

EOS Studio Docs

[image: _images/main.png]
EOS Studio (https://www.eosstudio.io) is a graphical IDE for EOSIO dApp development.
It was first launched in Febuary 2019 and quickly became the most popular tool for EOSIO,
attracting thousands of EOSIO developers worldwide.
At present, EOS Studio comes in two versions: a desktop version
that supports Mac OS, Windows and Linux operating systems, as well as a web version
that allows dApp development in a browser.

By integrating various tools required for EOSIO in a unified application,
EOS Studio aims to provide a powerful and easy-to-use environment for dApp development.
With EOS Studio, developers can complete the entire dApp development process in a single application.
The key features of EOS Studio include

	C++ code editor with EOSIO syntax highlighting

	Built-in EOSIO.CDT and Cloud CDT

	Interactive Contract Inspector

	Version manager for EOSIO software

This documentation will introduce how to use EOS Studio for dapp development,
explain the functions of each module of EOS Studio,
and also present some high-quality EOSIO smart contracts.

Table of Contents

Introduction

	Getting Started

	EOSIO Fundamentals
	Accounts

	Resources

	Decentralized Application

	Smart Contract

EOS Studio

	Overview

	Project Editor
	Main Components

	Types of Projects

	Project Settings

	Contract Inspector
	Actions

	Tables

	Account Viewer
	Basic Information

	Transaction History

	Create a New Account

	Tools

	Network Manager
	Local Network

	Cloud-hosted Network

	Remote Networks

	Bottom Bar
	Keypair Manager

	Scatter

Sample Smart Contracts

	eosio.token
	Introduction

	Types

	Smart Contract

Resources

	EOSIO.CDT
	Header Files

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

EOS Studio is available in two versions. Developers are welcome to choose either one
that better fits their purpose in development.

	EOS Studio Desktop
is a stand-alone desktop appliction that supports
Mac OS, Windows and Linux operating systems.
It will also help you install and manage other tools
required in the development,
including EOSIO [https://github.com/EOSIO/eos] and
EOSIO.CDT [https://github.com/EOSIO/eosio.cdt].

	EOS Studio Web
is a complete IDE that runs entirely in the browser.
Developers can open a link and start dApp development
immediately without any pre-installation.
Meanwhile, the Cloud CDT and cloud-based network ensure
that EOS Studio Web can provide complete dApp development capabilities.

In the following sections, we will demonstrate how to use both versions to
create, build, deploy, and execute a smart contract. You will be able to learn
their difference and choose the appropriate one for your purposes.

EOS Studio Desktop

EOS Studio Desktop is a stand-alone desktop appliction,
supporting Mac OS, Windows and Linux.

Download

You can download the installation package from the following links:

	Mac OS: https://download.eosstudio.io/mac

	Windows: https://download.eosstudio.io/win

	Linux: https://download.eosstudio.io/linux

Set up the environment

When you launch EOS Studio for the first time, there will be a welcome screen
to help you set up the tools required for EOSIO dApp development.
That includes:

	EOSIO [https://github.com/EOSIO/eos] is the main software to run a EOSIO-based
blockchain. It includes

	nodeos: the core executable that runs the EOSIO blockchain
for block production and providing API endpoints. You need to start one
for local development;

	cleos: a command line tool to query the EOSIO blockchain;

	keosd: a commane line wallet to manage keypairs and sign transactions;

	EOSIO.CDT [https://github.com/EOSIO/eosio.cdt] which stands for Contract Development Toolkit
is used to compile C++ source codes to
WebAssembly [https://developers.eos.io/eosio-home/docs#section-c-wasm-virtual-machine],
a binary format EOSIO uses to run smart contracts.

EOS Studio Desktop uses Docker [https://www.docker.com] to install and
run the above tools. With dockerized EOSIO and EOSIO.CDT, it’s easier to work
accross differenct operating systems.
If you don’t have Docker yet, the welcome page will guide you
to install it.

In EOS Studio, cleos and keosd are not necessary.

Note

[Windows] There are two types of Docker:
Docker Desktop [https://www.docker.com/products/docker-desktop]
(for Window 10 Pro only) and
Docker Toolbox [https://docs.docker.com/toolbox/toolbox_install_windows/]
(for all the others). Be sure to know which type of Docker your are using.
EOS Studio works better with Docker Desktop, but it has some compatible issues
with Docker Toolbox. In that case, we recommend to use Cloud CDT and
Cloud-hosted Network.

Note

[Linux] After install docker, you also need to
allow non-privileged users to run Docker commands.
See instructions here [https://docs.docker.com/install/linux/linux-postinstall/].

After Docker is installed and launched, the welcome page will further assist you
to download docker images for
EOSIO (eostudio/eos [https://hub.docker.com/r/eostudio/eos]) and
EOSIO.CDT (eostudio/eosio.cdt [https://hub.docker.com/r/eostudio/eosio.cdt]).
Both of them have many versions, but in most cases you only need to
install the latest. If you have previous projects that only work with
older EOSIO or EOSIO.CDT, you can download multiple versions and EOS Studio
will help you to manage them.

Warning

Do not use the docker image on mainnet or as a block producer. They are made
for development purpose only.

Create a new project

Once you finish the installations, EOS Studio will go to
the page of your project list. It is empty now, so let’s
click the Create button and create a new project.

The new project will be initilized with some basic codes for a smart contract.
You can now press the :fa:`gavel` hammer button in the toolbar to build the project.
This will run the EOSIO.CDT docker image to compile the contract and
export a .wasm file and an .abi file.

	The wasm file is a WebAssembly binary that will run on the EOSIO blockchain

	The abi file is a json object that defines the contract actions
and data tables with type information of action parameters and table rows.

Start a local network

Before going forward, you need to start a local network. Switch to the Network Page
where you can see all installed EOISO softwares. Click the Run button to start
a network. EOS Studio will

Create an account

Deploy the contract

Warning

Be careful that do not deploy to eosio account, unless you know what you
are doing.

Execute the contract action

EOS Studio Web

EOS Studio Web is available at https://app.eosstudio.io

Log in with GitHub

You can look at other’s projects. To create your own project,
you need to login first.

Create a new project

press the button and create the project

Cloud CDT

use cdt to build the project, generating .wasm and .abi files

Cloud-hosted Network

Create an account

deploy the contract to your account

Run your first smart contract

In addition, many blockchain teams are sharing their open source smart contracts on
EOS Studio Web to help new users get started.

The main featurs of EOS Studio Web include:

	An online EOSIO code editor that supports syntax highlight, auto-complete and
inline notification of build errors

	A cloud-based EOSIO.CDT smart contract compiler with the option to choose versions
from v1.3 to v1.6

	

EOSIO Fundamentals

This chapter will introduce some basic concepts about EOSIO or blockchain based applications.

	Accounts

	Resources

	Decentralized Application

	Smart Contract

Accounts

Blockchains like Bitcoin or Ethereum use addresses to represent
individuals in transactions. Tokens are transfered from one address
to another, and each address has its own token balance.
However, EOSIO-based blockchain use accounts as the basic unit
to store tokens and act as individuals in blockchain transactions.

Account Name

An EOSIO account can have a human readable name so it will be easy to remember.
The account name is a string of max length 12 consists of
small letters a-z, digits 1-5 and dot.

Create an Account

A new EOSIO account needs to be created by another existing account.
Creating an account will require some EOS tokens to purchase the
resources
needed to store the account’s basic information, such as its own name and
token balance.

Permissions

A special feature EOSIO offers is that an account can process
multiple levels of permissions, each of which has unequal authorities
to approve different sets of transactions.
Such design can provide greater security for EOSIO blockchains
because users can set up and use a low-privilege permission in daily transactions.
Losing this permission wouldn’t cause too much damage because it can only
perform limited transactions, and users can use a high-privilege permission
to recover the lost one.

Resources

The EOSIO blockchain defines three types of resources to
compensate the usage of the network:

	CPU for computation time

	NET for network bandwidth

	RAM for data storage

CPU – Computation time

Any transaction posted to the blockchain network, either
a token transfer or an execution of smart contract actions,
needs to consume some CPU time to be properly processed
and packed into blocks.
The total amount of CPU time is limited by the harware,
so a certain amount of EOS needs to be staked in exchange for CPU usage rights.
The network will prorate the CPU time that each account can use based
on the total amount of CPUs collateralized on all accounts.
This time represents the total CPU length that can be used in 24 hours.

Staked EOS in exchange for CPU can be refunded if some computation time
will not be used in the future.

so that transactions tenically free.
It takes 72 hours.

NET – Network bandwidth

NET’s distribution mechanism is the same as the CPU,
but also through the mortgage method.
To allocate the use of network bandwidth.

RAM – Memory usage

The total amount of storage space on the chain is limited,
so storing data requires buying RAM.
RAM needs to be purchased and the price is automatically adjusted
by the bancor algorithm.
The more people you buy, the higher the RAM price, and vice versa.

REX

If an account need to use a large amount of CPU or NET for
a short period of time, it needs to stake a huge amount of EOS token.

Decentralized Application

EOSIO blockchain use account system to

Kickoff

You are three easy steps away from being a blockchain developer:

	EOS Studio IDE and EOS account preparation

	Launch EOS Studio IDE Web: https://app.eosstudio.io

	Login into Studio using Github account

	Create an EOS account in Cloud network

	Backend preparation

	Create a project

	Build

	Deploy

	Frontend preparation (TODO add a simple test page with EOSJS API call)

	Launch test page

	Fill the account

	Click ‘Hi’ button

That’s it, that’s all, you are a blockchain developer now.

Talk is cheap. Show me the code.

Backend (Smart Contract)

	using C++

	Header file (hpp) and source file (cpp)

hpp:

	[[eosio::contract]] syntax

	Constructor and member initializer lists (https://en.cppreference.com/w/cpp/language/initializer_list)

	Actions

	Define table and table instance

cpp:

	function implementation

	require_auth (maybe ignore it)

	multi_index get a record (get)

	multi_index add a new record (emplace)

	multi_index replace an existing record (modify)

	C++ callback function

Frontend (TODO)

From ‘Hello world!’ to ‘Hello xxx!’ (xxx from blockchain) after clicking a button.

Offer a reset button.

	React setup

	EOSJS setup

	onClick binding

	EOSJS API fetch

	update state

Smart Contract

Smart contracts are similar to backend servers but
they are running on blockchains. Users will interact with
smart contracts through their APIs called actions, and
the persisted data is stored in

Actions

operations

Tables

data

scope

Overview

EOS Studio comes with a simple and intuitive layout.
The UI is divided into four pages, switchable through the navbar buttons.

	Project Editor is the main interface to display your EOSIO project
and provide a EOSIO-tailored editor to code, build and deploy your smart contracts.

	Contract Inspector is a convenient tool to debug smart contracts.
It allows you to easily execute contract actions and visualize the table data.

	Account Viewer is a page to view account information and
perform account related operations.

	Network Manager can help you switching between local network,
different testnets, and EOS Mainnet, as well as showing the information of
the selected network. You can also connect to a custom network by API endpoint.
For local network, it also integrates the
EOSIO Version Manager to install and manage
multiple versions of the EOSIO software.

At the bottom, the Bottom Bar
will provide easy access to other tools that might be useful during the development.
Tools listed on the left side are usually needed in many places, so they are fixed
in the Bottom Bar.

	The Keypair Manager can help you to create, import
or export keypairs. Be aware that EOS Studio will not encrypt
the private keys and don’t use any of those in the mainnet.

	The Scatter button will show connection status to
Scatter Desktop. EOS Studio will use Scatter to sign transactions when
you are working on the mainnet.

However, tools on the right will change according to the current
active page and different pages have their own available tools.
The following sections will introduce them by pages respectively.

Project Editor

[image: ../_images/project-editor.png]

Main Components

Code Editor

[image: ../_images/code-editor.png]
The code editor has integrated some of the most practical
tools for contract development. For example, it supports
highlight and autocompletes for EOSIO-specific syntax.

The code editor will render markdown files.

The README.md file will serve as the main page for a project.

Toolbar

[image: ../_images/toolbar.png]
In the toolbar menu at the top left, there are some
handy buttons that help you easily do common operations
such as

	New Contract:

	Build: use EOSIO.CDT to compile smart contract

	Deploy: deploy the wasm and abi files to a specific account

	Test (only for desktop): run test cases; will initialize the
test framework when the button is pressed for the first time

	Project Settings: open the project settings page

File Tree

[image: ../_images/filetree.png]
In the file tree, you can xxx the project files.

Terminal

[image: ../_images/terminal.png]
The terminal is mainly used to display EOSIO.CDT outputs
and test outputs.

Types of Projects

Local Project (only for desktop)

A local project is saved on your disk.

Remote Project

A remote project is saved on EOS Studio’s cloud service.
You can use both EOS Studio Desktop and EOS Studio Web to
access a remote project.

Others’ Shared Project

Open projects shared by others

Code editor

Project Settings

EOS Studio provides a Project Settings page to easily
view and modify the .eosproj file, accessible by clicking
the cog button in the toolbar menu. The first item defines
the main file for the project and the compile process will
start from this file. The second contract name item corresponds
to the –contract attribute for CDT command line and is also
required for compilation. The following items are optional
and usually used for some advanced configuration in compilation.
You can refer the CDT command line documentation to learn how
to use them.

In the below Deployment Settings, you can specify the account
to which you want to deploy your smart contract. EOS Studio
supports local, Kylin and Jungle testnets, and EOSIO mainnet,
so you can specify them separately. For example, if we enter
newcontract in the local config line, you will see the name
also appears next to the deploy button in the toolbar. Now if
we click the button, EOS Studio will deploy the latest compiled
codes to the newcontract account.

Contract Inspector

[image: ../_images/contract_inspector.png]
The Contract Page provides the necessary tools to inspect and debug
smart contracts. In order to view multiple contracts at the same time,
EOS Studio uses tabs to support for opening multiple contracts.
You can click on the tab to quickly switch the contract you want to view.
At the same time, the commonly used contract Account can be starred.

Just below the tabs, there is an address bar where lets you enter
the contract account name.
EOS Studio will automatically read the abi file in the account
to check the contract based on the contract account you entered.

The EOS Studio Contract Inspector has two parts:

	a panel to execute actions on the left, and

	a panel to query table data on the right.

In the dropdown menus at the top left for each panel,
you can easily view all the actions and all the tables
respectively.

If a smart contract is found in the account, EOS Studio will parse
the abi file to visualize its actions and tables.

Actions

Actions are shown on the right.
You can switch the action you want to call through the dropdown menu.

Form for Input Parameter

A form for inputs will be generated from the abi to make
it easier to enter parameters.

The input of the action contains many types, and EOS Studio will process
the input parameters according to the type:

	For type of uint64_t, uint32_t,

	For type of permission,

You can view the raw transaction command by clicking the
View Command button. It will tell you what command,
including the authorization set below,
EOS Studio is going to execute when you press the Run button.
It will show you both the cleos command and the eosjs script.

Authorization

You can change the actor and permission used to sign the transaction.
By default,
EOS Studio will use {account}@active which account is the
current selected account.

EOS Studio doesn’t support multisig yet.

Ricardian

Result

The result after calling the contract will be displayed here.
If the result is, you will see the transaction hash,
click to see the complete transaction details.

[image: ../_images/transaction_details.png]
If the transaction fails, you can see
the error message.

Execution History and Bookmarks

When we are debugging a smart contract, we often need to call
the same actions repeatedly, and constantly refresh the table
to view the most recent data. Most HTTP API clients will store
call history and have bookmarks to save common-used parameters.
EOS Studio has these features too. Within the clock icon buttons
on the top right for each panel, you can see the histories for
action executions and table queries. They would be convenient
if you need to check past execution results, or simply want to
re-run with the same previous parameters.

EOS Studio can also save frequently used parameters to bookmarks.
For example, if I want to issue 10 EOS to myself repeatedly, I can
save it so I don’t need to enter them again. Go to the heart icon
and select add to bookmarks, you will see the contract action, the
authorizer, and parameters to execution with. Just enter a name and
save it, and you can access it in bookmarks anytime in the future.

The record of the calling contract (including parameters and results)
will be saved in the history for easy query.
In addition, you can add common used parameters to bookmarks.

Tables

Tables are shown on the right. You can switch the table you want
to view through the dropdown menu.

Account Viewer

The Account Page help you to check basic account information
as well as perform some account operations.
Similar to the Contract Page, the Account Page is also organized
using tabs to allow multiple accounts being open at the same time.
You will also using the address bar below the tabs to enter
the account name. EOS Studio will read the account information
and display it in the page below.

The Contract and Account pages share
the same starred account list.
You can also use the star to mark the commonly used account.

Basic Information

Display basic user information, including token balance,
resources (CPU/NET/RAM), and permission keys.

When you are using a local network and the balance is always zero even
though you have issued or transfered some tokens to the account, that is
probably because you didn’t setup the core symbol for the network. See here
for instructions.

Transaction History

You can see the transaction history below the basic information.

Create a New Account

To create a new account, click the xxx and enter the account name. You also
need to select a public key from the Keypair Manager
to use as owner and active keys. If there is no key yet, you need
to open the Keypair Manager and create one first.
EOS Studio will check whether the account name has been used or not.
Once a new account is created, it will be starred automatically.

If you want to import a created account, just type the account name in the
address bar and star the account. However, you may not have the permission
to operate this account. You can go to the Keypair Manager and import its
private keys.

Tools

EOS Studio provides a handy tool for some common account operations.
These tools can be passed to the right of the address bar button to access.

	Transfer: make a transfer of the core symbol tokens.

	Set the eosio.code permission - xxxx actions need eosio.code
permission to run

	Faucet (testnets only) - click the button to claim some free tokens on a testnet

	Buy RAMs - buy 100 KB RAMs.

Network Manager

Network are use to switch connected EOSIO network.

Local Network

(Only for EOS Studio Desktop)

[image: ../_images/network_manager.png]

EOSIO Version Manager

A table of installed EOSIO versions is listed here. If you want to
install another one, click the install button and select the version
you want to install. You can also delete unwanted versions.

To start a local network, select the version you want to start and click
the Run button. EOS Studio will start a docker container and
assemble the command to run nodeos. Once it is started, you can see
the block producing logs in the log terminal below.

Advanced Configuration

EOS Studio allow you to modify the paramters to run nodeos. Click
the cog button to open advanced configuration window. Here you will
see a list of configurations, and please check nodeos documentation
to understand how to use them.

Logs of Block Production

You can toggle the button and hide …

Cloud-hosted Network

This is a for-development testnet provided by dfuse.

Remote Networks

Other networks EOS Studio supports

	The EOSIO Mainnet

	Jungle 2.0 testnet

	CryptoKylin testnet

You can also connect to a custom networks

Basic Information

API Endpoints and Chian ID

Access to Block Explorers

Blocks

Bottom Bar

Keypair Manager

Keypair Manager used to manage keypairs.

Scatter

eosio.token

Introduction

The eosio.token contract defines the structures and actions that allow users
to create, issue, and manage tokens on EOSIO based blockchains.
The core token EOS of the EOSIO mainnet are issued under
the account eosio.token using this smart contract.

	GitHub repo: https://github.com/EOSIO/eosio.contracts/tree/master/contracts/eosio.token

	EOS Studio: https://app.eosstudio.io/eosio/eosio.token

Types

There are a few types used in eosio.token as basic data structures.
You can click the link in the action definitions to see how the types are defined.

Smart Contract

Actions

	
class token

	
	
ACTION create(eosio::name issuer, eosio::asset maximum_supply)
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/src/eosio.token.cpp#L5]

	Create a token in supply of maximum_supply with an issuer account.
If successful, a new entry in stat
table for token symbol scope will be created.
Transaction must be signed by the contract account itself.

	
ACTION issue(eosio::name to, eosio::asset quantity, string memo)
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/src/eosio.token.cpp#L27]

	Issue quantity of tokens to account to
with an optional memo that accompanies the token issue transaction.
The token needs to be created in advance.
Transaction must be signed by the issuer.

	
ACTION transfer(eosio::name from, eosio::name to, eosio::asset quantity, string memo)
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/src/eosio.token.cpp#L77]

	Transfer quantity of tokens from account from to account to,
with an optional memo that accompanies the transfer transaction.
The token needs to be created in advance.
Transaction must be signed by account from.

	
ACTION open(eosio::name owner, eosio::symbol symbol, eosio::name ram_payer)
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/src/eosio.token.cpp#L129]

	Allows ram_payer to create an account owner with zero balance for
token symbol at the expense of ram_payer.
Transaction must be signed by account ram_payer.

	
ACTION close(eosio::name owner, eosio::symbol symbol)
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/src/eosio.token.cpp#L149]

	This action is the opposite for open(),
it closes the account owner for token symbol.

	
ACTION retire(eosio::asset quantity, string memo)
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/src/eosio.token.cpp#L53]

	The opposite of create().
If all validations succeed, it debits the statstable.supply amount.

Tables

	
class token

	
	
TABLE stat
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/include/eosio.token/eosio.token.hpp#L163]

	// scope is token symbol
eosio::asset supply; // supply.symbol is the primary key
eosio::asset max_supply;
eosio::name issuer;

	
TABLE accounts
[source] [https://github.com/EOSIO/eosio.contracts/tree/release/1.7.x/contracts/eosio.token/include/eosio.token/eosio.token.hpp#L157]

	// scope is owner
eosio::asset balance; // balance.symbol is the primary key

EOSIO.CDT

	Header Files

Header Files

symbol.hpp

#include <eosio/symbol.hpp>

	
class eosio::symbol_code
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/symbol.hpp#L29]

	Information about a token symbol, the symbol can be up to 7 characters long.

Example:

auto symbol_code = eosio::symbol_code("EOS");

	
symbol_code(std::string_view str)

	Construct a new symbol_code initialising value with str

	
symbol_code(uint64_t raw)

	Construct a new symbol_code initialising value with raw

	
std::string to_string()

	Returns the symbol name as a string

	
uint64_t raw()

	Returns the raw uint64_t value for the symbol

	
friend bool operator==(const symbol_code &a, const symbol_code &b)

	

	
friend bool operator!=(const symbol_code &a, const symbol_code &b)

	

	
friend bool operator<(const symbol_code &a, const symbol_code &b)

	

	
private uint64_t value

	Stores the symbol code as a uint64_t value

	
class eosio::symbol
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/symbol.hpp#L239]

	Used to define a token’s symbol_code and precision (digits after the decimal).

Example:

auto symbol = eosio::asset("10.0000 EOS").symbol;
symbol.code(); // eosio::symbol_code("EOS")
symbol.precision(); // 4

For example, 10.0000 EOS has symbol_code EOS and precision 4.
A symbol can be written as {precision},{symbol}
(in above example, 4,EOS).

	
symbol(eosio::symbol_code sc, uint8_t precision)

	

	
symbol(std::string_view sc, uint8_t precision)

	

	
eosio::symbol_code code()

	

	
uint8_t precision()

	

	
class eosio::extended_symbol
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/symbol.hpp#L377]

	A type of token is created by the
token::create() action.
The same contract account cannot create two types of tokens
with the same symbol,
but two different accounts deployed with the same eosio.token contract can
create separate tokens with identical symbol.

To prevent such vulnerability,
a extended_symbol s could be equal but represent two different tokens.

	
int64_t amount = 0

	

	
eosio::symbol symbol

	

asset.hpp

#include <eosio/asset.hpp>

	
class eosio::asset
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/asset.hpp#L23]

	Used to specify some amount of tokens.
It consists of an amount property and a symbol property.
For example, 10.0000 EOS is an asset with
amount equals 10 * 10^4 and symbol equals 4,EOS.

name.hpp

#include <eosio/name.hpp>

	
struct eosio::name
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/name.hpp#L35]

	Mainly used to represent an EOSIO account name.
Name string can only have small letters a-z, digits 1-5 or dot, and max 12 characters.
The name is saved as a uint64_t.

	
name(std::string_view str)

	Construct a new name initialising value with str

	
name(uint64_t raw)

	Construct a new name initialising value with raw

	
std::string to_string()

	Returns the name as a string

	
uint64_t raw()

	Returns the raw uint64_t value for the name

	
friend bool operator==(const name &a, const name &b)

	

	
friend bool operator!=(const name &a, const name &b)

	

	
friend bool operator<(const name &a, const name &b)

	

	
private uint64_t value

	Stores the name as a uint64_t value

time.hpp

#include <eosio/time.hpp>

	
class eosio::microseconds
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L15]

	Microseconds.

	
microseconds(int64_t count = 0)

	

	
static microseconds maximum()

	Maximum 0x7fffffffffffffffll

	
int64_t count()

	

	
int64_t to_seconds()

	

	
int64_t _count

	The value used in serialization

	
inline microseconds eosio::milliseconds(int64_t ms)
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L44]

	

	
inline microseconds eosio::seconds(int64_t s)
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L43]

	

	
inline microseconds eosio::minutes(int64_t m)
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L45]

	

	
inline microseconds eosio::hours(int64_t h)
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L46]

	

	
inline microseconds eosio::days(int64_t d)
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L47]

	

	
class eosio::time_point
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L54]

	High resolution time point in microseconds.

	
time_point(microseconds elapsed = microseconds())

	

	
microseconds &time_since_epoch()

	

	
uint32_t sec_since_epoch()

	

	
microseconds elapsed

	The value used in serialization

	
class eosio::time_point_sec
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L84]

	A lower resolution time_point accurate only to seconds from 1970.

	
time_point_sec()

	

	
explicit time_point_sec(uint32_t seconds)

	

	
time_point_sec(const time_point &t)

	

	
time_point_sec maximum()

	Maximum time_point_sec(0xffffffff)

	
time_point_sec min()

	Minimum time_point_sec(0)

	
uint32_t sec_since_epoch()

	Returns utc_seconds

	
uint32_t utc_seconds

	The value used in serialization

	
class eosio::block_timestamp
[source] [https://github.com/EOSIO/eosio.cdt/blob/v1.6.2/libraries/eosiolib/core/eosio/time.hpp#L141]

	

Index

 D
 | E
 | F
 | T

D

 	
 	dgoods (C++ class), [1], [2], [3]

 	dgoods::accounts (C++ member)

 	dgoods::asks (C++ member)

 	dgoods::burnft (C++ function)

 	dgoods::burnnft (C++ function)

 	dgoods::categoryinfo (C++ member)

 	dgoods::closesalenft (C++ function)

 	dgoods::create (C++ function)

 	dgoods::dgood (C++ member)

 	
 	dgoods::dgoodstats (C++ member)

 	dgoods::issue (C++ function)

 	dgoods::listsalenft (C++ function)

 	dgoods::lockednfts (C++ member)

 	dgoods::pausexfer (C++ function)

 	dgoods::setconfig (C++ function)

 	dgoods::tokenconfigs (C++ member)

 	dgoods::transferft (C++ function)

 	dgoods::transfernft (C++ function)

E

 	
 	eosio::asset (C++ class)

 	eosio::block_timestamp (C++ class)

 	eosio::days (C++ function)

 	eosio::extended_symbol (C++ class)

 	eosio::extended_symbol::amount (C++ member)

 	eosio::extended_symbol::symbol (C++ member)

 	eosio::hours (C++ function)

 	eosio::microseconds (C++ class)

 	eosio::microseconds::_count (C++ member)

 	eosio::microseconds::count (C++ function)

 	eosio::microseconds::maximum (C++ function)

 	eosio::microseconds::microseconds (C++ function)

 	eosio::microseconds::to_seconds (C++ function)

 	eosio::milliseconds (C++ function)

 	eosio::minutes (C++ function)

 	eosio::name (C++ struct)

 	eosio::name::name (C++ function), [1]

 	eosio::name::operator!= (C++ function)

 	eosio::name::operator< (C++ function)

 	eosio::name::operator== (C++ function)

 	eosio::name::raw (C++ function)

 	eosio::name::to_string (C++ function)

 	eosio::name::value (C++ member)

 	
 	eosio::seconds (C++ function)

 	eosio::symbol (C++ class)

 	eosio::symbol::code (C++ function)

 	eosio::symbol::precision (C++ function)

 	eosio::symbol::symbol (C++ function), [1]

 	eosio::symbol_code (C++ class)

 	eosio::symbol_code::operator!= (C++ function)

 	eosio::symbol_code::operator< (C++ function)

 	eosio::symbol_code::operator== (C++ function)

 	eosio::symbol_code::raw (C++ function)

 	eosio::symbol_code::symbol_code (C++ function), [1]

 	eosio::symbol_code::to_string (C++ function)

 	eosio::symbol_code::value (C++ member)

 	eosio::time_point (C++ class)

 	eosio::time_point::elapsed (C++ member)

 	eosio::time_point::sec_since_epoch (C++ function)

 	eosio::time_point::time_point (C++ function)

 	eosio::time_point::time_since_epoch (C++ function)

 	eosio::time_point_sec (C++ class)

 	eosio::time_point_sec::maximum (C++ function)

 	eosio::time_point_sec::min (C++ function)

 	eosio::time_point_sec::sec_since_epoch (C++ function)

 	eosio::time_point_sec::time_point_sec (C++ function), [1], [2]

 	eosio::time_point_sec::utc_seconds (C++ member)

F

 	
 	forum (C++ class), [1], [2], [3]

 	forum::clnproposal (C++ function)

 	forum::expire (C++ function)

 	forum::post (C++ function)

 	forum::proposals (C++ member)

 	forum::propose (C++ function)

 	
 	forum::status (C++ function)

 	(C++ member)

 	forum::unpost (C++ function)

 	forum::unvote (C++ function)

 	forum::vote (C++ function)

 	(C++ member)

T

 	
 	token (C++ class), [1]

 	token::accounts (C++ member)

 	token::close (C++ function)

 	token::create (C++ function)

 	
 	token::issue (C++ function)

 	token::open (C++ function)

 	token::retire (C++ function)

 	token::stat (C++ member)

 	token::transfer (C++ function)

More Concepts

Elemental Battles

[image: ../_images/battles.png]
Elemental Battles are created by Block.one as a tutorial
to demonstrate the process of creating a fully-functional
blockchain-based application.

Introduction

Frontend

Smart Contract

Smart Contract (assets)

We will now describe the set of actions
and table structures to implement the dGoods standard. In this section
we focus on assets-related actions and tables. In the next
section we will talk about dGoods’ built-in decentralized exchange.

Tables

	
class dgoods

	
	
TABLE tokenconfigs
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/include/dgoods.hpp#L97]

	// scope is self
eosio::symbol_code symbol;
eosio::name standard;
string version;
uint64_t category_name_id;

The first table created and must be initialized with setconfig() before any tokens
can be created.
tokenconfigs is a singleton which holds the basic information for the contract including

	symbol for the contract

	standard and version that let wallets know what they need to support for this contract

	category_name_id which is like a global id for category:token_name pairs;
the value will increment by one every time create() is successfully executed

	
TABLE dgoodstats
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/include/dgoods.hpp#L112]

	// scope is category
bool fungible;
bool burnable;
bool sellable;
bool transferable;
eosio::name issuer;
eosio::name token_name; // primary key
uint64_t category_name_id;
eosio::asset max_supply;
eosio::asset current_supply;
eosio::asset issued_supply;
eosio::name rev_partner;
double rev_split;
string base_uri;

Saves token info such as

	if the token is fungible, burnable, sellable and transferable

	the issuer account who is authorized to issue the token

	category (as table scope) and token_name to determine token classfication;
the pair category:token_name must be unique

	category_name_id which is like a global id for category:token_name

	max_supply, current_supply, issued_supply given as eosio::asset;
for NFTs the precision must be integer; issued_supply is used to keep track of unique id’s
when tokens are burned as it never decreases

	rev_partner and rev_split which are used to determine how to split the income when
the token is sold in the built-in Decentralized Exchange

	base_uri will be used together with relative_uri from table dgood
to provide extra metadata for the token,
usually as one of metadata templates

Info is written when a token is created.
The category is used as table scope and token_name
is the primary key, so it ensures each category:token_name pair is
unique.

	
TABLE categoryinfo
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/include/dgoods.hpp#L104]

	// scope is self
eosio::name category; // primary key

Holds all category names for easy querying.

	
TABLE dgood
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/include/dgoods.hpp#L131]

	// scope is self
uint64_t id; // primary key
uint64_t serial_number;
eosio::name owner; // secondary key
eosio::name category;
eosio::name token_name;
std::optional<string> relative_uri;

The global list for non and semi-fungible tokens. Fungible tokens
are not be saved in this table.
Secondary indices are used to search by owner.

	relative_uri will be used together with base_uri from table dgoodstats
to provide extra metadata for the token,
usually as one of metadata templates

	
TABLE accounts
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/include/dgoods.hpp#L147]

	// scope is owner
uint64_t category_name_id; // primary key
eosio::name category;
eosio::name token_name;
eosio::asset amount;

Holds account information. For fungible tokens amount is the token balance while
for NFTs it is the number of owned NFTs. Users need to query table dgood
to find information for each NFT they own.

Actions

	
class dgoods

	
	
ACTION setconfig(eosio::symbol_code sym, string version)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L4]

	Must be called first to initialize table tokenconfigs with
a symbol and version of dGoods spec.
It also initializes category_name_id to zero.
Can be called again to update the version but the symbol will not change.

	
ACTION create(eosio::name issuer, eosio::name rev_partner, eosio::name category, eosio::name token_name, bool fungible, bool burnable, bool sellable, bool transferable, double rev_split, string base_uri, eosio::asset max_supply)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L19]

	Defines a type of token before any tokens can be issued.
See table dgoodstats of how properties are defined.

	
ACTION issue(eosio::name to, eosio::name category, eosio::name token_name, eosio::asset quantity, string relative_uri, string memo)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L88]

	Mints a token and gives ownership to the to account.
The token category:token_name must be created first.
quantity must match the symbol and precision of max_supply.
fixme For NFTs, can issue up to 100 at one time.

	
ACTION transferft(eosio::name from, eosio::name to, eosio::name category, eosio::name token_name, eosio::asset quantity, string memo)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L215]

	Transfer the fungible tokens category:token_name.
Only applicable if the token is transferable.
The quantity must match the symbol and precision of max_supply.

	
ACTION transfernft(eosio::name from, eosio::name to, vector<uint64_t> dgood_ids, string memo)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L196]

	Transfer non-fungible tokens.
Only applicable if the token is transferable and not be locked (see table lockednfts).
dgood_ids are from table dgood.

	
ACTION burnft(eosio::name owner, uint64_t category_name_id, eosio::asset quantity)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L172]

	Destroys fungible tokens and frees the RAM if all tokens are deleted from the account.
Only applicable if the token is burnable. Only the owner may call this action.
The quantity must match the symbol and precision of max_supply.
The category_name_id is from table dgoodstats.

	
ACTION burnnft(eosio::name owner, vector<uint64_t> dgood_ids)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L137]

	Destroys specified non-fungible tokens and frees the RAM.
Only applicable if the token is burnable and not be locked (see table lockednfts).
Only the owner may call this action.
dgood_ids are from table dgood.

	
ACTION pausexfer(bool pause)

	Pauses all transfers of all tokens. Only callable by the contract.
If pause is true, will pause. If pause is false will unpause transfers.

Smart Contract (exchange)

The dGoods standard also has a built in exchange.

Actions

	
class dgoods

	
	
ACTION listsalenft(eosio::name seller, vector<uint64_t> dgood_ids, eosio::asset net_sale_amount)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#247]

	Used to list nfts for sale in the token contract itself. Callable only by owner,
if sellable is true and token not locked, creates sale listing in the token contract,
marks token as not transferable while listed for sale. An array of dgood_ids is required.

	
ACTION closesalenft(eosio::name seller, uint64_t batch_id)
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/src/dgoods.cpp#L289]

	Callable by seller if listing hasn’t expired, or anyone if the listing is expired;
will remove listing, remove lock and return nft to seller

Tables

	
class dgoods

	
	
TABLE asks
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/include/dgoods.hpp#L86]

	// scope is self
uint64_t batch_id;
vector<uint64_t> dgood_ids;
eosio::name seller;
eosio::asset amount;
eosio::time_point_sec expiration;

uint64_t primary_key() const { return batch_id; }
uint64_t get_seller() const { return seller.value; }

Holds listings for sale in the built in decentralized exchange (DEX)

	
TABLE lockednfts
[source] [https://github.com/MythicalGames/dgoods/blob/v1.0/include/dgoods.hpp#L78]

	// scope is self
uint64_t dgood_id;

uint64_t primary_key() const { return dgood_id; }

Table corresponding to tokens on sale and therefore locked to disable transfer.

dGoods

[image: ../../_images/dgoods.png]
dGoods [https://github.com/MythicalGames/dgoods] is an open source
and free standard for handling all types of
virtual items on the EOS blockchain.
It is led by Mythical Games [https://mythical.games/]
to provide a robust digital goods standard
that supports a diverse and innovative development community.

dGoods is a logical extension of the standard EOS token with the addition
of significant functionality improvements that will allow teams to easily
integrate and display virtual items. With the dGoods standard, you get a
framework that works with all types of digital assets that you might need
for your dApps.

Three most important properties of dGoods which differentiate from other
token standards

	Hierarchical naming structure to enable filtering and organization of tokens and
support fungible and non-fungible tokens (NFTs) in a single contract;

	Focus on semi-fungible tokens - that is, tokens that are 1 of n with
a serial number or slightly different metadata;

	Open source metadata types and standardization for each type
with localization, e.g. 3dGameAsset, Ticket, etc.

Quickstart

Before dive into details, we will first go through the key steps of dGoods standard
and learn how to issue some digital assets. For those who only need to use dGoods in
some basic scenarios, this section should be enough for you to understand some common practices of
dGoods.

We will use EOS Studio Web
and the Cloud-hosted Network in this tutorial
so you don’t need to set up an EOSIO development environment.
The source code for dGoods smart contract is already on EOS Studio Web.
Open the project at https://app.eosstudio.io/mythicalgames/dgoods,
which also includes pre-built wasm and abi.

Preparations

Assume we want to build a game and use blockchain technology to grant players true
ownership of in-game currencies and items. There are many different kinds of items
in a game, and one benefit of dGoods is you can use a single contract to manage all
of them.

Before started, you need to

	Create a main account for the game and deploy the dGoods smart contract.
For easy reference, we will call it diablo.dapp

	Add eosio.code permission to diablo.dapp@active

	Create two accounts demonhunter and necromancer as players in the game

Initialization

Each dGoods contract has a universal symbol to govern all digital assets created under it.
The symbol can be any strings of capital letters up to 7 characters.
To initialize a new dGoods contract, it’s required to first execute the setconfig() action
to set the symbol along with some other configs.
Open diablo.dapp contract in EOS Studio’s Contract Inspector and
execute the setconfig() action with

// Execute action *setconfig* with parameters
symbol: "DIABLO"
version: "1.0"

Lifecycle of digital assets

Digital assets usually go through the following process to be created and
then circulated among different owners.

	When a type of asset is created, the basic properties are locked-in on the blockchain

	Created assets can be issued to some accounts as initial owners

	The owner of an asset can transfer or sell it to another account

	Burnable assets can be permanently destroyed (usually) by the owner

Create

The dGoods contract use a two level structure category:token_name to classify its assets.
For example, if we want to create sword items for our game, we can use category=weapons
and token_name=sword. Each sword is unique because they have different attributes,
and this type of eosio::asset is called non-fungible token (NFT).

To create the sword asset type, execute the create() action

// Execute action *create* with parameters
issuer: "diablo.dapp"
rev_partner: "diablo.dapp"
category: "sword"
token_name: "ingeom"
fungible: false
burnable: true // can be burned (destroyed)
sellable: true // can be sold in the built-in DEX
transferable: true // can be transfered
rev_split: 0.05
base_uri: "http://dgoods.eosstudio.io/quickstart/assets/"
max_supply: "10000 DIABLO"

Here we created sword:ingeom with max supply of 10000, which means
there will be at maximum 10000 swords for all players in the game.
The base_uri will be used later to provide metadata for each sword.
Properties rev_partner and rev_split are used when the asset is sold in the
built-in decentralized exchange.

We will use the create() action again to define an in-game currency.

// Execute action *create* with parameters
issuer: "diablo.dapp"
rev_partner: "diablo.dapp"
category: "currencies"
token_name: "gold"
fungible: true
burnable: true
sellable: false
transferable: true
rev_split: 0
base_uri: "http://dgoods.eosstudio.io/quickstart/assets/5d790aa1582a3b6f477f098a"
max_supply: "1000000000.0000 DIABLO"

Each unit of GOLD will be identical and this type of asset is called fungible tokens.
Note that for both fungible and non-fungible tokens, max_supply is always of type asset
which carries a symbol and a precision. For NFTs the precision must be an integer.

Issue

Now we have created two types of assets, and we are free to issue them now
using the issue() action.

// Execute action *issue* with parameters
to: "demonhunter"
category: "sword"
token_name: "ingeom"
quantity: "1 DIABLO"
relative_uri: "5d64ea4dd3295f7921dbe320"
memo: "You justed picked the In-geom Sword!"

dGoods standard allows you to provide some extra information for the item
returned by the URI base_uri + relative_uri.
The standard also defined some templates
for the data format. For example, we are using 2dgameAsset for our Master Sword.

Response of http://dgoods.eosstudio.io/quickstart/assets/5d64ea4dd3295f7921dbe320

{
 "type": "2dgameAsset",
 "name": "In-geom",
 "description": "Carried by the kings of Xiansai in antiquity, this sword was said to harness the speed and lethality of four tiger spirits. One king claimed to have “exorcised” a thousand demons from their hapless victims, using only this blade.",
 "imageSmall": "http://ok.166.net/cain-corner/diablo3db/49511/cn/items/p2_sword_norm_unique_01_icon.png", // 150 x 150
 "imageLarge": "http://ok.166.net/cain-corner/diablo3db/49511/cn/items/p2_sword_norm_unique_01_icon.png", // 1024 x 1024
 "details": {
 "level": 80
 },
 "authenticityImage": ""
}

If you want to make sure the metadata is immutable,
you can also use URIs pointing to data saved on a blockchain (such as IPFS).
The full URI is only fixed when the asset is issued.
In that case you can issue all tokens to one account to lock down
the metadata,
and transfer to player accounts or list them through the exchange later.

We can also use issue() action to issue some fungible tokens

// Execute action *issue* with parameters
to: "demonhunter"
category: "currencies"
token_name: "gold"
quantity: "100.0000 DIABLO"
relative_uri: "" // will not be used for fungible tokens
memo: "Take this to start your advanture."

Let’s explore what this data looks like on chain so far:

	Table dgoodstats with scope sword

	fungible

	burnable

	sellable

	transferable

	issuer

	token_name

	category_name_id

	max_supply

	current_supply

	issued_supply

	rev_partner

	rev_split

	base_uri

	false

	true

	true

	true

	diablo.dapp

	ingeom

	0

	10000 SWORD

	1 SWORD

	1 SWORD

	diablo.dapp

	0.05

	http://dgoods.eosstudio.io/quickstart/assets/

	Table dgoodstats with scope currencies

	fungible

	burnable

	sellable

	transferable

	issuer

	token_name

	category_name_id

	max_supply

	current_supply

	issued_supply

	rev_partner

	rev_split

	base_uri

	true

	true

	false

	true

	diablo.dapp

	gold

	1

	1000000000.0000 GOLD

	100.0000 GOLD

	100.0000 GOLD

	diablo.dapp

	0

	http://dgoods.eosstudio.io/quickstart/assets/5d790aa1582a3b6f477f098a

	Table dgood with scope diablo.dapp

	id

	serial_number

	owner

	category

	token_name

	relative_uri

	0

	1

	demonhunter

	sword

	ingeom

	5d64ea4dd3295f7921dbe320

	Table accounts with scope demonhunter

	category_name_id

	category

	token_name

	amount

	0

	sword

	ingeom

	1 DIABLO

	1

	currencies

	gold

	100.0000 DIABLO

Transfer

The owner of NFTs can transfer them to another account using the transfernft() action.

// Execute action *transfernft* with parameters
from: "demonhunter"
to: "necromancer"
dgood_ids: [0]
memo: "Take the weapons and fight with me."

Notice that the parameter dgood_ids is an array which means you can transfer multiple items
in a single action call. The id’s are coming from the dgood table and make sure you have
ownership of all assets being transfered.

NFTs can also be sold in the built-in decentralized exchange
which we will talk about in later sections.

To transfer fungible tokens, use transferft()

// Execute action *transferft* with parameters
from: "demonhunter"
to: "necromancer"
category: "currencies"
token_name: "gold"
quantity: "10.0000 DIABLO"
memo: "Take the money."

Fungible tokens cannot be sold in the built-in exchange.

Burn

If the token is burnable, the owner can permanently destroy
it using burnnft() (for NFTs) or burnft() (for fungible tokens)

// Execute action *burnnft* with parameters
owner: "necromancer"
dgood_ids: [0]
memo: "Destroy the sword"

// Execute action *burnft* with parameters
owner: "necromancer"
category_name_id: "1"
quantity: "1.0000 DIABLO"

You can find the category_name_id either in the dgoodstats table
or the accounts table.

Next Step

We have covered the process of creating, issuing, transfering and burning some
digital assets. In the next setion, we will talk about how to look at your assets in
3rd-party wallets.

dGoods Standard

The digital goods landscape is as diverse as it gets, so
dGoods provide a flexible and comprehensive standard
that could address a diverse range of digital item requirements.

Multiple categorized tokens in one contract

In a world where digital goods will be a major commodity, being able
easily and efficiently manage large quantities of items is critical.
Other token standards have one token with one contract. If a developer
wants to issue different types of tokens, it has to be done through
multiple contracts. This not only increases complexity but also cost.

To address this, the dGoods standard implements a hierarchical
naming structure, which has one token symbol per contract
but allows the creation of many sub-tokens.

[image: ../../_images/dgoods-structure.png]
Each sub-token can be
assigned a category, a token name, and tags which will allow wallets,
exchanges and dApps to organize, filter, and display tokenized assets
with ease. All of this can then be packed into one single transaction,
allowing for developers and users to move groups of tokens around
quickly and efficiently.

Fungible, non-fungible, and semi-fungible

Fungible tokens refers to tokens which are interchangeable like EOS itself.
When tokens are fungible, each of their individual units are equivalent
and they are indistinguishable among themselves.

A non-fungible token (NFT) is a special type of token which represents
something unique; non-fungible tokens are thus not interchangeable.
NFTs are used in several specific applications that require unique
digital items like crypto-collectibles and crypto-gaming. Popular
blockchain games like CryptoKitties make use of non-fungible tokens
on the Ethereum blockchain.

NFTs can be used to represent in-game assets that are controlled
by the user instead of the game developer. This lets
the assets be traded on third-party marketplaces without permission from
the game developer. NFTs also find potential use in digital art, by helping
prove authenticity and ownership.

Semi-fungible tokens are technically unique in that they have a unique
identifier, but may share the same or similar data to other tokens.
Many physical goods would fall into this category as they have a unique
serial number but otherwise are indistinguishable.

As a standard for tokenized digital goods, a single focus on NFT standards
was not enough. A game or company will want to create many different tokens,
some of them being fungible or semi-fungible while others being non-fungible.
Since the dGoods standard has the benefit of defining sub-tokens within one
contract, it gives developers the freedom to make some of them fungible and
others non-fungible.

Fungible tokens are identified by category:token_name
and NFTs have an extra token id associated. This allows for unprecedented
organization of tokens. It also enables wallets and dApps to surface tokens
by category or name, providing search and filtering functionality.

Certificate of Authenticity

True ownership is at the heart of the new player-owned economy that’s
emerging from blockchain technology. With the certificate of authenticity,
we provide developers an additional way to integrate proof of ownership
into their tokenized digital goods.

Like with physical real-world objects, digital objects need a certificate
of authenticity. In order to support a thriving economy of digital goods,
it’s critical we give consumers confidence in their purchases. Built into
dGoods is the ability to have immutable fields describing the object’s
attributes that make up the certificate of authenticity. This will also
allow developers to display a graphical representation to consumers as
proof of the item’s attributes including things like its brand, creator,
or rarity.

Metadata Templates

Part of the dGoods standard involves specifying templates for metadata
depending upon the type of digital good you’re working with. If the token
is for a game, coupon, ticket, music file, piece of art, etc., standard
templates can be created so that wallets will be able to render and display
the relevant information, images, and even 3d objects. This allows for a
wide array of digital asset types to be supported while providing the
development community a flexible toolset to work with.

Decentralized Exchange

Todo

One of the biggest features of dgoods is the built-in exchange.

Open Source

The dGoods standard is an open and free standard initially for the EOS
development community but is open for other blockchains to adopt. The
standard will roll out first on the EOS mainnet. No other tokens are
required to use the standard.
dGoods looks leverage the strengths of blockchain,
capitalizing on concepts like verifiable scarcity, and allowing for the
emergence of thriving embedded secondary marketplaces.

Metadata Templates

In order for wallets or dApps to support various digital goods,
there need to be standards associated with the metadata.
Therefore, the dGoods standard also defines templates based on the type of good.
The template data should be returned by the URI
base_uri (from table dgoodstats) attached with
relative_uri (from table dgood).

The following templates are candidates dGoods has put forth, but this
is to be a collaborative exercise. The dGoods standard also provides
a repository of templates [https://github.com/MythicalGames]
that are agreed upon by the community.
All metadata is formatted as JSON objects specified from the template types.

2dgameAsset

	Property

	Type

	

	type

	string

	"2dgameAsset"

	name

	string

	identifies the asset the token represents

	description

	string

	short description of the asset the token represents

	imageSmall

	string

	URI pointing to image resource size 150 x 150

	imageLarge

	string

	URI pointing to image resource size 1024 x 1024

	details

	object

	Key value pairs to render in a detail view, i.e.
{"strength": 5}

	authenticityImage

	string

	URI pointing to resource with mime type image
representing certificate of authenticity

3dgameAsset

	Property

	Type

	

	type

	string

	"3dgameAsset"

	name

	string

	identifies the asset the token represents

	description

	string

	short description of the asset the token represents

	imageSmall

	string

	URI pointing to image resource size 150 x 150

	imageLarge

	string

	URI pointing to image resource size 1024 x 1024

	3drender

	string

	URI pointing to js webgl for rendering 3d object

	details

	object

	Key value pairs to render in a detail view, i.e.
{"strength": 5}

	authenticityImage

	string

	URI pointing to resource with mime type image
representing certificate of authenticity

ticket

	Property

	Type

	

	type

	string

	"ticket"

	name

	string

	identifies the event the ticket is for

	description

	string

	short description of the event the ticket is for

	location

	string

	name of the location where the event is being held

	address

	string

	address of the location where the event is being held

	date

	time

	starting date of the event

	time

	time

	starting time of the event

	imageSmall

	string

	URI pointing to image resource size 150 x 150

	imageLarge

	string

	URI pointing to image resource size 1024 x 1024

	details

	object

	Key value pairs to render in a detail view, i.e.
{"openingAct": "Nickelback"}

	authenticityImage

	string

	URI pointing to resource with mime type image
representing certificate of authenticity

	duration

	string

	length of time the event lasts for

	row

	string

	row where seat is located

	seat

	string

	seat number or GA for General Admission

art

	Property

	Type

	

	type

	string

	"art"

	name

	string

	identifies the asset the token represents

	description

	string

	short description of the asset the token represents

	creator

	string

	creator(s) of the art

	imageSmall

	string

	URI pointing to image resource size 150 x 150

	imageLarge

	string

	URI pointing to image resource size 1024 x 1024

	date

	time

	date artwork was created

	details

	object

	Key value pairs to render in a detail view, i.e.
{"materials": ["oil", "wood"], "location": "SFMOMA"}

	authenticityImage

	string

	URI pointing to resource with mime type image
representing certificate of authenticity

jewelry

	Property

	Type

	

	type

	string

	"jewelry"

	name

	string

	identifies the asset the token represents

	description

	string

	short description of the asset the token represents

	imageSmall

	string

	URI pointing to image resource size 150 x 150

	imageLarge

	string

	URI pointing to image resource size 1024 x 1024

	image360

	string

	URI pointing to image resource for 360 image

	manufactureDate

	time

	date the jewelry was manufactured

	manufacturePlace

	string

	place the jewelry was manufactured

	details

	object

	Key value pairs to render in a detail view, i.e.
{"caret": 1.22}

	authenticityImage

	string

	URI pointing to resource with mime type image
representing certificate of authenticity

dGoods in Wallets

As a open sourced standard, dGoods provides a protocol that 3rd-party
wallet can implement to provide the features of dGoods. Users will be
able to visualize the digital assets issued under the standard and
make transactions for them. In this section, we will show how to do
that using TokenPocket [https://www.tokenpocket.pro],
one of the first wallets support dGoods.
We will continue from the previous section, so make sure you already
followed it and issued some digital assets.

Preparations

1. Enable dGoods in developer mode

	Open TokenPocket and go to Me -> About Us.

	Tap the TokenPocket icon 8 times and turn on the developer mode.

[image: ../../_images/tp-dev-aboutus.png]
[image: ../../_images/tp-dev-agreement.png]

	The Developer Mode option will appear at the bottom.
Go inside and turn on the dGoods option.

[image: ../../_images/tp-dev-list.png]
[image: ../../_images/tp-dev-dgoods.png]

2. Connect to EOS Studio’s Cloud-hosted network

	Go to Me -> Settings -> Nodes Setting.

	Under the custom section, add the API endpoint https://eos-studio.api.dfuse.dev.

[image: ../../_images/tp-node.png]

3. Import accounts

	Open the Keypair Manager in EOS Studio
and export the private keys you used to create demonhunter and necromancer
(or accounts you used).

	Open TokenPocket and go to Assets, and select I have an account -> Private Key.

	Paste the private key exported from EOS Studio, enter a password to protect your private key
and remember to enter the account name in Account(Developer Mode).

	Click Start Importing to finish importing your accounts to TokenPocket.

[image: ../../_images/tp-assets-no-account.png]
[image: ../../_images/tp-assets-add-list.png]
[image: ../../_images/tp-assets-add-details.png]

4. Add dGoods contract

Go back to Assets tab to find the account you just imported. You should see it already
has some EOS tokens.

[image: ../../_images/tp-assets-main.png]
The dGoods assets you own may be issued under different contracts, which represents different
games or applications. You need to manually add the contract that issued your digital assets.

	Go to the Collectibles which is still empty now. Click the plus icon at the right.

	Enter the name of the contract that issued your dGoods assets, and click Confirm.

	An item with the contract name will appear in the collectible list. Click on it and you will
be able to view digital assets you own under the contract.

[image: ../../_images/tp-assets-collectibles-empty.png]
[image: ../../_images/tp-assets-collectibles-add.png]
[image: ../../_images/tp-assets-collectibles-list.png]

View digital assets

Now we are ready to look at our dGoods assets in TokenPocket.

Non-fungible tokens

[image: ../../_images/tp-nft-list.png]
[image: ../../_images/tp-nft-details.png]
Fungible tokens

[image: ../../_images/tp-ft-list.png]
[image: ../../_images/tp-ft-details.png]

Make transfers

	Select the NFT you want to transfer, and click the Transfer button.

	Enter payee’s account name and click Confirm.

	Enter the password you used when importing the private key to authorize the transaction.

[image: ../../_images/tp-nft-details.png]
[image: ../../_images/tp-transfer.png]
[image: ../../_images/tp-transfer-password.png]

Smart Contract

In this section we will look at the technical details of how the
eosio.forum smart contract is implemented. This contract can be
roughly divided into four parts: proposal, vote, status and post.
All the actions and tables live in the same
class forum.

Proposal

The proposal part contains a table proposals and a few
actions to operate a proposal.

	
class forum

	
	
ACTION propose(eosio::name proposer, eosio::name proposal_name, string title, string proposal_json, eosio::time_point_sec expires_at)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L11]

	

	
TABLE proposals
[source] [https://github.com/eoscanada/eosio.forum/tree/master/include/forum.hpp#L87]

	eosio::name proposal_name; // primary key
eosio::name proposer; // secondary key
string title;
string proposal_json;
eosio::time_point_sec created_at;
eosio::time_point_sec expires_at;

Any account can execute the propose() action to create a new proposal.
After some necessary parameter checks, a new proposal will be saved in
table proposals with RAM charged to the proposer.
Each action parameter corresponds to a column in the table:

	proposer is the account who created the proposal;

	proposal_name is the primary key for table proposals
and used as the unique identifier for a proposal;

	title is a string for the proposal title and should be less than 1024 characters;

	proposal_json is a JSON string for the proposal description and should comply with
Proposal JSON Structure Guidelines [https://github.com/eoscanada/eosio.forum#proposal-json-structure-guidelines];

	expires_at defines the deadline for the voting period, which
needs to be a time point between the action execution time and the next 6 months.

Once a proposal is created, any account (including the proposer itself)
can vote on it via
the vote() action, as long as the current time is before
expires_at.

	
ACTION expire(eosio::name proposal_name)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L43]

	This action allows the proposer to manually expire his/her
proposal and end the voting immediately.
This is done by modifying the expires_at field to the current time.

forum.cpp

	53
54
55

	proposal_table.modify(itr, proposer, [&](auto& row) {
 row.expires_at = current_time_point_sec();
});

The action expire() can only be called by the original proposer.
Calling it on a non-existant or already expired proposal
will return an error.

	
ACTION clnproposal(eosio::name proposal_name, uint64_t max_count)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L111]

	It’s possible to clean a proposal if it has expired and its freeze period of
3 days (set by FREEZE_PERIOD_IN_SECONDS) has fully elapsed.

forum.hpp

	99

	bool can_be_cleaned_up() const { return current_time_point_sec() > (expires_at + FREEZE_PERIOD_IN_SECONDS); }

The action clnproposal() will clean up all votes related to a proposal.
It works iteratively by removing as many as max_count votes,
and can be executed multiple times until all votes are removed.

forum.cpp

	119
120
121
122
123
124
125
126
127
128
129
130
131

	auto index = vote_table.template get_index<"byproposal"_n>();

auto vote_key_lower_bound = compute_by_proposal_key(proposal_name, name(0x0000000000000000));
auto vote_key_upper_bound = compute_by_proposal_key(proposal_name, name(0xFFFFFFFFFFFFFFFF));

auto lower_itr = index.lower_bound(vote_key_lower_bound);
auto upper_itr = index.upper_bound(vote_key_upper_bound);

uint64_t count = 0;
while (count < max_count && lower_itr != upper_itr) {
 lower_itr = index.erase(lower_itr);
 count++;
}

Notice that the secondary index byproposal is used to query and iterate
over all votes of a given proposal_name (see table vote).
Once there are no more associated votes, the proposal itself will be deleted.

forum.cpp

	134
135
136

	if (lower_itr == upper_itr && itr != proposal_table.end()) {
 proposal_table.erase(itr);
}

This effectively clears all the RAM consumed for a proposal
and all its votes.
It’s safe to allow anybody to call clnproposal() since the action will
only accept an expired proposal that has passed the freeze period, which means it
has terminated its lifecycle.
Voters, proposers, or any community member is invited to call clnproposal()
to clean the RAM related to a proposal.

Vote

The vote part contains a table vote as well as vote()
and unvote() actions.

	
class forum

	
	
ACTION vote(eosio::name voter, eosio::name proposal_name, uint8_t vote, string vote_json)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L58]

	

	
ACTION unvote(eosio::name voter, eosio::name proposal_name)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L80]

	

	
TABLE vote

	uint64_t id; // primary key
eosio::name proposal_name; // secondary key
eosio::name voter; // secondary key
uint8_t vote;
string vote_json;
eosio::time_point_sec updated_at;

For a non-expired proposal, any accounts can use the vote()
action to publish a vote. It will consume a little bit of RAM from the voter (430 bytes)
to save the vote info in table vote.

The meaning of the vote is represented by
the vote field.

	0 means no

	1 means yes

	255 means abstain

	Other values can be used to represent other meanings

In table vote,
the primary key id is generated automatically. Secondary keys are
created for fields proposal_name and voter to support searching
by proposal or voter.
The field vote_json is designed to provide extra information for a vote,
such as a comment explaining the thought behind the vote.

The voter can execute the vote() action again to change his/her vote,
or call the unvote() action to delete his/her vote in table vote.
Removing the current active vote reclaims the stored RAM of the vote.
Of course, the vote will not count anymore.

The vote() and unvote() actions will first check
whether the proposal is still active, and refuse the execution if the proposal is
expired.

forum.hpp

	98

	bool is_expired() const { return current_time_point_sec() >= expires_at; }

Therefore, it is guaranteed that the vote statistics for a proposal will be fixed
once the proposal is expired, so that people will be able to count the votes
and compute the voting result.

Status

	
class forum

	
	
ACTION status(eosio::name account, string content)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L174]

	

	
TABLE status

	// scope is self
eosio::name account; // primary key
string content;
eosio::time_point_sec updated_at;

The action status() will record a status for the associated account.
If the content is empty, the action will remove a previous status.
Otherwise, it will add a status entry or modify the existing entry for
the account using the content received.

Todo

How this is used?

Post

	
class forum

	
	
ACTION post(eosio::name poster, string post_uuid, string content, eosio::name reply_to_poster, string reply_to_post_uuid, bool certify, string json_metadata)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L139]

	

	
ACTION unpost(eosio::name poster, string post_uuid)
[source] [https://github.com/eoscanada/eosio.forum/tree/master/src/forum.cpp#L167]

	

Todo

How this is used?

eosio.forum

eosio.forum [https://github.com/eoscanada/eosio.forum]
is a smart contract built by
EOS Canada [https://www.eoscanada.com]
to support the
EOS Referendum system [https://medium.com/@eosnationbp/the-fate-of-eos-is-in-the-hands-of-token-holders-3d345147ef6]
by storing proposals and their related votes in-RAM in the blockchain’s
state.

It’s also possible to create posts, responses related to those posts, and statuses,
but they are not stored in-RAM in the blockchain’s state.
It allows authenticated
messages to go through, where they are visible in the transaction history
of the chain. Off-chain tools are needed to sort, display, aggregate,
and report on the outputs of the post and status actions.

Quickstart

In the first section we will
demonstrate the basic workflow of creating a proposal
and how to cast a vote on it. This workflow will be divided into 4 stages:
proposal, voting, freeze, and clearing the RAM.

We will use
EOS Studio Web and dfuse’s On Demand Network for
the demonstration so that you will not need to set up a development
environment.

Setups

	Open eosio.forum at
https://app.eosstudio.io/dfuseio/eosio.forum and click the fork button
to make your own copy of the project.

	Edit the waiting time from 3 days to 5 minutes so that we won’t
need to wait that long in this demo.
Open the file include/forum.hpp, go to line 70 and change the value of
FREEZE_PERIOD_IN_SECONDS to 300. The use of this value will be
explained later.

	Click the build button to rebuild the smart contract and
regenerate the wasm and abi files.

	Create a new account and deploy the contract you just built. For easy reference
we will assume the account name to be eosio.forum.

	Create some other accounts, one for creating a proposal (proposer)
and as many others for casting votes as you’d like (voter1, voter2, etc).

Stage 1: Proposal

Anybody with a valid EOS account
can create a proposal to the community. Calling this operation will consume some RAM
to save the content of the proposal. Before we create a new proposal, let’s
open the account proposer and take note of its current RAM usage.
Then, go to EOS Studio’s Contract Inspector
and execute the propose() action

// Execute action *propose* with parameters
// Use proposer@active to sign
proposer: "proposer"
proposal_name: "usesys"
title: "Use SYS as the core symbol"
proposal_json: { "type": "referendum-v1", "content": "Should EOS change its symbol to SYS?" }
expires_at: "2020-01-01T00:00:00"

The transaction should be signed by proposer. All ongoing proposals are
indexed by proposal_name, which is of type eosio::name and
therefore can have a human readable name. The content of the proposal
contains a title (up to 1024 chars) and a proposal_json in the
format of
Proposal JSON Structure Guidelines [https://github.com/eoscanada/eosio.forum#proposal-json-structure-guidelines].
Every proposal also needs to have an expiration time expires_at,
which should be a point between now and 6 months in the future.
We will explain how it is used in Stage 3.

If you check proposer’s RAM usage now, you should see it has increased
by about 1 KB if you have the same parameters as provided above. Requirement
of some RAM can prevent spam
so that important issues can be discussed and voted on. Once a proposal has
finished its entire lifecycle, eosio.forum allow
you to safely remove the proposal and free up used RAM (Stage 4).

Published proposals are recorded in the proposals table.
We can check it to see the proposal we just published.

	proposal_name

	proposer

	title

	proposal_json

	created_at

	expires_at

	usesys

	proposer

	Use SYS …

	{“type”: …}

	2019-09…

	2020-01…

Stage 2: Voting

Once the proposal has been created, people can start to vote on it
via the vote() action. Let’s make some votes using the
previously created accounts.

// Execute action *vote* with parameters
// Use voter1@active to sign
voter: "voter1"
proposal_name: "usesys"
vote: 1 // positively vote
vote_json: ""

// Execute action *vote* with parameters
// Use voter2@active to sign
voter: "voter2"
proposal_name: "usesys"
vote: 0 // negative vote
vote_json: ""

// Execute action *vote* with parameters
// Use voter3@active to sign
voter: "voter3"
proposal_name: "usesys"
vote: 255 // abstain
vote_json: ""

Notice that the vote value is used to represent yes (1) or no (0) to
the proposal. It ranges from 0 to 255 so other values can be used to represent
special meanings.

Votes are saved in table vote

	id

	proposal_name

	voter

	vote

	vote_json

	updated_at

	0

	usesys

	voter1

	1

	
	2019-09…

	1

	usesys

	voter2

	0

	
	2019-09…

	2

	usesys

	voter3

	255

	
	2019-09…

Similar to proposers, voters need to pay RAM to save their own votes.
If you view the voters’ RAM usage, you will see it has increased by 430 bytes
after executing the vote() action. This RAM will also be refunded to each
voter when the proposal is removed in Stage 4.

Voters can change their votes at anytime by calling vote() again
with a different vote value to override the old one.
They can also remove the vote via the unvote() action, which would
completely remove their vote data in the vote table and refund
their RAM immediately.

Stage 3: Freeze

A proposal cannot be indefinitely continued, so an expiration time is needed to
set a deadline for the voting time. That’s why the expires_at was predefined
when the proposal was created. The proposer can also decide to end
the proposal ahead of time by manually calling the expire() action.
This amends the proposal’s expires_at field to the current time instead of
waiting for its original expiration date to be reached.

Let’s expire our proposal now

// Execute action *expire* with parameters
// Use proposer@active to sign
proposal_name: "usesys"

Once a proposal is expired (be it manually or automatically if it passed its
expiration date), the proposal will enter a 3 day freeze period.
Within this freeze period, the proposal is locked and no actions can be called
on it (no vote changes, no vote removal and no clean up).
It is to allow a period that anyone can query the blockchain data, count votes
and generate the voting result independently. The implementation of the proposal
will be determined by the result.

Since we modified the freeze time in the sourced code, we just need to wait
5 minutes instead of 3 days. Within those 5 minutes, you will find that all attempts
to execute the vote() or unvote() actions related to the freezing proposal
will fail.

After the freeze period has passed, the process of handling
a proposal through democratic voting has completed. Now, we can safely
reclaim the RAM used in creating the proposal and generating votes.

Stage 4: Clean up

Once the freeze period has passed after a proposal’s expiry,
any account can use the clnproposal() action to free all of the
associated used RAM.
This action effectively reclaims all RAM consumed for votes and for the
proposal itself. The RAM is thus given back to voters (for their votes) and to
the proposer (for the proposal).

The clnproposal() action can be called by anybody.
There is no risk since only expired proposals that have passed their freeze
period can be cleaned.

// Execute action *clnproposal* with parameters
// Use any account to sign
proposal_name: "usesys"
max_count: 100

If there are many voters, the action clnproposal() will remove
up to max_count votes in one execution to prevent transaction timeout.
Once all votes are removed on a proposal, the proposal itself will then be removed.

Now, if you look at accounts proposer and voter1 etc, their RAM usage should
go back to the value before participating in the proposal and voting.
Therefore, on completion of a proposal all used memory will be returned
without a memory leak.

EOSIO Referendum

“The price good men pay for indifference to public affairs is to be ruled by evil men.”

– Plato

Motivation

EOSIO is a self-governed blockchain which encourages its token holders
to share their voice through proposals and voting as a means for consensus.

Block.one [https://block.one/] had proposed to create an
on-chain forum [https://github.com/EOSIO/eosio.forum]
so that messages could be posted to the blockchain,
allowing for verification of a user’s opinion on a matter.
EOS Canada [https://www.eoscanada.com]
recognized that if we used this messaging system to post
approval or disapproval of a question, we would have the
underlying structure of a referendum system. It can be used to poll
a community to discover a communal opinion on a topic or question.

As a self-governed blockchain, token holders
will use their stake to vote on proposals and decide on questions that
impact changes to the governing documents,
system-level Ricardian Contracts,
or the EOSIO codebase [https://github.com/EOSIO/eos].
A simple proposal or poll allows the EOS community’s voice to be heard
on specific matters without changing any contracts or system code.
A referendum, if passed, should produce an actionable result to enact
a change on the EOS mainnet, as decided by the EOS community.

The referendum is crucial to ensure EOSIO blockchain to be decentralized
yet self-evolving. EOSIO codebase, governing documents and usage of network fund
can be modified through token holder consensus by way of referendum
through proposing, voting, and ratification. This principle is written in the
EOS User Agreement (EUA) [https://github.com/eosnewyork/eosuseragreement]:

Article IV   Governing Documents -
Any modifications to the EUA and governing documents may be made by eosio.prods.
It is admonished that a statement be crafted and issued through eosio.prods
via eosio.forum referendum contract describing such a modification in advance.

Article VII   Network Funds -
It is admonished that any altering of the state of any tokens contained within
network fund accounts, or altering any pre-existing code that directly or indirectly
governs the allocation, fulfillment, or distribution of any network funds be preceded
by a statement crafted and issued by eosio.prods to the eosio.forum referendum
system contract describing the effect in advance.

Implementation

EOS Canada had taken the lead in writing the code that drives
the referendum system that is being proposed for the EOS mainnet.
They took Block.one’s
sample contract [https://github.com/EOSIO/eosio.forum]
and started refactoring it to meet
the community’s needs as discovered through long back-and-forth discussions
with other teams who were involved.

In July 2018, EOS Canada first deployed the beta version to the account eosforumdapp,
to run it through some further testing, and to gather some community feedback.
Later, the smart contract was deployed to another account eosforumrcpp,
which stands for EOS Forum Release Candidate Pre-Production.
EOS Canada also modified the permission structure for this account to be a shared multisig,
set up amongst the other block producers who have been working alongside them.

On EOS Mainnet

After many weeks of testing, the eosio.forum contract was ready for the release.
EOS Canada proposed that this contract be
deployed to a system contract account [https://github.com/eoscanada/proposals/blob/master/deployforum.md]
eosio.forum so that all users know that this is the official referendum contract
that they can have faith in. The smart contract would also be fully under the control of the
Block Producers collectively, and thus of the EOS mainnet itself.

The EOS community approved this proposal in January 2019, so the eosio.forum
has formally become the official referendum system on the EOS mainnet.
Since then, EOS token holders have submitted numerous proposals on this contract
to improve the mainnet governance and promote the development of the EOS mainnet.
For example, the
EOS User Agreement [https://github.com/eosnewyork/eosuseragreement]
itself was adopted through
a referendum [https://eosauthority.com/polls_details?proposal=eosuseragree_20190207]
on eosio.forum in May 2019.

To encourage EOS holders to actively participate in voting and community governance,
many teams have created user interfaces that make it easy to view proposals and
cast a vote. This is a list of them:

	EOSX (by EOS Asia):
https://www.eosx.io/tools/referendums/proposals

	Bloks.io (by EOS Cafe & HKEOS):
https://bloks.io/vote/referendums

	EOS Authority:
https://eosauthority.com/polls

	EOS Forum (by novusphere.io):
https://eos-forum.org/#/e/referendum

	EOS Toolkit (by GenerEOS):
https://eostoolkit.io/community/forum/vote

	EOSC (by EOS Canada):
https://github.com/eoscanada/eosc

	EOSVotes (by BP Community):
https://eosvotes.io

	EOS Voter (by Greymass):
https://github.com/greymass/eos-voter/releases

On Sidechains

The same smart contract has also been adopted in other EOSIO sidechains.
For example, BOSCore [https://boscore.io/en/index.html] deployed
its own version of the
forum contract [https://github.com/boscore/referendum/tree/master/contracts/eosio.forum]
to support its referendum and Worker Proposal System (WPS).
They also used the referendum system to launch the
BOS Development Incentive Program [https://github.com/boscore/Documentation/blob/master/Referendum_WPS/BOS%20Ecosystem%20Program(Referendum%20%26%20WPS).md]
to incentivize technical contributions to its ecosystem.

Todo

Is eosio.forum being used by other sidechains?

Other Applications

The eosio.forum can be used in many other scenarios.
An interesting example is that the EOS community was able to use eosio.forum
to create an on-chain Reddit substitute called Novusphere [https://novusphere.io/].
The forum contract is like the backend server for Novusphere, and it has
another web user interface for users to easily create or read posts.
You can go to their website at https://discussions.app, and
compare the posts with eosio.forum’s
transaction history [https://eosq.app/search?q=receiver%253Aeosio.forum%2520action%253Apost].

Todo

Some other examples

 _images/toolbar.png
+ A

&

&

_images/tp-assets-add-details.png
11:16 PM @ 7 61% @)

Y
9)

r

< Private Key =

5K brQEVZDZQvciy5kB
eX xd8

4

Foundation ~ EOS BlockChain
Password [XYYYYY YY)
Repeat XYYYYY YY)
Password Hint

Account(Developer Mode) demonhunter

Read & agree with Service and Privacy Policy

Start Importing

Check private key

_images/project-editor.png
EOS Studio | Project

Contract Account Network
E S — — | &))
eosio.token eosio Local

+ N & ¢ % eosio.token.cpp % eosio.token.hpp
v eosio.token #include <eosio.token/eosio.token.hpp>

v include namespace eosio {
¥ eosio.token . .
. void token::create(name issuer,
eosio.token.hpp asset maximum_supply)
» ricardian {)
require_auth(_self);
v src
eosio.token.cpp auto sym = maximumfsupply.sympol;
) check(sym.is_valid(), "invalid symbol name");
CMakelLists.txt check(maximum_supply.is_valid(), "invalid supply");
README.md check(maximum_supply.amount > 0, "max-supply must be positive");

eosio.token.abi stats statstable(_self, sym.code().raw());
eosio.token.wasm auto existing = statstable.find(sym.code().raw());
check(existing == statstable.end(), "token with symbol already exists");

statstable.emplace(_self, [&](auto& s) {
s.supply.symbol maximum_supply.symbol;
s.max_supply maximum_supply;
s.issuer issuer;

5)g

void token::issue(name to, asset quantity, string memo)
{
auto sym = quantity.symbol;
check(sym.is_valid(), "invalid symbol name");
check(memo.size() <= 256, "memo has more than 256 bytes");

eosio-cpp -abigen -I include -R ricardian -contract eosio.token -o eosio.token
.wasm src/eosio.token.cpp

Warning, empty ricardian clause file

© No Scatter A CDTVv1.5.0(Local) @0 AO

_images/terminal.png
> docker run --rm --name eosio.cdt_v1.5.0 --volume /Users/q/.eosio/contracts/contracts/eosio.token:/project -w /project
eostudio/eosio.cdt:vl.5.0 /bin/bash -c “"eosio-cpp -abigen -I include -R ricardian -contract eosio.token -o eosio.token
.wasm src/eosio.token.cpp”

Warning, empty ricardian clause file

_images/tp-assets-collectibles-empty.png
»- = 11:16 PM @ 9 61% @)

demonhunter > &8 &5

My Assets($) ©

1856.48

% Send 8§ Receive @ Swap

& & @ &8

Resources Vote Permissions More

Collectibles Q search D

Assets News Discover Chat Me

_images/tp-assets-collectibles-list.png
»- = 11:17 PM @ 9 61% @)

demonhunter > &8 &5

My Assets($) ©

1856.48

% Send 8§ Receive @ Swap

& & @ &8

Resources Vote Permissions More
Collectibles Q search

diablo.dapp

Assets News Discover Chat Me

_images/tp-assets-add-list.png
5:59 PM @ 70% @m)

Add Accounts

Email/Phone

Sign in with the email or phone number

Private Key

Import the account with the private key

Observing Mode

Enter an account with the account name or
public key

Cold Wallet

Import the account with the private key as an
offline wallet

_images/tp-assets-collectibles-add.png
Add NFT

Contract

diablo.dapp

_images/tp-assets-main.png
»- = 11:16 PM @ 9 61% @)

demonhunter > &8 &5

My Assets($) ©

1856.48

% Send 8§ Receive @ Swap

& & @ &8

Resources Vote Permissions More
All Assets v Q search
EOS 500.0000
Stake 200.0000 REX 0 ~ $1856.48

Assets News Discover Chat Me

_images/tp-assets-no-account.png
= 5:59 PM

Current blockchain

@ EOS

Do you have an account?

o | have an account

G No account
e Visitor Mode

& EOS Tutorial

Wallets News Discover Chat

@ 70% @)

Switch

Me

_images/filetree.png
v eosio.token
v include
v eosio.token
eosio.token.hpp
» ricardian
v src
eosio.token.cpp
CMakelists.txt
README.md
eosio.token.abi
eosio.token.wasm

_images/main.png
EOS Studio | Project

‘ Current Project Account Network
<>

v
eosio.token eosio.token O)) Local

) Contract eosio. token is built.
+ N & ¢ % eosio.token.cpp %

v eosio.token
v include eosio {

¥ eosio.token . .
void token::create(issuer,

eosio.token.hpp maximum_supply)
» ricardian (self);
v src B ’
eosio.token.cpp auto sym = maximum_supply.symbol;
) (sym.is_valid(), "invalid symbol name");
CMakelLists.txt (maximum_supply.is_valid(), "invalid supply");
README.md (maximum_supply.amount , "max-supply must be positive");

eosio.token.abi stats statstable(_self, sym.code().raw());
eosio.token.wasm auto existing statstable.find(sym.code().raw());
(existing statstable.end(), "token with symbol already exists");

statstable.emplace(_self, [&](auto& s) {
s.supply.symbol maximum_supply.symbol;
s.max_supply maximum_supply;
s.issuer issuer;

27 void token::issue(to, quantity,

28- A{

29 auto sym = quantity.symbol;

30 (sym.is_valid(), "invalid symbol name");

31 (memo.size() , "memo has more than 256 bytes");
32

eosio-cpp -abigen -I include -R ricardian -contract eosio.token -o eosio.token
.wasm src/eosio.token.cpp
Warning, empty ricardian clause file

© No Scatter /Y CDTVv1.50(Local) @0 A0 =

_images/dgoods-structure.png
C:GA*71XQK

dsoodg,+ok¢ﬂ

Symbeol ZELDA
wﬂ,s,,l\/ cuwrrancies h Or
mors

Ve W e

o aom eehond mndu‘ < hield
3 s e o NET
\WM . porfuct euby . moster swod o ociswt oo Wylion chisld
/200, 00s, 000 . Flowed sopphi 3 5
sopphie . flaweblade + royal bow

_images/dgoods.png
$ dGoods

_images/network_manager.png
&
EOSIO Manager

Current Project
eosio.token

VERSION

O sh

6.50
info
7.00
info
7.50
info
8.00
info
8.50
info
9.00
info
9.50

ow Producer Logs

0 signed by eosio [trxs: 0, lib:
2019-07-30T11:52:47.003 nodeos
0 signed by eosio [trxs: 0, lib:
2019-07-30T11:52:47.507 nodeos
0 signed by eosio [trxs: 0, lib:
2019-07-30T11:52:48.006 nodeos
0 signed by eosio [trxs: 0, lib:
2019-07-30T11:52:48.504 nodeos
0 signed by eosio [trxs: 0, lib:
2019-07-30T11:52:49.006 nodeos
0 signed by eosio [trxs: 0, lib:
2019-07-30T11:52:49.504 nodeos
0 signed by eosio [trxs: 0, lib:

© No Scatter

47801, confirmed: 0]

producer_plugin.cpp:

47802, confirmed: 0]

producer_plugin.cpp:

47803, confirmed: 0]

producer_plugin.cpp:

47804, confirmed: 0]

producer_plugin.cpp:

47805, confirmed: 0]

producer_plugin.cpp:

47806, confirmed: 0]

producer_plugin.cpp:

47807, confirmed: 0]

EOS Studio | Contract - eosio.token

Contract

N
E eosio.token

CREATED
July 11, 2019
June 19, 2019

produce_block
produce_block
produce_block
produce_block
produce_block

produce_block

Produced
Produced
Produced
Produced
Produced

Produced

Account

eosio.token

v []
an

block 0000babbefdb8e26. . .
block 0000babcd2242e8d. . .
block 0000babda056a074. . .
block 0000babec480704f. ..
block 0000babfbObde2e6. . .

block 0000bac0d38d9002. . .

%, Add EOSIO ¥

@ Open Bloks Local Explorer

#47803 @ 2019-07-30T11:52:4

#47804 @ 2019-07-30T11:52:4
#47805 @ 2019-07-30T11:52:4
#47806 @ 2019-07-30T11:52:4
#47807 @ 2019-07-30T11:52:4

#47808 @ 2019-07-30T11:52:4

_images/tp-dev-aboutus.png
5:36 PM @ 76% =

About Us

tap 8 times

Current Version:0.8.2

TokenPocket is a Safe, Simple and Powerful
digital assets light wallet. We aim to make
Blockchain happen to average users.

Term of Service

Privacy Policy

Version Release

Check for updates

Contact Us

Copyright © 2018 Token Pocket
All right reserved

nav.xhtml

 Table of Contents

 		
 EOS Studio Docs

 		
 Getting Started

 		
 EOSIO Fundamentals

 		
 Accounts

 		
 Account Name

 		
 Create an Account

 		
 Permissions

 		
 Resources

 		
 CPU – Computation time

 		
 NET – Network bandwidth

 		
 RAM – Memory usage

 		
 REX

 		
 Decentralized Application

 		
 Kickoff

 		
 Backend (Smart Contract)

 		
 Frontend (TODO)

 		
 Smart Contract

 		
 Actions

 		
 Tables

 		
 Overview

 		
 Project Editor

 		
 Main Components

 		
 Code Editor

 		
 Toolbar

 		
 File Tree

 		
 Terminal

 		
 Types of Projects

 		
 Local Project (only for desktop)

 		
 Remote Project

 		
 Others’ Shared Project

 		
 Project Settings

 		
 Contract Inspector

 		
 Actions

 		
 Form for Input Parameter

 		
 Authorization

 		
 Ricardian

 		
 Result

 		
 Execution History and Bookmarks

 		
 Tables

 		
 Account Viewer

 		
 Basic Information

 		
 Transaction History

 		
 Create a New Account

 		
 Tools

 		
 Network Manager

 		
 Local Network

 		
 EOSIO Version Manager

 		
 Advanced Configuration

 		
 Logs of Block Production

 		
 Cloud-hosted Network

 		
 Remote Networks

 		
 Basic Information

 		
 Blocks

 		
 Bottom Bar

 		
 Keypair Manager

 		
 Scatter

 		
 eosio.token

 		
 Introduction

 		
 Types

 		
 Smart Contract

 		
 Actions

 		
 Tables

 		
 EOSIO.CDT

 		
 Header Files

 		
 symbol.hpp

 		
 asset.hpp

 		
 name.hpp

 		
 time.hpp

_images/code-editor.png
eosio.token.cpp % eosio.token.hpp

1

WNNNNNNNNNNRPRRRRRRRERP R
QUVONOURARWNRPOOVOONOURARWNROOVONOUAWN

#include <eosio.token/eosio.token.hpp>
namespace eosio {

void token::create(name issuer,
asset maximum_supply)
{

require_auth(_self);

auto sym = maximum_supply.symbol;

check(sym.is_valid(), "invalid symbol name");

check(maximum_supply.is_valid(), "invalid supply");

check(maximum_supply.amount > 0, "max-supply must be positive");

stats statstable(_self, sym.code().raw());
auto existing = statstable.find(sym.code().raw());
check(existing == statstable.end(), "token with symbol already exists"

statstable.emplace(_self, [&](auto& s) {
s.supply.symbol maximum_supply.symbol;
s.max_supply maximum_supply;
s.issuer issuer;

5)g

void token::issue(name to, asset quantity, string memo)
{
auto sym = quantity.symbol;
check(sym.is_valid(), "invalid symbol name");
check(memo.size() <= 256, "memo has more than 256 bytes");

)5

_images/tp-dev-list.png
5:36 PM @ 76% =

About Us

TOKEN POCKET
Current Version:0.8.2
TokenPocket is a Safe, Simple and Powerful

digital assets light wallet. We aim to make
Blockchain happen to average users.

Term of Service

Privacy Policy

Version Release

Check for updates

Contact Us

Developer Mode

Copyright © 2018 Token Pocket
All right reserved

_images/contract_inspector.png
EOS Studio | Contract - eosio.token
Network

% Contr.act - ° Ar,(cL:m -
eosio.token @= eosio.token O Local

ﬁ Current Project
eosio.token

eosio eosio.token X +
c
O 0O

fe) issue v P O © [Bstat~r C
© Command| Query

v Parameters
LOWER_BOUND

SCOPE

EOS

TO
&% cosio.token

QUANTITY
DEIEREL

1000.0000 EOS
MAX_SUPPLY ISSUER

SUPPLY
eosio.token

1 1000.0000 EOS 1000000.0000 EOS

v Authorization eosio.token@active

ACTOR

PERMISSION

p

> Ricardian

v Result

Execution succeed. Transaction id:

© No Scatter

_images/tp-ft-details.png
= 11:40 PM @ 58% @)
< Gold
Infomation
Owner demonhunter
Category currencies
Amount 100.0000 DIABLO
Name Gold

Description Currencies

Transfer

_images/tp-dev-agreement.png
@ 76%)

Developer Mode

Developer Mode is used to debug the
DApps based on wallet, you can define
the URL after turn on the developer
mode.

This mode is made for developers to
debug only, don't use any untrusted
links, you should be responsible for your
assets if you use the third-party or self-
defined URL.

I understood the Usage and Responsibility
of Developer Mode.

_images/battles.png

_images/tp-dev-dgoods.png
Y
9)

5:36 PM @ 76% @)

< Developer Mode

Developer Mode ()

Screen Rotation

dGoods ()

_images/tp-nft-list.png
~

Issuance Hold Amount

FT

In-geom

sword #1

Obsidian Ring of the Zodiac
ring #1

Krysbin's Sentence
ring #1

_images/tp-node.png
» = 5:34 PM @ 76% @)

< EOS Others
Default Speed @ Fast ® Mediocre ® Slow
TokenPocket HK
17 ms ©
http://openapi.eos.ren
EOS Asia
76 ms ©
https://geo.eosasia.one
TokenPocket
34ms
http://eospush.tokenpocket.pro
EOS BeilJing
148 ms ©
https://api.eosbeijing.one
EOS42 260 ms
https://nodes.eos42.io ms
EOS NewYork
. 285ms ©
https://api.eosnewyork.io
Custom
https://jovial-poitras.api.dfuse.dev 188 ms ©

https://eos-studio.api.dfuse.dev 190 ms

Add a custom node

_images/tp-ft-list.png
Issuance

NFT FT

) , Gold
’) currencies

‘k ‘ Health Potion
‘ , potion

~

Hold Amount

100.0000 DIABLO

Amount

100 DIABLO

Amount

_images/tp-nft-details.png
- 11:22 PM @ 7 61%)
& In-geom
Infomation
Owner demonhunter
Category sword
Number #1
Name In-geom

Description Carried by the kings of Xiansai in
antiquity, this sword was said to
harness the speed and lethality of
four tiger spirits. One king claimed
to have “exorcised"” a thousand
demons from their hapless victims,
using only this blade.

_images/tp-transfer-password.png
Verify password

() Use Touch ID before Permanent >
exit app

Cancel

_images/tp-transfer.png
»- = 11:29 PM @ v 60% @)

& Obsidian Ring of the Zodiac

Transaction Detail X
Token Obsidian Ring of the Zodiac #1
Payer demonhunter
Payee necromancer

memo Take the weapons and fight wi...

_images/transaction_details.png
EOS Studio | Contract - eosio.token

Transaction Details

Transaction ID: 594058a6dcbhdad384c8del14ef28631b6ab1014e2c278e830514346bd125a9879

"block_num" : 248
"block_time" : "2019-07-30T11:59:21.500"
"id" : "594058a6dcbdad384c8del4ef28631b6abl014e2c278e830514346bd125a9879"
"last_irreversible_block" : 1105
"traces" : [
A{
"account_ram_deltas" : [

A{

"account" : "eosio.token"

"delta" : 240

"act" : {
"account" : "eosio.token"
"authorization" : [
A{
"actor" : "eosio.token"

"permission" : "active"

"data" : {
“memo" :

"quantity" : "1000.0000 E0S"

_static/file.png

_static/minus.png

_static/plus.png

