapter 7. Request Factory

Ethereum Alarm Clock Documentation, Release 1.0.0

• Addresses (address)

– _addressArgs[0] => meta.owner

– _addressArgs[1] => paymentData.feeRecipient

– _addressArgs[2] => txnData.toAddress

• Unsigned Integers (uint aka uint256)

– _uintArgs[0] => paymentData.fee

– _uintArgs[1] => paymentData.payment

– _uintArgs[2] => schedule.claimWindowSize

– _uintArgs[3] => schedule.freezePeriod

– _uintArgs[4] => schedule.reservedWindowSize

– _uintArgs[5] => schedule.temporalUnit

– _uintArgs[6] => schedule.windowStart

– _uintArgs[7] => schedule.windowSize

– _uintArgs[8] => txnData.callGas

– _uintArgs[9] => txnData.callValue

– _uintArgs[10] => txnData.gasPrice

7.5 Validation

RequestFactory.validateRequestParams(address[3] _addressArgs, uint[11] _uintArgs, bytes
_callData, uint _endowment) public returns (bool[6] re-
sult)

The validateRequestParams function can be used to validate the parameters to both createRequest and
createValidatedRequest. The additional parameter endowment should be the amount in wei that will be
sent during contract creation.

This function returns an array of bool values. A true means that the validation check succeeded. A false means
that the check failed. The result array’s values map to the following validation checks.

7.5.1 Check #1: Insufficient Endowment

• result[0]

Checks that the provided endowment is sufficient to pay for the fee and payment as well as gas reimbursment.

The required minimum endowment can be computed as the sum of the following:

• callValue to provide the ether that will be sent with the transaction.

• 2 * payment to pay for maximum possible payment

• 2 * fee to pay for maximum possible fee

• callGas * txnData.gasPrice to pay for callGas.

• 180000 * txnData.gasPrice to pay for the gas overhead involved in transaction execution.

7.5. Validation 31

Ethereum Alarm Clock Documentation, Release 1.0.0

7.5.2 Check #2: Invalid Reserved Window

• result[1]

Checks that the reservedWindowSize is less than or equal to windowSize + 1.

7.5.3 Check #3: Invalid Temporal Unit

• result[2]

Checks that the temporalUnit is either 1 to specify block based scheduling, or 2 to specify timestamp based
scheduling.

7.5.4 Check #4: Execution Window Too Soon

• result[3]

Checks that the current now value is not greater than windowStart - freezePeriod.

• When using block based scheduling, block.number is used for the now value.

• When using timestamp based scheduling, block.timestamp is used.

7.5.5 Check #5: Call Gas too high

• result[5]

Check that the specified callGas value is not greater than the current gasLimit - 140000 where 140000 is
the gas overhead of request execution.

7.5.6 Check #6: Empty To Address

• result[6]

Checks that the toAddress is not the null address 0x00.

7.6 Creation of Transaction Requests

RequestFactory.createRequest(address[3] _addressArgs, uint[11] _uintArgs, bytes _callData) pub-
lic payable returns (address)

This function deploys a new TransactionRequest contract. This function does not perform any validation and
merely directly deploys the new contract.

Upon successful creation the RequestCreated event will be logged.

RequestFactory.createValidatedRequest(address[3] _addressArgs, uint[11] _uintArgs, bytes
_callData) public payable returns (address)

This function first performs validation of the provided arguments and then deploys the new TransactionRequest
contract when validation succeeds.

When validation fails, a ValidationError event will be logged for each validation error that occured.

32 Chapter 7. Request Factory

Ethereum Alarm Clock Documentation, Release 1.0.0

7.7 Tracking API

RequestFactory.isKnownRequest(address _address) returns (bool)

This method will return true if the address is a TransactionRequest that was created from this contract.

7.7. Tracking API 33

Ethereum Alarm Clock Documentation, Release 1.0.0

34 Chapter 7. Request Factory

CHAPTER 8

Request Tracker

• Introduction

• Interface

• Database Structure

• Chain of Trust

• API

class RequestTracker

8.1 Introduction

The RequestTracker contract is a simple database contract that exposes an API suitable for querying for scheduled
transaction requests. This database is permissionless in so much as it partitions transaction requests by the address that
reported them. This means that anyone can deploy a new request scheduler that conforms to whatever specific rules
they may need for their use case and configure it to report any requests it schedules with this tracker contract.

Assuming that such a scheduler was written to still use the RequestFactory contract for creation of transaction
requests, the standard execution client will pickup and execute any requests that this scheduler creates.

8.2 Interface

8.3 Database Structure

All functions exposed by the RequestTracker take an address as the first argument. This is the address that
reported the request into the tracker. This address is referred to as the scheduling address which merely means that it is
the address that reported this request into the tracker. Each scheduling address effectively receives it’s own database.

35

Ethereum Alarm Clock Documentation, Release 1.0.0

All requests are tracked and ordered by their windowStart value. The tracker does not distinguish between block
based scheduling and timestamp based scheduling.

It is possible for a single TransactionRequest contract to be listed under multiple scheduling addresses since
any address may report a request into the database.

8.4 Chain of Trust

Since this database is permissionless, if you plan to consume data from it, you should validate the following things.

• Check with the RequestFactory that the request address is known using the
:method:‘RequestFactory.isKnownRequest()‘ function.

• Check that the windowStart attribute of the TransactionRequest contract matches the registered
windowStart value from the RequestTracker.

Any request created by the RequestFactory contract regardless of how it was created should be safe to execute
using the provided execution clients.

8.5 API

RequestTracker.isKnownRequest(address scheduler, address request) constant returns (bool)

Returns true or false depending on whether this address has been registered under this scheduler address.

RequestTracker.getWindowStart(address scheduler, address request) constant returns (uint)

Returns the registered windowStart value for the request. A return value of 0 indicates that this address is not
known.

RequestTracker.getPreviousRequest(address scheduler, address request) constant returns (ad-
dress)

Returns the address of the request who’s windowStart comes directly before this one.

RequestTracker.getNextRequest(address scheduler, address request) constant returns (address)

Returns the address of the request who’s windowStart comes directly after this one.

RequestTracker.addRequest(address request, uint startWindow) constant returns (bool)

Add an address into the tracker. The msg.sender address will be used as the scheduler address to determine which
database to use.

RequestTracker.removeRequest(address request) constant returns (bool)

Remove an address from the tracker. The msg.sender address will be used as the scheduler address to determine
which database to use.

RequestTracker.query(address scheduler, bytes2 operator, uint value) constant returns (address)

Query the database for the given scheduler. Returns the address of the 1st record which evaluates to true for the
given query.

Allowed values for the operator parameter are:

• '>': For strictly greater than.

• '>=': For greater than or equal to.

• '<': For strictly less than.

36 Chapter 8. Request Tracker

Ethereum Alarm Clock Documentation, Release 1.0.0

• '<=': For less than or equal to.

• '==': For less than or equal to.

The value parameter is what the windowSize for each record will be compared to.

If the return address is the null address 0x00 then no records
matched.

8.5. API 37

Ethereum Alarm Clock Documentation, Release 1.0.0

38 Chapter 8. Request Tracker

CHAPTER 9

Scheduler

• Introduction

• Interface

• Defaults

• API

• Endowments

class Scheduler

9.1 Introduction

The Scheduler contract is the high level API for scheduling transaction requests. It exposes a very minimal subset
of the full parameters that can be specified for a TransactionRequest in order to provide a simplified scheduling
API with fewer foot-guns.

The Alarm service exposes two schedulers.

• BlockScheduler for block based scheduling.

• TimestampScheduler for timestamp based scheduling.

Both of these contracts present an identical API. The only difference is which temporalUnit that each created
TransactionRequest contract is configured with.

9.2 Interface

39

Ethereum Alarm Clock Documentation, Release 1.0.0

pragma solidity 0.4.24;

/**
* @title SchedulerInterface

* @dev The base contract that the higher contracts: BaseScheduler, BlockScheduler and TimestampScheduler all inherit from.

*/
contract SchedulerInterface {

function schedule(address _toAddress, bytes _callData, uint[8] _uintArgs)
public payable returns (address);

function computeEndowment(uint _bounty, uint _fee, uint _callGas, uint _callValue,
→˓ uint _gasPrice)

public view returns (uint);
}

9.3 Defaults

The following defaults are used when creating a new TransactionRequest contract via either Scheduler
contract.

• feeRecipient: 0xecc9c5fff8937578141592e7E62C2D2E364311b8 which is the address of the
developer contribution wallet, which is used to fund the project.

• payment: 1000000 * tx.gasprice set at the time of scheduling.

• fee: 10000 * tx.gasprice or 1/100th of the default payment.

• reservedWindowSize: 16 blocks or 5 minutes.

• freezePeriod: 10 blocks or 3 minutes

• claimWindowSize: 255 blocks or 60 minutes.

9.4 API

There is just one schedule method on each Scheduler contract with different call signatures. (Prior versions of
the EAC had 2 API methods, we reduced this down to only the full API to force specification of all parameters.)

Scheduler.schedule(address _toAddress, bytes _callData, uint[7] _uintArgs) public payable returns
(address newRequest)

The _toAddress is the recipient that the transaction will be sent to when it is executed. The recipient can be any
valid Ethereum address including both user accounts and contracts. _callData is the encoded bytecode that will be
sent with the transaction. Simple value transfers can set this variable to an empty string, but more complex calls will
need to encode the method of the inteded call and pass it in this variable.

The _uintArgs map to the following variables:

• _uintArgs[0]: The callGas to be sent with the executing transaction.

• _uintArgs[1]: The value in wei to be sent with the transaction.

• _uintArgs[2]: The windowSize, or size of the exeuction window.

• _uintArgs[3]: The windowStart, or the block / timestamp of when the execution window begins.

• _uintArgs[4]: The gasPrice that must be sent with the executing transaction.

• _uintArgs[5]: The fee value attached to the transaction.

40 Chapter 9. Scheduler

Ethereum Alarm Clock Documentation, Release 1.0.0

• _uintArgs[6]: The payment value attached to the transaction.

The method returns the address of the newly created TransactionRequest.

9.5 Endowments

When scheduling a transaction, you must provide sufficient ether to cover all of the execution costs with some buffer
to account for possible changes in the network gas price. See Check #1: Insufficient Endowment for more information
on how to compute the endowment.

9.5. Endowments 41

Ethereum Alarm Clock Documentation, Release 1.0.0

42 Chapter 9. Scheduler

CHAPTER 10

Changelog

10.1 0.9.1

• Replaced term donation and donationBenefactor with fee and feeRecipient (done)

• Replaced term payment to bounty. (done)

• Removed the hardcoding of FEE_RECIPIENT to be passed in on creation of schedulers. (done)

• Added an indexed parameter to RequestCreated() event in RequestFactory.sol (done)

• Peg contracts to compiler version 0.4.19 (done)

• Change paymentData.hasBenefactor() to paymentData.hasFeeRecipient() (done)

• Tidied up and cleaned the test suite. (in progress)

10.2 0.9.0-beta

• Update contracts to solidity 0.4.18.

• Digger.sol removed due to ‘EIP 150‘_ making it obsolete.

• All stack depth checking also obsolete due to EIP150 removed.

• SafeSendLib.sol removed due to Solidity keywords transfer and send making it obsolete.

• Simplified scheduling API to singular schedule() function.

• Added the proxy() function to TransactionRequest contract.

• Integrate Truffle framework.

• Rewrote entire test suite to use Truffle.

• Revamped the documentation.

43

https://ethereum.stackexchange.com/questions/9398/how-does-eip-150-change-the-call-depth-attack

Ethereum Alarm Clock Documentation, Release 1.0.0

10.3 0.8.0 (unreleased)

• Full rewrite of all contracts.

• Support for both time and block based scheduling.

• New permissionless call tracker now used to track scheduled calls.

• Donation address can now be configured.

• Request execution window size is now configurable.

• Reserved claim window size is now configurable.

• Freeze period is now configurable.

• Claim window size is now configurable.

• All payments now support pull mechanism for retrieving payments.

10.4 0.7.0

• Scheduled calls can now specify a required gas amount. This takes place of the suggestedGas api from 0.6.0

• Scheduled calls can now send value along with the transaction.

• Calls now protect against stack depth attacks. This is configurable via the requiredStackDepth option.

• Calls can now be scheduled as soon as 10 blocks in the future.

• Experimental implementation of market-based value for the defaultPayment

• scheduleCall now has 31 different call signatures.

10.5 0.6.0

• Each scheduled call now exists as it’s own contract, referred to as a call contract.

• Removal of the Caller Pool

• Introduction of the claim api for call.

• Call Portability. Scheduled calls can now be trustlessly imported into future versions of the service.

10.6 0.5.0

• Each scheduled call now exists as it’s own contract, referred to as a call contract.

• The authorization API has been removed. It is now possible for the contract being called to look up msg.
sender on the scheduling contract and find out who scheduled the call.

• The account management API has been removed. Each call contract now manages it’s own gas money, the
remainder of which is given back to the scheduler after the call is executed.

• All of the information that used to be stored about the call execution is now placed in event logs (gasUsed,
wasSuccessful, wasCalled, etc)

44 Chapter 10. Changelog

Ethereum Alarm Clock Documentation, Release 1.0.0

10.7 0.4.0

• Convert Alarm service to use library contracts for all functionality.

• CallerPool contract API is now integrated into the Alarm API

10.8 0.3.0

• Convert Alarm service to use Grove for tracking scheduled call ordering.

• Enable logging most notable Alarm service events.

• Two additional convenience functions for invoking scheduleCall with gracePeriod and nonce as optional
parameters.

10.9 0.2.0

• Fix for Issue 42. Make the free-for-all bond bonus restrict itself to the correct set of callers.

• Re-enable the right tree rotation in favor of removing three getLastX function. This is related to the pi-million
gas limit which is restricting the code size of the contract.

10.10 0.1.0

• Initial release.

10.7. 0.4.0 45

https://github.com/pipermerriam/ethereum-grove
https://github.com/pipermerriam/ethereum-alarm-clock/issues/42

Ethereum Alarm Clock Documentation, Release 1.0.0

46 Chapter 10. Changelog

Index

A
addRequest() (RequestTracker method), 36

B
BlockScheduler (built-in class), 10

C
callData() (TransactionRequest method), 14
cancel() (TransactionRequest method), 17
Cancelled() (TransactionRequest method), 12
claim() (TransactionRequest method), 17
Claimed() (TransactionRequest method), 12
createRequest() (RequestFactory method), 32
createValidatedRequest() (RequestFactory method), 32

E
execute() (TransactionRequest method), 17
Executed() (TransactionRequest method), 13

G
getNextRequest() (RequestTracker method), 36
getPreviousRequest() (RequestTracker method), 36
getWindowStart() (RequestTracker method), 36

I
isKnownRequest() (RequestFactory method), 33
isKnownRequest() (RequestTracker method), 36

P
proxy() (TransactionRequest method), 17

Q
query() (RequestTracker method), 36

R
refundClaimDeposit() (TransactionRequest method), 18
removeRequest() (RequestTracker method), 36
RequestCreated() (RequestFactory method), 30

requestData() (TransactionRequest method), 13
RequestFactory (built-in class), 29
RequestTracker (built-in class), 35

S
schedule() (Scheduler method), 40
Scheduler (built-in class), 39
sendFee() (TransactionRequest method), 18
sendPayment() (TransactionRequest method), 18

T
TimestampScheduler (built-in class), 10
TransactionRequest (built-in class), 11

V
validateRequestParams() (RequestFactory method), 31
ValidationError() (RequestFactory method), 30

47

	Introduction
	What problem does this solve?
	How transactions are executed
	Execution guarantees
	How scheduling transactions works

	Quickstart
	Introduction
	Scheduling your first transaction

	Architecture
	Overview
	RequestTracker
	RequestFactory
	BlockScheduler and TimestampScheduler

	Transaction Request
	Interface
	Events
	Data Model
	Actions
	Retrieval of Ether

	Claiming
	The Problem
	The Solution
	Claim Deposit
	How claiming effects payment
	Gas Costs

	Execution
	Important Windows of Blocks/Time
	The Execution Lifecycle
	Sending the Execution Transaction

	Request Factory
	Introduction
	Interface
	Events
	Function Arguments
	Validation
	Creation of Transaction Requests
	Tracking API

	Request Tracker
	Introduction
	Interface
	Database Structure
	Chain of Trust
	API

	Scheduler
	Introduction
	Interface
	Defaults
	API
	Endowments

	Changelog
	0.9.1
	0.9.0-beta
	0.8.0 (unreleased)
	0.7.0
	0.6.0
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

