
Equibel Documentation
Release a1

Paul Vicol

May 30, 2016

Contents

1 Currently Supported Platforms 3

2 Installation 5

3 Quickstart 7

4 Implemented Approaches 9
4.1 Some Examples . 10

5 Contents 13
5.1 equibel . 13
5.2 Licence . 14

6 Indices and tables 15

i

ii

Equibel Documentation, Release a1

Equibel is a Python package for working with consistency-based belief change in a graph-oriented setting.

Contents 1

Equibel Documentation, Release a1

2 Contents

CHAPTER 1

Currently Supported Platforms

• OS X with Python 2.7.x

• 64-bit Linux with Python 2.7.x

Note that while Equibel is distributed as a Python package, the core of the system is implemented using Answer Set
Programming (ASP), and relies on a nunderlying ASP solver called clingo, which is part of the Potsdam Answer
Set Solving Collection (Potassco).

In particular, Equibel has two ASP-related dependencies: the Python gringo module, which provides an interface to an
ASP solver from within Python, and asprin.parser, which is a component of the asprin preference-handling
framework. asprin is described in more detail here, and can be download from here.

The Python component of Equibel is highly portable across platforms; however, the gringo and asprin.parser
dependencies must be compiled for specific system configurations, producing system-specific binaries. In order to
simplify usage for some common system configurations, Equibel includes pre-compiled binaries of these dependencies
for 64-bit Linux distributions and Mac OS. These are placed in the equibel/includes/ directory, which is
structured as follows:

equibel/includes/
-- __init__.py
-- linux_64
| -- asprin.parser
| -- gringo.so
| -- __init__.py
-- mac

-- asprin.parser
-- gringo.so
-- __init__.py

If Equibel does not function correctly once it is installed, this is likely due to the fact that the pre-compiled binaries
are not compatible with your system. In this case, you must compile the dependencies manually, by downloading the
required components directly from Potassco, and overwriting the resulting binaries in the folder that corresponds to
your operating system.

3

http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net/gringo.html
http://www.cs.uni-potsdam.de/asprin/
https://sourceforge.net/projects/potassco/files/asprin/
http://potassco.sourceforge.net

Equibel Documentation, Release a1

4 Chapter 1. Currently Supported Platforms

CHAPTER 2

Installation

The following steps assume that you have the pip Python package manager installed. If you don’t have pip, you can
get it here.

1. The pre-compiled gringo modules included with Equibel for either 64-bit Linux or Mac OS require a depen-
dency called Threading Building Blocks (tbb).

• The easiest way to install the tbb library on Mac OS is to use [Homebrew](http://brew.sh):

$ brew install tbb

• On Ubuntu Linux, the tbb library can be installed using the apt package manager:

$ sudo apt-get install libtbb-dev

2. Download the Equibel source code from Github:

$ git clone https://github.com/asteroidhouse/equibel.git

This will create a folder called equibel in your current working directory.

3. Change directories to the equibel folder:

$ cd equibel

4. Install Equibel using pip from within the equibel folder as follows (note the . at the end):

$ sudo pip install .

5. Optionally, you can test whether everything works on your system by installing the nose testing tool and
running the tests in the tests folder, as follows:

$ sudo pip install nose

$ nosetests tests/

If all of the dependencies have installed correctly, the nosetests tests/ should print a series of dots to
the screen, one for each successfully completed test case.

If the tests fail, this is most likely due to the dependencies of Equibel not being compatible with your plat-
form. As noted above, Equibel includes pre-compiled binaries of the Python gringo module, as well as
of asprin.parser, for 64-bit Linux distributions (tested on Ubuntu 14.04) and for Mac OS (tested on
OSX 10.10). If you are not using one of these systems, you will need to manually compile the gringo and
asprin.parser dependencies.

5

https://pip.pypa.io/en/latest/installing.html
http://brew.sh
https://github.com/asteroidhouse/equibel

Equibel Documentation, Release a1

6 Chapter 2. Installation

CHAPTER 3

Quickstart

To use Equibel within a Python program, you need to import the equibel module. Every form of belief change in
Equibel takes as input an EquibelGraph object (that represents a graph and associated scenario) and outputs a new
EquibelGraph object. The following Python script creates a path graph, assigns formulas to nodes, find the global
completion, and prints the resulting formulas at each node:

import equibel as eb

if __name__ == '__main__':
Create an EquibelGraph object, which represents a graph and
associated scenario.
G = eb.EquibelGraph()

Create nodes:
G.add_nodes_from([1, 2, 3, 4])

Create edges:
G.add_edges_from([(1,2), (2,3), (3,4)])

Add formulas to nodes:
G.add_formula(1, "p & q & r")
G.add_formula(4, "~p & ~q")

Find the global completion of the G-scenario:
R = eb.global_completion(G)

Pretty-prints the resulting formulas at each node:
eb.print_formulas(R)

If the above code is saved in a file called completion.py, then it can be run by typing python completion.py
at the command line, as follows:

$ python completion.py
Node 1:
p q r
Node 2:
r
Node 3:
r
Node 4:
r ¬p ¬q

7

Equibel Documentation, Release a1

8 Chapter 3. Quickstart

CHAPTER 4

Implemented Approaches

Equibel allows for experimentation with several different approaches to consistency-based belief change in a graph-
oriented setting, namely:

1. Global completion,

2. Simple iteration,

3. Expanding iteration,

4. Augmenting iteration, and

5. The ring method.

The global completion opteration is performed on an EquibelGraph G by eb.global_completion(G); this
performs a “one-shot” procedure to update the information at every node in the graph, and thus is not an iterative
approach. All of the other approaches—simple, expanding, augmenting, and ring—can be performed iteratively, and
each one iterates to a fixpoint. The table below summarizes the Equibel functions to perform single iterations of each
approach, as well as to find the fixpoints reached by each approach:

Method Single Iteration Iterate to Fixpoint
Simple Iteration eb.iterate_simple(G) eb.iterate_simple_fixpoint(G)
Expanding Iteration eb.iterate_expanding(G) eb.iterate_expanding_fixpoint(G)
Augmenting Iteration eb.iterate_augmenting(G) eb.iterate_augmenting_fixpoint(G)
Ring Iteration eb.iterate_ring(G) eb.iterate_ring_fixpoint(G)

Each of the approaches has two separate implementations, corresponding to its equivalent semantic and syntactic
characterizations. In addition, there are two ways of performing the core optimization procedure over equivalences,
involving either inclusion-based or cardinality-based maximization.

Each function listed above can take three optional arguments:

1. method, which is a string that is either “semantic” or “syntactic”, representing the method to use when per-
forming the approach; e.g. based on either the syntactic or semantic characterizations

• The default method is semantic

• To avoid typos when entering strings, Equibel has constants eb.SEMANTIC and eb.SYNTACTIC which
equal the strings “semantic” and “syntactic”, respectively.

2. opt_type, which is a string that is either “inclusion” or “cardinality”, representing the type of maximization
to be performed over equivalences

• The default opt_type is inclusion

• To avoid typos when entering strings, Equibel has constants eb.INCLUSION and eb.CARDINALITY
which equal the strings “inclusion” and “cardinality”, respectively.

9

Equibel Documentation, Release a1

3. simplify, which is a Boolean flag specifying whether to simplify the final formulas at each node.

• The default value for simplify is False

By definition, the semantic and syntactic characterizations of an approach yield equivalent results; however, depending
on the input scenario and type of approach, the performance of the characterizations may differ significantly. A good
example of this is in the case of expanding iteration, where we have an early-stoppping condition over the radius of the
expanding neighbourhood when using the semantic characterization, but not when using the syntactic characterization
(causing the semantic characterization to be significantly faster for large graphs in practice).

4.1 Some Examples

To show how the method and opt_type arguments can be combined, we consider the following (by no means
exhausitive) examples.

In the following example, we can see the difference between using inclusion-based optimization and cardinality-based
optimization in the global completion:

import equibel as eb

if __name__ == '__main__':

Creates a star graph with nodes [0, 1, 2, 3] and undirected edges [(0,1), (0,2), (0,3)]
G = eb.star_graph(3)
G.add_formula(1, 'p')
G.add_formula(2, 'p')
G.add_formula(3, '~p')

Using inclusion-based maximization over equivalences
R_inclusion = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.INCLUSION, simplify=False)
eb.print_formulas(R_inclusion)

Using cardinality-based maximization over equivalences
R_cardinality = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.CARDINALITY, simplify=False)
eb.print_formulas(R_cardinality)

Saving this code in a file inclusion_vs_cardinality.py and running it yields:

$ python inclusion_vs_cardinality.py
Node 0:
p ¬p
Node 1:
p
Node 2:
p
Node 3:
¬p

Node 0:
p
Node 1:
p
Node 2:
p
Node 3:
¬p

10 Chapter 4. Implemented Approaches

Equibel Documentation, Release a1

The following example function calls show the flexible way in which options can be combined and used with any
approach in Equibel:

• R_semantic = eb.global_completion(G)

– This function call computes the global completion of G. With no options explicitly specified, the
defaults are used; thus, this call involves the semantic characterization with inclusion-based opti-
mization, and does not simplify the resultant formulas.

– With all options explicitly specified, the above function call is equivalent to R_semantic =
eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.INCLUSION,
simplify=False)

• R_semantic = eb.global_completion(G, method=eb.SYNTACTIC)

– This call finds the global completion of G, using the syntactic characterization, the default inclusion-
based optimization, and no simplification of formulas.

• R_semantic = eb.global_completion(G, method=eb.SYNTACTIC, opt_type=CARDINALITY)

– This call finds the global completion of G, using the syntactic characterization, cardinality-based
optimization, and no simplification of formulas.

• R_semantic = eb.iterate_simple(G, method=eb.SEMANTIC, simplify=True)

– This function call computes the graph and scenario that result from performing a single simple itera-
tion over G, using the semantic characterization with default inclusion-based optimization. With the
simplify=True option, the resulting scenario will have simplified formulas for each node in the
graph.

• R_syntactic = eb.iterate_simple(G, method=eb.SYNTACTIC, simplify=True)

– This call is similar to the previous call, except that it uses the syntactic characterization of simple
iteration, rather than the semantic characterization.

• R_semantic_fixpoint = eb.iterate_simple_fixpoint(G, method=eb.SEMANTIC, opt_type=eb.CARDINALITY, simplify=True)

– This computes the fixpoint reached by a sequence of simple iterations starting from the graph and
scenario represented by G, using the semantic characterization and cardinality-based optimization.

• R_semantic = eb.iterate_expanding(G, simplify=True)

– This function call computes the graph and scenario that result from performing a single expanding
iteration over G, using the default semantic characterization with default inclusion-based optimiza-
tion. Since simplify=True, the resulting scenario will have simplified formulas for each node in
the graph.

• R_semantic = eb.iterate_augmenting_fixpoint(G, simplify=True)

– This computes the fixpoint reached by a sequence of augmenting iterations starting from the graph
and scenario represented by G, using the default semantic characterization and inclusion-based op-
timization. Since simplify=True, the resulting scenario will have simplified formulas for each
node in the graph.

4.1. Some Examples 11

Equibel Documentation, Release a1

12 Chapter 4. Implemented Approaches

CHAPTER 5

Contents

5.1 equibel

5.1.1 equibel package

Subpackages

equibel.asp package

Module contents

equibel.formatters package

Submodules

equibel.formatters.aspformatter module

equibel.formatters.bcfformatter module

Module contents

equibel.includes package

Subpackages

Module contents

equibel.parsers package

Submodules

equibel.parsers.bcfparser module

13

Equibel Documentation, Release a1

equibel.parsers.formulaparser module

equibel.parsers.parsetab module

Module contents

Submodules

equibel.asprin module

equibel.draw module

equibel.formulagen module

equibel.graph module

equibel.graphgen module

equibel.solver module

Module contents

5.2 Licence

The MIT License (MIT)

Copyright (c) <2016> <Paul Vicol>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

14 Chapter 5. Contents

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	Currently Supported Platforms
	Installation
	Quickstart
	Implemented Approaches
	Some Examples

	Contents
	equibel
	Licence

	Indices and tables

