

 Navigation

 	
 index

 	
 next |

 	Equibel a1 documentation

Equibel Documentation

Equibel is a Python package for working with consistency-based belief change in a
graph-oriented setting.

Currently Supported Platforms

	OS X with Python 2.7.x

	64-bit Linux with Python 2.7.x

Note that while Equibel is distributed as a Python package, the core of the system is
implemented using Answer Set Programming (ASP), and relies on a nunderlying ASP solver
called clingo, which is part of the
Potsdam Answer Set Solving Collection (Potassco) [http://potassco.sourceforge.net].

In particular, Equibel has two ASP-related dependencies: the
Python gringo module [http://potassco.sourceforge.net/gringo.html], which provides an
interface to an ASP solver from within Python, and asprin.parser, which is a component of
the asprin preference-handling framework. asprin is described in more detail
here [http://www.cs.uni-potsdam.de/asprin/], and can be download from
here [https://sourceforge.net/projects/potassco/files/asprin/].

The Python component of Equibel is highly portable across platforms; however, the gringo
and asprin.parser dependencies must be compiled for specific system configurations, producing
system-specific binaries.
In order to simplify usage for some common system configurations, Equibel includes pre-compiled
binaries of these dependencies for 64-bit Linux distributions and Mac OS. These are placed in
the equibel/includes/ directory, which is structured as follows:

equibel/includes/
├── __init__.py
├── linux_64
│ ├── asprin.parser
│ ├── gringo.so
│ └── __init__.py
└── mac
 ├── asprin.parser
 ├── gringo.so
 └── __init__.py

If Equibel does not function correctly once it is installed, this is likely due to the fact that the pre-compiled binaries are not compatible with your system. In this case, you must compile the dependencies manually, by downloading the required components directly from
Potassco [http://potassco.sourceforge.net], and overwriting the resulting binaries in the folder
that corresponds to your operating system.

Installation

The following steps assume that you have the pip Python package manager
installed. If you don’t have pip, you can get it here [https://pip.pypa.io/en/latest/installing.html].

	The pre-compiled gringo modules included with Equibel for either 64-bit Linux or Mac OS require
a dependency called Threading Building Blocks (tbb).

	The easiest way to install the tbb library on Mac OS is to use [Homebrew](http://brew.sh):

$ brew install tbb

	On Ubuntu Linux, the tbb library can be installed using the apt package manager:

$ sudo apt-get install libtbb-dev

	Download the Equibel source code from Github [https://github.com/asteroidhouse/equibel]:

$ git clone https://github.com/asteroidhouse/equibel.git

This will create a folder called equibel in your current working directory.

	Change directories to the equibel folder:

$ cd equibel

	Install Equibel using pip from within the equibel folder as follows (note the . at the end):

$ sudo pip install .

	Optionally, you can test whether everything works on your system by installing the nose
testing tool and running the tests in the tests folder, as follows:

$ sudo pip install nose

$ nosetests tests/

If all of the dependencies have installed correctly, the nosetests tests/ should print a series
of dots to the screen, one for each successfully completed test case.

If the tests fail, this is most likely due to the dependencies of Equibel not being compatible
with your platform. As noted above, Equibel includes pre-compiled binaries of the Python gringo
module, as well as of asprin.parser, for 64-bit Linux distributions (tested on Ubuntu 14.04) and
for Mac OS (tested on OSX 10.10). If you are not using one of these systems, you will need to
manually compile the gringo and asprin.parser dependencies.

Quickstart

To use Equibel within a Python program, you need to import the equibel
module.
Every form of belief change in Equibel takes as input an EquibelGraph object
(that represents a graph and associated scenario) and outputs a new EquibelGraph
object. The following Python script creates a path graph, assigns formulas to nodes,
find the global completion, and prints the resulting formulas at each node:

import equibel as eb

if __name__ == '__main__':
 # Create an EquibelGraph object, which represents a graph and
 # associated scenario.
 G = eb.EquibelGraph()

 # Create nodes:
 G.add_nodes_from([1, 2, 3, 4])

 # Create edges:
 G.add_edges_from([(1,2), (2,3), (3,4)])

 # Add formulas to nodes:
 G.add_formula(1, "p & q & r")
 G.add_formula(4, "~p & ~q")

 # Find the global completion of the G-scenario:
 R = eb.global_completion(G)

 # Pretty-prints the resulting formulas at each node:
 eb.print_formulas(R)

If the above code is saved in a file called completion.py, then it can be run by typing
python completion.py at the command line, as follows:

$ python completion.py
Node 1:
p ∧ q ∧ r
Node 2:
r
Node 3:
r
Node 4:
r ∧ ¬p ∧ ¬q

Implemented Approaches

Equibel allows for experimentation with several different approaches to
consistency-based belief change in a graph-oriented setting, namely:

	Global completion,

	Simple iteration,

	Expanding iteration,

	Augmenting iteration, and

	The ring method.

The global completion opteration is performed on an EquibelGraph G by
eb.global_completion(G); this performs a “one-shot” procedure to update
the information at every node in the graph, and thus is not an iterative approach. All
of the other approaches—simple, expanding, augmenting, and ring—can be performed
iteratively, and each one iterates to a fixpoint. The table below summarizes the Equibel
functions to perform single iterations of each approach, as well as to find the fixpoints
reached by each approach:

	Method
	Single Iteration
	Iterate to Fixpoint

	Simple Iteration
	eb.iterate_simple(G)
	eb.iterate_simple_fixpoint(G)

	Expanding Iteration
	eb.iterate_expanding(G)
	eb.iterate_expanding_fixpoint(G)

	Augmenting Iteration
	eb.iterate_augmenting(G)
	eb.iterate_augmenting_fixpoint(G)

	Ring Iteration
	eb.iterate_ring(G)
	eb.iterate_ring_fixpoint(G)

Each of the approaches has two separate implementations, corresponding to its equivalent semantic and
syntactic characterizations. In addition, there are two ways of performing the core optimization
procedure over equivalences, involving either inclusion-based or cardinality-based maximization.

Each function listed above can take three optional arguments:

	method, which is a string that is either “semantic” or “syntactic”,
representing the method to use when performing the approach; e.g. based
on either the syntactic or semantic characterizations

	The default method is semantic

	To avoid typos when entering strings, Equibel has constants eb.SEMANTIC
and eb.SYNTACTIC which equal the strings “semantic” and “syntactic”, respectively.

	opt_type, which is a string that is either “inclusion” or “cardinality”,
representing the type of maximization to be performed over equivalences

	The default opt_type is inclusion

	To avoid typos when entering strings, Equibel has constants eb.INCLUSION
and eb.CARDINALITY which equal the strings “inclusion” and “cardinality”, respectively.

	simplify, which is a Boolean flag specifying whether to simplify the
final formulas at each node.

	The default value for simplify is False

By definition, the semantic and syntactic characterizations of an approach yield
equivalent results; however, depending on the input scenario and type of approach, the
performance of the characterizations may differ significantly. A good example of this is
in the case of expanding iteration, where we have an early-stoppping condition over the
radius of the expanding neighbourhood when using the semantic characterization, but not when
using the syntactic characterization (causing the semantic characterization to be significantly
faster for large graphs in practice).

Some Examples

To show how the method and opt_type arguments can be combined, we consider the following
(by no means exhausitive) examples.

In the following example, we can see the difference between using inclusion-based optimization and
cardinality-based optimization in the global completion:

import equibel as eb

if __name__ == '__main__':

 # Creates a star graph with nodes [0, 1, 2, 3] and undirected edges [(0,1), (0,2), (0,3)]
 G = eb.star_graph(3)
 G.add_formula(1, 'p')
 G.add_formula(2, 'p')
 G.add_formula(3, '~p')

 # Using inclusion-based maximization over equivalences
 R_inclusion = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.INCLUSION, simplify=False)
 eb.print_formulas(R_inclusion)

 # Using cardinality-based maximization over equivalences
 R_cardinality = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.CARDINALITY, simplify=False)
 eb.print_formulas(R_cardinality)

Saving this code in a file inclusion_vs_cardinality.py and running it yields:

$ python inclusion_vs_cardinality.py
Node 0:
p ∨ ¬p
Node 1:
p
Node 2:
p
Node 3:
¬p

Node 0:
p
Node 1:
p
Node 2:
p
Node 3:
¬p

The following example function calls show the flexible way in which options can be combined and
used with any approach in Equibel:

	
	R_semantic = eb.global_completion(G)

	
	This function call computes the global completion of G.
With no options explicitly specified, the defaults are used; thus,
this call involves the semantic characterization with inclusion-based optimization,
and does not simplify the resultant formulas.

	With all options explicitly specified, the above function call is equivalent to
R_semantic = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.INCLUSION, simplify=False)

	
	R_semantic = eb.global_completion(G, method=eb.SYNTACTIC)

	
	This call finds the global completion of G, using the syntactic characterization,
the default inclusion-based optimization, and no simplification of formulas.

	
	R_semantic = eb.global_completion(G, method=eb.SYNTACTIC, opt_type=CARDINALITY)

	
	This call finds the global completion of G, using the syntactic characterization,
cardinality-based optimization, and no simplification of formulas.

	
	R_semantic = eb.iterate_simple(G, method=eb.SEMANTIC, simplify=True)

	
	This function call computes the graph and scenario that result from performing a single
simple iteration over G, using the semantic characterization with default
inclusion-based optimization. With the simplify=True option, the resulting scenario
will have simplified formulas for each node in the graph.

	
	R_syntactic = eb.iterate_simple(G, method=eb.SYNTACTIC, simplify=True)

	
	This call is similar to the previous call, except that it uses the syntactic characterization
of simple iteration, rather than the semantic characterization.

	
	R_semantic_fixpoint = eb.iterate_simple_fixpoint(G, method=eb.SEMANTIC, opt_type=eb.CARDINALITY, simplify=True)

	
	This computes the fixpoint reached by a sequence of simple iterations starting from the
graph and scenario represented by G, using the semantic characterization and
cardinality-based optimization.

	
	R_semantic = eb.iterate_expanding(G, simplify=True)

	
	This function call computes the graph and scenario that result from performing a single
expanding iteration over G, using the default semantic characterization with default
inclusion-based optimization. Since simplify=True, the resulting scenario
will have simplified formulas for each node in the graph.

	
	R_semantic = eb.iterate_augmenting_fixpoint(G, simplify=True)

	
	This computes the fixpoint reached by a sequence of augmenting iterations starting from the
graph and scenario represented by G, using the default semantic characterization
and inclusion-based optimization. Since simplify=True, the resulting scenario
will have simplified formulas for each node in the graph.

Contents

	equibel
	equibel package

	Licence

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Equibel a1 documentation

equibel

	equibel package
	Subpackages
	equibel.asp package
	Module contents

	equibel.formatters package
	Submodules

	equibel.formatters.aspformatter module

	equibel.formatters.bcfformatter module

	Module contents

	equibel.includes package
	Subpackages

	Module contents

	equibel.parsers package
	Submodules

	equibel.parsers.bcfparser module

	equibel.parsers.formulaparser module

	equibel.parsers.parsetab module

	Module contents

	Submodules

	equibel.asprin module

	equibel.draw module

	equibel.formulagen module

	equibel.graph module

	equibel.graphgen module

	equibel.solver module

	Module contents

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Equibel a1 documentation

 	equibel

equibel package

Subpackages

	equibel.asp package
	Module contents

	equibel.formatters package
	Submodules

	equibel.formatters.aspformatter module

	equibel.formatters.bcfformatter module

	Module contents

	equibel.includes package
	Subpackages

	Module contents

	equibel.parsers package
	Submodules

	equibel.parsers.bcfparser module

	equibel.parsers.formulaparser module

	equibel.parsers.parsetab module

	Module contents

Submodules

equibel.asprin module

equibel.draw module

equibel.formulagen module

equibel.graph module

equibel.graphgen module

equibel.solver module

Module contents

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Equibel a1 documentation

 	equibel

 	equibel package

equibel.asp package

Module contents

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Equibel a1 documentation

 	equibel

 	equibel package

equibel.formatters package

Submodules

equibel.formatters.aspformatter module

equibel.formatters.bcfformatter module

Module contents

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Equibel a1 documentation

 	equibel

 	equibel package

equibel.includes package

Subpackages

Module contents

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Equibel a1 documentation

 	equibel

 	equibel package

equibel.parsers package

Submodules

equibel.parsers.bcfparser module

equibel.parsers.formulaparser module

equibel.parsers.parsetab module

Module contents

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Equibel a1 documentation

Licence

The MIT License (MIT)

Copyright (c) <2016> <Paul Vicol>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Equibel a1 documentation

Index

 Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment-bright.png

equibel.asp.test_global.html

 Navigation

 		
 index

 		Equibel a1 documentation »

equibel.asp.test_global package

Submodules

equibel.asp.test_global.outside module

equibel.asp.test_global.solver2 module

Module contents

 © Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

_static/minus.png

augmenting.html

 Navigation

 		
 index

 		Equibel a1 documentation »

Augmenting Iteration

This is a guide to the API for augmenting iteration in Equibel.

 © Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Equibel a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

_static/comment.png

intro_readme.html

 Navigation

 		
 index

 		Equibel a1 documentation »

 Equibel is a Python package for working with consistency-based belief change in a
graph-oriented setting.

Currently Supported Platforms

		OS X with Python 2.7.x

		64-bit Linux with Python 2.7.x

Note that while Equibel is distributed as a Python package, the core of the system is
implemented using Answer Set Programming (ASP), and relies on a nunderlying ASP solver
called clingo, which is part of the
Potsdam Answer Set Solving Collection (Potassco) [http://potassco.sourceforge.net].

In particular, Equibel has two ASP-related dependencies: the
Python gringo module [http://potassco.sourceforge.net/gringo.html], which provides an
interface to an ASP solver from within Python, and asprin.parser, which is a component of
the asprin preference-handling framework. asprin is described in more detail
here [http://www.cs.uni-potsdam.de/asprin/], and can be download from
here [https://sourceforge.net/projects/potassco/files/asprin/].

The Python component of Equibel is highly portable across platforms; however, the gringo
and asprin.parser dependencies must be compiled for specific system configurations, producing
system-specific binaries.
In order to simplify usage for some common system configurations, Equibel includes pre-compiled
binaries of these dependencies for 64-bit Linux distributions and Mac OS. These are placed in
the equibel/includes/ directory, which is structured as follows:

equibel/includes/
├── __init__.py
├── linux_64
│ ├── asprin.parser
│ ├── gringo.so
│ └── __init__.py
└── mac
 ├── asprin.parser
 ├── gringo.so
 └── __init__.py

If Equibel does not function correctly once it is installed, this is likely due to the fact that the pre-compiled binaries are not compatible with your system. In this case, you must compile the dependencies manually, by downloading the required components directly from
Potassco [http://potassco.sourceforge.net], and overwriting the resulting binaries in the folder
that corresponds to your operating system.

Installation

The following steps assume that you have the pip Python package manager
installed. If you don’t have pip, you can get it here [https://pip.pypa.io/en/latest/installing.html].

		The pre-compiled gringo modules included with Equibel for either 64-bit Linux or Mac OS require
a dependency called Threading Building Blocks (tbb).

		The easiest way to install the tbb library on Mac OS is to use [Homebrew](http://brew.sh):

$ brew install tbb

		On Ubuntu Linux, the tbb library can be installed using the apt package manager:

$ sudo apt-get install libtbb-dev

		Download the Equibel source code from Github [https://github.com/asteroidhouse/equibel]:

$ git clone https://github.com/asteroidhouse/equibel.git

This will create a folder called equibel in your current working directory.

		Change directories to the equibel folder:

$ cd equibel

		Install Equibel using pip from within the equibel folder as follows (note the . at the end):

$ sudo pip install .

		Optionally, you can test whether everything works on your system by installing the nose
testing tool and running the tests in the tests folder, as follows:

$ sudo pip install nose

$ nosetests tests/

If all of the dependencies have installed correctly, the nosetests tests/ should print a series
of dots to the screen, one for each successfully completed test case.

If the tests fail, this is most likely due to the dependencies of Equibel not being compatible
with your platform. As noted above, Equibel includes pre-compiled binaries of the Python gringo
module, as well as of asprin.parser, for 64-bit Linux distributions (tested on Ubuntu 14.04) and
for Mac OS (tested on OSX 10.10). If you are not using one of these systems, you will need to
manually compile the gringo and asprin.parser dependencies.

Quickstart

To use Equibel within a Python program, you need to import the equibel
module.
Every form of belief change in Equibel takes as input an EquibelGraph object
(that represents a graph and associated scenario) and outputs a new EquibelGraph
object. The following Python script creates a path graph, assigns formulas to nodes,
find the global completion, and prints the resulting formulas at each node:

import equibel as eb

if __name__ == '__main__':
 # Create an EquibelGraph object, which represents a graph and
 # associated scenario.
 G = eb.EquibelGraph()

 # Create nodes:
 G.add_nodes_from([1, 2, 3, 4])

 # Create edges:
 G.add_edges_from([(1,2), (2,3), (3,4)])

 # Add formulas to nodes:
 G.add_formula(1, "p & q & r")
 G.add_formula(4, "~p & ~q")

 # Find the global completion of the G-scenario:
 R = eb.global_completion(G)

 # Pretty-prints the resulting formulas at each node:
 eb.print_formulas(R)

If the above code is saved in a file called completion.py, then it can be run by typing
python completion.py at the command line, as follows:

$ python completion.py
Node 1:
p ∧ q ∧ r
Node 2:
r
Node 3:
r
Node 4:
r ∧ ¬p ∧ ¬q

Implemented Approaches

Equibel allows for experimentation with several different approaches to
consistency-based belief change in a graph-oriented setting, namely:

		Global completion,

		Simple iteration,

		Expanding iteration,

		Augmenting iteration, and

		The ring method.

The global completion opteration is performed on an EquibelGraph G by
eb.global_completion(G); this performs a “one-shot” procedure to update
the information at every node in the graph, and thus is not an iterative approach. All
of the other approaches—simple, expanding, augmenting, and ring—can be performed
iteratively, and each one iterates to a fixpoint. The table below summarizes the Equibel
functions to perform single iterations of each approach, as well as to find the fixpoints
reached by each approach:

		Method
		Single Iteration
		Iterate to Fixpoint

		Simple Iteration
		eb.iterate_simple(G)
		eb.iterate_simple_fixpoint(G)

		Expanding Iteration
		eb.iterate_expanding(G)
		eb.iterate_expanding_fixpoint(G)

		Augmenting Iteration
		eb.iterate_augmenting(G)
		eb.iterate_augmenting_fixpoint(G)

		Ring Iteration
		eb.iterate_ring(G)
		eb.iterate_ring_fixpoint(G)

Each of the approaches has two separate implementations, corresponding to its equivalent semantic and
syntactic characterizations. In addition, there are two ways of performing the core optimization
procedure over equivalences, involving either inclusion-based or cardinality-based maximization.

Each function listed above can take three optional arguments:

		method, which is a string that is either “semantic” or “syntactic”,
representing the method to use when performing the approach; e.g. based
on either the syntactic or semantic characterizations

		The default method is semantic

		To avoid typos when entering strings, Equibel has constants eb.SEMANTIC
and eb.SYNTACTIC which equal the strings “semantic” and “syntactic”, respectively.

		opt_type, which is a string that is either “inclusion” or “cardinality”,
representing the type of maximization to be performed over equivalences

		The default opt_type is inclusion

		To avoid typos when entering strings, Equibel has constants eb.INCLUSION
and eb.CARDINALITY which equal the strings “inclusion” and “cardinality”, respectively.

		simplify, which is a Boolean flag specifying whether to simplify the
final formulas at each node.

		The default value for simplify is False

By definition, the semantic and syntactic characterizations of an approach yield
equivalent results; however, depending on the input scenario and type of approach, the
performance of the characterizations may differ significantly. A good example of this is
in the case of expanding iteration, where we have an early-stoppping condition over the
radius of the expanding neighbourhood when using the semantic characterization, but not when
using the syntactic characterization (causing the semantic characterization to be significantly
faster for large graphs in practice).

Some Examples

To show how the method and opt_type arguments can be combined, we consider the following
(by no means exhausitive) examples.

In the following example, we can see the difference between using inclusion-based optimization and
cardinality-based optimization in the global completion:

import equibel as eb

if __name__ == '__main__':

 # Creates a star graph with nodes [0, 1, 2, 3] and undirected edges [(0,1), (0,2), (0,3)]
 G = eb.star_graph(3)
 G.add_formula(1, 'p')
 G.add_formula(2, 'p')
 G.add_formula(3, '~p')

 # Using inclusion-based maximization over equivalences
 R_inclusion = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.INCLUSION, simplify=False)
 eb.print_formulas(R_inclusion)

 # Using cardinality-based maximization over equivalences
 R_cardinality = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.CARDINALITY, simplify=False)
 eb.print_formulas(R_cardinality)

Saving this code in a file inclusion_vs_cardinality.py and running it yields:

$ python inclusion_vs_cardinality.py
Node 0:
p ∨ ¬p
Node 1:
p
Node 2:
p
Node 3:
¬p

Node 0:
p
Node 1:
p
Node 2:
p
Node 3:
¬p

The following example function calls show the flexible way in which options can be combined and
used with any approach in Equibel:

		
		R_semantic = eb.global_completion(G)

		
		This function call computes the global completion of G.
With no options explicitly specified, the defaults are used; thus,
this call involves the semantic characterization with inclusion-based optimization,
and does not simplify the resultant formulas.

		With all options explicitly specified, the above function call is equivalent to
R_semantic = eb.global_completion(G, method=eb.SEMANTIC, opt_type=eb.INCLUSION, simplify=False)

		
		R_semantic = eb.global_completion(G, method=eb.SYNTACTIC)

		
		This call finds the global completion of G, using the syntactic characterization,
the default inclusion-based optimization, and no simplification of formulas.

		
		R_semantic = eb.global_completion(G, method=eb.SYNTACTIC, opt_type=CARDINALITY)

		
		This call finds the global completion of G, using the syntactic characterization,
cardinality-based optimization, and no simplification of formulas.

		
		R_semantic = eb.iterate_simple(G, method=eb.SEMANTIC, simplify=True)

		
		This function call computes the graph and scenario that result from performing a single
simple iteration over G, using the semantic characterization with default
inclusion-based optimization. With the simplify=True option, the resulting scenario
will have simplified formulas for each node in the graph.

		
		R_syntactic = eb.iterate_simple(G, method=eb.SYNTACTIC, simplify=True)

		
		This call is similar to the previous call, except that it uses the syntactic characterization
of simple iteration, rather than the semantic characterization.

		
		R_semantic_fixpoint = eb.iterate_simple_fixpoint(G, method=eb.SEMANTIC, opt_type=eb.CARDINALITY, simplify=True)

		
		This computes the fixpoint reached by a sequence of simple iterations starting from the
graph and scenario represented by G, using the semantic characterization and
cardinality-based optimization.

		
		R_semantic = eb.iterate_expanding(G, simplify=True)

		
		This function call computes the graph and scenario that result from performing a single
expanding iteration over G, using the default semantic characterization with default
inclusion-based optimization. Since simplify=True, the resulting scenario
will have simplified formulas for each node in the graph.

		
		R_semantic = eb.iterate_augmenting_fixpoint(G, simplify=True)

		
		This computes the fixpoint reached by a sequence of augmenting iterations starting from the
graph and scenario represented by G, using the default semantic characterization
and inclusion-based optimization. Since simplify=True, the resulting scenario
will have simplified formulas for each node in the graph.

 © Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

_static/plus.png

quickstart.html

 Navigation

 		
 index

 		Equibel a1 documentation »

Quickstart Guide

This is a quickstart guide for getting started with Equibel.

 © Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

installation.html

 Navigation

 		
 index

 		Equibel a1 documentation »

Installation

This is a brief guide for installing Equibel.

The following steps assume that you have the pip Python package manager installed.
If you don’t have pip, you can get it here [https://pip.pypa.io/en/latest/installing.html].

Equibel currently supports Mac OS X and 64-bit Linux, with Python 2.7.x.

Installing from Source

System-Wide Installation

To install Equibel into the system-wide set of Python packages, simply use:

$ pip install equibel

Virtual Environments

In order to keep the dependencies of Equibel separate from those of other Python packages on your
system, you may wish to install Equibel inside a virtual environment. Virtual environments
provide isolation between different Python projects, allowing you to have separate installations
of Python for each project. To create a virtual environment, you must first install virtualenv:

$ pip install virtualenv

Once virtualenv is installed, you can create a project directory and initialize a
virtual environment in it as follows:

$ mkdir try_equibel
$ cd try_equibel
$ virtualenv venv --python=python2.7

Before you can install packages into the virtual environment, you must activate it:

$ source venv/bin/activate

When you do this, your terminal prompt will update so that it is prepended by (venv).
Whenever you want to exit the virtual environment and return to the system-wide Python
installation, simply use:

(venv)$ deactivate

With a virtual environment activated, you can simply install Equibel using pip:

(venv)$ pip install equibel

Optional Packages

The following packages are optional, and are used by Equibel to provide additional functions.

Matplotlib

Matplotlib is a 2D plotting library in Python. When installed alongside Equibel, it
enables visualization of graphs and associated scenarios, as well as model graphs.
Matplotlib is available on PyPI [https://pypi.python.org/pypi/matplotlib], and can
be installed using:

$ pip install matplotlib

 © Copyright 2016, Paul Vicol.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

