

Enigma

This is the documentation of Enigma.

Contents

	License

	Authors

	Contribution Guidelines
	Style Guide

	Pull Requests

	Installation
	Installing the bot

	Configuring a database

	User Manual
	Basic Usage

	Developer Handbook
	Introduction

	Plugins

	Module Reference
	enigma package

Indices and tables

	Index

	Module Index

	Search Page

License

MIT License

Copyright (c) 2018 Unethical Discord

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contributors

	Vivek Joshy <daegontaven@gmail.com>

Contributing

Style Guide

All pull requests to the python source must follow PEP 8 [https://www.python.org/dev/peps/pep-0008/] conventions.

All methods and functions must be in snake_case and not camelCase. If a module is written in python,
it must also conform to the 79 character limit.

Pull Requests

We follow Github Flow [https://guides.github.com/introduction/flow/] as our workflow when creating pull requests. It is a neater and easier way to manage changes.
You are also responsible for writing tests(where applicable) if you are contributing to a core module. If we see an area of code that requires tests, then we will not
accept the PR until you write a test for that area of code. Tests ensure long term stability.

Also note that there are CI checks in place. If any automated tests fail, please rework and resubmit your PR.

Installation

Warning

Enigma is pre-alpha and highly unstable. Do not use this in production as API changes will take place rapidly without notice.

	Installing the bot
	For Users

	For Developers

	Configuring a database
	For Developers

Installing the bot

For Users

Todo

Add instructions for Docker, Kubernetes and pip wheel releases.

Follow the developer instructions for now and verify you have a working installation with this command.

$ enigma -V # This should show the current version.
enigma 0.1.0.dev0

For Developers

Installing from source

Enigma is very easy to install from source. First clone the latest development version from the master branch.

git clone https://github.com/UnethicalDiscord/Enigma.git

Since Enigma has a lot of dependencies, it is wise to install a virtualenv first. Please do not use pipenv [https://docs.pipenv.org/] however.
It’s incompatible with Enigma’s dependencies and may cause more problems in the future. If you wish to submit a pull request to fix this problem please read more here [https://github.com/pypa/pipenv/issues/1578]

First let’s make a virtualenv. So we have to install it first.

pip install virtualenv

Then create a new virtualenv within the repository. If you name it venv it won’t get checked in.

cd Enigma/
virtualenv venv

Now let’s activate the virtual environment.

source venv/bin/activate

You should now see your terminal change to show your are you now using a virtual environment.
Let’s install the package dependencies now. This may take a while depending on your machine.

pip install -r requirements.txt

Now let’s install it locally as an editable installation to make sure our changes get picked up.

pip install -e .

Additionally, if you need to write tests run this command.

pip install -e .[TESTS]

Configuring a database

Enigma does not come with it’s own database. So we need to install and configure one to make sure Enigma works properly.
Currently Enigma uses MongoDB to store all it’s data.

You need to either setup one using Google Cloud like we are in production or set one up yourself on a bare metal server or a VPS.
Either ways, it is outside the scope of this documentation for the most part.

You can read more about setting up a database by following the official MongoDB documentation [https://docs.mongodb.com/manual/administration/install-community/]
Once you’ve successfully done this, we need to setup an administrator with superuser capabilites. You can read more about setting this up here [https://docs.mongodb.com/manual/tutorial/enable-authentication/#enable-auth]

To do this, first we need to open up the mongo shell and create our user adjusting the commands below as needed.

use admin
db.createUser(
 {
 user: "myUserAdmin",
 pwd: "abc123",
 roles: [{ role: "root", db: "admin" }]
 }
)

This will create a superuser role giving Enigma complete control over the database. Take these credentials down as will you need to use them in the config file.

For Developers

Read the Developer Handbook to start contributing.

User Manual

	Basic Usage
	Configuring Enigma

	Starting Enigma

Basic Usage Instructions

Configuring Enigma

To start using Enigma, we to get some configuration details.
First let’s make sure Enigma is installed.

$ enigma -V
enigma 0.1.0.dev

Looks good! So, we need to head over to the discord developers portal [https://discordapp.com/developers/applications/me/create] and create our bot user.

[image: Create a discord app]

Now this is the most important part. We need to create a configuration file which is also valid TOML.

[bot]

token = ""

[database]

host = []
port =
username = ""
password = ""
database = ""

[global]

prefixes = []
description = ""

To fill this out we need to know some details about our discord bot user. Simply scrolling down and clicking “Create a Bot User” will do the job.

[image: Create a Bot User]

Next click to reveal the token.

[image: Click to reveal token]
Make sure to copy this token down!

For now we won’t be delving in making our bot public and we’ll stick to using our bot privately in a server of our choice.
Save your changes and use this link replacing BOT_CLIENT_ID with your bot’s client ID to invite Enigma to our server,

Invite Link : https://discordapp.com/api/oauth2/authorize?client_id=BOT_CLIENT_ID&permissions=8&scope=bot

You can get the client ID from your bot’s app page.

[image: Client ID]

Now that we have all the details, we can start filling in our config file. It should look something like this.
You should also already have your database connection details. If not, read Configuring a database.

[bot]

token = "NDI2MTE3OTg5MTA1MTM5NzEy.DZRbXQ.CYHYtqRXjWYgJO9PqLoIv-HT8SE"

[database]

host = ["myvps.com"] # This can also be a list of hosts (including replica sets)
port = 27017
username = "pingbot"
password = "ilov3bacon"
database = "pingbot"
replica_set = "rs0" # This is needed added when using replica sets

[global]

prefixes = ["+" , ">"]
description = "I will ping you back. Don't worry!"

Starting Enigma

Now that we have a config file ready. Let’s save it is somewhere. By convention, it’s named app.cfg.

Now let’s tell Enigma to start by passing the path to this file as an argument.

enigma start --config /path/to/app.cfg

Note

You can also place it in the enigma/app.cfg folder of the repository if you installed from source.
However, you must make sure to name it app.cfg in this case or Enigma will throw an error.

Developer Handbook

	Introduction
	Prerequisite Knowledge

	Terminology

	Plugins
	Tutorials

Introduction

Building a discord bot can sometimes be overwhelming if you need complex commands. Keeping track of logging,
configuration files, databases, efficiency, sharding, devops and more. With Enigma you don’t have to worry
about the boring parts and focus on building your commands the way you need them.

Prerequisite Knowledge

Simple Commands

	You must have built a very basic bot using discord.py [https://github.com/Rapptz/discord.py/tree/rewrite]

	Basic experience with asyncio [https://docs.python.org/3.5/library/asyncio.html#module-asyncio]

Advanced Commands

	Experience using relational databases

	Knowledge of MongoDB (not mandatory unless you want to access the database directly)

Terminology

Before we begin building commands, there’s some jargon you need to get familiar with.

Cogs:

Quoting add_cog [http://discordpy.readthedocs.io/en/rewrite/ext/commands/api.html#discord.ext.commands.Bot.add_cog] in the discord.py [https://github.com/Rapptz/discord.py/tree/rewrite] documentation.

“A cog is a class that has its own event listeners and commands.

They are meant as a way to organize multiple relevant commands into a singular class that shares some state or no state at all.”

Extensions:

From the discord.py [https://github.com/Rapptz/discord.py/tree/rewrite] docs

“An extension is a python module that contains commands, cogs, or listeners.”

Plugins:

Plugins are simply extensions that have cogs with extra metadata and custom methods called in it. An existing cog can be converted into a plugin by defining a plugin_data variable in it’s class.
However, plugins are not guaranteed to work as a cog in another discord bot.

To give you a better picture:

	All plugins are extensions, but all extensions are not plugins.

	All cogs work with plugins, but not cogs built specifically for plugins.

Plugin Metadata:

This is simply a local plugin_data variable of type dict [https://docs.python.org/3.5/library/stdtypes.html#dict] defined in a plugin. This defines metadata like the name, description, status and other properties of a plugin.

Plugin Setup:

This is a local setup() function defined outside the cog’s class. It’s used to do initialize cogs and prepare the plugin to be imported as an extension.
Although it is fairly easy to initialize other cogs and commands directly from the setup() function, it’s recommended to only place commands that complement each other into the same plugin.

Entities:

Entities are simply discord data model [http://discordpy.readthedocs.io/en/rewrite/api.html#discord-models] objects that represents anything that for which information can be stored.
In simple terms, entities are any object in discord that can be referenced by an ID.

Entity States:

These are MongoDB database collections that can store data about a particular entity.

Building Plugins

Building a plugin in enigma is very easy as you will see soon. However, before we start, we need a working bot to build plugins for.
If you haven’t already, setup a bot by following Basic Usage Instructions.

All builtin plugins are stored in the plugins directory found in the root folder and grouped by categories in their respective folders.

	Tutorials
	Basic

	Intermediate

	Advanced

Tutorials

	Basic

	Intermediate
	Prerequisites

	Contents

	Advanced

Basic Tutorials

Intermediate Tutorials

Prerequisites

	You will need a MongoDB client like Robo3T or Compass to view collections

	An IDE or code editor like Pycharm, Atom, Sublime etc

	Minimal knowledge of collections, documents, databases and CRUD operations in MongoDB

Contents

	Tags

Tags

Tags are commands used to save frequently sent messages like rules, instructions and help information in a guild.
It’s a very useful feature and implemented in a lot of bots on discord. So let’s build one for our self.

Before we begin building our plugin, we need an idea of what our command will look like. We want users to be
able to use newlines and any characters without sacrificing usability.

It will look something like this for a user in a guild:

+tag add rules

__**Chat Rules**__
1. An important rule
2. Another rule

__**Voice Chat Rules**__
1. Don't scream in voice chat
2. No trolling

Now that we know what we want our command to look like, let’s create our plugin.
Create a tags.py file in the Plugins/ directory and put this code in it.
You can remove the comments if you want.

Warning

There is an existing tags plugin in Plugins/Utilities/tags.py. You should
move it to a safe location in another folder before continuing. You can’t use
two cogs with the same name at the same time.

import discord
from discord.ext import commands

plugin_data = {
 "name": "Tags"
}

class Tag:
 def __init__(self, bot):
 self.bot = bot
 self.data = plugin_data

 # Easier access to common variables
 self.logger = self.bot.logger

 @commands.command(
 name="tag"
)
 @commands.guild_only() # Only allow usage from inside a guild
 async def tag(self, ctx, tag: str):
 """
 This will take a single parameter tag when someone uses the
 command +tag my_tag. Here my_tag will get passed to tag and
 ultimately to our logger.
 """
 self.logger.debug(f"Tag: {tag})

Now start enigma and send a test command with a tag name to ensure everything works properly.
If everything went smoothly, we need to figure out to how to store data so it can be retrieved later.
Not to worry, enigma has made it very easy to store data without worrying about relational data too much.

We need to use a driver to talk to our database. Don’t worry, Enigma takes care of this for you. But you will need to be aware that we are using it
to do operations on the database.

	Motor Documentation [https://motor.readthedocs.io/en/stable/]

	PyMongo Documentation [https://api.mongodb.com/python/current/]

Let’s begin by adding an add sub command to our existing command to allow adding new tags.
In order to do this, we need to use a feature of the discord.py [http://discordpy.readthedocs.io/en/stable/] library called Groups.
You can learn more about groups here [http://rapptz.github.io/discord.py/docs/faq.html#how-do-i-make-a-subcommand].

class Tag:
 def __init__(self, bot):
 self.bot = bot
 self.data = plugin_data

 # self.bot.db.database is simply the name of the database
 # you provided in the app's config file.
 # self.db is a Database object much similar to what's found in
 # PyMongo. Except, here we are using the asynchronous version
 # of the library called Motor.
 self.db = self.bot.db[self.bot.db.database]
 self.logger = self.bot.logger

 # Notice this is now group()
 # Setting invoke_without_command=True makes sure sub commands don't
 # run the code in this function when they are called.
 @commands.group(
 name="tag",
 invoke_without_command=True
)
 @commands.guild_only()
 async def tag(self, ctx, tag: str):
 document = await self.db.tags.find_one({"tag": tag})
 self.logger.debug(f"Tag: {tag} | Document: {document}")

 # Notice that we are using the tag coroutine as a decorator here.
 @tag.command(name="add")
 async def add_tag(self, ctx, tag: str, *, content: commands.clean_content):
 """
 Notice the '*' used after the tag param. This will ensure that
 the content of the message after the tag won't get passed into
 our coroutine. In short, without the '*', it will raise an
 error for more than one argument after the tag.

 With the '*' it will consider everything after the tag as a
 string with newlines and spaces intact. commands.clean_content
 also makes sure the input is more clean and will do some
 parsing for you.
 """

 # Let's insert our first document into the collection.
 # MongoDB is lazy when creating collections. It is a convention
 # to name collections after the cog or the extension to make it
 # easier to locate. Here this line will create a tags
 # collection as well as insert the json file as a document.
 self.db.tags.insert_one(
 {"guild_id": ctx.guild.id, "tag": tag, "content": content}
)

Run +tag add mytag 123 or something similar (preferably with newlines and spaces as well) from discord to ensure
there are no errors. Then check you MongoDB client to make sure that the document’s were inserted.

If all went well we can add some code to display the tags.

@commands.group(
 name="tag",
 invoke_without_command=True
)
 @commands.guild_only()
 async def tag(self, ctx, tag: str):
 # Find the document with the tag that we inserted earlier
 document = await self.db.tags.find_one({"tag": tag})
 self.logger.debug(f"Tag: {tag} | Document: {document}")
 if document:
 # Send a message to the guild with the content
 await ctx.send(document["content"])
 else:
 # These are embeds that make thinks look prettier. Here we
 # made a simple error message.
 response = discord.Embed(
 color=0x7F8C8D,
 title="❌ Tag does not exist! ❌"
)
 await ctx.send(embed=response)

 @tag.command(name="add")
 async def add_tag(self, ctx, tag: str, *, content: commands.clean_content):
 # Let's check to make sure the tag doesn't already exist.
 document = await self.db.tags.find_one({"tag": tag})
 if document:
 response = discord.Embed(
 color=0x7F8C8D,
 title="❌ Tag already exists! ❌"
)
 await ctx.send(embed=response)
 else:
 self.db.tags.insert_one(
 {"guild_id": ctx.guild.id, "tag": tag, "content": content}
)

That wasn’t too hard was it? Let’s add some more commands and functionality to make a full blown plugin.
You can see the full code here.

import discord
from discord.ext import commands

plugin_data = {
 "name": "Tags"
}

class Tag:
 def __init__(self, bot):
 self.bot = bot
 self.data = plugin_data

 # Easier Access
 self.db = self.bot.db[self.bot.db.database]
 self.logger = self.bot.logger

 @commands.group(
 name="tag",
 invoke_without_command=True
)
 @commands.guild_only()
 async def tag(self, ctx, tag: str):
 document = await self.db.tags.find_one({"tag": tag})
 self.logger.debug(f"Tag: {tag} | Document: {document}")
 if document:
 await ctx.send(document["content"])
 else:
 response = discord.Embed(
 color=0x7F8C8D,
 title="❌ Tag does not exist! ❌"
)
 await ctx.send(embed=response)

 @tag.command(name="add")
 async def add_tag(self, ctx, tag: str, *, content: commands.clean_content):
 document = await self.db.tags.find_one({"tag": tag})
 if document:
 response = discord.Embed(
 color=0x7F8C8D,
 title="❌ Tag already exists! ❌"
)
 await ctx.send(embed=response)
 else:
 self.db.tags.insert_one(
 {"guild_id": ctx.guild.id, "tag": tag, "content": content}
)

 @tag.group(
 name="delete",
 invoke_without_command=True
)
 async def delete_tag(self, ctx, tag: str):
 document = await self.db.tags.find_one({"tag": tag})
 if document:
 await self.db.tags.delete_one({"tag": tag})
 else:
 response = discord.Embed(
 color=0x7F8C8D,
 title="❌ Tag not found! ❌"
)
 await ctx.send(embed=response)

 @tag.command(name="list")
 async def list_tags(self, ctx):
 tags = []
 async for document in self.db.tags.find({"guild_id": ctx.guild.id}):
 tags.append(document["tag"])
 if len(tags) > 0:
 await ctx.send("\n".join(tags))
 else:
 response = discord.Embed(
 color=0x7F8C8D,
 title="❌ No tags to list! ❌"
)
 await ctx.send(embed=response)

 @delete_tag.command(name="all")
 async def delete_all_tags(self, ctx):
 await self.db.tags.delete_many({"guild_id": ctx.guild.id})
 response = discord.Embed(
 color=0x7F8C8D,
 title="✅ All tags deleted! ✅"
)
 await ctx.send(embed=response)

def setup(bot):
 bot.add_cog(Tag(bot))

Congratulations! You reached the end of this tutorial. You should now have sufficient knowledge to make more kinds of
plugins.

Advanced Tutorials

enigma

	enigma package
	Subpackages
	enigma.commands package
	Submodules

	enigma.commands.start module

	Module contents

	Submodules

	enigma.app module

	enigma.client module

	enigma.utils module

	Module contents

enigma package

Subpackages

	enigma.commands package
	Submodules

	enigma.commands.start module

	Module contents

Submodules

enigma.app module

enigma.client module

enigma.utils module

	
enigma.utils.find_members(ctx)

	Parses arguments passed to a command and returns a list of me

	Parameters

	ctx – pass a discord.ext.commands.Context [http://discordpy.readthedocs.io/en/rewrite/ext/commands/api.html#discord.ext.commands.Context] object

	Returns

	a list of discord.Member [http://discordpy.readthedocs.io/en/rewrite/api.html#discord.Member] objects

	
enigma.utils.get_command_args(ctx, lower_case=True)

	Gets the arguments passed to a command.

	Parameters

	
	ctx – pass a discord.ext.commands.Context [http://discordpy.readthedocs.io/en/rewrite/ext/commands/api.html#discord.ext.commands.Context] object

	lower_case – returns arguments in lower case

	Returns

	list [https://docs.python.org/3.5/library/stdtypes.html#list]

Module contents

enigma.commands package

Submodules

enigma.commands.start module

Module contents

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 enigma	

 	
 	
 enigma.core	

 	
 	
 enigma.core.constants	

 	
 	
 enigma.core.exceptions	

 	
 	
 enigma.core.loggers	

 	
 	
 enigma.utils	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | P
 | R
 | T
 | U

B

 	
 	BotLogger (class in enigma.core.loggers)

C

 	
 	CoreError

D

 	
 	DatabaseError

 	
 	DatabaseKeyError

 	DatabaseTypeError

E

 	
 	enigma (module)

 	enigma.core (module)

 	enigma.core.constants (module)

 	
 	enigma.core.exceptions (module)

 	enigma.core.loggers (module)

 	enigma.utils (module)

 	EnvironmentVariableError

F

 	
 	find_members() (in module enigma.utils)

G

 	
 	get_command_args() (in module enigma.utils)

P

 	
 	PLUGIN (enigma.core.loggers.BotLogger attribute)

 	plugin() (enigma.core.loggers.BotLogger method)

 	
 	PluginError

 	PrimaryKeyError

R

 	
 	RecordExistsError

T

 	
 	TableNotFoundError

U

 	
 	UserError

enigma.core.database package

Submodules

enigma.core.database.public module

Module contents

enigma.core package

Subpackages

	enigma.core.database package
	Submodules

	enigma.core.database.public module

	Module contents

Submodules

enigma.core.constants module

enigma.core.exceptions module

	
exception enigma.core.exceptions.CoreError

	Bases: Exception [https://docs.python.org/3.5/library/exceptions.html#Exception]

Base exception class for Core modules and internal use

	
exception enigma.core.exceptions.DatabaseError

	Bases: enigma.core.exceptions.CoreError

Error raised when a database operation fails.

	
exception enigma.core.exceptions.DatabaseKeyError(message)

	Bases: enigma.core.exceptions.DatabaseError

Raised when an attempt to fetch from the key value store fails.

	
exception enigma.core.exceptions.DatabaseTypeError(message)

	Bases: enigma.core.exceptions.DatabaseError

Raised when parameters passed are incorrect.

	
exception enigma.core.exceptions.EnvironmentVariableError(message)

	Bases: enigma.core.exceptions.UserError

Error raised when an environment variable is not configured
properly.

	
exception enigma.core.exceptions.PluginError

	Bases: Exception [https://docs.python.org/3.5/library/exceptions.html#Exception]

Base exception class for plugin errors

	
exception enigma.core.exceptions.PrimaryKeyError(message)

	Bases: enigma.core.exceptions.DatabaseError

Raised when there is either a primary key is missing or required.

	
exception enigma.core.exceptions.RecordExistsError(message)

	Bases: enigma.core.exceptions.DatabaseError

Raised when a record already exists.

	
exception enigma.core.exceptions.TableNotFoundError(message)

	Bases: enigma.core.exceptions.DatabaseError

Raised when a table is missing.

	
exception enigma.core.exceptions.UserError

	Bases: Exception [https://docs.python.org/3.5/library/exceptions.html#Exception]

Base exception class raised as a byproduct of misconfiguration

enigma.core.loggers module

	
class enigma.core.loggers.BotLogger(name, level=0)

	Bases: logging.Logger [https://docs.python.org/3.5/library/logging.html#logging.Logger]

	
PLUGIN = 25

	

	
plugin(msg, *args, **kwargs)

	

enigma.core.utils module

Module contents

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/create_app_discord.png
New App By creating an APl applicaton, you agree o the Discord AP| Tems of Service

Something users will recognize and trust You must specify at least one URI for authentication to work. If

you pass 2 URI in an OAuth request, it must exactly match one.
of the URIs you enter here. Learn more.

APP DESCRIPTION APPICON

I will ping you back if you ask
me to!

Maximum 400 characters Remove

Cancel -

_images/create_bot_user.png
Bot

You can bundle a Bot User with your app to interact with users ina

Learn more about bot users

_images/click_to_reveal.png
Bot

APPBOT USER

Username: Ping

Token: NDI2MT ATAIMTH wXHF

PhSHU

Generate a new

Public Bot

Require OAuth2 Code Grant

Learn more about bot us

_images/get_client_id.png
APP DETAILS

Client ID: 426117989105139712

Client Secret: click o reveal

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Enigma

 		
 License

 		
 Authors

 		
 Contribution Guidelines

 		
 Style Guide

 		
 Pull Requests

 		
 Installation

 		
 Installing the bot

 		
 For Users

 		
 For Developers

 		
 Configuring a database

 		
 For Developers

 		
 User Manual

 		
 Basic Usage

 		
 Configuring Enigma

 		
 Starting Enigma

 		
 Developer Handbook

 		
 Introduction

 		
 Prerequisite Knowledge

 		
 Terminology

 		
 Plugins

 		
 Tutorials

 		
 Module Reference

 		
 enigma package

 		
 Subpackages

 		
 Submodules

 		
 enigma.app module

 		
 enigma.client module

 		
 enigma.utils module

 		
 Module contents

_static/up.png

_static/images/click_to_reveal.png
Bot

APPBOT USER

Username: Ping

Token: NDI2MT ATAIMTH wXHF

PhSHU

Generate a new

Public Bot

Require OAuth2 Code Grant

Learn more about bot us

_static/up-pressed.png

_static/images/get_client_id.png
APP DETAILS

Client ID: 426117989105139712

Client Secret: click o reveal

_static/images/create_app_discord.png
New App By creating an APl applicaton, you agree o the Discord AP| Tems of Service

Something users will recognize and trust You must specify at least one URI for authentication to work. If

you pass 2 URI in an OAuth request, it must exactly match one.
of the URIs you enter here. Learn more.

APP DESCRIPTION APPICON

I will ping you back if you ask
me to!

Maximum 400 characters Remove

Cancel -

_static/images/create_bot_user.png
Bot

You can bundle a Bot User with your app to interact with users ina

Learn more about bot users

