
encompass Documentation
Release 1.0

Evan Hemsley

Jun 19, 2019





Contents

1 API Reference 3

Index 19

i



ii



encompass Documentation, Release 1.0

encompass is a powerful engine-agnostic Hyper ECS framework ideal for game development.

Contents 1



encompass Documentation, Release 1.0

2 Contents



CHAPTER 1

API Reference

1.1 WorldBuilder

import { WorldBuilder } from "encompass-ecs";
const world_builder = new WorldBuilder();

A WorldBuilder is used to build a World out of Engines and Renderers.

The WorldBuilder enforces certain rules about Engine structure. It is forbidden to have messages create cycles between
Engines, and no Component may be mutated by more than one Engine.

The WorldBuilder uses Engines and their Message read/emit information to determine a valid ordering of the Engines,
which is given to the World.

The WorldBuilder is also responsible for creating the World with an initial state of Entities, Components, and Mes-
sages.

It is a mistake to instantiate elements of Encompass directly except for WorldBuilder. These elements should be
created either through appropriate WorldBuilder functions, or by Engines.

1.1.1 Functions

create_entity()

Returns An instance of Entity.

emit_message(MessageType)
This function creates a new Message instance and makes it available to be read by other engines.

Arguments

• MessageType (Type<Message>) – A constructor reference to a subtype of Message.

Returns Message An instance of Message of the given type.

3



encompass Documentation, Release 1.0

emit_component_message(ComponentMessageType, component)
This function creates a new ComponentMessage instance and makes it available to be read by other engines.

Arguments

• ComponentMessageType (Type<ComponentMessage>) – A constructor reference
for a subtype of ComponentMessage.

• component (Component) – An instance of a component.

Returns ComponentMessage An instance of ComponentMessage of the given type.

emit_entity_message(EntityMessageType, entity)
This function creates a new EntityMessage instance and makes it available to be read by other engines.

Arguments

• EntityMessageType (Type<EntityMessage>) – A constructor reference for a
subtype of EntityMessage.

• entity (Entity) – An instance of Entity.

Returns EntityMessage An instance of EntityMessage of the given type.

add_engine(EngineType)

Arguments

• EngineType (Type<Engine>) – A constructor reference to a subtype of Engine.

Returns Engine An instantiated Engine of the given type.

add_renderer(RendererType)

Arguments

• RendererType (Type<Renderer>) – A constructor reference to a subtype of Ren-
derer.

Returns Renderer An instantiated Renderer of the given type.

build()
Call this function when you are done adding engines.

Throws

• EngineCycleError – When messages between Engines create a cycle.

• EngineMutationConflictError – When two different Engines mutate the same
Component.

Returns World An instantiated World.

1.2 World

import { WorldBuilder } from "encompass-ecs";
const world_builder = new WorldBuilder();
const world = world_builder.build();

A World is the glue that holds all the framework elements together.

The World’s update function drives the simulation and should be controlled from your game engine’s update loop.

4 Chapter 1. API Reference



encompass Documentation, Release 1.0

1.2.1 Functions

update(dt)
Updates the simulation based on given delta time, advancing the simulation by one frame. This involves de-
stroying marked Entities, updating Engines, and cleaning up the Messages at the end of the frame.

Arguments

• dt (number) – Delta time.

draw()
Calls the render methods of all Renderers in the World, ordered by the layers on tracked DrawComponents and
GeneralRenderers.

1.3 Entity

import { World } from "encompass-ecs";
const world = new World();
const entity = world.create_entity();

An Entity is composed of a unique internal ID and a collection of Components.

Entities do not have any implicit properties or behaviors but are granted these by their collection of Components.

There is no limit to the amount of Components an Entity may have, and Entities can have any number of Components
of a particular type.

Entities are active by default and can be deactivated. While deactivated, Entities are still tracked by Engines, but
are temporarily ignored. Note that the activation status of an Entity is independent of the activation status of its
Components.

Entities typically are either instantiated at load time, or at runtime by a Spawner.

Defining logic on an Entity is an anti-pattern.

1.3.1 Functions

add_component(ComponentType, properties?)
Instantiates a Component of the given subtype and adds it to the Entity.

NOTE: Using the properties argument creates garbage. It may be better to set the component properties
after instantiating the component.

Arguments

• ComponentType (Type<Component>) – A reference to a constructor for a subtype of
Component.

• properties? (ComponentUserDataOnly<Component>) – An optional reference
to an object containing properties of the Component subtype.

Returns Component An instantiated Component of the given type.

get_components(ComponentType)
Gets all components of the given Component type that belong to the Entity. Note that this does not include
subtypes of the given type. Only includes active components by default.

Arguments

1.3. Entity 5



encompass Documentation, Release 1.0

• ComponentType (Type<Component>) – A reference to a constructor for a subtype of
Component.

Returns GCOptimizedList<Component> A list of active components of the given type.

get_component(ComponentType)
A convenience method for the common case of having a single component of a particular Type on an Entity.
Note that if more than one component exists on the Entity, only the first one is returned. Be careful. Only checks
active components.

Arguments

• ComponentType (Type<Component>) – A reference to a constructor for a subtype of
Component.

Returns Component A Component of the given type, or null if none exist.

get_components_including_inactive(ComponentType)

Arguments

• ComponentType (Type<Component>) – A reference to a constructor for a subtype of
Component.

Returns GCOptimizedList<ComponentType> A list of components of the given type.

has_component(ComponentType)
Checks if the Entity has a particular Component type. Only checks active components by default.

Arguments

• ComponentType (Type<Component>) – A reference to a constructor for a subtype of
Component.

Returns boolean True if the Entity has a Component of the given type, otherwise false.

has_component_including_inactive(ComponentType)

Arguments

• ComponentType (Type<Component>) – A reference to a constructor for a subtype of
Component.

Returns boolean True if the Entity has a Component of the given type including inactive compo-
nents, otherwise false.

remove_component(component)
Removes a specific Component instance from the entity.

Arguments

• component (Component) – A Component.

activate_component(component)
Activates the component, making it tracked by engines. Does nothing if the component is already active.

NOTE: Components are active by default when added to an entity.

Arguments

• component (Component) – The component to deactivate.

deactivate_component(component)
Deactivates the component, making it untracked by engines. Does nothing if the component is already inactive.

Arguments

6 Chapter 1. API Reference



encompass Documentation, Release 1.0

• component (Component) – The component to activate.

destroy()
Marks the Entity to be destroyed.

NOTE: The Entity will be destroyed at the end of the World update.

1.4 Components

1.4.1 Component

import { Component } from "encompass-ecs";

A Component can be thought of as a collection of data which is attached to an Entity.

Components are active by default and can be deactivated by the Entity they belong to. While inactive, Entities con-
taining the Component will not be tracked by Detectors that track the Component type. This is useful for situations
where you may want to temporarily disable a component without destroying information.

Note that the activation status of a Component is unrelated to the activation status of its Entity.

Components should not contain any game logic, but certain side-effect callbacks are available. For example, you could
use callbacks to create or destroy bodies in the engine’s physics system.

Defining non-side-effect logic on a Component is an anti-pattern.

Callbacks

Component.on_initialize()
Runs when the Component is added to an Entity. Deprecated.

Component.on_activate()
Runs when the Component is activated.

Component.on_deactivate()
Runs when the Component is deactivated.

Component.on_destroy()
Runs when the Component is removed from an Entity, or when its Entity is destroyed.

1.4.2 DrawComponent

import { DrawComponent } from "encompass-ecs";

A DrawComponent is a special subtype of Component.

The only difference is that it implicitly contains a layer property so it can be ordered properly by the World draw
function.

NOTE: It is expensive to modify the layer property at runtime.

Properties

layer
The layer at which the DrawComponent will be drawn. Lower numbers mean it is drawn earlier.

1.4. Components 7



encompass Documentation, Release 1.0

Example

import { DrawComponent } from "encompass-ecs";

export class CanvasComponent extends DrawComponent {
public canvas: Canvas;
public w: number;
public h: number;

}

import { CanvasComponent } from "src/components/draw/canvas";

const canvas_component = entity.add_component(CanvasComponent);
canvas_component.layer = 3;
canvas_component.w = 1280;
canvas_component.h = 720;

1.5 Messages

import { Message } from "encompass-ecs";

Similar to Components, Messages are collections of data.

Messages are used to transmit data between Engines so they can manipulate the game state accordingly.

Unlike Components, Messages are temporary and are destroyed at the end of each frame.

For performance reasons, it is discouraged to create new objects to pass to messages, as this will cause garbage
collection pressure.

You should not define default property values on Messages because Messages are reused internally for memory usage
reasons.

Defining any logic on a Message is an anti-pattern.

1.5.1 Example

import { Message } from "encompass-ecs";

class MotionMessage extends Message {
public component: PositionComponent;
public x_delta: number;
public y_delta: number;

}

1.5.2 Special Types

ComponentMessage

import { ComponentMessage } from "encompass-ecs";

A ComponentMessage is a kind of message which has a component property.

8 Chapter 1. API Reference



encompass Documentation, Release 1.0

Properties

Component component
A reference to an instance of Component.

Example

import { ComponentMessage, Message } from "encompass-ecs";

class MotionMessage extends Message implements ComponentMessage {
public component: PositionComponent;
public x_delta: number;
public y_delta: number;

}

EntityMessage

import { EntityMessage } from "encompass-ecs";

An EntityMessage is a kind of message which has an entity property.

Properties

Entity entity
A reference to an instance of Entity.

Example

import { EntityMessage, Message } from "encompass-ecs";

class RemoveComponentMessage extends Message implements EntityMessage {
public entity: Entity;
public component_to_remove: Component;

}

1.6 Engine

import { Engine } from "encompass-ecs";

An Engine is the encompass notion of an ECS System. Engines are responsible for reading the game state and emitting
messages, as well as mutating Entities and Components.

A particular type of Component may be modified by only one Engine. If you have two Engines which mutate the same
Component type, an error will be thrown.

An Engine which Reads a particular Message is guaranteed to run after all Engines which Emit that particular Message.

1.6. Engine 9



encompass Documentation, Release 1.0

1.6.1 Decorators

@Emits(...message_type_args)
Writes MessageTypes to the emit_message_types property.

Arguments

• message_type_args (Type<Message>[]) – MessageTypes which are emitted by
the Engine.

@Reads(...message_type_args)
Writes MessageTypes to the read_message_types property.

Arguments

• message_type_args (Type<Message>[]) – MessageTypes which are read by the
Engine.

@Mutates(...component_type_args)
Writes ComponentTypes to the mutate_component_types property.

Arguments

• component_type_args (Type<Component>[]) – ComponentTypes which are mu-
tated by the Engine.

@Detects(...component_type_args)
Specifies that the given component types should be tracked by the Detector.

Arguments

• component_type_args (Type<Component>[]) – ComponentTypes which should
cause the Detector to track an Entity.

1.6.2 Abstracts

update(dt)
Called by the World each frame. Place all of your logic in here.

Arguments

• dt (number) – Delta time.

1.6.3 Functions

create_entity()

Returns An instance of Entity.

emit_message(MessageType)
This function creates a new Message instance and makes it available to be read by other engines.

Arguments

• MessageType (Type<Message>) – A constructor reference to a subtype of Message.

Throws EmitUndeclaredMessageError – When this function is called on a MessageType
which has not been declared in emit_message_types.

Returns Message An instance of Message of the given type.

10 Chapter 1. API Reference



encompass Documentation, Release 1.0

emit_component_message(ComponentMessageType, component)
This function creates a new ComponentMessage instance and makes it available to be read by other engines.

Arguments

• ComponentMessageType (Type<ComponentMessage>) – A constructor reference
for a subtype of ComponentMessage.

• component (Component) – An instance of a component.

Throws EmitUndeclaredMessageError – When this function is called on a MessageType
which has not been declared in emit_message_types.

Returns ComponentMessage An instance of ComponentMessage of the given type.

emit_entity_message(EntityMessageType, entity)
This function creates a new EntityMessage instance and makes it available to be read by other engines.

Arguments

• EntityMessageType (Type<EntityMessage>) – A constructor reference for a
subtype of EntityMessage.

• entity (Entity) – An instance of Entity.

Throws EmitUndeclaredMessageError – When this function is called on a MessageType
which has not been declared in emit_message_types.

Returns EntityMessage An instance of EntityMessage of the given type.

get_entity(entity_id)

Arguments

• entity_id (number) – The ID of the Entity.

Returns Entity | undefined Either the Entity instance with given ID, or undefined if none exists.

read_components(ComponentType)

Arguments

• ComponentType (Type<Component>) – A constructor reference for a subtype of
Component.

Returns GCOptimizedList<Readonly<ComponentType>> A GCOptimizedSet containing all
active Components of the given ComponentType. The Components are readonly.

read_component(ComponentType)

Arguments

• ComponentType (Type<Component>) – A constructor reference for a subtype of
Component.

Returns Readonly<TComponent> | null Returns a singleton Component of the given type or null
if none exist.

read_components_mutable(ComponentType)

Arguments

• ComponentType (Type<Component>) – A constructor reference for a subtype of
Component.

Throws IllegalComponentMutationError – When this function is called on a Component-
Type which has not been declared in mutate_component_types.

1.6. Engine 11



encompass Documentation, Release 1.0

Returns GCOptimizedList<ComponentType> A GCOptimizedSet containing mutable Compo-
nent instances of the given ComponentType.

read_component_mutable(ComponentType)

Arguments

• ComponentType (Type<Component>) – A constructor reference for a subtype of
Component.

Returns Readonly<TComponent> | null Returns a singleton Component of the given type or null
if none exist.

read_inactive_components(ComponentType)

Arguments

• ComponentType (Type<Component>) – A constructor reference for a subtype of
Component.

Returns GCOptimizedList<Readonly<ComponentType>> A GCOptimizedSet containing all in-
active Components of the given ComponentType. The Components are readonly.

make_mutable(component)

Arguments

• component (Readonly<Component>) – A readonly Comopnent.

Returns Component A mutable version of the Component.

read_messages(MessageType)

Arguments

• MessageType (Type<Message>) – A constructor reference for a subtype of Message.

Throws ReadUndeclaredMessageError – When this function is called with a MessageType
that has not been declared in @Reads.

Returns GCOptimizedList<Message> A GCOptimizedSet containing all Message instances of
MessageType.

some(MessageType)

Arguments

• MessageType (Type<Message>) – A constructor reference for a subtype of Message.

Throws ReadUndeclaredMessageError – When this function is called with a MessageType
that has not been declared in @Reads

1.6.4 Special Types

Detector

import { Detector } from "encompass-ecs";

A Detector is a subclass of Engine that provides a structure for a common pattern - performing a task for each Entity
which has a particular combination of Components.

Detectors are defined by the Component types they track and the detect function they implement.

12 Chapter 1. API Reference



encompass Documentation, Release 1.0

Abstracts

Type<Component>[] component_types
The Component types that will cause the Entity to be tracked by the Detector. Define using @Detects deco-
rator.

detect(entity, dt)
This callback is triggered every frame when an Entity has all the required component types specified by the
component_types property.

Arguments

• entity (Entity) – An entity that is being tracked by the Detector.

• dt (number) – Delta time.

Example

import { Detector, Entity } from "encompass-ecs";

import { PositionComponent } from "src/components/position";
import { VelocityComponent } from "src/components/velocity";
import { MotionMessage } from "src/messages/motion";

@Detects(PositionComponent, VelocityComponent)
@Emits(MotionMessage)
class MotionDetector extends Detector {

protected detect(entity: Entity) {
const position_component = entity.get_component(PositionComponent);
const velocity_component = entity.get_component(VelocityComponent);

const motion_message = this.create_component_message(MotionMessage, position_
→˓component);

motion_message.x_delta = velocity_component.x;
motion_message.y_delta = velocity_component.y;

}
}

ComponentModifier

import { ComponentModifier } from "encompass-ecs";

A ComponentModifier is a subclass of Engine that provides a structure for a common pattern - collecting all Compo-
nentMessages of a particular type that reference the same Component instance.

The first message type given in the @Reads decorator is assumed to be the target ComponentMessage type.

Abstracts

modify(component, messages, dt)
This callback runs during the modify pass of World update when one or more ComponentMessages of
message_type are produced during the detection pass.

Arguments

1.6. Engine 13



encompass Documentation, Release 1.0

• component (Component) – The component attached to the ComponentMessage tracked
by the ComponentModifier.

• messages (GCOptimizedList<ComponentMessage>) – A GCOptimizedSet of all
the messages of message_type created during the detection pass.

• dt (number) – The delta time value given to the World update function.

Example

import { Component, ComponentModifier, Message, Mutates, Reads, Type } from
→˓"encompass-ecs";
import { MusicComponent } from "hyperspace/components/music";
import { SoundComponent } from "hyperspace/components/sound";
import { AudioMessage } from "hyperspace/messages/component/audio";
import { TimeDilationBroadcast } from "hyperspace/messages/state/time_dilation";
import { AudioComponent } from "hyperspace/types/audio_component";
import { GCOptimizedSet } from "encompass-gc-optimized-collections";

@Reads(AudioMessage, TimeDilationBroadcast)
@Mutates(MusicComponent, SoundComponent)
export class AudioModifier extends ComponentModifier {

protected modify(music_component: AudioComponent, messages: GCOptimizedSet
→˓<AudioMessage>, dt: number) {

let factor = 1;
for (const broadcast of this.read_messages(TimeDilationBroadcast).iterable())

→˓{
factor *= broadcast.factor;

}

dt *= factor;

const source = music_component.source;
source.setPitch(factor);
music_component.time += dt;

}
}

EntityModifier

import { EntityModifier } from "encompass-ecs";

An EntityModifier is a subclass of Engine that provides a structure for a common pattern - collecting all EntityMes-
sages of a particular type that reference the same Entity.

The first message type given in the @Reads decorator is assumed to be the target EntityMessage type.

Abstracts

modify(entity, messages, dt)
This callback runs during the modify pass of World update when one or more EntityMessages of
message_type are produced during the detection pass.

Arguments

14 Chapter 1. API Reference



encompass Documentation, Release 1.0

• entity (Entity) – The Entity attached to the EntityMessage tracked by the EntityMod-
ifier.

• messages (GCOptimizedList<EntityMessage>) – A GCOptimizedSet of all the
messages of message_type created during the detection pass.

• dt (number) – The delta time value given to the World update function.

Example

import { Component, Entity, EntityModifier, Message, Reads, Type } from "encompass-ecs
→˓";
import { AddComponentMessage } from "hyperspace/messages/entity/add_component";
import { GCOptimizedSet } from "encompass-gc-optimized-collections";

type MessageSet = GCOptimizedSet<AddComponentMessage<Component>>;

@Reads(AddComponentMessage)
export class AddComponentModifier extends EntityModifier {

protected modify(entity: Entity, messages: MessageSet) {
for (const message of messages.iterable()) {

entity.add_component(message.component_to_add, message.args);
}

}
}

Spawner

import { Spawner } from "encompass-ecs";

A Spawner is a subclass of Engine that provides a structure for a common pattern - reading a Message and creating a
new Entity in response.

Spawners are defined by the Message type they track, and the spawn function they implement.

The first message type given in the @Reads decorator is assumed to be the spawn message type.

Abstracts

Spawner:spawn(message)

Arguments

• message (Message) – A message that has been read by the Spawner.

This callback is triggered when a Message of the specified prototype is produced.

Example

import { Engine, Message, Reads, Type } from "encompass-ecs";
import { CellComponent } from "game/components/cell";
import { SpawnCellMessage } from "game/messages/spawn_cell";

(continues on next page)

1.6. Engine 15



encompass Documentation, Release 1.0

(continued from previous page)

@Reads(SpawnCellMessage)
export class SpawnCellEngine extends Spawner {

public spawn(message: SpawnCellMessage) {
const cell_entity = this.create_entity();

const cell_component = cell_entity.add_component(CellComponent);
cell_component.i = message.i;
cell_component.j = message.j;
cell_component.alive = true;

}
}

1.7 Renderer

A Renderer is responsible for reading the game state and drawing to the screen.

It is an error to modify Entities or Components from a Renderer.

1.7.1 Functions

get_entity(entity_id)

Arguments

• entity_id (number) –

Returns Entity An instance of Entity with the given entity_id.

read_components(ComponentType)

Arguments

• ComponentType (Type<Component>) – A constructor reference to a subtype of Com-
ponent.

Returns GCOptimizedList<Readonly<ComponentType>> A set of readonly instances of the
given ComponentType.

read_component(ComponentType)

Arguments

• ComponentType (Type<Component>) – A constructor reference to a subtype of Com-
ponent.

Throws SingletonReadError – If more than one Component of the given type exists.

Returns Readonly<TComponent> | null A readonly reference to a singleton Component of the
given type, or null if none exist.

1.7.2 Types

EntityRenderer

import { EntityRenderer } from "encompass-ecs";

16 Chapter 1. API Reference



encompass Documentation, Release 1.0

An EntityRenderer provides a structure for the common pattern of drawing an Entity which has a particular collection
of Components and a specific type of DrawComponent. They also have the ability to draw DrawComponents at their
specific layer.

EntityRenderers are defined by the Component types and DrawComponent type they track, and the render function
they implement.

Decorators

@Renders(draw_component_type, ...component_type_args)
Writes MessageTypes to the emit_message_types property.

Arguments

• draw_component_type (Type<DrawComponent>) – The DrawComponent type
which will be tracked by the EntityRenderer.

• component_type_args (Type<Component>[]) – The other Component types
which are required to be present for the EntityRenderer to track the Entity.

Abstracts

render(entity)
This callback is triggered by the World draw function. Place your drawing code inside this function.

Arguments

• entity (Entity) – An Entity which has all component_types and the
draw_component_type.

Example

import { Entity, EntityRenderer } from "encompass-ecs";
import { CanvasComponent } from "game/components/canvas";
import { PositionComponent } from "game/components/position";

@Renders(CanvasComponent, PositionComponent)
export class CanvasRenderer extends EntityRenderer {

public render(entity: Entity) {
const position_component = entity.get_component(PositionComponent);
const canvas_component = entity.get_component(CanvasComponent);

const canvas = canvas_component.canvas;

love.graphics.draw(
canvas,
position_component.x,
position_component.y,
0,
canvas_component.x_scale,
canvas_component.y_scale,
canvas.getWidth() * 0.5,
canvas.getHeight() * 0.5,

);

(continues on next page)

1.7. Renderer 17



encompass Documentation, Release 1.0

(continued from previous page)

}
}

GeneralRenderer

import { GeneralRenderer } from "encompass-ecs";

An GeneralRenderer is an Engine which is responsible for reading the game state in order to draw elements to the
screen.

It also requires a layer, which represents the order in which it will draw to the screen.

It is an anti-pattern to modify Entities or Components from within a GeneralRenderer.

Properties

layer
The layer at which the GeneralRenderer will be drawn. Lower numbers mean it is drawn earlier.

Abstracts

render()
This callback is triggered by the World draw function. Place your drawing code inside this function.

Example

import { GeneralRenderer } from "encompass-ecs";
import { SceneComponent } from "../components/scene";

export class SceneRenderer extends GeneralRenderer {
public layer = 1;

public render() {
for (const scene_component of this.read_components(

SceneComponent
).values()) {

scene_component.scene.render();
}

}
}

NOTE: This project is licensed under the Cooperative Software License. You should have received a copy of this
license with the framework code. If not, please see LICENSE.

The long and short of it is that if you are working on behalf of a corporation and not for yourself as an individual or a
cooperative, you are not welcome to use this software as-is. If this is the case, please contact <evan@moonside.games>
to negotiate an appropriate licensing agreement.

18 Chapter 1. API Reference

https://gitlab.com/ehemsley/encompass/blob/master/LICENSE
mailto:evan@moonside.games


Index

Symbols
@Detects() (built-in function), 10
@Emits() (built-in function), 10
@Mutates() (built-in function), 10
@Reads() (built-in function), 10
@Renders() (built-in function), 17

A
activate_component() (built-in function), 6
add_component() (built-in function), 5
add_engine() (built-in function), 4
add_renderer() (built-in function), 4

B
build() (built-in function), 4

C
Component component (None attribute), 9
Component.on_activate() (Component method),

7
Component.on_deactivate() (Component

method), 7
Component.on_destroy() (Component method), 7
Component.on_initialize() (Component

method), 7
create_entity() (built-in function), 3, 10

D
deactivate_component() (built-in function), 6
destroy() (built-in function), 7
detect() (built-in function), 13
draw() (built-in function), 5

E
emit_component_message() (built-in function), 3,

10
emit_entity_message() (built-in function), 4, 11
emit_message() (built-in function), 3, 10
Entity entity (None attribute), 9

G
get_component() (built-in function), 6
get_components() (built-in function), 5
get_components_including_inactive()

(built-in function), 6
get_entity() (built-in function), 11, 16

H
has_component() (built-in function), 6
has_component_including_inactive()

(built-in function), 6

L
layer (None attribute), 7, 18

M
make_mutable() (built-in function), 12
modify() (built-in function), 13, 14

R
read_component() (built-in function), 11, 16
read_component_mutable() (built-in function),

12
read_components() (built-in function), 11, 16
read_components_mutable() (built-in function),

11
read_inactive_components() (built-in func-

tion), 12
read_messages() (built-in function), 12
remove_component() (built-in function), 6
render() (built-in function), 17, 18

S
some() (built-in function), 12
Spawner:spawn() (built-in function), 15

T
Type<Component>[] component_types (None

attribute), 13

19



encompass Documentation, Release 1.0

U
update() (built-in function), 5, 10

20 Index


	API Reference
	Index

