
epic
EPIC Documentation

Release 1.1

Rafael J. F. Marcondes

May 19, 2018

Contents

1 Welcome to the EPIC user’s guide! 1
1.1 Why EPIC? . 1

2 How to install 2
2.1 Setting up a virtual environment . 2
2.2 Installing with pip . 3
2.3 Downloading and extracting the tarball . 4
2.4 Cloning the repository . 4

3 The Cosmology module 4
3.1 Initializing a model . 5
3.2 The cosmological models . 6
3.3 The datasets . 10

4 The MCMC module 12
4.1 Introduction to MCMC and the Bayesian method 12
4.2 Before starting . 14
4.3 Running MCMC . 17

5 Acknowledgments 27

1 Welcome to the EPIC user’s guide!

Easy Parameter Inference in Cosmology (EPIC) is my implementation in Python of a MCMC
code for Bayesian inference of parameters of cosmological models and model comparison via the
computation of Bayesian evidences.

1.1 Why EPIC?

I started to develop EPIC as a means of learning how inference can be made with Markov Chain
Monte Carlo, rather than trying to decipher other codes or using them as black boxes. The program
has fulfilled this purposed and went on to incorporate a few cosmological observables that I have
actually employed in some of my publications. Now I release this code in the hope it can be useful
to students seeking to learn some of the methods used in Observational Cosmology and even to use
it for their own work. It still lacks some important features. A Boltzmann solver is not available. It
is possible that I will integrate it with CLASS1 to make it more useful for more advanced research.
Stay tuned for more. Meanwhile, enjoy these nice features:

• Cross-platform: the code runs on Python 3 in any operating system.

• It uses Python’s multiprocessing library for evolution of chains in parallel. The sepa-
rate processes can communicate with each other through some multiprocessing utilities,
which made possible the implementation of the Parallel Tempering algorithm.2 This method
is capable of detecting and accurately sampling posterior distributions that present two or
more separated peaks.

• Convergence between independent chains is tested with the multivariate version of the Gel-
man and Rubin test, a very robust method.

• Also, the plots are beautiful and can be customized to a great extent directly from the com-
mand line, without having to change the code. You can view triangle plots with marginalized
distributions of parameters, predefined derived parameters, two-dimensional joint-posterior
distributions, autocorrelation plots, cross-correlation plots, sequence plots, convergence di-
agnosis and more.

Try it now!

2 How to install

There are two ways to install this program. You can download and install from PyPi or you can
clone it from BitBucket. But first, it is recommended that you make these changes inside a virtual

1 Lesgourgues, J. “The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview”. arXiv:1104.2932
[astro-ph.IM]; Blas, D., Lesgourgues, J., Tram, T. “The Cosmic Linear Anisotropy Solving System (CLASS). Part
II: Approximation schemes”. Journal of Cosmology and Astroparticle Physics 07 (2011) 034.

2 Removed in current version. If you need to use Parallel Tempering, please use version 1.0.4 of EPIC.

environment.

2.1 Setting up a virtual environment

if you are on Python 3.3 or superior, you can run:

$ python3 -m venv vEPIC

to create a virtual Python environment inside a folder named vEPIC. Activate it with:

$ source vEPIC/bin/activate

When you finish using the environment and want to leave it you can just use deactivate. To
activate it again, which you need in a new session, just run the activation command above. More
details about Python3’s venv here.

With inferior versions of Python, you can install pyenv and pyenv-virtualenv, which let you create
a virtual environment and even choose another version of Python to install. This is done with:

$ pyenv virtualenv 3.6.1 vEPIC # or other version you like.

Then activate it running:

$ pyenv activate vEPIC # use pyenv deactivate vEPIC to deactivate it.

Note that this version of EPIC is not compatible with Python 2 anymore.

2.2 Installing with pip

The easiest way to install this program is to get it from PyPi. It is also the most recommended
since it can be easily updated when new versions come out. Inside your virtual environment, run:

$ pip install epic-code

Then, if you are using Linux, create a bind mount from your python path to an external directory
for your convenience. For example, in your home, create the directories cosmology_codes/EPIC
and cosmology_codes/EPIC-simulations. Run:

$ sudo mount --bind $PYTHONPATH/lib/python3.5/site-packages/EPIC/ cosmology_
↪→codes/EPIC

This will make your newly created folder reflect the contents of the installation directory and you
will be able to run the scripts and access the associated files from there, rather than only importing
the modules from inside the python interactive interpreter. If you do not have the privileges to
mount the directory then follow the instructions below for downloading and extracting manually
to your home directory.

https://docs.python.org/3/library/venv.html
https://github.com/pyenv

Note: If you are on Mac OS X or macOS, you can achieve the same effect but will need to install
osxfuse and bindfs to create the link:

$ brew install osxfuse # or brew cask install osxfuse
$ brew install bindfs
$ bindfs $PYTHONPATH/lib/python3.5/site-packages/EPIC/ cosmology_codes/EPIC

Next, cd into cosmology_codes/EPIC, run:

$ python define_altdir.py

and pass the full path to cosmology_codes/EPIC-simulations to define this folder as the lo-
cation for saving simulations results. You are now good to go. To check and install updates if
available, just run:

$ pip install --upgrade epic-code

On a Windows computer, if you have Windows 10 Pro, I recommend enabling the Windows Sub-
system for Linux and installing Bash on Ubuntu on Windows 10, then proceeding with the instruc-
tions above for installation on Linux. If not possible, then use the zip file as indicated below.

2.3 Downloading and extracting the tarball

If you rather not install it to your system you can just extract the tar.gz files from the Python
Package Index at https://pypi.python.org/pypi/epic-code. Extract the file with:

$ tar -xzf epic-code-[version].tar.gz

cd into the root folder and install to your (virtual) environment:

$ python setup.py install

This is necessary to guarantee that all modules will be loaded correctly. It also applies to the source
code extracted from the zip file or other compression format. You can then run the program from
the EPIC folder. To update the program you will have to download the new tarball/zip file and
execute this process again.

2.4 Cloning the repository

If you plan to contribute to this program you can clone the git repository at https://bitbucket.org/

rmarcondes/epic.

https://osxfuse.github.io
https://bindfs.org
https://pypi.python.org/pypi/epic-code
https://bitbucket.org/rmarcondes/epic
https://bitbucket.org/rmarcondes/epic

3 The Cosmology module

Starting with version 1.1, there is now a module available that makes it easy for the user to perform
calculations on the background cosmology given a specific model. A few classes of models are
predefined. Each of these have also defined what are their components, but also allowing some
variations. For example, the ΛCDM model requires at least cold dark matter (cdm) and cosmo-
logical constant (lambda), but one can also include baryonic fluid (baryons), or treat both matter
components together by specifying the composed species matter. It is also possible to include
photons or radiation. For models of interaction between dark matter and dark energy (cde),
the former is labelled idm and the latter ide or ilambda in the case that its equation-of-state
parameter is still −1 (in which the model is then labelled cde_lambda) rather than a free parame-
ter or presents evolution described by some function. The models available and their components
specification are defined in the file EPIC/cosmology/model_recipes.ini. The fluids contained
in this file are in turn defined in EPIC/cosmology/available_species.ini, where properties
like the type of equation of state, the parameters and other relevant informations are set.

3.1 Initializing a model

We start (preferably on jupyter notebook) importing the module and creating our cosmology object:

Only the label of the model is really needed here, since the essentials are already predefined in the
program, as mentioned above. With this, one can explore the properties assigned to the object. For
example, LCDM.model will print lcdm. LCDM.species is a dictionary of Fluid objects identified
by the components labels, in this case cdm and lambda. There is also a dedicated class for an
equation-of-state parameter or function, which becomes an attribute of its fluid. We can assess its
value, type, etc. LCDM.species['lambda'].EoS.value will print -1.

But let us proceed in a slightly different way, setting up our model with some options. Since we
predominantly work with flat cosmologies (in fact, curvature is not supported yet in the current
version), the flatness condition is imposed in the density parameter of one of the fluids. We will
choose the dark energy density parameter to be the derived parameter, but we could have chosen
dark matter as well. Also, by default, the code prefers to work with physical densities (for example
Ωc0h2) rather than the common Ωc0. You can change this with the option physical=False. We
will add the radiation and matter fluids. Note that this will override the optional inclusion of
baryons and remove them, if given. The radiation fluid is parametrized by the temperature of the
cosmic microwave background. The model will have three free parameters: the density parameter
of matter (Ωm0), the CMB temperature (TCMB), which we usually keep fixed) and the Hubble
parameter H0; and one derived parameter, which is the density parameter of the cosmological
constant, ΩΛ.

We can then obtain the solution to the background cosmology with EPIC.

Solving the background cosmology

It is as simple as this:

Normally, a set of parameters would be given to this function in the form of a dic-
tionary with the parameters’ labels as keys, like in parameter_space={'Oc0': 0.26,
'Ob0': 0.048, 'Or0':8e-5, 'H0':67.8}. However, we can also ommit it and turn on
the option accepts_default and then the default values defined in the EPIC/cosmology/
default_parameter_values.ini file will be used for the parameters. Next, we plot the energy
densities and density parameters. Here I do it in a jupyter notebook with the help of this simple
function below:

Notice the matter-radiation equality moment at aeq ∼ 3 × 10−4 and the cosmological constant
that just recently came to overtake matter as the dominant component. The wCDM (wcdm) model
differs from ΛCDM only by the dark energy (de) equation-of-state parameter (wd), which although
still constant can be different from −1. Note that the energy density of dark energy is not constant
now:

3.2 The cosmological models

A few models are already implemented. I give a brief description below, with references for works
that discuss some of them in detail and works that analyzed them with this code. The models are

objects created from the cosmic_objects.CosmologicalSetup class. This class has a generic
module solve_background that calls the Fluid’s module rho_over_rho0 of each fluid to ob-
tain the solution for their energy densities. When a solution cannot be obtained directly (like
in some interacting models), a fourth-order Runge-Kutta integration is done using the function
generic_runge_kutta from EPIC.utils’s integrators and the fluids‘ drho_da. There is an
intermediate function get_Hubble_Friedmann to calculate the Hubble rate either by just sum-
ming the energy densities, when called from the Runge-Kutta integration, or calculating them with
rho_over_rho0.

Some new models can be introduced in the code just by editing the model_recipes.ini,
available_species.ini and (optionally) default_parameter_values.ini configuration
files, without needing to rebuild and install the EPIC’s package. The format of the configura-
tion .ini files is pretty straightforward and the containing information can serve as a guide for
what needs to be defined.

The ΛCDM model

When baryons and radiation are included, the solution to this cosmology will require values for the
parameters Ωc0, Ωb0, TCMB, H0, or h, Ωc0h2, Ωb0h2, TCMB, and will find ΩΛ = 1− (Ωc0 + Ωb0 + Ωr0)
or ΩΛh2 = h2−

(︁
Ωc0h2 + Ωb0h2 + Ωr0h2

)︁
if physical.1 The radiation density parameter Ωr0 is cal-

culated according to the CMB temperature TCMB, including the contribution of the neutrinos (and
antineutrinos) of the standard model. Extending this model to allow curvature is not completely
supported yet. The Friedmann equation is

H(z)
100 km s−1 Mpc−1 =

√︀
(Ωb0h2 + Ωc0h2)(1 + z)3 + Ωr0h2(1 + z)4 + Ωdh2

or

H(z) = H0

√︀
(Ωb0 + Ωc0)(1 + z)3 + Ωr0(1 + z)4 + Ωd,

H0 is in units of km s−1 Mpc−1. This model is identified in the code by the label lcdm.

The wCDM model

Identified by wcdm, this is like the standard model except that the dark energy equation of state can
be any constant wd, thus having the ΛCDM model as a specific case with wd = −1. The Friedmann
equation is like the above but with the dark energy contribution multiplied by (1 + z)3(1+wd).

1 That is, assuming derived=lambda, but we could also have done, for example, physical=False,
derived=matter, specify ΩΛ and the code would get Ωm0 = 1 − (ΩΛ + Ωr0) or, still, without specify-
ing the derived parameter and with physical true, specify all the fluids’ density parameters and get h =√︀

Ωc0h2 + Ωb0h2 + Ωr0h2 + ΩΛh2.

The Chevallier-Polarski-Linder parametrization

The CPL parametrization2 of the dark energy equation of state

w(a) = w0 + wa (1 − a)

is also available. In this case, the dark energy contribution in the Friedmann equation is multiplied
by (1 + z)3(1+w0+wa) e−3waz/(1+z) or (a/a0)−3(1+w0+wa)e−3wa(1−a/a0), in terms of the scale factor.

The Barboza-Alcaniz parametrization

The Barboza-Alcaniz dark energy equation of state parametrization3

w(z) = w0 + w1
z (1 + z)
1 + z2

is implemented. This models gives a dark energy contribution in the Friedmann equation that is
multiplied by the term x3(1+w0)

(︁
x2 − 2x + 2

)︁−3w1/2
, where x ≡ a0/a.

Interacting Dark Energy models

A comprehensive review of models that consider a possible interaction between dark energy and
dark matter is given by Wang et al. (2016)4. In interacting models, the individual conservation
equations of the two dark fluids are violated, although still preserving the total energy conservation:

ρ̇c + 3Hρc = Q
ρ̇d + 3H(1 + wd)ρd = −Q.

The shape of Q is what characterizes each model. Common forms are proportional to ρc, to ρd

(both supported) or to some combination of both (not supported in this version).

To create an instance of a coupled model (cde) with Q ∝ ρc, use:

The mandatory species are idm and ide. You can add baryons in the optional_species list
keyword argument, but note that matter is not available as a combined species for this model type
since dark matter is interacting with another fluid while baryons are not. What is new here is the
interaction_setup dictionary. This is where we tell the code which species are interacting
(at the moment only an energy exchange within a pair is supported), to which of them (idm) we
associate the interaction parameter xi, indicate the second one (ide) as having an interaction

2 Chevallier M. & Polarski D., “Accelerating Universes with scaling dark matter”. International Journal of Modern
Physics D 10 (2001) 213-223; Linder E. V., “Exploring the Expansion History of the Universe”. Physical Review
Letters 90 (2003) 091301.

3 Barboza E. M. & Alcaniz J. S., “A parametric model for dark energy”. Physics Letters B 666 (2008) 415-419.
4 Wang B., Abdalla E., Atrio-Barandela F., Pavón D., “Dark matter and dark energy interactions: theoretial chal-

lenges, cosmological implications and observational signatures”. Reports on Progress in Physics 79 (2016) 096901.

term proportional to the other (idm) and specify the sign of the interaction term for each fluid, in
this case that means Qc = 3Hξρc and Qd = −3Hξρc.

Here, I am exaggerating the value of the interaction parameter so we can see a variation on the
dark energy density that is due to the interaction, not the equation-of-state parameter, which is −1.
This same cosmology can be realized with the model type cde_lambda without specifying the
parameter wd, since the ilambda fluid has fixed wd = −1. The dark matter interacting term Qc is
positive with ξ positive, thus the lowering of the dark energy density as its energy flows towards
dark matter.

Fast-varying dark energy equation-of-state models

Models of dark energy with fast-varying equation-of-state parameter have been studied in some
works5. Three such models were implemented as described in Marcondes and Pan (2017)6. We
used this code in that work. They have all the density parameters present in the ΛCDM model
besides the dark energy parameters that we describe in the following.

Model 1

This model fv1 has the free parameters wp, w f , at and τ characterizing the equation of state

wd(a) = w f +
wp − w f

1 + (a/at)1/τ .

wp and w f are the asymptotic values of wd in the past (a → 0) and in the future (a → ∞), respec-
tively; at is the scale factor at the transition epoch and τ is the transition width. The Friedmann

5 Corasaniti P. S. & Copeland E. J., “Constraining the quintessence equation of state with SnIa data and CMB
peaks”. Physical Review D 65 (2002) 043004; Basset B. A., Kunz M., Silk J., “A late-time transition in the cosmic
dark energy?”. Monthly Notices of the Royal Astronomical Society 336 (2002) 1217-1222; De Felice A., Nesseris S.,
Tsujikawa S., “Observational constraints on dark energy with a fast varying equation of state”. Journal of Cosmology
and Astroparticle Physics 1205, 029 (2012).

6 Marcondes R. J. F. & Pan S., “Cosmic chronometer constraints on some fast-varying dark energy equations of
state”. arXiv:1711.06157 [astro-ph.CO].

equation is

H(a)2

H2
0

=
Ωr0

a4 +
Ωm0

a3 +
Ωd0

a3(1+wp) f1(a),

where

f1(a) =

⎛⎜⎜⎜⎜⎝a1/τ + a1/τ
t

1 + a1/τ
t

⎞⎟⎟⎟⎟⎠3τ(wp−w f)

.

Model 2

This model fv2 alters the previous model to allow the dark energy to feature an extremum value
of the equation of state:

wd(a) = wp + (w0 − wp) a
1 − (a/at)1/τ

1 − (1/at)1/τ ,

where w0 is the current value of the equation of state and the other parameters have the interpreta-
tion as in the previous model. The Friedmann equation is

H(a)2

H2
0

=
Ωr0

a4 +
Ωm0

a3 +
Ωd0

a3(1+wp) e f2(a),

with

f2(a) = 3(w0 − wp)
1 + (1 − a−1/τ

t)τ + a
[︀{︀

(a/at)1/τ − 1
}︀
τ − 1

]︀
(1 + τ)(1 − a−1/τ

t)
.

Model 3

Finally, we have a third model fv3 with the same parameters as in Model 2 but with equation of
state

wd(a) = wp + (w0 − wp) a1/τ 1 − (a/at)1/τ

1 − (1/at)1/τ .

It has a Friedmann equation identical to Model 2’s except that f2(a) is replaced by

f3(a) = 3(w0 − wp)τ
2 − a−1/τ

t + a1/τ
t
[︀
(a/at)1/τ − 2

]︀
2
(︀
1 − a−1/τ

t
)︀ .

3.3 The datasets

Observations available for comparison with model predictions are registed in the EPIC/
cosmology/observational_data/available_observables.ini. They are separated in sec-
tions (Hz, H0, SNeIa, BAO and CMB), which contain the name of the CosmologicalSetup’s mod-
ule for the observable theoretical calculation (predicting_function_name). Each dataset goes
below one of the sections, with the folder or text file containing the data indicated. The path is
relative to the EPIC/cosmology/observational_data/ folder. If the folder name is the same
as the observable label it can be ommited. Besides, the Dataset subclasses are defined at the be-
ginning of the .ini file. Each of these classes has its own methods for initialization and likelihood
evaluation.

We choose the datasets by passing a dictionary with observables as keys and datasets as values to
the function choose_from_datasets from observations in EPIC.cosmology:

The WiggleZ dataset is available but is commented out because it is correlated with the SDSS
datasets and thus not supposed to be used together with them. Refer to the papers published by
the authors of the observations for details. Other incompatible combinations are defined in the
conflicting_dataset_pairs.txt file in EPIC/cosmology/observational_data/. The
code will check for these conflicts prior to proceeding with an analysis. The returned flattened
dictionary of Dataset objects will later be passed to a MCMC analysis. Now I describe briefly the
datasets made available by the community.

Type Ia supernovae

Two types of analyses can be made with the JLA catalogue. One can either use the full likelihood
(JLA_full) or a simplified version based on 30 redshift bins (JLA_simplified). Here we are
using the binned data consisting of distance modulus estimates at 31 points (defining 30 bins of
redshift). If you want to use the full dataset (which makes the analysis much slower since it involves
three more nuisance parameters and requires the program to invert a 740 by 740 matrix at every
iteration for the calculation of the JLA likelihood), you need to download the covariance matrix
data (covmat_v6.tgz) from http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html. The covmat
folder must be extracted to the jla_likelihood_v6 folder. This is not included in EPIC because
the data files are too big.

Either way, the data location is the same data folder jla_likelihood_v6. Note that the
binned dataset introduces one nuisance parameter M, representing an overall shift in the abso-
lute magnitudes, and the full dataset introduces four nuisance parameters related to the light-curve
parametrization. See Betoule et al. (2014)1 for more details.

1 Betoule M. et al. “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova
samples”. Astronomy & Astrophysics 568, A22 (2014).

http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html

CMB distance priors

Constraining models with temperature or polarization anisotropy amplitudes is not currently im-
plemented. However, you can include the CMB distance priors from Planck2015.2 The datasets
consist of an acoustic scale lA, a shift parameter R and the physical density of baryons Ωb0h2. You
can choose between the data for ΛCDM and wCDM with either Planck2015_distances_LCDM
or Planck2015_distances_wCDM. Planck2015_distances_LCDM+Omega_k is also available
for When curvature is supported.

BAO data

Measurements of the baryon acoustic scales from the Six Degree Field Galaxy Survey (6dF) com-
bined with the most recent data releases of Sloan Digital Sky Survey (SDSS-MGS),3 the LOWZ
and CMASS galaxy samples of the Baryon Oscillation Spectroscopic Survey (BOSS-LOWZ and
BOSS-CMASS),4 data from the Quasar-Lyman α cross-correlation,5 the distribution of the Lyman
α forest in BOSS6 and from the WiggleZ Dark Energy Survey7 are available in the BAO folder, as
well as the latest consensus from the completed SDSS-III BOSS survey.8 The observable is based
on the value of the characteristic ratio rs(zd)/DV(z) between the sound horizon rs at decoupling
time (zd) and the effective BAO distance DV , or some variation of this. The respective references
are given in the headers of the data files.

H(z) data

These are the cosmic chronometer data. 30 measurements of the Hubble expansion rate H(z) at
redshifts between 0 and 2.9 The values of redshift, H and the uncertainties are given in the file
Hz/Hz_Moresco_et_al_2016.txt.

2 Huang Q.-G., Wang K. & Wang S. “Distance priors from Planck 2015 data”. Journal of Cosmology and As-
troparticle Physics 12 (2015) 022.

3 Carter P. et al. “Low Redshift Baryon Acoustic Oscillation Measurement from the Reconstructed 6-degree Field
Galaxy Survey”. arXiv:1803.01746v1 [astro-ph.CO].

4 Anderson L. et al. “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measur-
ing DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample”. Monthly
Notices of the Royal Astronomical Society 438 (2014) 83-101.

5 Font-Ribera A. et al. “Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscilla-
tions”. Journal of Cosmology and Astroparticle Physics 05 (2014) 027.

6 Bautista J. E. et al. “Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Ly
α-Forests”. Astronomy & Astrophysics 603 (2017) A12.

7 Kazin E. A. et al. “The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruc-
tion of the baryonic acoustic feature”. Monthly Notices of the Royal Astronomical Society 441 (2014) 3524-3542.

8 Alam S. et al. “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey:
cosmological analysis of the DR12 galaxy sample”. Monthly Notices of the Royal Astronomical Society 470 (2017)
2617-2652.

9 Moresco M. et al. “A 6% measurement of the Hubble parameter at z ∼ 0.45: direct evidence of the epoch of
cosmic re-acceleration”. Journal of Cosmology and Astroparticle Physics 05 (2016) 014.

H0 data

The 2.4% precision local measure10 of H0 is present in H0/local_H0_Riess_et_al_2016.txt.

4 The MCMC module

This module is the original part of the program, although massively rewritten from version 1.0.4 to
1.1. Originally, EPIC could run with standard MCMC sampler or Parallel-Tempering MCMC. The
former has been temporarily removed to give place to a new and cleaner implementation attempt-
ing to solve some bugs. Use version 1.0.4 in case you need it. The MCMC sampler comes with
an experimental adaptive routine that adjusts the covariance of the proposal multivariate Gaussian
probability density for optimal efficiency, aiming at an acceptance rate around 0.234. In the follow-
ing sections I briefly introduce the MCMC method and show how to use this program to perform
simulations, illustrating with examples.

4.1 Introduction to MCMC and the Bayesian method

Users familiar with the Markov Chain Monte Carlo (MCMC) method may want to skip to the
next section. The typical problem the user will want to tackle with this program is the problem of
parameter estimation of a given theoretical model confronted with one or more sets of observational
data. This is a very common task in Cosmology these days, specially in the light of numerous data
from several surveys, with increasing quality. Important discoveries are expected to be made with
the data from new generation telescopes in the next decade.

In the following I give a very brief introduction to the MCMC technique and describe how to use
program.

The Bayes Theorem

Bayesian inference is based on the inversion of the data-parameters probability relation, which is
the Bayes theorem1. This theorem states that the posterior probability P(θ | D,ℳ) of the parameter
set θ given the data D and other information from the modelℳ can be given by

P(θ | D,ℳ) =
ℒ(D | θ,ℳ) π(θ | ℳ)

P(D,ℳ)
,

where ℒ(D | θ,ℳ) is the likelihood of the data given the model parameters, π(θ | ℳ) is the prior
probability, containing any information known a priori about the distribution of the parameters, and
P(D,ℳ) is the marginal likelihood, also popularly known as the evidence, giving the normalization

10 Riess A. G. et al. “A 2.4% determination of the local value of the Hubble constant”. The Astrophysical Journal
826 (2016) 56.

1 Hobson M. P., Jaffe A. H., Liddle A. R., Mukherjee P. & Parkinson D., “Bayesian methods in cosmology”.
(Cambridge University Press, 2010).

of the posterior probability. The evidence is not required for the parameter inference but is essential
in problems of selection model, when comparing two or more different models to see which of them
is favored by the data.

Direct evaluation of P(θ | D,ℳ) is generally a difficult integration in a multiparameter space that
we do not know how to perform. Usually we do know how to compute the likelihood ℒ(D | θ,ℳ)
that is assigned to the experiment (most commonly a distribution that is Gaussian on the data or
the parameters), thus the use of the Bayes theorem to give the posterior probability. Flat priors are
commonly assumed, which makes the computation of the right-hand side of the equation above
trivial. Remember that the evidence is a normalization constant not necessary for us to learn about
the most likely values of the parameters.

The Metropolis-Hastings sampler

The MCMC method shifts the problem of calculating the unknown posterior probability distribu-
tion in the entire space, which can be extremly expensive for models with large number of param-
eters, to the problem of sampling from the posterior distribution. This is possible, for example, by
growing a Markov chain with new states generated by the Metropolis sampler2.

The Markov chain has the property that every new state depends on its current state, and only on
this current state. Dependence on more previous states or on some statistics involving all states
is not allowed. That can be done and can even also be useful for purposes like ours, but then the
chain can not be called Markovian.

The standard MCMC consists of generating a random state y according to a proposal probability
Q(· | xt) given the current state xt at time t. Then a random number u is drawn from a uniform
distribution between 0 and 1. The new state is accepted if r ≥ u, where

r = min
[︃
1,

P(y | D,ℳ)Q(xt | y)
P(xt | D,ℳ)Q(y | xt)

]︃
.

The fraction is the Metropolis-Hastings ratio. When the proposal function is symmetrical, Q(xt |y)
Q(y|xt)

reduces to 1 and the ratio is just the original Metropolis ratio of the posteriors. If the new state is
accepted, we set xt+1 := y, otherwise we repeat the state in the chain by setting xt+1 := xt.

The acceptance rate α =
number of accepted states

total number of states of a chain should be around 0.234 for optimal effi-
ciency3. This can be obtained by tuning the parameters of the function Q. In this implementation,
I use a multivariate Gaussian distribution with a diagonal covariance matrix S .

The Parallel Tempering algorithm (removed in this version)

Standard MCMC is powerful and works in most cases but there are some problems where the
user may be better off using some other method. Due to the characteristic behavior of a Markov

2 Gayer C., “Introduction to Markov Chain Monte Carlo”. in “Handbook of Markov Chain Monte Carlo” http:
//www.mcmchandbook.net/

3 Roberts G. O. & Rosenthal J. S., “Optimal scaling for various Metropolis-Hastings algorithms”. Statistical Sci-
ence 16 (2001) 351-367.

http://www.mcmchandbook.net/
http://www.mcmchandbook.net/

chain, it is possible (and even likely) that a chain become stuck in a single mode of a multimodal
distribution. If two or more peaks are far away from each other, the proposal function tuned for
good performance in a peak may have difficulty escaping that peak to explore the other, because the
jump may be too short. To overcome this inefficiency, a neat variation of MCMC, called Parallel
Tempering4, favors a better exploration of the entire parameter space in such cases thanks to an
arrangement of multiple chains that are run in parallel, each one with a different ‘’temperature”
T . The posterior is calculated as ℒβπ, with β = 1/T . The first chain is the one that corresponds
to the real life posterior we are interested in; the other chains, at higher temperatures, will have
wider distributions, which makes it easier to jump between peaks, thus exploring more properly
the parameter space. Periodically, a swap of states between neighboring chains is proposed and
accepted or rejected according to a Hastings-like ratio.

4.2 Before starting

In the section The Cosmology module we learned how to use EPIC to set up a cosmological model
and load some datasets. The next logical step is to calculate the probability density at a given point
of the parameter space, given that model and according to the chosen data. This can be done as
follows:

In this example I am choosing the cosmic chronometers dataset, the Hubble constant local mea-
surement and the simplified version of the JLA dataset. The Analysis object is created from the
dictionary of datasets, the model and a dictionary of priors in the model parameters (including nui-
sance parameters related to the data). The probability density at any point can then be calculated
with the module log_posterior, which returns the logarithm of the posterior probability density
and the logarithm of the likelihood. Setting the option chi2 to True (It is False by default) makes
the calculation of the likelihood as logℒ = −χ2/2, dropping the usual multiplicative terms from
the normalized Gaussian likelihood. When false, the results include the contribution of the factors
1/
√

2πσi or the factor 1/
√

2π|C|. These are constant in most cases, making no difference to the
analysis, but in other cases, depending on the data set, the covariance matrix C can depend on
nuisance parameters and thus vary at each point.

Now that we know how to calculate the posterior probability at a given point, we can perform a
Monte Carlo Markov Chain simulation to assess the confidence regions of the model parameters.
The main script epic.py accomplishes this making use of the objects and modules here presented.

The configuration of the analysis (choice of model, datasets, priors, etc) is defined in a .ini
configuration file that the program reads. The program creates a folder in the working directory
with the same name of this .ini file, if it does not already exist. Another folder is created with the
date and time for the output of each run of the code, but you can always continue a previous run
from where it stopped, just giving the folder name instead of the .ini file. The script is stored in
the EPIC source folder, where the .ini files should also be placed. The default working directory
is the EPIC’s parent directory, i.e., the epic repository folder.

4 Gregory P. C., “Bayesian logical data analysis for the physical sciences: a comparative approach with Mathemat-
ica support”. (Cambridge University Press, 2005).

Changing the default working directory

By default, the folders with the name of the .ini files are created at the repository root level. But
the chains can get very long and you might want to have them stored in a different drive. In order
to set a new default location for all the new files, run:

$ python define_altdir.py

This will ask for the path of the folder where you want to save all the output of the program and
keep this information in a file altdir.txt. If you want to revert this change you can delete the
altdir.txt file or run again the command above and leave the answer empty when prompted.
To change this directory temporarily you can use the argument --alt-dir when running the main
script.

The structure of the .ini file

Let us work with an example, with a simple flat ΛCDM model. Suppose we want to constrain its
parameters with H(z), supernovae data, CMB shift parameters and BAO data. The model parame-
ters are the reduced Hubble constant h, the present-day values of the physical density parameters
of dark matter Ωc0h2, baryons Ωb0h2 and radiation Ωr0h2. We will not consider perturbations, we
are only constraining the parameters at the background level. Since we are using supernovae data
we must include a nuisance parameter M, which represents a shift in the absolute magnitudes of
the supernovae. Use of the full JLA catalogue requires the inclusion of the nuisance parameters
α, β and ∆M from the light-curve fit. The first section of .ini is required to specify the type of
the model, whether to use physical density parameters or not, and which species has the density
parameter derived from the others (e. g. from the flatness condition):

[model]
type = lcdm
physical = yes
optional species = ['baryons', 'radiation']
derived = lambda

The lcdm model will always have the two species cdm and lambda. We are including the op-
tional baryonic fluid and radiation, which being a combined species replaces photons and
neutrinos. The configurations and options available for each model are registered in the EPIC/
cosmology/model_recipes.ini file. This section can still received the interaction setup
dictionary to set the configuration of an interacting dark sector model. Details on this are given in
the previous section Interacting Dark Energy models.

The second section defines the analysis: a label, datasets and specifications about the priors ranges
and distributions. The optional property prior distributions can receive a dictionary with
either Flat or Gaussian for each parameter. When not specified, the code will assume flat priors
by default and interpret the list of two numbers as an interval prior range. When Gaussian, these
numbers are interpreted as the parameters µ and σ of the Gaussian distribution. In the simulation

section, we specify the parameters of the diagonal covariance matrix to be used with the proposal
probability distribution in the sampler. Values comparable to the expected standard deviation of
the parameter distributions are recommended.

[analysis]
label = $H(z)$ + H_0 + SNeIa + BAO + CMB
datasets = {

'Hz': 'cosmic_chronometers',
'H0': 'HST_local_H0',
'SNeIa': 'JLA_simplified',
'BAO': [

'6dF+SDSS_MGS',
'SDSS_BOSS_CMASS',
'SDSS_BOSS_LOWZ',
'SDSS_BOSS_QuasarLyman',
'SDSS_BOSS_consensus',
'SDSS_BOSS_Lyalpha-Forests',
],

'CMB': 'Planck2015_distances_LCDM',
}

priors = {
'Och2' : [0.08, 0.20],
'Obh2' : [0.02, 0.03],
'h' : [0.5, 0.9],
'M' : [-0.3, 0.3],
}

prior distributions =
fixed = {

'T_CMB' : 2.7255
}

[simulation]
proposal covariance = {

'Och2' : 1e-3,
'Obh2' : 1e-5,
'h' : 1e-3,
'M': 1e-3,
}

4.3 Running MCMC

This is the vanilla Monte Carlo Markov Chain with the Metropolis algorithm, as introduced in the
previous section The Metropolis-Hastings sampler.

We will now proceed to run MCMC for the ΛCDM model. The epic.py script accepts four
commands: run, analyze, plot and monitor. The commands must be issued from your terminal

at the EPIC directory.

Sampling the posterior distribution

Standard MCMC is the default option for sampling. We start a MCMC simulation with the run
command:

$ python epic.py run LCDM.ini 12 10000 --sim-full-name MyFirstRun --check-
↪→interval 6h

where the first argument is the .ini file, the second is the number of chains to be run in parallel
and the third is the number of steps to be run in each MCMC iteration. This number of steps
means that the chains will be written to the disk (the new states are appended to the chains files)
after each steps states in all chains. A large number prevents frequent writing operations, which
could impact overall performance unnecessarily. Each chain will create an independent process
with Python’s multiprocessing, so you should not choose a number higher than the number of
CPUs multiprocessing.cpu_count() of your machine. The number of chains should not be
less than 2.

If correlations in the initial proposal covariance matrix are needed or desired, the user can overwrite
the diagonal proposal covariance matrix with the option --proposal-covariance followed by
the name of the file containing the desired covariance matrix in a table format.

The program creates a directory for this new simulation. Inside this directory, another one named
chains receives the files that will store the states of the chains, named chain_0.txt, chain_1.
txt, etc. Other relevant files are equally named but stored in the folder current_states. These
store only the last state of each chain, to allow fast resuming from where the chain stopped, with-
out need to loading the entire chains. The chains start at points randomly sampled from the pri-
ors, unless --no-multi-start is given, in which case all chains start at the same point, with
coordinates given by the default values of each parameter. A good starting point may help to
obtain convergence faster, besides eliminating the need for burn-in1. The name of the folder is
the date-time of creation (in UTC), unless the option --sim-full-name MyFirstRun is used,
then MyFirstRun will be the folder name. A custom label or tag can also be prepended with
the --sim-tag my_label option, for example, the folder my_label-171110-173000. It will
be stored within another folder with the same name of the .ini file, thus in this case LCDM/
MyFirstRun. The full path of the simulation will be displayed in the first line of the output.

An existing simulation can be resumed from where it last saved information to disk with the same
command, just giving the path of the simulation instead of the .ini file name, and omitting the
number of chains, which has already been defined in the first run, for example:

$ python epic.py run <FULL-OR-RELATIVE-PATH-TO>/LCDM/MyFirstRun/ 5000

Another important parameter is the tolerance accepted for convergence assessment. By default,
the program will stop when the convergence check finds, according to the Gelman-Rubin method,

1 When checking convergence with Gelman-Rubin method, however, burn-in is still applied.

convergence with ε < 0.01. To change this value, you can use --tolerance 0.002 or just
-t 2e-3, for example. In the MCMC mode, the code will periodically check for convergence
according to the Gelman-Rubin method (by default it is done every two hours but can be specified
differently as --check-interval 12h or -c 45min in the arguments, for example. This does
not need to (and should not) be a small time interval, but the option to specify this time in minutes
or even in seconds (30sec) is implemented and available for testing purposes.

The relevant information will be displayed, in our example case looking similar to the following:

Simulation at <FULL-PATH-TO>/LCDM/MyFirstRun
Mode MCMC.
The following datasets will be used:

6dF+SDSS_MGS
HST_local_H0
JLA_simplified
Planck2015_distances_LCDM
SDSS_BOSS_CMASS
SDSS_BOSS_LOWZ
SDSS_BOSS_Lyalpha-Forests
SDSS_BOSS_QuasarLyman
SDSS_BOSS_consensus
cosmic_chronometers

Initiating MCMC...

and the MCMC will start.

The MCMC run stops if convergence is achieved with a tolerance smaller than the default or given
tolerance.

The following is the output of our example after the MCMC has started. The 10000 steps take a bit
more than thirty minutes in my workstation running 12 chains in parallel. The number of chains
will not make much impact on this unless we use too many steps by iteration and work close to the
machine’s memory limit. After approximately six hours, convergence is checked. Since it is larger
than our required tolerance, the code continues with new iterations for another six hours before
checking convergence again and so on. When convergence smaller than tolerance is achieved
the code makes the relevant plots and quits.

Initiating MCMC...
i 1, 10000 steps, 12 ch; 32m45s, Sat Mar 24 00:29:13 2018. Next: ~5h27m.
i 2, 20000 steps, 12 ch; 32m53s, Sat Mar 24 01:02:07 2018. Next: ~4h54m.
i 3, 30000 steps, 12 ch; 32m52s, Sat Mar 24 01:34:59 2018. Next: ~4h21m.
i 4, 40000 steps, 12 ch; 32m54s, Sat Mar 24 02:07:54 2018. Next: ~3h48m.
i 5, 50000 steps, 12 ch; 32m51s, Sat Mar 24 02:40:46 2018. Next: ~3h15m.
i 6, 60000 steps, 12 ch; 32m53s, Sat Mar 24 03:13:39 2018. Next: ~2h42m.
i 7, 70000 steps, 12 ch; 33m3s, Sat Mar 24 03:46:43 2018. Next: ~2h9m.
i 8, 80000 steps, 12 ch; 32m52s, Sat Mar 24 04:19:35 2018. Next: ~1h36m.
i 9, 90000 steps, 12 ch; 32m55s, Sat Mar 24 04:52:30 2018. Next: ~1h3m.

(continues on next page)

(continued from previous page)

i 10, 100000 steps, 12 ch; 32m52s, Sat Mar 24 05:25:23 2018. Next: ~31m3s.
i 11, 110000 steps, 12 ch; 32m46s, Sat Mar 24 05:58:10 2018. Checking now...
Loading chains... [##########] 12/12
Monitoring convergence... [##########] 100%
R-1 tendency: 7.993e-01, 8.185e-01, 7.745e-01
i 12, 120000 steps, 12 ch; 32m49s, Sat Mar 24 06:31:21 2018. Next: ~5h27m.
i 13, 130000 steps, 12 ch; 32m53s, Sat Mar 24 07:04:15 2018. Next: ~4h54m.
i 14, 140000 steps, 12 ch; 32m49s, Sat Mar 24 07:37:04 2018. Next: ~4h21m.
...

After the first loop, the user can inspect the acceptance ratio of the chains, updated after every
loop in the section acceptance rates of the simulation_info.ini file. Chains present-
ing bad performance based on this acceptance rate will be discarded. The values considered
as good performance are any rate in the interval from 0.1 to 0.5. This can be changed with
--acceptance-limits 0.2 0.5, for example. If you want to completely avoid chain removal
use --acceptance-limits 0 1.

Adaptation (beta)

When starting a new run, use the option --adapt FREE [ADAPT [STEPS]], where FREE is an
integer representing the number of loops of free random-walk before adaptation, ADAPT is the
actual number of loops during which adaptation will take place, and STEPS is the number of steps
for both, pre-adapting and adapting phases. Note that the last two are optional. If STEPS is omitted,
the number of steps of the regular loops will be used (from the mandatory steps argument); if only
one argument is given, it is assigned to both FREE and ADAPT. At least one loop of free random-
walk is necessary, so the starting states can serve as input for the adaptation phase. The total
number of states in the two phases will be registered in the simulation_info.ini file (adaptive
burn-in) as the minimal necessary burn-in size if one wants to keep the chains Markovian. The
adaptation is an iterative process that updates the covariance matrix St of the proposal function for
the current t-th state based on the chains history and goes as follows. Let Σt be a matrix derived
from St, defined by Σt ≡ St m/2.382, where m is the number of free parameters. After the initial
free random-walk phase, we calculate, for a given chain, the chain mean

x̄t =
1
t

t∑︁
i=1

xi,

where xi =
(︀
x1,i, . . . , xm,i

)︀
is the i-th state vector of the chain. The covariance matrix for the

sampling of the next state t + 1 will then be given by

St+1 = e2θt+1Σt+1,

where θt+1 = θt + γt (ηt − 0.234), γt = t−α, θt is a parameter that we set to zero initially, α is a
number between 0.5 and 1, here set to 0.6, ηt is the current acceptance rate, targeted at 0.234, and

Σt+1 = (1 − γt)Σt + γt (xt − x̄t)T (xt − x̄t) .

In this program, the covariance matrix is updated based on the first chain and applied to all chains.
This method is mostly based on the adaptation applied to the parallel tempering algorithm by
Łącki & Miasojedow (2016)2. The idea is to obtain a covariance matrix such that the asymptotic
acceptance rate is 0.234, considered to be a good value. Note, however, that this feature is in beta
and may require some trial and error with the choice of both free random-walk and adaptation
phases lengths. It might take too long for the proposal covariance matrix to converge and the
simulation is not guaranteed to keep good acceptance rates with the final matrix obtained after the
adaptation phase.

Analyzing the chains

Once convergence is achieved and MCMC is finished, the code reads the chains and extract the
information for the parameter inference. But this can be done to assess the results while MCMC is
still going on. The distributions are compiled for a nice plot with the command analyze:

$ python epic.py analyze <FULL-OR-RELATIVE-PATH-TO>/LCDM/MyFirstRun/

Histograms are generated for the marginalized distributions using 20 bins or any other number
given with --bins or -b. At any time one can run this command, optionally with --convergence
or -c to check the state of convergence. By default, this will calculate R̂p − 1 for twenty different
sizes (which you can change with --GR-steps) considering the size of the chains to provide an
idea of the evolution of the convergence.

Convergence is assessed based on the Gelman-Rubin criterium. I will not enter into details of the
method here, but I refer the reader to the original papers45 for more information. The variation of
the original method for multivariate distribution is implemented. When using MCMC, all the chains
are checked for convergence and the final resulting distribution which is analyzed and plotted is the
concatenation of all the chains, since they are essentially all the same once they have converged.

Additional options

If for some reason you want to view the results for an intermediate point of the simulation, you can
tell the script to --stop-at 18000, everything will be analyzed until that point.

If you want to check the random walk of the chains you can plot the sequences with
--plot-sequences. This will make a grid plot containing all the chains and all parameters.
Keep in mind that this can take some time and generate a big output file if the chains are very
long. You can contour this problem by thinning the distributions by some factor --thin 10, for

2 Łącki M. K. & Miasojedow B. “State-dependent swap strategies and automatic reduction of number of tempera-
tures in adaptive parallel tempering algorithm”. Statistics and Computing 26, 951–964 (2016).

4 Gelman A & Rubin D. B. “Inference from Iterative Simulation Using Multiple Sequences”. Statistical Science 7
(1992) 457-472.

5 Brooks S. P. & Gelman A. “General Methods for Monitoring Convergence of Iterative Simulations”. Journal of
Computational and Graphical Statistics 7 (1998) 434.

example. This also applies for the calculation of the correlation of the parameters in each chain,
enabled with the --correlation-function option.

We generally represent distributions by their histograms but sometimes we may prefer to exhibit
smooth curves. Although it is possible to choose a higher number of histogram bins, this may
not be sufficient and may required much more data. Much better (although possibly slow when
there are too many states) are the kernel density estimates (KDE) tuned for Gaussian-like distribu-
tions6. To obtain smoothed shapes use --kde. This will compute KDE curves for the marginalized
parameter distributions and also the two-parameter joint posterior probability distributions.

Making the triangle plots

The previous command will also produce the plots automatically (unless supressed with
--dont-plot), but you can always redraw everything when you want, maybe you would like
to tweak some colors? Loading the chains again is not necessary since the analysis already saves
the information for the plots anyway. This is done with:

$ python epic.py plot <FULL-OR-RELATIVE-PATH-TO>/LCDM/MyFirstRun/

The code will find the longest chain analysis results and plot them. In this plot, you can, for
example, choose the main color with --color m for magenta, or with any other Python color
name, and omit the best-fit point mark with --no-best-fit-marks. The default color is C0 (a
shade of blue, from the default Matplotlib palette that ranges from C0 to C9).

Plot ranges and eventually necessary factors of power of 10 are automatically handled by the
code, unless you use --no-auto-range and --no-auto-factors or choose your own ranges or
powers of 10 by specifying a dictionary with parameter label as keys and a pair of floats in a list
or an integer power of 10 for the entries custom range and custom factors under the section
analysis in the .ini file.

If you have used the option --kde previously in the analysis you need to specify it here too to
make the corresponding plots, otherwise the histograms will be drawn.

The 1σ and 2σ confidence levels are shown and are written to the file hist_table.tex (and
kde_table.tex if it is the case) inside the folder with the size of the chain preceeded by the letter
n. These LaTEX-ready files can be compiled to make a nice table in a PDF file or included in your
paper as you want. To view and save information for more levels3, use --levels 1 2 3 4 5.

Additional options

You can further tweak your plots and tables. --use-tex will make the program render the plot
using LaTEX, fitting nicely to the rest of your paper. You can plot Gaussian fits together with the

6 Kristan M., Leonardis A. and Skocaj D. “Multivariate online kernel density estimation with Gaussian kernels”.
Pattern Recognit 44 (2011) 2630-2642.

3 Choice limited up to the fifth level. Notice that high sigma levels might be difficult to find due to the finite sample
sizes when the sample is not sufficiently large.

histograms (the Gaussian curve and the two first sigma levels), using --show-gaussian-fits,
but probably only for the sake of comparison since this is not usually done in publications. --fmt
can be used to set the number of figures to report the results (default is 5). There is --font-size
to choose the size of the fonts, --show-hist to plot the histograms together with the smooth
curves when --kde is used, --no-best-fit-marks to omit the indication of the coordinates of
the best-fit point, --png to save images in png format besides the pdf files.

If you have nuisance parameters, you can opt to not show them with --exclude nuisance. This
option can actually take the label of any parameter you choose not to include in the plot.

Below we see the triangle plot of the histograms, with the default settings, in comparison with
a perfected version using the smoothed distributions, the Python color C9, the LaTEX renderer,
including the 3σ confidence level and excluding the nuisance parameter M.

Combining two or more simulations in one plot

You just need to run epic.py plot with two or more paths in the arguments. I illustrate this with
two simulation for the same simplified ΛCDM model, with cold dark matter and Λ only, one with
H(z) and H0 data, the other with the same data plus the simplified supernovae dataset from JLA. It
is then interesting to plot both realizations together so we can see the effect that including a dataset
has on the results:

$ python epic.py plot \
<FULL-OR-RELATIVE-PATH-TO>/HLCDM+SNeIa/H_and_SN/ \
<FULL-OR-RELATIVE-PATH-TO>/HLCDM/H_only/ \
--kde --use-tex --group-name comparison --no-best-fit-marks

You can combine as many results as you like. When this is done, the list of parameters will
be determined from the first simulation given in the command by its path. Automatic ranges
for the plots are determined from the constraints of the first simulation as well. Since different
simulations might give considerably different results that could go outside of the ranges of one of
them, consider using --no-auto-range or specifying custom intervals in the .ini file if needed.
The --group-name option specifies the prefix for the name of the pdf file that will be generated.
If you omit this option you will be prompted to type it. All other settings are optional.

A legend will be included in the top right corner using the labels defined in the .ini files, under the
analysis section. The legend title uses the model name of the first simulation in the arguments.
This is intended for showing, at the same time, results from different datasets with the same model.

Visualizing chain sequences and convergence

If you include the option --sequences with the analyze command you will get a plot like this

When monitoring convergence, the values of R̂p − 1 at twenty (or --GR-steps) different lengths
for the multivariate analysis and separate one-dimensional analyses for each parameter are plotted

Fig. 1: Triangle plot with default configurations for histograms.

in the files monitor_convergence_<N>.pdf and monitor_each_parameter_<N>.pdf, where
N is the total utilized length of the chains. The absolute values of the between-chains and within-
chains variances, V̂ and W are also shown. For our ΛCDM example, we got

To generate these plots, one needs first run the script with the command analyze and the
--convergence option; then, run:

$ python epic.py monitor <FULL-OR-RELATIVE-PATH-TO>/LCDM/MyFirstRun

The first argument can be multiple paths to simulations, in which case the first plot above will

Fig. 2: Customized plot with smoothed distributions.

have panes for each simulation, one below each other. There are still the options --use-tex and
--png, as with the plot command. Finally, the correlation of the chains can also be inspected if
we use the option --correlation-function. This includes all the cross- and auto-correlations.

5 Acknowledgments

I want to thank Elcio Abdalla, Gabriel Marcondes and Luiz Irber for their help. This work has made
use of the computing facilities of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul),
whose purchase was made possible by the Brazilian agency FAPESP (grant 2009/54006-4) and the
INCT-A.

Fig. 3: Results for two different analyses.

Fig. 4: Chain sequences along each parameter axis (only the first few chains shown here).

Fig. 5: Multivariate convergence analysis.

Fig. 6: Individual parameter convergence monitoring.

Fig. 7: Correlations in a chain (here using a factor --thin 15).

	Welcome to the EPIC user’s guide!
	Why EPIC?

	How to install
	Setting up a virtual environment
	Installing with pip
	Downloading and extracting the tarball
	Cloning the repository

	The Cosmology module
	Initializing a model
	The cosmological models
	The datasets

	The MCMC module
	Introduction to MCMC and the Bayesian method
	Before starting
	Running MCMC

	Acknowledgments

