
ESDC Documentation
Release 3.0

Brockmann Consult GmbH
MPI Biogeochemistry Jena

Stockholm Resilience Centre

Nov 15, 2019





CONTENTS

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 ESDC Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Peer-reviewed Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Terms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Data Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.9 Legal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 ESDC Description 7
2.1 Macro Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Spatial and Temporal Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Format and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Processing Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Cube Data Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 ESDC Access 13
3.1 Download ESDC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 OPeNDAP and WCS Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 E-Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Using Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Using Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 ESDC Generation 19
4.1 Command-Line Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Writing a new Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Sharing a Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Python Cube API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 DAT for Julia 25
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Use Cases and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 DAT for Python 27
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Use Cases and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Python API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



7 Collaboration 35
7.1 Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Website & Forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Indices and Tables 37

Index 39

ii



ESDC Documentation, Release 3.0

The Earth System Data Cube (ESDC) is a multi-variate data set of essential Earth System variables on a common grid
and sharing a common data model. The ESDC also comprises a Data Analytics Toolkit for Julia, Python, and R to
facilitate the exploitation data set and an E-Laboratory, which provides a computing environment to access, analyse
and visualize the data set.

Our goal is to foster a holistic understanding of the Earth System by simplifying the simultaneous and consistent
analysis of big and freely available data sets of geopyhsical variables.

CONTENTS 1



ESDC Documentation, Release 3.0

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Earth observations (EOs) are usually produced and treated as 3-dimensional singular data cubes, i.e. for each longitude
u {1, . . . , Lon}, each latitude v {1, . . . , Lat}, and each time step t {1,. . . ,T} an observation X = {x(u,v,t)} R is defined.
The challenge is, however, to take advantage of the numerous EO streams and to explore them simultaneously. Hence,
the idea is to concatenate data streams such that we obtain a 4-dimensional data cube of the form x(u,v,t,k) where k
{1, . . . , N} denotes the index of the data stream. The focus of this project is therefore on learning how to efficiently
and reliably create, curate, and explore a 4-dimensional Earth System Data Cube (ESDC). If feasible, the included
data-sets contain uncertainty information. Limitations associated with the transformation from source format into the
ESDC format are explained in the description of the data sets. The ESDC does not exhibit spatial or temporal gaps,
since gaps in the source data are filled during ingestion into the ESDC. While all observational values are conserved,
gaps are filled with synthetic data, i.e. with data that is created by an adequate gap-filling algorithm. Proper data flags
ensure an unambiguous distinction between observational and synthetic data values.

Depending on the specific question, the user can extract different types of data subsets from the Earth System Data
Cube (ESDC) for further processing and analysis with specialized methods from the Data Analytics Toolkit. For
example,

• investigating the data cube at a single geographic location, the user obtains multivariate time series for each
longitude-latitude pair. These time series can be investigated using established methods of multivariate time
series analysis, and afterwards the results can be merged onto a global grid again.

• Assessing the data-cube at single time stamps results in synoptic geospatial maps, whose properties can be
investigated with geostatistical methods.

• It is also possible to perform univariate spatiotemporal analyses on single variables extracted from the Data
Cube.

• The main objective is, however, to develop multivariate spatiotemporal analyses by utilizing the entire 4D
ESDC. Following this avenue unravels the full potential of the ESDC and may provide a holistic view on the
entire Earth System.

The ESDC allows for all these approaches, because all variables are available on a common spatiotemporal grid,
which greatly reduces the pre-processing efforts typically required to establish consistency among data from different
sources.

1.2 ESDC Project

The steadily growing Earth Observation archives are currently mostly investigated by means of disciplinary ap-
proaches. It would be, however, desirable to adopt a more holistic approach in understanding land-atmosphere in-
teractions and the role of humans in the earth system. The potential of a simultaneous exploration of multiple EO data

3

annex.html#Annexes
dat_usage.html#the-data-analytics-toolkit


ESDC Documentation, Release 3.0

streams has so far been widely neglected in the scientific community. The Earth System Data Cube project (ESDC,
formerly CAB-LAB) aims at filling this gap by providing a virtual laboratory that facilitates the co-exploration of
multiple EOs for a better understanding of land ecosystem trajectories.

The idea is to build on the existing data-sets and to offer novel tools and technical methods to detect dependencies
in the coupled human-nature system. ESDC’s central service to the scientific community will be a Biosphere Atmo-
sphere Virtual Laboratory (BAVL), which comprises a Data Cube populated with a wide range of EOs and convenient
methods to access and analyze this data remotely by means of the Jupiter framework. Moreover, the project aims at
advancing the scientific analysis capacities by developing data-driven exploration strategies that identify and attribute
major changes in the biosphere-atmosphere system. Ultimately, ESDC will develop a set of indices characterizing the
major relevant Biosphere-Atmosphere System Trajectories, BASTs. The project partners, Max-Planck-Institute for
Biogeochemistry, Brockmann Consult GmbH, and Stockholm Resilience Center are financed by the European Space
Agency (ESA) for three years (2015 to 2017) to develop the software for ESDC, to collect and analyze the EO data,
and to disseminate the idea of the project and its preliminary results.

1.3 Purpose

This Product Handbook is a living document that is under active development just as the ESDC project itself. Its
purpose is to facilitate the usage of the BAVL and primarily targets scientists from various disciplines with a good
command of one of the supported high-level programming languages (Python, Julia, and R), a solid background in the
analysis of large data-sets, and a sound understanding of the Earth System. The focus of this document is therefore
clearly on the description of the data and on the methods to access and manipulate the data.

In the final version, it is meant to be a self-contained documentation that enables the user to independently reap the full
potential of the Earth System Data Cube (ESDC). Developers may find a visit of the project’s git-hub pages worthwile.

1.4 Scope

The Product Handbook gives a general overview of the ESDC’s structure and provide some examples to illustrate
potential uses of the system . The main part is considered with a detailed technical description of the ESDC , which is
accompanied by the full specification of the API. Finally, all data-sets included in the ESDC are listed and described
in the annex of the Product Handbook.

1.5 References

1. ESDC webpage: http://www.earthsystemdatalab.net

2. ESDL’s github repository: https://github.com/esa-esdl

3. E-Laboratory: https://jupyterhub.earthsystemdatalab.net

1.6 Peer-reviewed Publications

Sippel, S., Lange, H., Mahecha, M. D., Hauhs, M., Bodesheim, P., Kaminski, T., Gans, F. & Rosso, O.A. (2016)
Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Infor-
mation Theory Quantifiers. PLoS ONE, accepted. doi:10.1371/journal.pone.0164960.

Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., & Mahecha, M. D. (2015), Quantifying changes
in climate variability and extremes: Pitfalls and their overcoming, Geophysical Research Letters, 42(22), 9990–9998.
doi:10.1002/2015GL066307.

4 Chapter 1. Introduction

http://www.python.org
http://julialang.org/
http://www.
https://github.com/esa-esdl
esdc_descr.html#ESDCDescription
cube_scenarios.html#WhatcanIdowiththeEarthSystemDataCube?
cube_usage.html#HowcanIusetheEarthSystemDataCube?
api_reference.html#ESDLAPIReference
annex.html#Annexes
http://www.earthsystemdatalab.net
https://github.com/esa-esdl
https://jupyterhub.earthsystemdatalab.net


ESDC Documentation, Release 3.0

Sippel, S., Zscheischler, J., Heimann, M., Lange, H., Mahecha, M. D., van Oldenborgh, G. J., Otto, F. E. L. &
Reichstein, M. (2016) Have precipitation extremes and annual totals been increasing in the world’s dry regions over
the last 60 years? Hydrology and Earth System Sciences Discussions. doi:10.5194/hess-2016-452.

Flach, M., Gans, F., Brenning, A., Denzler, J., Reichstein, M., Rodner, E., Bathiany, S., Bodesheim, P., Guanche, Y.,
Sippel, S., and Mahecha, M.D. Multivariate Anomaly Detection for Earth Observations: A Comparison of Algorithms
and Feature Extraction Techniques. Earth System Dynamics – Discussions, doi:10.5194/esd-2016-51.

1.7 Terms and Abbreviations

Term Description
BAST Biosphere-Atmosphere System Trajectory
BAVL Biosphere Atmosphere Virtual Laboratory
DAT Data Analytics Toolkit
ESDC Earth System Data Cube
ESDL Earth System Data Laboratory
EO Earth Observations
ESA European Space Agency
Grid The Data Cube’s layout given by its spatial and temporal resolution and its variables.
Image An 2D data cube subset with dimension (lat, lon)

1.8 Data Policy

The ESDC team processes and distributes the data in the ESDC in good faith, but makes no warranty, expressed or
implied, nor assumes any legal liability or responsibility for any purpose for which the data are used. In particular, the
ESDC team does not claim ownership of the data distributed through the ESDC nor does it alter the data policy of the
data owner. Therefore, the user is referred to the data owner for specific questions of data use. References and more
details of the data sets are listed in the annex of the Product Handbook.

The ESDL team is thankful to have received permissions for re-distribution of all data contained in the ESDC from
the respective data owners.

Note: Please cite the ESDC as:

The ESDC developer team (2016). The Earth System Data Cube (Version 0.1), available at: https://github.com/
esa-esdl.

1.9 Legal information

The Earth System Data Cube consists of a variety of source data sets from different providers, the Data Cube software,
which transforms all data to the common Data Cube format and allows for convenient data access, and the Data
Analytics Toolkit, which provides methods for scientific analysis.

The Data Cube software and the Data Analytics Toolkit are free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

1.7. Terms and Abbreviations 5

annex.html#Annexes
https://github.com/esa-esdl
https://github.com/esa-esdl


ESDC Documentation, Release 3.0

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http:
//www.gnu.org/licenses/.

Copyright (C) 2016 The ESDC developer team.

6 Chapter 1. Introduction

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/


CHAPTER

TWO

ESDC DESCRIPTION

2.1 Macro Structure

The data is organised in the described 4-dimensional form x(u,v,t,k), but additionally each data stream k is assigned to
one of the subsystems of interest:

• Land surface

• Atmospheric forcing

• Socio-economic data

2.2 Spatial and Temporal Coverage

The fine grid of the ESDC has a spatial resolution of 0.083° (5”), which is properly nested within a coarse grid of
0.25° (15”). Hence, the ESDC is available in two versions

• High resolution version: 0.083° (5”) spatial resolution,

• Low resolution version: 0.25° (15”) spatial resolution.

While the latter contains all variables, the former only comprises those variables that are natively available at this
resolution. The high-resolution data are nested on the low-resolution data set such that one can analyse these in
tandem. In particular data from the socio-economic subsystem are often organised according to administrative units,
typically national states, rather than on regular grids. These data are dispersed to the coarse grid by means of a national
state mask, which is created by assigning a national state property to each grid point.

The temporal resolution is 8 days.

The time span currently covered is 2001-2011. We are dedicated to expand this period on both ends, but to preserve
the ESDC’s characteristics, a reasonable coverage of data streams is required.

2.3 Format and Structure

The binary data format for the Earth System Data Cube (ESDC) in the ESDL project is netCDF 4 classic, where the
term classic stands for an underlying HDF-5 format accessed by a netCDF 4 API.

The netCDF file’s content and structure follows the CF-conventions. That is, there are are always at least three
dimensions defined

1. lon - Always the inner and therefore fastest varying dimension. Defines the raster width of spatial images.

2. lat - Always the second dimension. Defines the raster height of spatial images.

7

http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html


ESDC Documentation, Release 3.0

3. time - Time dimension.

There are 1D-variables related to each dimension providing its actual values:

• lon(lon) and lat(lon) - longitudes and latitudes in decimal degrees defined in a WGS-84 geographical
coordinate reference system. The spatial grid is homogeneous with the distance between two grid points
referred to as the ESDC’s spatial resolution.

• start_time(time) and end_time(time) - Period start and end times of a datum given in days
since 2001-01-01 00:00. The increments between two values in time are identical and referred to as the
ESDC’s temporal resolution.

There is usually only a single geophysical variable with shape(time, lat, lon) represented by each netCDF file. So
each netCDF file is composed of length(time) spatial images of that variable, where each image of size length(lon)
x length(lat) pixels has been generated by aggregating all source data contributing to the period given by the ESDC’s
temporal resolution.

To limit the size of individual files, the geophysical variables are stored in one file per year. For example, if the
temporal resolution is 0.25 degrees and the the spatial resolution is an 8-day period then there will be up to 46 images
of 1440 x 720 pixels in each annual netCDF file. These annual files are stored in dedicated sub-directories as follows:

<cube-root-dir>/
cube.config
data/

LAI/
2001_LAI.nc
2002_LAI.nc
...
2011_LAI.nc

Ozone/
2001_Ozone.nc
2002_Ozone.nc
...
2011_Ozone.nc

...

The names of the geophysical variable in a netCDF file must match the name of the corresponding sub-directory and
the file name.

The text file cube.config contains a Data Cube’s static configuration such as its temporal and spatial resolution.

8 Chapter 2. ESDC Description



ESDC Documentation, Release 3.0

Also the spatial coverage is constant, that is, all spatial images are of the same size. Where actual data is missing,
fill values are inserted to expand a data set to the dimensions of the Data Cube. The fill values in the Data Cube are
identical to the ones used in the Data Cube’s sources. The same holds for the data types. While all images for all time
periods have the same size, the temporal coverage for a given variable may vary. Missing spatial images for a given
time period are treated as images with all pixels set to a fill value.

The following table contains all possible configuration parameters:

Parameter Default Value Description
temporal_res 8 The constant temporal resolution given as integer days.
calendar 'gregorian' Defines the Data Cube’s time units.
ref_time datetime(2001, 1,

1)
The Data Cube’s time unit is days since a reference date/time.

start_time datetime(2001, 1,
1)

The start date/time of contributing source data.

end_time datetime(2011, 1,
1)

The end date/time of contributing source data.

spatial_res 0.25 The constant spatial resolution given in decimal degrees.
grid_x0 0 The spatial grid’s X-offset.
grid_y0 0 The spatial grid’s Y-offset.
grid_width 1440 The spatial grid’s width. Must always be 360 /

spatial_res.
grid_height 720 The spatial grid’s height. Must always be 180 /

spatial_res.
variables None The variables contained in the Data Cube.
file_format 'NETCDF4_CLASSIC' The target binary file format.
compression False Whether or not the target binary files should be compressed.
model_version '0.1' The version of the Data Cube model and configuration.

2.4 Processing Applied

The Data Cube is generated by the cube-cli tool. This tools creates a Data Cube for a given configuration and can
be used to subsequently add variables, one by one, to the Data Cube. Each variable is read from its specific data source
and transformed in time and space to comply to the specification defined by the target Data Cube’s configuration.

The general approach is as follows: For each variable and a given Data Cube time period: * Read the variable’s
data from all contributing sources that have an overlap with the target period; * Perform temporal aggregation of all
contributing spatial images in the original spatial resolution; * Perform spatial upsampling or downsampling of the
image aggregated in time; * Mask the resulting upsampled/downsampled image by the common land-sea mask; *
Insert the final image for the variable and target time period into the Data Cube.

The following sections describe each method used in more detail.

2.4.1 Gap-Filling Approach

The current version (version 0.1, Feb 2016) of the ESDC does not explicitly fill gaps. However, some gap-filling
occurs during temporal aggregation as described below. The ESDL team may provide gap-filled ESDC versions at a
later point in time of the project. Gap-filling is part of the Data Analytics Toolkit and is thus not tackled during Data
Cube generation to retain the information on the original data coverage as much as possible.

For future Data Cube versions per-variable gap-filling strategies may be applied. Also, only a spatio-temporal region
of interest may be gap-filled while cells outside this region may be filled by global default values. An instructive

2.4. Processing Applied 9



ESDC Documentation, Release 3.0

example of such an approach would be the gap-filling of a leaf area index (LAI) data set, which only takes place in
mid-latitudes while gaps in high-latitudess are filled with zeros.

2.4.2 Temporal Resampling

Temporal resampling starts on the 1st January of every year so that all the i-th spatial images in the ESDC refer to the
same time of the year, namely starting i x temporal resolution. Source data is collected for every resulting ESDC target
period. If there is more than one contribution in time, then each contribution is weighted according to the temporal
overlap with the target period. Finally, target pixel values are computed by averaging all weighted values in time not
masked by a fill value. By doing so, some temporal gaps are filled implicitly.

2.4.3 Spatial Resampling

Spatial resampling occurs after temporal resampling only if the ESDC’s spatial resolution differs from the data source
resolution.

If the ESDC’s spatial resolution is higher than the data source’s spatial resolution, source images are upsampled by
rescaling hereby duplicating original values, but not performing any spatial interpolation.

If the ESDC’s spatial resolution is lower than the data source’s spatial resolution, source images are downsampled
by aggregation hereby performing a weighted spatial averaging taking into account missing values. If there is not an
integer factor between the source and the Data Cube resolution, weights will be found according to the spatial overlap
of source and target cells.

2.4.4 Land-Water Masking

After spatial resampling, a land-water mask is applied to individual variables depending on whether a variable is
defined for water surfaces only, land surfaces only, or both. A common land-water mask is used for all variables for a
given spatial resolution. Masked values are indicated by fill values.

2.4.5 Constraints and Limitations

The ESDC approach of transforming all variables onto a common grid greatly facilitates handling and joint analysis
of data sets that originally had different characteristics and were generated under different assumptions. Regridding,

10 Chapter 2. ESDC Description



ESDC Documentation, Release 3.0

gap-filling, and averaging, however, may alter the information contained in the original data considerably.

The main idea of the ESDC is to provide a consistent and synoptic characterisation of the Earth System at given time
steps to promote global analyses. Therefore, conducting small-scale, high frequency studies that are potentially highly
sensible to individual artifacts introduced by data transformation is not encouraged. The cautious expert user may
hence carefully check phenomena close to the Land-Sea mask or in data sparse regions of the original data. If in
doubt, suspicious patterns in the ESDC or unexpected analytical results should be verified with the source data in the
native resolution. We try here as much as possible to conserve the characteristics of the original data, while facilitating
data handling and analysis by transformation.

This is a difficult balance to strike that at times involves inconvenient trade-offs. We thus embrace transparency and
reproducibility to enable the informed user to evaluate the validity and consistency of the processed data and strive to
offer options for data transformation wherever possible.

2.5 Cube Data Variables

Project Name in ESDC Description URL References
GLEAM evaporative_stress Evaporative Stress Factor http://www.gleam.

eu
Martens, B.,
Miralles, D.G.,
Lievens, H., van der
Schalie, R., de Jeu,
R.A.M., Fernández-
Prieto, D., Beck,
H.E., Dorigo,
W.A., and Verhoest,
N.E.C.: GLEAM
v3: satellite-based
land evaporation
and root-zone soil
moisture, Geo-
scientific Model
Development, 10,
1903–1925, 2017.

evaporation Evaporation

snow_sublimation Snow Sublimation

potential_evaporation Potential Evaporation

interception_loss Interception Loss

bare_soil_evaporation Bare Soil Evaporation

open_water_evaporation Open-water Evaporation
surface_moisture Surface Soil Moisture
transpiration Transpiration
root_moisture Root-Zone Soil Moisture

GFED4 burnt_area Burnt Area based on the GFED4 fire product. http://www.
globalfiredata.org/

Giglio, Louis,
James T. Rander-
son, and Guido R.
Werf. “Analysis
of daily, monthly,
and annual burned
area using the
fourth-generation
global fire emis-
sions database
(GFED4).” Journal
of Geophysical
Research: Bio-
geosciences 118.1
(2013): 317-328.

c_emissions Carbon emissions by fires based on the GFED4 fire product.

ESA Aerosol CCI aerosol_optical_thickness_865 Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project. http://www.
esa-aerosol-cci.org/

Holzer-Popp, T.,
de Leeuw, G.,
Griesfeller, J.,
Martynenko, D.,
Klueser, L., Bevan,
S., et al. (2013).
Aerosol retrieval
experiments in the
ESA Aerosol_cci
project. Atmo-
spheric Measure-
ment Techniques,
6, 1919-1957.
doi:10.5194/amt-6-
1919-2013.

Continued on next page

2.5. Cube Data Variables 11

http://www.gleam.eu
http://www.gleam.eu
http://www.globalfiredata.org/
http://www.globalfiredata.org/
http://www.esa-aerosol-cci.org/
http://www.esa-aerosol-cci.org/


ESDC Documentation, Release 3.0

Table 1 – continued from previous page
Project Name in ESDC Description URL References

aerosol_optical_thickness_1610 Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

aerosol_optical_thickness_550 Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

aerosol_optical_thickness_659 Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

aerosol_optical_thickness_555 Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

GlobTemperature land_surface_temperature Advanced Along Track Scanning Radiometer pixel land surface temperature product http://data.globtemperature.info/ Jiménez, C., et al. “Inversion of AMSR-E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature.” Journal of Geophysical Research: Atmospheres 122.6 (2017): 3330-3347.
ERAInterim air_temperature_2m Air temperature at 2m from the ERAInterim reanalysis product. http://www.ecmwf.int/en/research/climate-reanalysis/era-interim Dee, D.P. et al. 2011 http://onlinelibrary.wiley.com/doi/10.1002/qj.828/abstract
SoilMoisture CCI soil_moisture Soil moisture based on the SOilmoisture CCI project http://www.esa-soilmoisture-cci.org Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., and van Dijk, A.I.J.M. (2012): Trend-preserving blending of passive and active microwave soil moisture retrievals; Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., van Dijk, A.I.J.M., McCabe, M.F., & Evans, J.P. (2011): Developing an improved soil moisture dataset by blending passive and active microwave satellite based retrievals. Hydrology and Earth System Sciences, 15, 425-436.
GlobVapour water_vapour Total column water vapour based on the GlobVapour CCI product. http://www.globvapour.info/ Schneider, Nadine, et al. “ESA DUE GlobVapour water vapor products: Validation.” AIP Conference Proceedings. Vol. 1531. No. 1. 2013.
Ozone CCI ozone Atmospheric ozone based on the Ozone CCI data. http://www.esa-ozone-cci.org/ Laeng, A., et al. “The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS).” Remote Sensing of Environment 162 (2015): 316-343.
GlobAlbedo white_sky_albedo White sky albedo derived from the GlobAlbedo CCI project dataset http://www.

globalbedo.org/
Muller, Jan-Peter,
et al. “The ESA
GLOBALBEDO
project for mapping
the Earth’s land
surface albedo
for 15 years from
European sensors.”
Geophysical Re-
search Abstracts.
Vol. 13. 2012.

black_sky_albedo Black sky albedo derived from the GlobAlbedo CCI project dataset

FLUXCOM net_ecosystem_exchange Net carbon exchange between the ecosystem and the atmopshere. http://www.
fluxcom.org/

Tramontana, Gi-
anluca, et al.
“Predicting carbon
dioxide and energy
fluxes across global
FLUXNET sites
with regression
algorithms.” (2016).

terrestrial_ecosystem_respiration Total carbon release of the ecosystem through respiration.

gross_primary_productivity Gross Carbon uptake of of the ecosystem through photosynthesis

latent_energy Latent heat flux from the surface.
sensible_heat Sensible heat flux from the surface

GPCP precipitation Precipitation based on the GPCP dataset. http://precip.gsfc.nasa.gov/ Adler, Robert F., et al. “The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present).” Journal of hydrometeorology 4.6 (2003): 1147-1167.
GlobSnow fractional_snow_cover Grid cell fractional snow cover based on the Globsnow CCI product. http://www.

globsnow.info/
Luojus, Kari, et
al. “ESA DUE
Globsnow-Global
Snow Database for
Climate Research.”
ESA Special Pub-
lication. Vol. 686.
2010.

snow_water_equivalent Grid cell fractional snow cover based on the Globsnow CCI product.

12 Chapter 2. ESDC Description

http://data.globtemperature.info/
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
http://onlinelibrary.wiley.com/doi/10.1002/qj.828/abstract
http://www.esa-soilmoisture-cci.org
http://www.globvapour.info/
http://www.esa-ozone-cci.org/
http://www.globalbedo.org/
http://www.globalbedo.org/
http://www.fluxcom.org/
http://www.fluxcom.org/
http://precip.gsfc.nasa.gov/
http://www.globsnow.info/
http://www.globsnow.info/


CHAPTER

THREE

ESDC ACCESS

As introduced in the last section, the ESDC physically consists of a set of NetCDF files on disk, which can be accessed
in a number of different ways which are described in this section.

3.1 Download ESDC Data

The simplest approach to access the ESDC data is downloading it to you computer using the ESDL FTP server.

Since the ESDC is basically a directory of NetCDF files, you can use a variety of software packages and programming
languages to access the data. In each cube directory, you find a text file cube.config which describes the overall
data cube layout.

Within the ESDC Project, dedicated data access packages have been developed for the Python and Julia programming
languages. These packages “understand” the ESDC’s cube.config files and represent the cube data by a convenient
data structures. The section Using Python describes how to access the data from Python.

3.2 OPeNDAP and WCS Services

The ESDC’ data variables can also be accessed via a dedicated ESDL THREDDS server.

The server supports the OPeNDAP and OGC-compliant Web Coverage Service (WCS) data access protocols. You can
use it for accessing subsets of the ESDC’s data variables and also for visual exploration of the data, and finally for
downloading the data as a NetCDF file or of plain text.

Depending on the variable subsets, and the region and time period of interest, the transferred data volume might be
much lower than a complete download of the ESDC via FTP. However, the disadvantage of using OPeNDAP and WCS
is that the actual structure of the ESDC gets lost, so that it can’t be accessed anymore using the aforementioned ESDC
Python/Julia data access packages.

3.3 E-Laboratory

A dedicated ESDL E-Laboratory has been developed to access the ESDC data via distributed Jupyter Notebooks for
Julia and Python. This is the most resource efficient and convenient way of exploring the ESDC.

These notebooks have direct access to the ESDC data so there is no need to download it. In addition they provide the
ESDC Python and Julia APIs comprising the Data Access API and the Data Analytics Toolkit.

The E-Laboratory provides some example notebooks in the shared ESDL community repository.

The E-Laboratory is based on the JupyterHub platform and currently comprises three 16-core computers running in a
Cloud environment.

13

https://www.unidata.ucar.edu/software/netcdf/docs/
ftp://ftp.brockmann-consult.de/cablab02/esdc-31d-1deg-1x180x360-1.0.1_1/
https://www.unidata.ucar.edu/software/netcdf/docs/
http://www.brockmann-consult.de/cablab-thredds/catalog.html
https://www.opendap.org/
http://www.opengeospatial.org/standards/wcs
https://www.unidata.ucar.edu/software/netcdf/docs/
http://jupyterhub.earthsystemdatalab.net/
http://jupyter.org/about.html
https://jupyter.readthedocs.io/en/latest/index.html
https://github.com/esa-esdl/esdl-shared
https://jupyterhub.readthedocs.io/en/latest/


ESDC Documentation, Release 3.0

3.4 Using Python

3.4.1 Installation

Note: if you use the E-Laboratory you don’t need to install any additional packages for accessing the data. This section
is only relevant if you’ve downloaded a ESDC instance to your local computer.

While in principle the NetCDF files comprising the ESDC can be used with any tool of choice, we developed specifi-
cally tailored Data Access APIs for Python 3.X and Julia. Furthermore, a set of high-level routines for data analysis,
the Data Analytics Toolkit, greatly facilitates standard operations on the large amount of data in the ESDC. While in
the E-laboratory, the Data Access API and the DAT are already pre-installed, the user has to download and install the
cube library when working on a local computer.

The ESDC Python package has been developed against latest Anaconda / Miniconda distributions and uses their Conda
package manager.

To get started on your local computer with Python, clone the esdl-core repository from https://github.com/esa-esdl:

git clone https://github.com/esa-esdl/esdl-core

The following command will create a new Python 3.5 environment named esdl with all required dependencies,
namely

• dask >= 0.14

• gridtools >= 0.1 (from Conda channel cablab)

• h5netcdf >= 0.3

• h5py >= 2.7

• netcdf4 >= 1.2

• scipy >= 0.16

• scikit_image >= 0.11

• matplotlib >= 2.0

• xarray >= 0.9

$ conda env create environment.yml

To active new Python environment named esdl you must source on Linux/Darwin

$ source activate.sh esdl

on Windows:

> activate esdl

Now change into new folder esdl-core and install the esdl Python package using the develop target:

$ cd esdl-core
$ python setup.py develop

You can now easily change source code in esdl-corewithout reinstalling it. When you do not plan to add or modify
any code (e.g. add a new source data provider), you can also permanently install the sources using

$ python setup.py install

14 Chapter 3. ESDC Access

https://www.unidata.ucar.edu/software/netcdf/docs/
https://www.continuum.io/downloads
https://conda.io/miniconda.html
https://conda.io/docs/intro.html
https://github.com/esa-esdl


ESDC Documentation, Release 3.0

However, if you now change any code, make sure to the install command again.

After download of a ESDC including the corresponding cube.config file and successful installation of the ESDC,
you are ready to explore the data in the ESDC using the Using Python.

3.4.2 Usage

The following example code demonstrates how to access a locally stored ESDC, query its content, and get data chunks
of different sizes for further analysis.

Open a cube

from esdl import Cube
from datetime import datetime
import numpy as np

cube = Cube.open("/path/to/datacube")

Note, in order to work properly the /path/to/datacube/ passed to Cube.open() must be the path to an
existing ESDC cube directory which contains a valid configuration file named cube.config. It contains essential
metadata about the ESDC to be opened.

cube.data.variable_names

['aerosol_optical_thickness_1610',
'aerosol_optical_thickness_550',
'aerosol_optical_thickness_555',
'aerosol_optical_thickness_659',
'aerosol_optical_thickness_865',
'air_temperature_2m',
'bare_soil_evaporation',
'black_sky_albedo',
'burnt_area',
'country_mask',
'c_emissions',
...]

After successful opening the ESDC, chunks of data or the entire data set can be accessed via the dataset()
and get() functions. The first returns a xarray.Dataset object in which all cube variables are represented as xar-
ray.DataArray objects. More about these objects can also be found in DAT for Python section. The second function
can be used to read subsets of the data. In contrast it returns a list of Numpy ndarray arrays, one for each requested
variable.

The corresponding API for Julia is very similar and illustrated in DAT for Julia.

Accessing the cube data

The cube.data.dataset() has an optional argument which is a list of variable names to include in the returned
xarray.DataArray object. If omitted, all variables will be included. Note it can take up to a few seconds to open
generate the dataset object with all variables.

ds = cube.data.dataset()
ds

<xarray.Dataset>
Dimensions: (bnds: 2, lat: 720, lon: 1440, time:

→˓506)
Coordinates:

3.4. Using Python 15

http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataarray
http://xarray.pydata.org/en/stable/data-structures.html#dataarray
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
http://xarray.pydata.org/en/stable/data-structures.html#dataarray
http://xarray.pydata.org/en/stable/data-structures.html#dataset


ESDC Documentation, Release 3.0

* time (time) datetime64[ns] 2001-01-05 ...

* lon (lon) float32 -179.875 -179.625 ...
lon_bnds (lon, bnds) float32 -180.0 -179.75 ...
lat_bnds (lat, bnds) float32 89.75 90.0 89.5 ...

* lat (lat) float32 89.875 89.625 89.375 ...
time_bnds (time, bnds) datetime64[ns] 2001-01-01

→˓...
Dimensions without coordinates: bnds
Data variables:

aerosol_optical_thickness_1610 (time, lat, lon) float64 nan nan nan ..
→˓.

aerosol_optical_thickness_550 (time, lat, lon) float64 nan nan nan ..
→˓.

aerosol_optical_thickness_555 (time, lat, lon) float64 nan nan nan ..
→˓.

aerosol_optical_thickness_659 (time, lat, lon) float64 nan nan nan ..
→˓.

aerosol_optical_thickness_865 (time, lat, lon) float64 nan nan nan ..
→˓.

air_temperature_2m (time, lat, lon) float64 243.4 243.4 ..
→˓.

bare_soil_evaporation (time, lat, lon) float64 nan nan nan ..
→˓.

black_sky_albedo (time, lat, lon) float64 nan nan nan ..
→˓.

burnt_area (time, lat, lon) float64 0.0 0.0 0.0 ..
→˓.

country_mask (time, lat, lon) float64 nan nan nan ..
→˓.

...

lst = ds['land_surface_temperature']
lst

<xarray.DataArray 'land_surface_temperature' (time: 506, lat: 720, lon: 1440)>
dask.array<concatenate, shape=(506, 720, 1440), dtype=float64, chunksize=(46,

→˓720, 1440)>
Coordinates:

* time (time) datetime64[ns] 2001-01-05 2001-01-13 2001-01-21 ...

* lon (lon) float32 -179.875 -179.625 -179.375 -179.125 -178.875 ...

* lat (lat) float32 89.875 89.625 89.375 89.125 88.875 88.625 88.375 ..
→˓.
Attributes:

url: http://data.globtemperature.info/
long_name: land surface temperature
source_name: LST
standard_name: surface_temperature
comment: Advanced Along Track Scanning Radiometer pixel land surfa.

→˓..
units: K

The variable lst can now be used like a Numpy ndarray. Howver, using xarray there are a number of more
convenient data access methods that take care of the actual coordinates provided for every dimenstion. For example,
the sel() method can be used to extract slices and subsets from a data array. Here a point is extract from lst, and
the result is a 1-element data array:

16 Chapter 3. ESDC Access

http://xarray.pydata.org/en/stable/data-structures.html#dataarray
http://data.globtemperature.info/
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html


ESDC Documentation, Release 3.0

lst_point = lst.sel(time='2006-06-15', lat=53, lon=11, method='nearest')
lst_point

<xarray.DataArray 'land_surface_temperature' ()>
dask.array<getitem, shape=(), dtype=float64, chunksize=()>
Coordinates:

time datetime64[ns] 2006-06-14
lon float32 11.125
lat float32 53.125

Attributes:
url: http://data.globtemperature.info/
long_name: land surface temperature
source_name: LST
standard_name: surface_temperature
comment: Advanced Along Track Scanning Radiometer pixel land surfa...
units: K

Data arrays also have a handy plot() method. Try:

lst.sel(lat=53, lon=11, method='nearest').plot()
lst.sel(time='2006-06-15', method='nearest').plot()
lst.sel(lon=11, method='nearest').plot()
lst.sel(lat=53, method='nearest').plot()

Closing the cube

If you no longer require access to the cube, it should be closed to release file handles and reserved memory.

cube.close()

Some more demonstrations are included in the ESDL community notebooks.

3.5 Using Julia

The Data Access API for Julia is part of the DAT for Julia.

3.6 Data Analysis

In addition to the Data Access APIs, we provide a Data Analytics Toolkit (DAT) to facilitate analysis and visualization
of the ESDC. Please see

• DAT for Julia

• DAT for Python

3.5. Using Julia 17

https://github.com/esa-esdl/esdl-shared/tree/master/notebooks


ESDC Documentation, Release 3.0

18 Chapter 3. ESDC Access



CHAPTER

FOUR

ESDC GENERATION

This section explains how a ESDC is generated and how it can be extended by new variables.

4.1 Command-Line Tool

To generate new data cubes or to update existing ones a dedicated command-line tool cube-gen is used.

After installing esdl-core as described in section Installation, try:

$ cube-gen --help

ESDL command-line interface, version 0.2.2
usage: cube-gen [-h] [-l] [-G] [-c CONFIG] [TARGET] [SOURCE [SOURCE ...]]

Generates a new ESDL data cube or updates an existing one.

positional arguments:
TARGET data cube root directory
SOURCE <provider name>:dir=<directory>, use -l to list source

provider names

optional arguments:
-h, --help show this help message and exit
-l, --list list all available source providers
-G, --dont-clear-cache

do not clear data cache before updating the cube
(faster)

-c CONFIG, --cube-conf CONFIG
data cube configuration file

The list option lists all currently installed source data providers:

$ cube-gen --list

ozone -> esdl.providers.ozone.OzoneProvider
net_ecosystem_exchange -> esdl.providers.mpi_bgc.MPIBGCProvider
air_temperature -> esdl.providers.air_temperature.AirTemperatureProvider
interception_loss -> esdl.providers.gleam.GleamProvider
transpiration -> esdl.providers.gleam.GleamProvider
open_water_evaporation -> esdl.providers.gleam.GleamProvider
...

Source data providers are the pluggable software components used by cube-gen to read data from a source directory
and transform it into a common data cube structure. The list above shows the mapping from short names to be used

19



ESDC Documentation, Release 3.0

by the cube-gen command-line to the actual Python code, e.g. for ozone, the OzoneProvider class of the
esdl/providers/ozone.py module is used.

The common cube structure is established by a cube configuration file provided by the cube-config option. Here
is the configuration file that is used to produce the low-resolution ESDC. It will produce a 0.25 degrees global cube
that whose source data will aggregated/interpolated to match 8 day periods and then resampled to match 1440 x 720
spatial grid cells:

model_version = '0.2.4'
spatial_res = 0.25
temporal_res = 8
grid_width = 1440
grid_height = 720
start_time = datetime.datetime(2001, 1, 1, 0, 0)
end_time = datetime.datetime(2012, 1, 1, 0, 0)
ref_time = datetime.datetime(2001, 1, 1, 0, 0)
calendar = 'gregorian'
file_format = 'NETCDF4_CLASSIC'
compression = False

To create or update a cube call the cube-gen tool with the configuration and the cube data provider(s). The cube
data providers can have parameters on their own. All current providers have the dir parameter indicating the source
data directory but this is not a rule. Other providers which read from multivariate sources also have a var parameter
to indicate which variable of many possible should be used.

$ cube-gen mycube -c mycube.config ozone:dir=/path/to/ozone/netcdfs

will create the cube mycube in current directory using the mycube.config configuration and add a single variable
ozone from source NetCDF files in /path/to/ozone/netcdfs.

Note, the GitHub repository cube-config is used to keep the configurations of individual ESDC versions.

4.2 Writing a new Provider

In order to add new source data for which there is no source data provider yet, you can write your own.

Make sure esdl-core is installed as described in section Installation above.

If your source data is NetCDF, writing a new provider is easy. Just copy one of the existing providers, e.g.
esdl/providers/ozone.py and start adopting the code to your needs.

For source data other than NetCDF, you will have to write a provider from scratch by implementing the esdl.
CubeSourceProvider interface or by extending the esdl.BaseCubeSourceProvider which is usually
easier. Make sure you adhere to the contract described in the documentation of the respective class.

To run your provider you will have to register it in the setup.py file. Assuming your provider is called
sst and your provider class is SeaSurfaceTemperatureProvider located in myproviders.py, then the
entry_points section of the setup.py file should reflect this as follows:

entry_points={
'esdl.source_providers': [

'burnt_area = esdl.providers.burnt_area:BurntAreaProvider',
'c_emissions = esdl.providers.c_emissions:CEmissionsProvider',
'ozone = esdl.providers.ozone:OzoneProvider',
...
'sst = myproviders:SeaSurfaceTemperatureProvider',

To run it:

20 Chapter 4. ESDC Generation

https://github.com/esa-esdl/esdl-core/blob/master/esdl/providers/ozone.py
https://github.com/esa-esdl/cube-config
https://github.com/esa-esdl/esdl-core/blob/master/esdl/providers/ozone.py


ESDC Documentation, Release 3.0

$ cube-gen mycube -c mycube.config sst:dir=/path/to/sst/netcdfs

4.3 Sharing a Provider

If you plan to distribute and share your provider, you should create your own Python module separate from
esdl-core with a dedicated setup.py with only your providers listed in the entry_points section. Other
users may then install your module on top of an esdl-core to make use of your plugin.

4.4 Python Cube API Reference

Data Cube read-only access:

from esdl import Cube
from datetime import datetime
cube = Cube.open('./esdl-cube-v05')
data = cube.data.get(['LAI', 'Precip'], [datetime(2001, 6, 1), datetime(2012, 1, 1)],
→˓53.2, 12.8)

Data Cube creation/update:

from esdl import Cube, CubeConfig
from datetime import datetime
cube = Cube.create('./my-esdl-cube', CubeConfig(spatial_res=0.05))
cube.update(MyVar1SourceProvider(cube.config, './my-cube-sources/var1'))
cube.update(MyVar2SourceProvider(cube.config, './my-cube-sources/var2'))

class esdl.Cube(base_dir, config)
Represents a data cube. Use the static open() or create() methods to obtain data cube objects.

property base_dir
The cube’s base directory.

property closed
Checks if the cube has been closed.

property config
The cube’s configuration. See CubeConfig class.

static create(base_dir, config=CubeConfig(grid_width=1440, grid_height=720, temporal_res=8,
ref_time=datetime.datetime(2001, 1, 1, 0, 0)))

Create a new data cube. Use the Cube.update(provider) method to add data to the cube via a source data
provider.

Parameters

• base_dir – The data cube’s base directory. Must not exists.

• config – The data cube’s static information.

Returns A cube instance.

property data
The cube’s data represented as an xarray dataset

info()→ str
Return a human-readable information string about this data cube (markdown formatted).

4.3. Sharing a Provider 21



ESDC Documentation, Release 3.0

static open(base_dir)
Open an existing data cube. Use the Cube.update(provider) method to add data to the cube via a source
data provider.

Parameters base_dir – The data cube’s base directory which must be empty or non-existent.

Returns A cube instance.

update(provider: CubeSourceProvider, image_cache_size=12)
Updates the data cube with source data from the given image provider.

Parameters provider – An instance of the abstract ImageProvider class

class esdl.CubeConfig(spatial_res=0.25, grid_x0=0, grid_y0=0, lon0=None, lon1=None,
lat0=None, lat1=None, grid_width=1440, grid_height=720, tempo-
ral_res=8, calendar=’gregorian’, ref_time=datetime.datetime(2001,
1, 1, 0, 0), start_time=datetime.datetime(2001, 1, 1, 0, 0),
end_time=datetime.datetime(2012, 1, 1, 0, 0), variables=None,
file_format=’NETCDF4_CLASSIC’, chunk_sizes=None, compression=False,
comp_level=5, static_data=False, model_version=’2.0.2’)

A data cube’s static configuration information.

Parameters

• spatial_res – The spatial image resolution in degree.

• lon0 – Left border of the most left grid cell

• lon1 – Right border of the most right grid cell

• lat0 – Upper border of the uppermost grid cell

• lat1 – Lower border of the lowermost grid cell

• grid_width – The fixed grid width in pixels (longitude direction).

• grid_height – The fixed grid height in pixels (latitude direction).

• temporal_res – The temporal resolution in days.

• ref_time – A datetime value which defines the units in which time values are given,
namely ‘days since ref_time’.

• start_time – The inclusive start time of the first image of any variable in the cube given
as datetime value. None means unlimited.

• end_time – The exclusive end time of the last image of any variable in the cube given as
datetime value. None means unlimited.

• variables – A list of variable names to be included in the cube.

• file_format – The file format used. Must be one of ‘NETCDF4’,
‘NETCDF4_CLASSIC’, ‘NETCDF3_CLASSIC’ or ‘NETCDF3_64BIT’.

• chunk_sizes – A mapping of dimension names to chunk size for encoding. Default is
None.

• compression – Whether gzip compression is used for encoding. Default is False.

• comp_level – Integer between 1 and 9 describing the level of compression desired for
encoding. Default is 5. Ignored if compression is False.

date2num(date)→ float
Return the number of days for the given date as a number in the time units given by the time_units
property.

22 Chapter 4. ESDC Generation



ESDC Documentation, Release 3.0

Parameters date – The date as a datetime.datetime value

property easting
The latitude position of the upper-left-most corner of the upper-left-most grid cell given by (grid_x0,
grid_y0).

property geo_bounds
The geographical boundary given as ((LL-lon, LL-lat), (UR-lon, UR-lat)).

static load(path)→ object
Load a CubeConfig from a text file.

Parameters path – The file’s path name.

Returns A new CubeConfig instance

property northing
The longitude position of the upper-left-most corner of the upper-left-most grid cell given by (grid_x0,
grid_y0).

property num_periods_per_year
Return the integer number of target periods per year.

property time_units
Return the time units used by the data cube as string using the format ‘days since ref_time’.

4.4. Python Cube API Reference 23



ESDC Documentation, Release 3.0

24 Chapter 4. ESDC Generation



CHAPTER

FIVE

DAT FOR JULIA

5.1 Overview

The Data Analytics Toolkit (DAT) for Julia is hosted in ESDL’s github repository and is developed in close interaction
with the scientific community. Here we give a short overview on the capabilities of the Julia DAT, but we would refer
to the official documentation for a more detailed and frequently updated software description.

The current implementation of the Julia DAT consists of 3 parts:

1. A collection of analysis functions that can be applied to the ESDC

2. Functions for visualizing time-series and spatial maps

3. A function to register custom functions to be applied on the cube

1. Collection of analysis functions

We provide several methods to perform basic statistical analyses on the ESDC. In a typical workflow, the user wants
to apply some function (e.g. a time series analysis) on all points of the cube. In other systems this would mean that
the user must write some loop that reads chunks of data, applies the function, stores the result and then read the next
chunk of data etc. In the Julia DAT, this is done automatically, the user just calls e.g. mapCube(removeMSC,mycube)
and the mean seasonal cycle will be subtracted from all individual time series contained in the selected cube.

In Analysis one can find a list of all currently implemented DAT methods.

2. Visualisation of the ESDC

For a convenient and interactive visual inspection of the ESDC five plotting functions are available:

• plotXY for scatterplotd or bar plots along a single axis

• plotTS like plotXY but the x axis set to TimeAxis by default

• plotScatter for scatter plots of two elements from the same axis, e.g. of two Variables

• plotMAP for generic map plots

• plotMAPRGB for RGB-like maps plots where different variables can be mapped to the plot color channels

For examples and a detailed description of the plotting functions, see Plotting

3. Adding user functions into the DAT

Users can add custom functions to the DAT for individual sessions. This is described in detail in the adding_new
chapter of the manual.

25

https://github.com/esa-esdl/ESDL.jl
http://esa-esdl.github.io/ESDL.jl/latest/
http://esa-esdl.github.io/ESDL.jl/latest/analysis.html
http://esa-esdl.github.io/ESDL.jl/latest/plotting.html
http://esa-esdl.github.io/ESDL.jl/latest/adding_new.html


ESDC Documentation, Release 3.0

5.2 Use Cases and Examples

Example notebooks that explore the ESDC using the Julia DAT can be found in the esdl-shared repository.

26 Chapter 5. DAT for Julia

https://github.com/esa-esdl/esdl-shared/tree/master/notebooks/Julia


CHAPTER

SIX

DAT FOR PYTHON

6.1 Overview

The main objective of the Data Analytics Toolkit is to facilitate the exploitation of the multi-variate data set in the
ESDC for experienced users and empower less experienced users to explore the wealth of information contained in
the ESDC. To this end, Python is almost a natural choice for the programming language, as it is easy to learn and use,
offers numerous, well-maintained community packages for data handling and analysis, statistics, and visualisation.

The DAT for Python relies primarily on xarray a package that provides N-dimensional data structures and efficient
computing methods on those object. In fact, xarray closely follows the approach adopted NetCDF, the quasi-standard
file format for geophysical data, and provides methods for many commonly executed operations on spatial data. The
central data structure used for representing the ESDC in Python is thus the xarray.Dataset.

Such dataset objects are what you get when accessing the cube’s data as follows:

from esdl import Cube
cube = Cube.open("/home/doe/esdc/esdc-31d-1deg-1x180x360-1.0.1_1")
dataset = cube.data.dataset(["precipitation", "evaporation", "ozone", "soil_moisture",
→˓"air_temperature_2m"])

Any geo-physical variable in the ESDC is represented by a xarray.DataArray, which are Numpy-like data arrays with
additional coordinate information and metadata.

The following links point into the xarray documentation, they provide the low-level interface for the Python DAT:

• Indexing and selecting data

• Computation

• Split-apply-combine

• Reshaping and reorganizing data

• Combining data

• Time series data

Building on top of the xarray API the DAT offers high-level functions for ESDC-specific workflows in the esdl.dat
module. These functions are addressing specific user requirements and the scope of the module will increase with the
users of the DAT. In the following, typical use cases and examples provide an illustrative introduction into the usage
of the DAT and thus into the exploration of the ESDC.

6.2 Use Cases and Examples

The below examples are all contained in a Jupyter notebook, which is also available in the E-Lab.

27

http://xarray.pydata.org/en/stable/
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataarray
http://www.numpy.org/
http://xarray.pydata.org/en/stable/
http://xarray.pydata.org/en/stable/indexing.html
http://xarray.pydata.org/en/stable/computation.html
http://xarray.pydata.org/en/stable/groupby.html
http://xarray.pydata.org/en/stable/reshaping.html
http://xarray.pydata.org/en/stable/combining.html
http://xarray.pydata.org/en/stable/time-series.html
http://xarray.pydata.org/en/stable/
https://github.com/esa-esdl/esdl-core/blob/master/esdl/dat.py
https://github.com/esa-esdl/esdl-shared/blob/master/notebooks/Python/Python_DAT.ipynb
https://jupyterhub.earthsystemdatalab.net


ESDC Documentation, Release 3.0

6.2.1 Data Access and Indexing

In the first step described above, a subset of five variables is loaded into the DataSet, which distinguishes between
Dimensions, Coordinated, and Data Variables, just like NetCDF.

dataset

Addressing a single variable returns a xarray DataArray and reveals the metadata associated to the variable. Note the
similarity to the Pandas syntax here.

dataset.precipitation

The actual data in a variable can be retrieved by calling dataset.precipitation.values, which returns a
numpy array.

isinstance (dataset.precipitation.values,np.ndarray)

xarray offers different ways for indexing, both integer and label-based look-ups, and the reader is referred to the
exhaustive section in the respective section of the xarray documentation: xarray Indexing and selecting data. The
following example, in which a chunk is cut out from the larger data set, demonstrates the convenience of xarrays
syntax. The result is again a xarray DataArray, but with only subset of variables and restricted to a smaller domain in
latitude and longitude.

dataset[['precipitation', 'evaporation']].sel(lat = slice(70.,30.), lon = slice(-20.,
→˓35.))

28 Chapter 6. DAT for Python

http://xarray.pydata.org/en/stable/indexing.html


ESDC Documentation, Release 3.0

6.2.2 Computation

It was a major objective of the Python DAT to facilitate processing and analysis of big, multivariate geophysical data
sets like the ESDC. Typical use cases include the execution of functions on all data in the ESDC, the aggregation
of data along a common axis, or analysing the relation between different variables in the data set. The following
examples shed a light on the capabilities of the DAT, more typical examples can be found in the Jupyter notebook and
the documentation of xarray provides an exhaustive reference to the package’s functionalities.

Many generic mathematical functions are implemented for DataSets and DataArrays. For example, an average over
all variables in the dataset can thus be easily calculated.

dataset.mean(skipna=True)

Note that calculating a simple average on a big data set may require more resources, particularly memory, than is
available on the machine you are working at. In such cases, xarray automatically involves a package called dask for
out-of-core computations and automatic parallelisation. Make sure that dask is installed to significantly improve the
user experience with the DAT. Similar to pandas, several computation methods like groupby or apply have been
implemented for DataSets and DataArrays. In combination with the datetime data types, a monthly mean of a variable
can be calculated as follows:

dataset.air_temperature_2m.groupby('time.month').mean(dim='time')

In the resulting DataArray, a new dimension month has been automatically introduced. Users may also define their
own functions and apply them to the data. In the below example, zcores are computed for the entire DataSet by usig
the built-in functions mean and std. The user function above_Nsigma is applied to all data to test if a zscore is
above or below two sigma, i.e. is an outlier. The result is again a DataSet with boolean variables.

6.2. Use Cases and Examples 29

https://github.com/esa-esdl/esdl-shared/blob/master/notebooks/Python/Python_DAT.ipynb
http://xarray.pydata.org/en/stable/
http://dask.pydata.org/en/latest/
http://pandas.pydata.org/
https://docs.python.org/3/library/datetime.html


ESDC Documentation, Release 3.0

def above_Nsigma(x,Nsigma):
return xr.ufuncs.fabs(x)>Nsigma

zscores = (dataset-dataset.mean(dim='time'))/dataset.std(dim='time')
res = zscores.apply(above_Nsigma,Nsigma = 2)
res

In addition to the functions and methods xarray is providing, we have begun to develop high-level functions that
simplify typical operations on the ESDC. The function corrcf computes the correlation coefficient between two
variables.

6.2.3 Plotting

Plotting is key for the explorative analysis of data and for the presentation of results. This is of course even more so
for Earth System Data. Python offers many powerful approaches to meet the diverse visualisation needs of different
use cases. Most of them can be used with the ESDC since the data can be easily transferred to numpy arrays or pandas
data frames. The following examples may provide a good starting point for developing more specific plots.

Calculating the correlation coefficient of two variables and plot the resulting 2D image af latitude and longitude.

cv = DAT_corr(dataset, 'precipitation', 'evaporation')
cv.plot.imshow(vmin = -1., vmax = 1.)

Plotting monthly air temperature in twelve subplots.

Air_temp_monthly = dataset.air_temperature_2m.groupby('time.month').mean(dim='time')
Air_temp_monthly.plot.imshow(x='lon',y='lat',col='month',col_wrap=3)

30 Chapter 6. DAT for Python



ESDC Documentation, Release 3.0

A simple time-series plot at a given location.

dataset.evaporation.sel(lon = 12.67,lat = 41.83, method = 'nearest').plot()

Plotting a projected map using the DAT function map_plot. .. code-block:: python

fig, ax, m = map_plot(dataset,’evaporation’,‘2006-03-01’,vmax = 6.)

6.2. Use Cases and Examples 31



ESDC Documentation, Release 3.0

Generating a subplot of a time-series at a given location and the associated histogram of the data.

precip1d = dataset['precipitation'].sel(lon = 12.67,lat = 41.83, method = 'nearest')
fig, ax = plt.subplots(figsize = [12,5], ncols=2)
precip1d.plot(ax = ax[0], color ='red', marker ='.')
ax[0].set_title("Precipitation at ESRIN")
precip1d.plot.hist(ax = ax[1], color ='blue')
ax[1].set_xlabel("precipitation")
plt.tight_layout()

Convert a DataSet into an pandas dataframe and generate a boxplot from the dataset.

zscore = (dataset-dataset.mean(dim='time'))/dataset.std(dim='time')
df = zscore.to_dataframe()
df.boxplot(column=["precipitation","evaporation","ozone"])

32 Chapter 6. DAT for Python



ESDC Documentation, Release 3.0

6.3 Python API Reference

The low-level interface of the ESDC Python DAT is the xarray API.

The following functions provide the high-level API of the ESDC Python DAT:

The following functions provide the high-level API of the ESDC Python DAT. It provides additional analytical utility
functions which work for xarray.Dataset objects which are used to represent the ESDC data.

esdl.dat.corrcf(ds, var1=None, var2=None, dim=’time’)
Function calculating the correlation coefficient of two variables var1 and var2 in one xarray.Dataset ds.

Parameters

• ds – an xarray.Dataset

• var1 – Variable 1

• var2 – Variable 2, both have to be of identical size

• dim – dimension for aggregation, default is time. In the default case, the result is an image

Returns

esdl.dat.map_plot(ds, var=None, time=0, title_str=’No title’, projection=’kav7’, lon_0=0, resolu-
tion=None, **kwargs)

Function plotting a projected map for a variable var in xarray.Dataset ds.

Parameters

• ds – an xarray.Dataset

• var – variable to plot

• time – time step or datetime date to plot

• title_str – Title string

• projection – for Basemap

• lon_0 – longitude 0 for central

• resolution – resolution for Basemap object

• kwargs – Any other kwargs accepted by the pcolormap function of Basemap

Returns

6.3. Python API Reference 33

http://xarray.pydata.org/en/stable/api.html
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataset


ESDC Documentation, Release 3.0

34 Chapter 6. DAT for Python



CHAPTER

SEVEN

COLLABORATION

Collaboration is at the heart of science!

The ESDL project explicitly aims at enabling more scientists from various disciplines to not only interact with Earth
System data, but also with each other. The ESDL team seeks active exchange with users of any background, data
owners willing to add their data to the ESDC, and developers who are interested in improving the ESDC.

There are several ways to get in contact with the ESDL team and other users of the ESDC:

7.1 Code Repository

The source code is currently and will be for the foreseeable future under continuous development. Since the CAB-
LAB team takes collaboration, transparency, and reproducibility seriously, the project is open source and public from
the very beginning. Visit ESDL’s github repository and check out the current status of the project or even contribute!

7.2 Website & Forum

Important updates on the project’s progress are frequently published on the CAB-LAB webpage: http://
earthsystemdatacube.net. Moreover, in the forum of the webpage you can easily interact with project members and
users! Or simply write an email to info@earthsystemdatacube.net to get in contact with the project members.

35

https://github.com/esa-esdl
http://earthsystemdatacube.net
http://earthsystemdatacube.net
http://earthsystemdatacube.net/cab-lab/forum/cab-lab/
mailto:info@earthsystemdatacube.net


ESDC Documentation, Release 3.0

36 Chapter 7. Collaboration



CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• search

37



ESDC Documentation, Release 3.0

38 Chapter 8. Indices and Tables



INDEX

B
base_dir() (esdl.Cube property), 21

C
closed() (esdl.Cube property), 21
config() (esdl.Cube property), 21
corrcf() (in module esdl.dat), 33
create() (esdl.Cube static method), 21
Cube (class in esdl), 21
Cube Spatial and Temporal Coverage, 7
CubeConfig (class in esdl), 22

D
Data Policy, 5
data() (esdl.Cube property), 21
date2num() (esdl.CubeConfig method), 22

E
Earth System Data Cube, 6
easting() (esdl.CubeConfig property), 23
ESDC Macro Structure, 7
esdl (module), 21
esdl.dat (module), 33

G
geo_bounds() (esdl.CubeConfig property), 23

I
info() (esdl.Cube method), 21

L
Legal information, 5
load() (esdl.CubeConfig static method), 23

M
map_plot() (in module esdl.dat), 33

N
northing() (esdl.CubeConfig property), 23
num_periods_per_year() (esdl.CubeConfig prop-

erty), 23

O
open() (esdl.Cube static method), 21

T
time_units() (esdl.CubeConfig property), 23

U
update() (esdl.Cube method), 22

39


	Introduction
	Motivation
	ESDC Project
	Purpose
	Scope
	References
	Peer-reviewed Publications
	Terms and Abbreviations
	Data Policy
	Legal information

	ESDC Description
	Macro Structure
	Spatial and Temporal Coverage
	Format and Structure
	Processing Applied
	Cube Data Variables

	ESDC Access
	Download ESDC Data
	OPeNDAP and WCS Services
	E-Laboratory
	Using Python
	Using Julia
	Data Analysis

	ESDC Generation
	Command-Line Tool
	Writing a new Provider
	Sharing a Provider
	Python Cube API Reference

	DAT for Julia
	Overview
	Use Cases and Examples

	DAT for Python
	Overview
	Use Cases and Examples
	Python API Reference

	Collaboration
	Code Repository
	Website & Forum

	Indices and Tables
	Index

