
Epaster Documentation
Release 2.3.1

David THENON

April 11, 2015

Contents

1 Introduction 1

2 Structure 3

3 Table of contents 5
3.1 Install . 5
3.2 Usage . 6
3.3 DjangoCMS 2.x paste . 9
3.4 DjangoCMS 3.x paste . 17
3.5 Common topics around Epaster . 29
3.6 Development . 33
3.7 History . 34

i

ii

CHAPTER 1

Introduction

Emencia uses the Epaster tool for web projects along with our techniques and procedures. It’s mostly based on Python
Paste and buildout to allow for the distribution of projects easy to install anywhere.

Its goal is to automatically create and initialize the project’s structure so you don’t lose time assembling the different
parts.

Epaster is not really a package, just a buildout project to assemble some apps to develop Python Paste templates (called
a paste). In theory, you should be able to install these paste just with virtualenv and pip, but Epaster assemble all our
paste in a unique buildout project.

For now, it is only used to build Django projects through some paste packages.

1

http://www.emencia.com/
http://pythonpaste.org/
http://pythonpaste.org/
http://www.buildout.org/
http://www.buildout.org/
http://pythonpaste.org/
http://www.virtualenv.org/
http://www.pip-installer.org
http://www.buildout.org/
https://www.djangoproject.com/

Epaster Documentation, Release 2.3.1

2 Chapter 1. Introduction

CHAPTER 2

Structure

Finally, Epaster will build you a project that is designed to be use with some software and components, below you can
find a simple diagram to resume their interaction.

VirtualEnv Compass

Epaster

Buildout SCSS

Installed Eggs

Buildout recipes Development apps

Django Framework

DjangoCMS Zinnia blog

Foundation5

Nginx ConfigMonit Config

django-instance

Monit Nginx

3

Epaster Documentation, Release 2.3.1

4 Chapter 2. Structure

CHAPTER 3

Table of contents

3.1 Install

This install procedure is designed for a virtual Python environment. The Epaster tool will not be installed in your
system’s Python environment to avoid conflicts or the crashing of Python modules in your system.

It is possible to install Epaster in your system’s Python environment but you will need to skip the virtualenv stage,
which may create a risk.

3.1.1 Requirements

The Python virtualenv module is required and must be installed on your system. We recommend you install it directly
from pip to ensure you install a more recent version that the one in your system package.

A few devel libraries are required to correctly compile some modules within your buildout project :

• Python

• libpq (for psycopg2)

• python (for psycopg2)

• libjpeg (for Pillow)

• zlib (for Pillow)

• libfreetype (for Pillow)

Note that psycopg2 is only required if you plan to use a PostgreSQL database instead of the default sqlite3 database.

If you plan to build the documentation (in docs directory) you will have to install graphviz before on your system.

3.1.2 Procedure

When the required elements are installed, you will need to retrieve Epaster from its Github repository, install it and
activate it:

git clone https://github.com/emencia/Epaster.git
make install
source bin/activate

5

http://www.graphviz.org/
https://github.com/emencia/Epaster

Epaster Documentation, Release 2.3.1

This will downloads all dependencies and install them in the virtual environment. If an error occurs, the buildout
process will stop and print out the problem. You can correct it and relaunch the buildout process that will continue
from the previous job.

If the behavior seems uncertain, you can clean all the files installed and the directory using the dedicated Makefile
feature:

make clean

When the buildout process is successfully completed, Epaster is ready and you can use it to create new projects.

Additionaly if you have to make some development on Epaster (and/or edit its documentation and rebuild it) or its
Paste templates, you will have to install its development environment, after the basic install just do:

buildout -c development.cfg

3.1.3 Global config

You can set a global config where the default option will be used with Buildout. A common method is to create this
global config with these lines:

[buildout]
download-cache = /home/django/.buildout-cache

The path defined in download-cache will be used to store downloaded packages. This is a cache to avoid re-
downloading these packages every time you launch buildout. Note that you have to create this path beforehand or an
error will occur in the buildout.

3.2 Usage

Epaster can only really be used within its virtual environment, so you must remember to enable it first:

cd /home/emencia/epaster
source bin/active

Then you can go the path where you want to create your project.

3.2.1 List of available project types

The following command:

paster create --list-templates

will display a list of available project types which you can create:

Available templates:
basic_package: A basic setuptools-enabled package
django: Django project
paste_deploy: A web application deployed through paste.deploy

This is just a sample, your install may have different paste.

6 Chapter 3. Table of contents

Epaster Documentation, Release 2.3.1

3.2.2 Create a new project

The Epaster tool is an interactive command. When launched, some questions will be asked for the selection of
components and options to be used within the project:

paster create -t django myproject

3.2.3 Install a new project

Once the project has been created by Buildout, it is autonomous of Epaster and you can move it wherever you want.
This is the process we recommend (i.e., do not keep it under the Epaster tree).

So, for a newly created project called myproject, you will have to enter it in its directory and just execute the
automatic install command from Makefile:

make install

This will install the virtual environment and all required packages using the default config buildout.cfg. When
it’s finished, active the virtual environment:

source bin/active

Then if you need to use a specific config, execute it as follows:

buildout -c production.cfg

Generally, the database type used is sqlite3, stored in a database.sqlite3 file at the root directory of your
project.

3.2.4 Makefile actions

A Makefile is shipped within a project to include some useful maintenance command actions:

• help: display this help list;

• install: to proceed with a new install of this project. Use clean command before if you want to reset a
current install;

• clean: to clean your local repository of all the buildout and instance usage elements;

• delpyc: to remove all *.pyc files, this is recursive from the current directory;

• assets: to minify all assets and collect static files;

• scss: to compile all SCSS elements with compass;

It is only used from its location as follows.

You can use it with the following syntax:

make ACTION

Where ACTION is the command action to use, as follows:

make install

3.2. Usage 7

Epaster Documentation, Release 2.3.1

3.2.5 PO-Projects

The PO-Projects client is pre-configured in all created projects but disabled by default. When enabled, its config file
is automatically generated (in po_projects.cfg), don’t edit it because it will be regenerated each time buildout
is used.

It aims to ease PO translations management between developpers and translation managers.

The principe is that developpers and translators does not have anymore to directly exchange PO files. The
developpers update the PO to the translation project on PO-Project webservice, translators update translations on
PO-Project service frontend and developpers can get updated PO from the webservice.

To use it, you will have first to enable it in the buildout config, to install the client package, fill the webservice access
and buildout part. Then when it’s done, you have to create a project on PO-Project webservice using its frontend, then
each required language for translation using the same locale names that the ones defined in the project settings.

There is only two available actions from the client :

Push action The push action role is to send updated PO (from Django extracts) from the project to the PO-Project
webservice.

Technically, the client will archive the locale directory into a tarball then send it to the webservice, that will use
it to update its stored PO for each defined locales.

Common way is (from the root of your project):

cd project
django-instance makemessages -a
cd ..
po_projects push

Pull action The pull action role is to get the updated translations from the webservice and install into the project.

Technically, the client will download a tarball of the latest locale translations from the webservice and deploy it
to your project, note that it will totally overwrite the project’s locale directory. The compile PO (*.mo files) are
lost during this action and so each time you use this action you will have to recompile them.

Common way is (from the root of your project):

po_projects pull

And probably reload your webserver.

Note that the client does not manage your repository, each time you change your PO files (from Django
makemessages action or pull client action) you still have to commit them.

3.2.6 Gestus

The Gestus client is pre-configured in all created projects, its config file is automatically generated (in gestus.cfg),
don’t edit it because it will be regenerated each time buildout is used.

You can register your environment with the following command :

gestus register

Remember this should only be used in integration or production environment and you will have to fill a correct accounts
in the EXTRANET part.

8 Chapter 3. Table of contents

https://github.com/sveetch/PO-Projects-client
https://github.com/sveetch/Gestus-client

Epaster Documentation, Release 2.3.1

3.2.7 Dr Dump

Dr Dump is an utility to help you to dump and load datas from your Django project’s apps. It does not have any com-
mand line interface, just a buildout recipe (emencia-recipe-drdump) that will generate some bash scripts (datadump
and dataload) in your bin directory so you can use them directly to dump your data into a dumps directory.

If the recipe is enabled in your buildout config (this is the default behavior), its bash scripts will be generated again
each time you invoke a buildout.

Buildout will probably remove your dumps directory each time it re-install Dr Dump and Dr Dump itself will overwrite
your dumped data files each time you invoke it dump script. So remember backup your dumps before doing this.

Note that Dr Dump can only manage app that it allready know in the used map, if you have some other packaged app
or project’s app that is not defined in the map you want to use, you have two choices :

• Ask to a repository manager of Dr Dump to add your apps, for some exotic or uncommon apps it will probably
be refused;

• Download the map from the repository, embed it in your buildout project and give its path into the
dependancies_map recipe variable so it will use it.

The second one is the most easy and flexible, but you will have to manage yourself the map to keep it up-to-date with
the original one.

3.3 DjangoCMS 2.x paste

DjangoCMS projects are created with the many components that are available for use. These components are called
mods and these mods are already installed and ready to use, but they are not all enabled. You can enable or disable
them, as needed.

It is always preferable to use the mods system to install new apps. You should never install a new app with pip. If you
plan to integrate it into the project, always use the buildout system. Just open and edit the buildout.cfg file to add
the new egg to be installed. For more details, read the buildout documentation.

This paste is not really maintained anymore, you should prefer to see for the DjangoCMS 3.x version instead.

3.3.1 Links

• Download his PyPi package;

• Clone it on his Github repository;

3.3.2 Paste

This paste will appear with the name djangocms-2 in the paster templates list (with the paster create
--list-templates command).

To use this paste to create a new project you will do something like :

paster create -t djangocms-2 myproject

3.3. DjangoCMS 2.x paste 9

https://github.com/emencia/dr-dump
https://github.com/emencia/emencia-recipe-drdump
http://www.pip-installer.org
http://www.buildout.org/
http://www.buildout.org/
https://pypi.python.org/pypi/emencia_paste_djangocms_2
https://github.com/emencia/emencia_paste_djangocms_2

Epaster Documentation, Release 2.3.1

3.3.3 Django

django-instance

This is the command installed to replace the manage.py script in Django. django-instance is aware of the
installed eggs.

Paste template version

In your projects, you can find from which Paste template they have been builded in the ‘project/__init__.py’ file where
you should find the used package name and its version.

Note that previously (before the Epaster version 1.8), this file was containing the Epaster version, not the Paste template
one, since the package didn’t exists yet.

How the Mods work

The advantage of centralizing app configurations in their mods is the project’s settings.py and urls.py are
gathered together in its configuration (cache, smtp, paths, BDD access, etc.). Furthermore, it is easier to enable or
disable the apps.

To create a new mods, create a directory in $PROJECT/mods_avalaible/ that contains at least one empty
__init__.py and a settings.py to build the app in the project and potentially its settings. The settings.py‘
and urls.py files in this directory will be executed automatically by the project (the system loads them after the
project ones so that a mods can overwrite the project’s initial settings and urls). N.B. With Django’s runserver
command, a change to these files does not reload the project instance; you need to relaunch it yourself manually.

To enable a new mods, you need to create its symbolic link (a relative path) in $PROJECT/mods_enabled. To
disable it, simply delete the symbolic link.

3.3.4 Compass

Compass is a Ruby tool used to compile SCSS sources in CSS.

By default, a Django project has its SCSS sources in the compass/scss/ directory. The CSS Foundation framework
is used as the database.

A recent install of Ruby and Compass is required first for this purpose (see RVM if your system installation is not up
to date).

Once installed, you can then compile the sources on demand. Simply go to the compass/ directory and launch this
command:

compass compile

When you are working uninterruptedly on the sources, you can simply launch the following command:

compass watch

Compass will monitor the directory of sources and recompile the modified sources automatically.

By default the compass/config.rb configuration file (the equivalent of settings.py‘ in Django) is used. If needed,
you can create another one and specify it to Compass in its command (for more details, see the documentation).

10 Chapter 3. Table of contents

http://compass-style.org/
http://sass-lang.com/
http://sass-lang.com/
http://foundation.zurb.com/
http://rvm.io/
http://compass-style.org/
http://compass-style.org/

Epaster Documentation, Release 2.3.1

Foundation

This project embeds Foundation 5 sources installed from the Foundation app so you can update it from the sources
if needed (and if you have installed the Foundation cli, see its documentation for more details). If you update it, you
need to synchronize the updated sources in the project’s static files using a command in the Makefile:

make syncf5

You only have to do this when you want to synchronize the project’s Foundation sources from the latest Foun-
dation release. Commonly this is reserved for Epaster developers.

This will update the Javascript sources in the static files, but make sure that it cleans the directory first. Never put
your files in the project/webapp_statics/js/foundation5 directory or they will be deleted. Be aware
that the sources update will give you some file prefixed with a dot like .gitignore, you must rename all of them
like this +dot+gitignore, yep the dot character have to be renamed to +dot+, else it will cause troubles with
GIT and Epaster. There is a python script named fix_dotted_filename.py in the source directory, use it to
automatically apply this renaming.

For the Foundation SCSS sources, no action is required; they are imported directly into the compass config.

The project also embeds Foundation 3 sources (they are used for some components in Django administration) but you
don’t have to worry about them.

RVM

rvm is somewhat like what virtualenv is to Python: a virtual environment. The difference is that it is intended for
the parallel installation of a number of different versions of Ruby without mixing the gems (the Ruby application
packages). In our scenario, it allows you to install a recent version of Ruby without affecting your system installation.

This is not required, just an usefull cheat to know when developing on a server with an old distribution.

3.3.5 Installation and initial use

Once your project has been created with this epaster template, you need to install it to use it. The process is simple.
Do it in your project directory:

make install

When it’s finished, active the virtual environment:

source bin/active

You can then use the project on the development server:

django-instance runserver 0.0.0.0:8001

You will then be able to access it at the following url (where 127.0.0.1 will be the server’s IP address if you work
on a remote machine) : http://127.0.0.1:8001/

The first action required is the creation of a CMS page for the home page and you must fill in the site name and its
domain under Administration > Sites > Sites > Add site.

3.3. DjangoCMS 2.x paste 11

http://foundation.zurb.com/
http://foundation.zurb.com/
http://foundation.zurb.com/
http://foundation.zurb.com/old-docs/f3/
http://rvm.io/
http://www.virtualenv.org/

Epaster Documentation, Release 2.3.1

3.3.6 Available mods

accounts

Enable Django registration and everything you need to allow users to request registration and to connect/disconnect.
The views and forms are added so this part can be used.

It includes:

• A view for the login and one for the logout;

• All the views for the registration request (request, confirmation, etc.);

• A view to ask for the reinitialization of a password.

In the skeleton.html template, a partial HTML code is commented. Uncomment it to display the logout button
when the user is connected.

The registration process consists in sending an email (to be configured in the settings) with the registration request to
an administrator responsible for accepting them (or not). Once validated, an email is sent to the user to confirm his
registration by way of a link. Once this step has been completed, the user can connect.

admin_tools

Enable django-admin-tools to enhance the administration interface. This enables three widgets to customize certain
elements. filebrowser is used, so if your project has not enabled it, you need to remove the occurrences of these
widgets.

assets

Enable django-assets to combine and minify your assets (CSS, JS). The minification library used, yuicompressor,
requires the installation of Java (the OpenJDK installed by default on most Linux systems is sufficient).

In general, this component is required. If you do not intend to use it, you will need to modify the project’s default
templates to remove all of its occurrences.

ckeditor

Enable the customization of the CKEditor editor. It is enabled by default and used by Django CKEditor in the cms
mod, and also in zinnia.

Use “djangocms_text_ckeditor”, a djangocms plugin to use CKEditor (4.x) instead of the default one

This mod contains some tricks to enable “django-filebrowser” usage with “image” plugin from CKEditor.

And some contained patches/fixes :

• the codemirror plugin that is not included in djangocms-text-ckeditor;

• Some missed images for the “showblocks” plugin;

• A system to use the “template” plugin (see views.EditorTemplatesListView for more usage details);

• Some patch/overwrites to have content preview and editor more near to Foundation;

12 Chapter 3. Table of contents

https://django-registration.readthedocs.org/en/latest/
https://bitbucket.org/izi/django-admin-tools/
http://elsdoerfer.name/docs/django-assets/
http://ckeditor.com/
https://github.com/divio/djangocms-text-ckeditor/

Epaster Documentation, Release 2.3.1

cms

Django CMS allows for the creation and management of the content pages that constitute your site’s tree structure.
By default, this component enables the use of filebrowser, Django CKEditor and emencia-cms-snippet (a clone of the
snippets’ plugin with a few improvements).

By default it is configured to use only one language. See its urls.py to find out how to enable the management of
multiple languages.

codemirror

Enable Django Codemirror to apply the editor with syntax highlighting in your forms (or other content).

It is used by the snippet’s CMS plugin.

contact_form

A simple contact form that is more of a standard template than a full-blown application. You can modify it according
to your requirements in its apps/contact_form/ directory. Its HTML rendering is managed by crispy_forms
based on a customized layout.

By default, it uses the recaptcha mods.

crispy_forms

Enable the use of django-crispy-forms and crispy-forms-foundation. crispy_forms is used to manage the HTML
rendering of the forms in a finer and easier fashion than with the simple Django form API. crispy-forms-foundation
is a supplement to implement the rendering with the structure (tags, styles, etc.) used in Foundation.

debug_toolbar

Add django-debug-toolbar to your project to insert a tab on all of your project’s HTML pages, which will allow you
to track the information on each page, such as the template generation path, the query arguments received, the number
of SQL queries submitted, etc.

This component can only be used in a development or integration environment and is always disabled during produc-
tion.

Note that its use extends the response time of your pages and can provokes some mysterious bugs (like with syncdb or
zinnia) so for the time being, this mods is disabled. So enable it locally for your needs, but never commit its enabled
mod and remember to disable it when you have a strange bug.

emencia_utils

Group together some common and various utilities from project.utils.

filebrowser

Add Django Filebrowser to your project so you can use a centralized interface to manage the uploaded files to be used
with other components (cms, zinnia, etc.).

The version used is a special version called no grappelli that can be used outside of the django-grapelli environment.

3.3. DjangoCMS 2.x paste 13

https://www.django-cms.org/
https://github.com/divio/djangocms-text-ckeditor/
https://github.com/emencia/emencia-cms-snippet
https://github.com/sveetch/djangocodemirror
https://github.com/maraujop/django-crispy-forms
https://github.com/sveetch/crispy-forms-foundation
http://foundation.zurb.com/
https://github.com/django-debug-toolbar/django-debug-toolbar/
https://github.com/wardi/django-filebrowser-no-grappelli

Epaster Documentation, Release 2.3.1

flatpages

Enable the use of Django flatpages app in your project. Once it has been enabled, go to the urls.py in this mod to
configure the map of the urls to be used.

google_tools

Add django-google-tools to your project to manage the tags for Google Analytics and Google Site Verification from
the site administration location.

pdb

Add Django PDB to your project for more precise debugging with breakpoints.

N.B. Neither django_pdb nor pdb are installed by the buildout. You must install them manually, for example
with pip, in your development environment so you do not disrupt the installation of projects being integrated or in
production. You must also add the required breakpoints yourself.

See the the django-pdb Readme for more usage details.

Note: django-pdb should be put at the end of settings.INSTALLED_APPS :

“Make sure to put django_pdb after any conflicting apps in INSTALLED_APPS so that they have priority.”

So with the automatic loading system for the mods, you should enable it with a name like “zpdb”, to assure that it is
loaded at the end of the loading loop.

porticus

Add Django Porticus to your project to manage file galleries.

There is a DjangoCMS plugin for Porticus, it is not enabled by default, you will have to uncomment it in the mod
settings.

recaptcha

Enable the Django reCaptcha module to integrate a field of the captcha type via the Service reCaptcha. This integration
uses a special template and CSS to make it responsive.

If you do in fact use this module, go to its mods setting file (or that of your environment) to fill in the public key and
the private key to be used to transmit the data required.

By default, these keys are filled in with a fake value and the captcha’s form field therefore sends back a silent error (a
message is inserted into the form without creating a Python Exception).

site_metas

Enable a module in settings.TEMPLATE_CONTEXT_PROCESSORS to show a few variables linked to Django
sites app in the context of the project views template.

Common context available variables are:

• SITE.name: Current Site entry name;

• SITE.domain: Current Site entry domain;

14 Chapter 3. Table of contents

https://docs.djangoproject.com/en/1.5/ref/contrib/flatpages/
https://pypi.python.org/pypi/django-google-tools
https://github.com/tomchristie/django-pdb
http://www.pip-installer.org
https://github.com/emencia/porticus
https://github.com/emencia/cmsplugin-porticus
https://github.com/praekelt/django-recaptcha
http://www.google.com/recaptcha
https://docs.djangoproject.com/en/1.5/ref/contrib/sites/
https://docs.djangoproject.com/en/1.5/ref/contrib/sites/

Epaster Documentation, Release 2.3.1

• SITE.web_url: The Current Site entry domain prefixed with the http protocol like
http://mydomain.com. If HTTPS is enabled ‘https’ will be used instead of ‘http’;

Some projects can change this to add some other variables, you can see for them in
project.utils.context_processors.get_site_metas.

sitemap

This mod use the Django’s Sitemap framework to publish the sitemap.xml for various apps. The default config
contains ressources for DjangoCMS, Zinnia, staticpages, contact form and Porticus but only ressource for DjangoCMS
is enabled.

Uncomment ressources or add new app ressources for your needs (see the Django documentation for more details).

slideshows

Enable the emencia-django-slideshows app to manage slide animations (slider, carousel, etc.). This was initially
provided for Foundation Orbit and Royal Slider, but can be used with other libraries if needed.

socialaggregator

Enable the emencia-django-socialaggregator app to manage social contents.

This app require some API key settings to be filled to work correctly.

staticpages

This mod uses emencia-django-staticpages to use static pages with a direct to template process, it replace the depre-
cated mod prototype.

urlsmap

django-urls-map is a tiny Django app to embed a simple management command that will display the url map of your
project.

zinnia

Django Blog Zinnia allows for the management of a blog in your project. It is perfectly integrated into the cms
component but can also be used independently.

At the time of installation, an automatic patch (that can be viewed in the patches/ directory) is applied to it to
implement the use of ckeditor, which is enabled by default in its settings.

3.3.7 Changelogs

Version 1.9.8 - 2015/01/28

• Fix webassets bug: since we use Bundle names with version placeholder, webassets needed a manifest file
to know what version to use in its templatetags. So now a webassets.manifest file is created in
project/webapp_statics directory and will be copied to project/static dir when assets are de-
ployed;

3.3. DjangoCMS 2.x paste 15

https://docs.djangoproject.com/en/1.5/ref/contrib/sitemaps/
https://github.com/emencia/emencia-django-slideshows
https://github.com/emencia/emencia-django-socialaggregator
https://github.com/emencia/emencia-django-staticpages
https://github.com/sveetch/django-urls-map
https://github.com/Fantomas42/django-blog-zinnia
http://ckeditor.com/

Epaster Documentation, Release 2.3.1

This will be the last maintenance release, don’t expect any other update for this package.

Version 1.9.7 - 2015/01/20

Changing default behavior of Asset bundles in project/assets.py so now bundle urls will be like
/static/screen.acefe50.css instead of old behavior /static/screen.min.css?acefe50 that was
causing issue with old proxies caches (see webassets documentation);

You can safely backport this change to your old projects, this should be transparent to your install and won’t require
any server change.

Version 1.9.6.1 - 2014/12/26

• Fix a damned bug with bootstrap.py that was forcing to upgrade to setuptools=0.8
that seems to results with bad parsing on some constraints like the one from django-cms for
django-mptt==0.5.2,==0.6,==0.6.1 that was causing a buildout fail on conflict version. This has
been fixed with updating to the last bootstrap.py and use its command line arguments to fix versions for
zc.buildout and setuptools in the Makefile;

Version 1.9.6 - 2014/11/17

• Mount 500 and 404 page view in urls.py when debug mode is activated;

Version 1.9.5 - 2014/11/07

• Update to zc.buildout==2.2.5;

• Update to buildout.recipe.uwsgi==0.0.24;

• Update to collective.recipe.cmd==0.9;

• Update to collective.recipe.template==1.11;

• Update to djangorecipe==1.10;

• Update to porticus==0.8.1;

• Add package cmsplugin-porticus==0.1.2 in buildout config;

• Remove dependancy for zc.buildout and zc.recipe.egg;

Version 1.9.4 - 2014/11/02

Update mods doc

Version 1.9.3 - 2014/11/01

Fix some app versions in version.cfg

Version 1.9.2 - 2014/09/31

Following repository renaming (emencia-paste-djangocms-2 to emencia_paste_djangocms_2) for a workaround with
‘gp.vcsdevelop’

16 Chapter 3. Table of contents

http://webassets.readthedocs.org/en/latest/expiring.html#expire-using-the-filename

Epaster Documentation, Release 2.3.1

Version 1.9.1 - 2014/09/31

Fix paste template and setup

Version 1.9 - 2014/09/31

Renaming repository to emencia-paste-djangocms-2 to follow Epaster new structure.

Version 1.8.2 - 2014/09/27

Add mods documentations taken from Epaster documentation.

Version 1.8 - 2014/09/26

First release as emencia_paste_django started from Epaster==1.8

3.4 DjangoCMS 3.x paste

DjangoCMS projects are created with the many components that are available for use. These components are called
mods and these mods are already installed and ready to use, but they are not all enabled. You can enable or disable
them, as needed.

It is always preferable to use the mods system to install new apps. You should never install a new app with pip. If you
plan to integrate it into the project, always use the buildout system. Just open and edit the buildout.cfg file to add
the new egg to be installed. For more details, read the buildout documentation.

3.4.1 Links

• Download his PyPi package;

• Clone it on his Github repository;

3.4.2 Paste

This paste will appear with the name djangocms-3 in the paster templates list (with the paster create
--list-templates command).

To use this paste to create a new project you will do something like :

paster create -t djangocms-3 myproject

3.4.3 Django

django-instance

This is the command installed to replace the manage.py script in Django. django-instance is aware of the
installed eggs.

3.4. DjangoCMS 3.x paste 17

http://www.pip-installer.org
http://www.buildout.org/
http://www.buildout.org/
https://pypi.python.org/pypi/emencia_paste_djangocms_3
https://github.com/emencia/emencia_paste_djangocms_3

Epaster Documentation, Release 2.3.1

Paste template version

In your projects, you can find from which Paste template they have been builded in the project/__init__.py
file where you should find the used package name and its version. So you can easily see the version doing something
like :

cat project/__init__.py

Note that previously (before the Epaster version 1.8), this file was containing the Epaster version, not the Paste template
one, since the package didn’t exists yet.

How the Mods work

The advantage of centralizing app configurations in their mods is the project’s settings.py and urls.py are
gathered together in its configuration (cache, smtp, paths, BDD access, etc.). Furthermore, it is easier to enable or
disable the apps.

To create a new mods, create a directory in $PROJECT/mods_avalaible/ that contains at least one empty
__init__.py and a settings.py to build the app in the project and potentially its settings. The settings.py‘
and urls.py files in this directory will be executed automatically by the project (the system loads them after the
project ones so that a mods can overwrite the project’s initial settings and urls). N.B. With Django’s runserver
command, a change to these files does not reload the project instance; you need to relaunch it yourself manually.

To enable a new mods, you need to create its symbolic link (a relative path) in $PROJECT/mods_enabled. To
disable it, simply delete the symbolic link.

3.4.4 Installation and initial use

Once your project has been created with this epaster template, you need to install it to use it. The process is simple.
Do it in your project directory:

make install

When it’s finished, active the virtual environment:

source bin/active

You can then use the project on the development server:

django-instance runserver 0.0.0.0:8001

Note: 0.0.0.0 is some sort of alias that mean “bind this server on my ip”, so if your local ip is “192.168.0.42”, the
server will be reachable in your browser with the url http://192.168.0.42:8001/.

Note: Note the :8001 that mean “bind the server on this port”, this is a required part when you specify an IP.
Commonly you can’t bind on the port 80 so allways prefer to use a port starting from 8001.

Note: If you don’t know your local IP, you can use 127.0.0.1 that is an internal alias to mean “my own network
card”, but this IP cannot be reached from other computers (because they have also this alias linked to their own network
card).

The first required action is the creation of a CMS page for the home page and also you should fill-in the site’s name
and its domain under Administration > Sites > Sites > Add site.

18 Chapter 3. Table of contents

Epaster Documentation, Release 2.3.1

3.4.5 Available mods

accounts

Enable Django registration and everything you need to allow users to request registration and to connect/disconnect.
The views and forms are added so this part can be used.

It includes:

• A view for the login and one for the logout;

• All the views for the registration request (request, confirmation, etc.);

• A view to ask for the reinitialization of a password.

In the skeleton.html template, a partial HTML code is commented. Uncomment it to display the logout button
when the user is connected.

The registration process consists in sending an email (to be configured in the settings) with the registration request to
an administrator responsible for accepting them (or not). Once validated, an email is sent to the user to confirm his
registration by way of a link. Once this step has been completed, the user can connect.

Also, note that this app use a dummy profile model linked to User object. This profile is dummy because it implement
fields for sample but you may not need all of them or you can even may not need about a Profile model, the User
object could be enough for your needs. So before to use the syncdb, be sure to watch for the model to change it, then
apply your changes to forms.RegistrationFormAccounts, views.RegistrationView and eventually
templates.

admin_style

Enable djangocms-admin-style to enhance the administration interface. Also enable django-admin-shortcuts.

admin-style better fit with DjangoCMS than admin_tools.

Warning: This mod cannot live with admin_tools, you have to choose only one of them.

admin_tools

Enable django-admin-tools to enhance the administration interface. This enables three widgets to customize certain
elements. filebrowser is used, so if your project has not enabled it, you need to remove the occurrences of these
widgets.

Warning: This mod cannot live with admin_style, you have to choose only one of them.

assets

Enable django-assets to combine and minify your assets (CSS, JS). The minification library used, yuicompressor,
requires the installation of Java (the OpenJDK installed by default on most Linux systems is sufficient).

In general, this component is required. If you do not intend to use it, you will need to modify the project’s default
templates to remove all of its occurrences.

Assets are defined in project/assets.py and some apps can defined their own asset.py file but our main file
does not use them.

3.4. DjangoCMS 3.x paste 19

https://github.com/macropin/django-registration
https://github.com/divio/djangocms-admin-style
https://github.com/alesdotio/django-admin-shortcuts/
https://bitbucket.org/izi/django-admin-tools/
https://github.com/miracle2k/django-assets/

Epaster Documentation, Release 2.3.1

Our asset.py file is divised in three parts :

• BASE BUNDLES: Only for app bundle like Foundation Javascript files or RoyalSlider files;

• MAIN AVAILABLE BUNDLES: Where you defined main bundles for the frontend, use app bundles previously
defined;

• ENABLE NEEDED BUNDLE: Bundle you effectively want to use. Bundle that are not defined here will not be
reachable from templates and won’t be compiled;

ckeditor

Enable and define customization for the CKEditor editor. It is enabled by default and used by Django CKEditor in the
cms mod, and also in zinnia.

Note that DjangoCMS use it’s own app named “djangocms_text_ckeditor”, a djangocms plugin to use CKEditor (4.x).

But Zinnia (and some other generic app) use “django_ckeditor” that ship the same ckeditor but without cms addons.

This mod contains configuration for all of them.

And some useful patches/fixes :

• the codemirror plugin that is missing from the ckeditor’s django apps;

• A system to use the “template” plugin (see views.EditorTemplatesListView for more usage details);

• Some overriding to have content preview and editor more near to Foundation;

cms

Django CMS allows for the creation and management of the content pages that constitute your site’s tree structure.
By default, this component enables the use of filebrowser, Django CKEditor and emencia-cms-snippet (a clone of the
snippets’ plugin with a few improvements).

By default it is configured to use only one language. See its urls.py to find out how to enable the management of
multiple languages.

codemirror

Enable Django Codemirror to apply the editor with syntax highlighting in your forms (or other content).

It is used by the snippet’s CMS plugin.

contact_form

A simple contact form that is more of a standard template than a full-blown application. You can modify it according
to your requirements in its apps/contact_form/ directory. Its HTML rendering is managed by crispy_forms
based on a customized layout.

By default, it uses the recaptcha mods.

crispy_forms

Enable the use of django-crispy-forms and crispy-forms-foundation. crispy_forms is used to manage the HTML
rendering of the forms in a finer and easier fashion than with the simple Django form API. crispy-forms-foundation
is a supplement to implement the rendering with the structure (tags, styles, etc.) used in Foundation.

20 Chapter 3. Table of contents

http://ckeditor.com/
https://github.com/divio/djangocms-text-ckeditor/
https://www.django-cms.org/
https://github.com/divio/djangocms-text-ckeditor/
https://github.com/emencia/emencia-cms-snippet
https://github.com/sveetch/djangocodemirror
https://github.com/maraujop/django-crispy-forms
https://github.com/sveetch/crispy-forms-foundation
http://foundation.zurb.com/

Epaster Documentation, Release 2.3.1

debug_toolbar

Add django-debug-toolbar to your project to insert a tab on all of your project’s HTML pages, which will allow you
to track the information on each page, such as the template generation path, the query arguments received, the number
of SQL queries submitted, etc.

This component can only be used in a development or integration environment and is always disabled during produc-
tion.

Note that its use extends the response time of your pages and can provokes some bugs (see the warning at end) so for
the time being, this mods is disabled. Enable it locally for your needs but never commit its enabled mod and remember
trying to disable it when you have a strange bug.

Warning: Never enable this mod before the first database install or a syncdb, else it will result in errors about
some table that don’t exist (like “django_site”).

emencia_utils

Group together some common and various utilities from project.utils.

filebrowser

Add Django Filebrowser to your project so you can use a centralized interface to manage the uploaded files to be used
with other components (cms, zinnia, etc.).

The version used is a special version called no grappelli that can be used outside of the django-grapelli environment.

Filebrowser manage files with a nice interface to centralize them and also manage image resizing versions (original,
small, medium, etc..), you can edit these versions or add new ones in the settings.

Note: Don’t try to use other resizing app like sorl-thumbnails or easy-thumbnails, they will not work with Image
fields managed with Filebrowser.

filer

Mod for django-filer and its DjangoCMS plugin

Only enable it for specific usage because this can painful to manage files with Filebrowser and django-filer enabled in
the same project.

flatpages

Enable the use of Django flatpages app in your project. Once it has been enabled, go to the urls.py in this mod to
configure the map of the urls to be used.

google_tools

Add django-google-tools to your project to manage the tags for Google Analytics and Google Site Verification from
the site administration location.

Note: The project is filled with a custom template project/templates/googletools/analytics_code.html
to use Google Universal Analytics, remove it to return to the old Google Analytics.

3.4. DjangoCMS 3.x paste 21

https://github.com/django-debug-toolbar/django-debug-toolbar/
https://github.com/wardi/django-filebrowser-no-grappelli
https://github.com/stefanfoulis/django-filer
https://docs.djangoproject.com/en/1.5/ref/contrib/flatpages/
https://pypi.python.org/pypi/django-google-tools

Epaster Documentation, Release 2.3.1

pdb

Add Django PDB to your project for more precise debugging with breakpoints.

N.B. Neither django_pdb nor pdb are installed by the buildout. You must install them manually, for example
with pip, in your development environment so you do not disrupt the installation of projects being integrated or in
production. You must also add the required breakpoints yourself.

See the the django-pdb Readme for more usage details.

Note: django-pdb should be put at the end of settings.INSTALLED_APPS :

“Make sure to put django_pdb after any conflicting apps in INSTALLED_APPS so that they have priority.”

So with the automatic loading system for the mods, you should enable it with a name like “zpdb”, to assure that it is
loaded at the end of the loading loop.

porticus

Add Django Porticus to your project to manage file galleries.

There is a DjangoCMS plugin for Porticus, it is not enabled by default, you will have to uncomment it in the mod
settings.

recaptcha

Enable the Django reCaptcha module to integrate a field of the captcha type via the Service reCaptcha. This integration
uses a special template and CSS to make it responsive.

If you do in fact use this module, go to its mods setting file (or that of your environment) to fill in the public key and
the private key to be used to transmit the data required.

By default, these keys are filled in with a fake value and the captcha’s form field therefore sends back a silent error (a
message is inserted into the form without creating a Python Exception).

sendfile

Enable django-sendfile that is somewhat like a helper around the X-SENDFILE headers, a technic to process some
requests before let them pass to the webserver.

Commonly used to check for permissions rights to download some private files before let the webserver to process the
request. So the webapp can execute some code on a request without to carry the file to download (than could be a big
issue with some very big files).

django-sendfile dependancy in the buildout config is commented by default, so first you will need to uncomment its
line to install it, before enabling the mod. Then you will need to create the directory to store the protected medias,
because if you store them in the common media directory, they will public to everyone.

This directory must be in the project directory, then its name can defined in the PROTECTED_MEDIAS_DIRNAME
mod setting, default is to use protected_medias and so you should create the project/protected_medias
directory.

Your webserver need to support this technic, no matter on a recent nginx as it is allready embeded in, on Apache
you will need to install the Apache module XSendfile (it should be availabe on your distribution packages) and enable

22 Chapter 3. Table of contents

https://github.com/tomchristie/django-pdb
http://www.pip-installer.org
https://github.com/emencia/porticus
https://github.com/emencia/cmsplugin-porticus
https://github.com/praekelt/django-recaptcha
http://www.google.com/recaptcha
https://github.com/johnsensible/django-sendfile
https://github.com/johnsensible/django-sendfile

Epaster Documentation, Release 2.3.1

it in the virtualhost config (or the global one if you want), see the Apache module documentation for more details.
Then remember to update your virtualhost config with the needed directive, use the Apache config file builded from
buildout.

The nginx config template allready embed a rule to manage project/protected_medias with sendfile, but it
is commented by default, so you will need to uncomment it before to launch buildout again to build the nginx config
file.

Note: By default, the mod use the django-sendfile’s backend for development that is named
sendfile.backends.development. For production, you will need to use the right backend for your web-
server (like sendfile.backends.nginx).

Finally you will need to implement it in your code as this will require a custom view to download the file,
see the django-sendfile documentation for details about this. But this is almost easy, you just need to use the
sendfile.sendfile method to return the right Response within your view.

site_metas

Enable a module in settings.TEMPLATE_CONTEXT_PROCESSORS to show a few variables linked to Django
sites app in the context of the project views template.

Common context available variables are:

• SITE.name: Current Site entry name;

• SITE.domain: Current Site entry domain;

• SITE.web_url: The Current Site entry domain prefixed with the http protocol like
http://mydomain.com. If HTTPS is enabled ‘https’ will be used instead of ‘http’;

Some projects can change this to add some other variables, you can see for them in
project.utils.context_processors.get_site_metas.

sitemap

This mod use the Django’s Sitemap framework to publish the sitemap.xml for various apps. The default config
contains ressources for DjangoCMS, Zinnia, staticpages, contact form and Porticus but only ressource for DjangoCMS
is enabled.

Uncomment ressources or add new app ressources for your needs (see the Django documentation for more details).

slideshows

Enable the emencia-django-slideshows app to manage slide animations (slider, carousel, etc.). This was initially
provided for Foundation Orbit and Royal Slider, but can be used with other libraries if needed.

socialaggregator

Enable the emencia-django-socialaggregator app to manage social contents.

Note: This app require some API key settings to be filled to work correctly.

3.4. DjangoCMS 3.x paste 23

https://tn123.org/mod_xsendfile/
https://github.com/johnsensible/django-sendfile
https://docs.djangoproject.com/en/1.5/ref/contrib/sites/
https://docs.djangoproject.com/en/1.5/ref/contrib/sites/
https://docs.djangoproject.com/en/1.5/ref/contrib/sitemaps/
https://github.com/emencia/emencia-django-slideshows
https://github.com/emencia/emencia-django-socialaggregator

Epaster Documentation, Release 2.3.1

staticpages

This mod uses emencia-django-staticpages to use static pages with a direct to template process, it replace the depre-
cated mod prototype.

thumbnails

Mod for easy-thumbnails a library to help for making thumbnails on the fly (or not).

Generally this is not recommended, because by default we allready enable Filebrowser that allready ships a thumbnail
system.

urlsmap

django-urls-map is a tiny Django app to embed a simple management command that will display the url map of your
project.

zinnia

Django Blog Zinnia allows for the management of a blog in your project. It is well integrated into the cms component
but can also be used independently.

3.4.6 Changelogs

version 1.4.0 - 2015/04/12

• Enforce python2.7 usage into Makefile (to avoid a bug with MacOSX);

• Update to django==1.6.11;

• Update to django-cms==3.0.12;

• Enable a default robots.txt in default and integration environments so development sites won’t never be refer-
enced;

• Enforce to mptt==0.6.1 to avoid a but third tier apps (like django-tagging) that accept superior versions not
compatible with cms;

version 1.3.8 - 2015/02/27

• Add conf for sentry tracking in production env;

• Fix bug into Makefile template;

Version 1.3.7 - 2015/02/26

• Fix Makefile’s ‘install’ action so this will works on all systems (OSX included) with a shell and Python2;

24 Chapter 3. Table of contents

https://github.com/emencia/emencia-django-staticpages
https://github.com/SmileyChris/easy-thumbnails/
http://django-filebrowser.readthedocs.org/en/latest/versions.html
http://django-filebrowser.readthedocs.org/en/latest/versions.html
https://github.com/sveetch/django-urls-map
https://github.com/Fantomas42/django-blog-zinnia

Epaster Documentation, Release 2.3.1

Version 1.3.6 - 2015/02/25

• Fix rst typo into README file;

• Remove project’s apps locale dirs, close #7;

• Fix missing django_comments in settings.INSTALLED_APPS, required by zinnia else it cause a bug
on some admin views, close #9;

• Update to djangocms==3.0.10;

• Update to crispy-forms-foundation==0.4.1;

• Update to djangocms-admin-style==0.2.5;

Version 1.3.5 - 2015/02/06

• Use new options dump_other_apps and exclude_apps from emencia-recipe-drdump/drdump packages;

• Add 2 new commands in makefile for export/import project data (database + media)

Version 1.3.4 - 2015/02/03

• Force Python2.x usage in virtual environment from the Makefile because actually a lot of used apps can’t works
with Python3 and some distributions allready use Python3 as the default Python interpreter;

Version 1.3.3 - 2015/01/29

• Use get_civility_display into contact_form app’s email template rather civility;

Version 1.3.2 - 2015/01/28

• Comment settings.ADMINS so we are not sending anymore Django’s mail alerts to @dummy.com..;

• Fix webassets bug: since we use Bundle names with version placeholder, webassets needed a manifest file
to know what version to use in its templatetags. So now a webassets.manifest file is created in
project/webapp_statics directory and will be copied to project/static dir when assets are de-
ployed;

Version 1.3.1 - 2015/01/28

• Fix a bug in project/contact_form/cms_app that was using the wrong hook name;

• Remove sample patch for Django and unknown locales because since 1.6, Django does not care about known or
unknown locale;

• Disable ‘sitemap.xml’ mapping to a static files in the nginx config since we have a mod to generate it automati-
cally from enabled apps;

Version 1.3.0 - 2015/01/28

• Update to django-filer==0.9.9 to fix a bug with setuptools>=7 (this should permits soon to remove
freezing to setuptools==7 and pip==1.5.x);

• Remove “syncf5” action in Makefile because now it resides in a Makefile into foundation5’s sources;

3.4. DjangoCMS 3.x paste 25

Epaster Documentation, Release 2.3.1

Version 1.2.9 - 2015/01/20

Changing default behavior of Asset bundles in project/assets.py so now bundle urls will be like
/static/screen.acefe50.css instead of old behavior /static/screen.min.css?acefe50 that was
causing issue with old proxies caches (see webassets documentation);

You can safely backport this change to your old projects, this should be transparent to your install and won’t require
any server change.

Version 1.2.8 - 2015/01/14

• Update to django==1.6.10;

• Update to django-cms==3.0.9;

• Fix default slideshow template with a bad html id;

• Add a Makefile in foundation5 sources, move syncf5 action into it and add a syncjquery to fix compressed
jquery in foundation5 vendor sources that was causing issue with compressed assets;

• Add CMS apphook sample for contact_form;

Version 1.2.7 - 2015/01/06

• Update to django==1.6.9;

• Update to django-cms==3.0.7;

• Update to Pillow==2.7.0;

• In buildout config, remove the old patch hack to add unsupported locales from Django, since Django 1.6 does
not care anymore;

Version 1.2.6 - 2014/12/26

• Fix a damned bug with bootstrap.py that was forcing to upgrade to setuptools=0.8
that seems to results with bad parsing on some constraints like the one from django-cms for
django-mptt==0.5.2,==0.6,==0.6.1 that was causing a buildout fail on conflict version. This has
been fixed with updating to the last bootstrap.py and use its command line arguments to fix versions for
zc.buildout and setuptools in the Makefile;

Version 1.2.5 - 2014/12/25

• Add config for emencia-recipe-drdump recipe for Dr Dump;

Version 1.2.4 - 2014/12/19

• Add Foundation’s kitchen sink in a staticpage within project/templates/prototypes/foundation5.html
and mounted on /prototypes/foundation5.html;

• Add template tag library named utils_addons in project/utils/templatetags/;

• Add split filter in utils_addons template tag library;

• Add nginx conf for admin with timeout and max body size increase;

26 Chapter 3. Table of contents

http://webassets.readthedocs.org/en/latest/expiring.html#expire-using-the-filename
https://github.com/emencia/emencia-recipe-drdump
https://github.com/emencia/dr-dump

Epaster Documentation, Release 2.3.1

Version 1.2.3 - 2014/12/02

• Improve sitemap mod, more modular and usefull;

• Add filer and thumbnails mod, ususally not used in our projects but it could be usefull for some specific
goals;

• Fix contact_form app that was missing its sitemap.py file;

• Update to crispy-forms-foundation==0.4;

• DjangoCMS page templates has moved from project/templates/cms to
project/templates/pages, following a recommandation from DjangoCMS’ documentation;

• Add menu/menu_sidenav.html and pages/2_cols.autonav.html templates to have a template
with deep menu for current root page;

• Update to porticus==0.9.6;

• Update to emencia-django-slideshows==0.9.4;

Version 1.2.2 - 2014/11/24

• Add sendfile mod;

• Add client_max_body_size sample directive usage in nginx template (but commented);

• Add commented location /protected_medias to demonstrate sendfile mod usage within nginx template;

Version 1.2.1 - 2014/11/24

• Update to Foundation 5.4.7;

Version 1.2 - 2014/11/19

• Refactoring Template code to open a new way for a much modular behavior, should not break anything;

Version 1.1.3 - 2014/11/17

• Mount 500 and 404 page view in urls.py when debug mode is activated;

Version 1.1.2 - 2014/11/16

• Fix a bug with symlinks that was not packaged and so was missing from the installed egg, this close #1, thanks
to @ilanouh;

• Add missing gitignore rule to ignore debug_toolbar mod (it must never be installed from the start because it
causes issues with cms and the syncdb command);

3.4. DjangoCMS 3.x paste 27

Epaster Documentation, Release 2.3.1

Version 1.1.1 - 2014/11/07

• Update to zc.buildout==2.2.5;

• Update to buildout.recipe.uwsgi==0.0.24;

• Update to collective.recipe.cmd==0.9;

• Update to collective.recipe.template==1.11;

• Update to djangorecipe==1.10;

• Update to porticus==0.9.5;

• Add package cmsplugin-porticus==0.2 in buildout config;

• Remove dependancy for zc.buildout and zc.recipe.egg;

Version 1.1 - 2014/11/03

• Update to zc.buildout==2.2.4 to fix a bug introduced in 2.2.3;

• Update to last bootstrap.py script;

• Remove Foundation3 sources, CSS and bundles, they are not used anymore;

• Move ckeditor and minimalist CSS to common SCSS sources with Foundation5;

• Update Compass README;

• Correct admin_style Compass config;

• Add ‘ar’ country to the CSS flags;

• Recompile all CSS in project’s webapp_statics;

• Changing assets.py to use nested bundles, so we can separate app bundles (foundation, royalslider, etc..)
from the main bundles where we load the app bundles;

• Main frontend’s CSS & JS bundles are now called main.css and main.js not anymore app.*** (yes we
use the old Foundation3 ones that have been removed);

Version 1.0.4 - 2014/11/03

Update mods doc

Version 1.0.3 - 2014/11/03

Fix some app versions in version.cfg, fix app.js to use socialaggregator only if its lib is loaded.

Version 1.0.2 - 2014/11/03

Remove all enabled mods because it’s the template responsability to enabled them or not.

Version 1.0.1 - 2014/11/03

Following repository renaming for a workaround with ‘gp.vcsdevelop’.

28 Chapter 3. Table of contents

Epaster Documentation, Release 2.3.1

Version 1.0 - 2014/11/03

First commit started from emencia-paste-djangocms-2 == 1.9.1 and merged with buildout_cms3 repository, bump to
1.0

3.5 Common topics around Epaster

There are some topics around some things we use in Epaster environnment.

Note that these topics are based on emencia_paste_djangocms_3, but generally they will apply also to emen-
cia_paste_djangocms_2.

3.5.1 Compass

Compass is a Ruby tool used to compile SCSS sources in CSS.

By default, a Django project has its SCSS sources in the compass/scss/ directory. The CSS Foundation framework
is used as the database.

A recent install of Ruby and Compass is required first for this purpose (see RVM if your system installation is not up
to date).

Once installed, you can then compile the sources on demand. Simply go to the compass/ directory and launch this
command:

compass compile

When you are working uninterruptedly on the sources, you can simply launch the following command:

compass watch

Compass will monitor the directory of sources and recompile the modified sources automatically.

By default the compass/config.rb configuration file (the equivalent of settings.py‘ in Django) is used. If needed,
you can create another one and specify it to Compass in its command (for more details, see the documentation).

RVM

rvm is somewhat like what virtualenv is to Python: a virtual environment. The difference is that it is intended for
the parallel installation of a number of different versions of Ruby without mixing the gems (the Ruby application
packages). In our scenario, it allows you to install a recent version of Ruby without affecting your system installation.

This is not required, just an usefull cheat to know when developing on a server with an old distribution.

3.5.2 Webfonts

Often, we use webfonts to display icons instead of images, because a webfont is more flexible to use (it can take any
size without to re-upload it) and more light on file size. It is also more CSS friendly.

Commonly we use icomoon that is a service to pack a selected set of webfonts to a ZIP archive that you can use to
easily embed it in your project.

The first thing is to go on icomoon, create a webfont project and select the needed item from fonts. Then you have a
webfont project, you have to download it as a ZIP archive and open it when it’s done.

When you open the archive, you should something like that :

3.5. Common topics around Epaster 29

http://compass-style.org/
http://sass-lang.com/
http://sass-lang.com/
http://foundation.zurb.com/
http://rvm.io/
http://compass-style.org/
http://compass-style.org/
http://rvm.io/
http://www.virtualenv.org/
http://icomoon.io/
http://icomoon.io/

Epaster Documentation, Release 2.3.1

icomoon/
-- demo-files
| -- demo.css
| -- demo.js
-- demo.html
-- fonts
| -- icomoon.eot
| -- icomoon.svg
| -- icomoon.ttf
| -- icomoon.woff
-- Read Me.txt
-- selection.json
-- style.css

What we need here is the fonts directory because it contains the font we need to put in our project assets, and the
style.css file that contain the icons class name map.

So for a site project named site_sample generated from Epaster, first you will copy the fonts directory in
project/webapp_statics into your project, there should allready be a fonts directory so overwrite it.

Now open the style.css from the archive, it should look like this :

1 @font-face {
2 font-family: ’icomoon’;
3 src:url(’fonts/icomoon.eot?n45w4u’);
4 src:url(’fonts/icomoon.eot?#iefixn45w4u’) format(’embedded-opentype’),
5 url(’fonts/icomoon.woff?n45w4u’) format(’woff’),
6 url(’fonts/icomoon.ttf?n45w4u’) format(’truetype’),
7 url(’fonts/icomoon.svg?n45w4u#icomoon’) format(’svg’);
8 font-weight: normal;
9 font-style: normal;

10 }
11 [class^="icon-"], [class*=" icon-"] {
12 font-family: ’icomoon’;
13 speak: none;
14 font-style: normal;
15 font-weight: normal;
16 font-variant: normal;
17 text-transform: none;
18 line-height: 1;
19

20 /* Better Font Rendering =========== */
21 -webkit-font-smoothing: antialiased;
22 -moz-osx-font-smoothing: grayscale;
23 }
24

25

26 .icon-left:before {
27 content: "\e622";
28 }
29 .icon-right:before {
30 content: "\e623";
31 }
32 .icon-play:before {
33 content: "\e62b";
34 }

Not that there are two parts, the first with @font-face and [class^="icon-"], [class*=" icon-"],
and the second part with some icon class names. Don’t mind about the first part, we allready define it in our SCSS

30 Chapter 3. Table of contents

Epaster Documentation, Release 2.3.1

component, just copy the whole second part with all class names for your icons.

Then you will have to fill the class names used in the SCSS components
compass/scss/components/_icomoon.scss in your project, search for this pattern at the end of the
file :

// Icon list
/*
*
* HERE GOES THE ICONS FROM THE style.css bundled in the icomoon archive

*
*/

And put the pasted icon class names after this pattern.

Finally in compass/scss/app.scss search for the line containing @import "components/icomoon";
and uncomment it, now you can compile your SCSS and the webfont icons will be available from your app.css file.

3.5.3 Assets management

Why

In the past, assets management was painful with some projects, because their includes was often divided in many
different templates. This causing issues like to update some library or retrieve effective code that was working on
some template by inherit.

Also, this often results in pages loading dozen of asset files and sometime much more. This is a really bad behavior
because it slows page loading and add useless performance charge on the web server.

This is why we use an asset manager within Epaster: django-assets which is a subproject of webassets. Firstly read
the webassets documentation to understand how is working its Bundle system. Then you can read the django-assets
that is only related about Django usage with the settings, templatetags, etc..

How it works

Asset managers generally perform two tasks :

• Regroup some kind of files together, like regrouping all Javascript files in an unique file;

• Minimize the file weight with removing useless white spaces to have the code on unique line;

Some asset manager implement this with their own file processor, some other like webassets are just “glue” between
the files and another dedicated compiler like yuicompressor.

Environments

Asset management is really useful within integration or production environments and so when developing, the manager
is generally disabled and the files are never compiled, you can verify this with looking at your page’s source code.

make assets

Epaster pastes have a make assets command that is useful on integration and production environment to deploy
update on your assets. In fact this command is always required in these environments when you deploy a new
update where assets have changed. Also you should never use it on development environment because it can cause
you many troubles.

3.5. Common topics around Epaster 31

http://django-assets.readthedocs.org/en/latest/
http://webassets.readthedocs.org/en/latest/
http://webassets.readthedocs.org/en/latest/
http://django-assets.readthedocs.org/en/latest/
http://webassets.readthedocs.org/en/latest/
http://yui.github.io/yuicompressor/

Epaster Documentation, Release 2.3.1

What does this command :

1. Collecting all static files from your project and installed apps to your settings.STATIC_ROOT directory;

2. Use django-assets to compile all defined bundles using previously collected files;

3. Re-collecting static files again to collect the compiled bundle files;

Static files directories

In your settings.py file you should see :

STATIC_ROOT = join(PROJECT_PATH, ’static’)

It define the front static file directory. But never put yourself a file in this directory, it is reserved for collected files
in integration and production environment only.

All static files sources will go in the project/webapp_statics directory, it is defined in the assets mod:

ASSETS_ROOT = join(PROJECT_PATH, ’webapp_statics/’)
STATICFILES_DIRS += (ASSETS_ROOT,)

This way we allways have separated directories for the sources and the compiled files. This is required to never commit
compiled files and avoid conflict between development and production.

The rule

Never, ever, put CSS stylesheets in your templates, NEVER. You can forget it, this will go in production and forgeted
for a long time, this can be painful for other developers that coming after you. So always add CSS stylesheets by the
way of SCSS sources using Compass.

For Javascript code this is different, sometime we need to generate some code using Django templates for some specific
cases. But if you use a same Javascript code in more than one template (using inheriting or so), you must move the
code to a Javascript file.

Developers should never have to search in templates to change some CSS or Javascript code that is used in more than
one page.

3.5.4 Developing application

Sometimes, you will need to develop some new app package or improve them without to embed them within the
project.

You have two choices to do that:

• Use develop buildout variable to simply add your app to the developped apps, your app have to exists at the
root of buildout project;

• Use vcs-extend-develop buildout variable to define a repository URL to the package sources;

Even they have the same base name develop, these two ways are differents:

• The first one simply add a symbolic link to the package in your Python install without to manage it as an installed
eggs, it will be accessible as a Python module installed in the Python virtual environment. This method does not
require that your app have a repository or have been published on PyPi;

• The second one install the targeted package from a given repository instead of a downloaded package from PyPi,
it act like an installed eggs but from which you can edit the source and publish to the repository. And so your

32 Chapter 3. Table of contents

http://django-assets.readthedocs.org/en/latest/
http://compass-style.org/

Epaster Documentation, Release 2.3.1

app name have to be defined in the buildout’s egg variable, buildout will see it in vcs-extend-develop and
will not try to install it from PyPi but from the given repository url;

In all ways, your apps is allways a full package structure that mean this is not a simple Python module, but its package
structure containing stuff like README file and setup.py at the base of the directory then the Python module
containing the code. Trying to use a simple Python module as a develop app will not work.

Which one to use and when

• If you want to develop a new package, it’s often much faster to create its package directory structure at the root
of your buildout project then use it within develop. You would move it to vcs-extend-develop when
you have published it;

• If you want to develop an allready published package, you will use vcs-extend-develop with its repos-
itory url, this so you will be able to edit it, commit changes then publish it;

Most of Emencia’s apps are allready setted within vcs-extend-develop in the buildout config for development
environment (development.cfg) but disabled, just uncomment the needed one.

Take care, an Egg that is installed from a repository url is validated on its version number if defined in the
versions.cfg, and so if your develop egg contains a version number less than the one defined in versions.cfg,
buildout will try to get the most recent version from PyPi, so allways manage the app version number.

3.6 Development

For Epaster (or its pastes) development, you will need to install the Epaster repository, then use the development
environnment :

git clone https://github.com/emencia/Epaster.git
make install
source bin/activate
buildout -c development.cfg

It will requires that you have installed the GIT client because the development environnment installs the pastes sources
in the src/ directory. This is where you will work.

3.6.1 Documentation

The documentation sources lives in the docs/ as a Sphinx project, Sphinx is installed within the development envi-
ronnment.

Note that for each paste the mods documentation is automatically builded from the paste. For example with the
emencia_paste_djangocms_3 paste, a docs/emencia_paste_djangocms_3.rst file is builded from
its source code.

The paste’s mods documentation is not builded from the common make html Sphinx command, but with the dedi-
cated command : make grab.

The grab action will take it’s base document from project/mods_available/__init__.py docstring then
replace the directive .. document-mods:: with the grabbed mods documentation.

The grabbed mods documentation itself is taken from each mod living in project/mods_available/ us-
ing their __init__.py docstring, then they are assembled as an unique string that will replace the ..
document-mods:: directive.

3.6. Development 33

http://sphinx-doc.org/
http://sphinx-doc.org/

Epaster Documentation, Release 2.3.1

Beware that all these __init__.py docstrings must be valid RST syntax else it will break the documentation
building.

Finally to ease the documentation building, when you did lot of changes in the mods documentation, just use the
following command to rebuild their docs then build the whole project documentation :

make all

This command assemble the make grab and make html commands.

3.6.2 Symlinks

You can’t include symlinks into your paste templates, because Distribute ignore them, they won’t be packaged and so
won’t be available in the paste’s installed egg.

If you need to create some symlinks in the projects to build, you will have to do it in the paste template in
templates.py. The emencia_paste_djangocms_3 paste has generic way to do this, just append a tuple
to the list emencia_paste_djangocms_3.templates.Django.symlink_list where the tuple contains
the target (a relative path to the file/directory to link to) and the symlink file to create (an absolute path into the project
to build).

3.6.3 Foundation updates

Warning: To do this, you must have a strong knowing of Foundation sources structure
You only have to do this when you want to synchronize the project’s Foundation sources from the latest Foundation
release. This is reserved for Epaster maintainers.

This project embeds Foundation 5 sources installed from the Foundation app so you can update it from the sources if
needed (and if you have installed the Foundation cli, see its documentation for more details). to update these sources
go into its directory and use it Makefile action:

make update

Warning: Never manually put your files in the project/webapp_statics/js/foundation5 directory
or they will be deleted.

Then you have to checkup that directories structure has not changed, if it so you must fix the syncf5 and
syncjquery actions. When it’s done, do:

make syncf5

For the SCSS sources, no action is required; they are imported directly into the compass config.

3.7 History

3.7.1 Changelog

Version 2.3.1 - 2015/04/12

• Enforce python2.7 usage into Makefile (to avoid a bug with MacOSX);

• Update to emencia_paste_djangocms_3==1.4.0;

34 Chapter 3. Table of contents

http://foundation.zurb.com/
http://foundation.zurb.com/

Epaster Documentation, Release 2.3.1

Version 2.3.0 - 2015/02/27

• Update to emencia_paste_djangocms_3==1.3.8;

Version 2.2.9 - 2015/02/26

• Fix Makefile’s ‘install’ action so this will works on all systems (OSX included) with a shell and Python2;

• Update to emencia_paste_djangocms_3==1.3.7;

Version 2.2.8 - 2015/02/25

• Update to emencia_paste_djangocms_3==1.3.6;

Version 2.2.7 - 2015/02/07

• Update to emencia_paste_djangocms_3==1.3.5;

Version 2.2.6 - 2015/02/03

• Force Python2.x usage in virtual environment from the Makefile because actually a lot of used apps can’t works
with Python3 and some distributions allready use Python3 as the default Python interpreter;

• Update to emencia_paste_djangocms_3==1.3.4;

Version 2.2.5 - 2015/01/29

• Update to emencia_paste_djangocms_3==1.3.3;

Version 2.2.4 - 2015/01/28

• Update to emencia_paste_djangocms_2==1.9.8;

• Update to emencia_paste_djangocms_3==1.3.2;

Version 2.2.3 - 2015/01/28

• Update to emencia_paste_djangocms_3==1.3.1;

Version 2.2.2 - 2015/01/28

• Update to emencia_paste_djangocms_3==1.3.0;

Version 2.2.1 - 2015/01/20

• Update to emencia_paste_djangocms_2==1.9.7;

• Update to emencia_paste_djangocms_3==1.2.9;

3.7. History 35

Epaster Documentation, Release 2.3.1

Version 2.2.0 - 2015/01/14

• Update to emencia_paste_djangocms_3==1.2.8;

Version 2.1.9 - 2015/01/06

• Update to emencia_paste_djangocms_3==1.2.7;

Version 2.1.8.1 - 2014/12/26

• Fix: Forgotted to update bootstrap.py in previous version;

Version 2.1.8 - 2014/12/26

• Update to emencia_paste_djangocms_2==1.9.6.1;

• Update to emencia_paste_djangocms_3==1.2.6;

• Backport fix from them to the Epaster Makefile to avoid any bugs;

Version 2.1.7 - 2014/12/25

• Update to emencia_paste_djangocms_3==1.2.5;

• Update documentation to add some informations about Dr Dump in ‘Usage’ document;

Version 2.1.6 - 2014/12/19

• Update to emencia_paste_djangocms_3==1.2.4;

• Update documentation to rename the tips section as the topics section, then improve it a little bit;

Version 2.1.5 - 2014/12/01

• Update to emencia_paste_djangocms_3==1.2.3;

• Update documentation to add a Tips section;

Version 2.1.4 - 2014/11/25

• Update to emencia_paste_djangocms_3==1.2.2;

• Fix “version.cfg”;

• Update documentation;

Version 2.1.3 - 2014/11/17

• Update to emencia_paste_djangocms_2==1.9.6;

• Update to emencia_paste_djangocms_3==1.1.3;

36 Chapter 3. Table of contents

Epaster Documentation, Release 2.3.1

Version 2.1.2 - 2014/11/16

• Update to emencia_paste_djangocms_3==1.1.2;

• Add “Development” notes in the docs;

• Update documentation;

Version 2.1.1 - 2014/11/07

• Update to zc.buildout==2.2.5;

• Update to emencia_paste_djangocms_2==1.9.5;

• Update to emencia_paste_djangocms_3==1.1.1;

• Update documentation;

Version 2.1 - 2014/11/03

• Update to zc.buildout==2.2.4 to fix a bug introduced in 2.2.3;

• Update to last bootstrap.py script;

• Update to emencia_paste_djangocms_3==1.1;

Version 2.0 - 2014/11/02

• Implement new pastes for djangocms 2.x and 3.x

• Update doc to fit to the new structure

Version 1.8.2 - 2014/09/27

• Update docs to get the mods documentation directly from their docstring (in their __init__.py);

• Add eggedpy build part;

Version 1.8.1 - 2014/09/26

• Add Development environnment, close #2;

• Try to fix ‘Doc compile fail on rtd’, fix #1;

Version 1.8 - 2014/09/25

First public release on Github, there has been some changes to split Epaster from its Django project template, the
template and its sources now resides in its own package named “emencia-paste-django”. Both of them starts from the
1.8 version for history purpose.

3.7. History 37

Epaster Documentation, Release 2.3.1

Version 1.7 - 2014/09/24

• Fix nginx template;

• Moving common apps from ‘apps’ dir to ‘project’;

• Some minor changes before going public on Github;

• This is the last version from our internal and private repository before Epaster goes public on Github, previous
changelog is keeped here for history although you can’t access to these previous versions;

Version 1.6 - 2014/08/02

• Update to Foundation 5.3.3;

• Improve documentation by using Sphinx theme Bootstrap with ‘yeti’ bootswatch theme and add History page;

• Add a structure diagram in introduction (warning this will require to install graphviz on your system);

Version 1.5 - 2014/07/28

• Update to Foundation 5.3.1;

• Update README for last changes and to use the version from git describe --tags;

Version 1.4 - 2014/07/27

• Update to last Gestus & Po-projects clients;

• Add emencia-django-staticpages package and ‘staticpages’ mod to replace ‘prototypes’ mod;

• Add ‘sitemap’ mod;

• Fix Gestus config with Jinja2 template syntax;

• Use now a template recipe that use jinja and improve the nginx conf;

38 Chapter 3. Table of contents

http://www.graphviz.org/

	Introduction
	Structure
	Table of contents
	Install
	Usage
	DjangoCMS 2.x paste
	DjangoCMS 3.x paste
	Common topics around Epaster
	Development
	History

