

Welcome to Extendable Minecraft Server Manager’s documentation!

	How to

	Plugins

	API

	Changelog

	Contribute

	License

	About

Indices and tables

	Index

	Module Index

	Search Page

What is the EMSM ?

The Extendable Minecraft Server Manager (EMSM) is a minecraft server
wrapper, that is able to handle multiple minecraft worlds and server versions.

The EMSM itself provides only a simple but sufficient API to manage the
worlds. The rest of the work is done by the plugins. This makes the application
easy to extend and maintain.

And the best thing: We support many types of servers:

	vanilla (mojang server) starting with version 1.2

	bungeecord

	minecraft forge

	spigot

Why should you use the EMSM?

	Python powered

Small and readable code base, therefore easy to maintain.

	Open Source

Licensed under the MIT License.

	Portable

Needs only Python, screen and java to run and should work on all Linux systems.

	Cron-Safe

The EMSM makes sure that only one instance of the application runs
to the same time.

	InitD

Use the initd plugin to benefit from the init.d
service.

	Simple Configuration

Only three simple configuration files, using the simple .ini syntax.

	Backup ready

Create and manage multiple versions of your worlds with the
backup manager.

	Multiple worlds and servers

This application has been written to administrate and run multiple
worlds and server versions at the same time.

	Beautiful output

The EMSM output is colored, so that you only need one view to get the
most important information.

	Guarded worlds

The guard helps you to monitor the worlds and to react
to server issues automatically.

	Fast learning curve

Use the --help or --long-help argument if you don’t know how
to use a plugin.

	Online Documentation

You don’t come to grips with the configuration? Take a look at this
online documentation.

	Easy to extend

Extend the EMSM with a simple plugin and benefit from Python’s great
standard library.

Collaboration

[image: _images/octocat_small.png]

Fork this project on GitHub [https://github.com/benediktschmitt/emsm/].

How to

	Installation
	Troubleshooting

	Configuration
	main.conf

	server.conf

	*.world.conf

	First steps
	Common tasks

	Updates
	Server updates

	EMSM updates

	Upgrade

This is a quick installation guide. I guess it will not take more than
15 minutes to set the application up and learn how it works.

Installation

	Update the system packages:

$ sudo apt-get update
$ sudo apt-get upgrade

	Install the depencies:

$ sudo apt-get install python3 python3-pip screen openjdk-7-jre-headless

Note, that the EMSM needs at least Python 3.2 to run.

	Install the EMSM Python package from PyPi:

$ sudo pip3 install --pre emsm

This will also install all EMSM Python depencies.

	Create the user, that should run the EMSM:

$ sudo addgroup --system --no-create-home --group minecraft
$ sudo adduser --system --no-create-home --ingroup minecraft minecraft

	Create the instance folder. This folder will later contain all worlds and
server executables:

$ sudo mkdir /opt/minecraft

	Create the /opt/minecraft/minecraft.py EMSM launcher and add it to
the global PATH:

#!/usr/bin/env python3

#/opt/minecraft/minecraft.py

import emsm

Make sure, the instance dir is correct.
emsm.run(instance_dir="/opt/minecraft")

$ sudo chmod +x /opt/minecraft/minecraft.py
$ sudo ln -s /opt/minecraft/minecraft.py /usr/bin/minecraft

	Make sure the /opt/minecraft/ directory is owned by the minecraft
user:

$ sudo chown -R minecraft:minecraft /opt/minecraft

	Execute the EMSM:

$ sudo minecraft emsm --version

	That’s it. Your instance directory should now look like this:

|- /opt/minecraft
 |- conf
 |- logs
 |- minecraft.py
 |- plugins
 |- plugins_data
 |- server
 |- worlds

You probably want to use some plugins like the guard,
initd or backups plugin. So don’t
forget to take a look at their documentation later.

Troubleshooting

WrongUserError

If you run the application under another user than minecraft, you
have to edit the conf/main.conf configuration file before you call the
EMSM the first time otherwise you will get a WrongUserError:

[emsm]
user = foobar

Configuration

The conf/ directory contains all configuration files.

main.conf

The main.conf file contains the configuration of the EMSM and the
plugins.

[emsm]

User that should run all of your minecraft worlds.
user = minecraft

Maximum time that is waited until another EMSM instance releases
the file lock.
A negative values means no timeout and wait endless if necessary.
timeout = -1

You can provide a *screenrc* file. Please note, that it must be an
absolute path.
This option is optional.
#
#screenrc = /opt/minecraft/conf/screenrc
screenrc =

Each plugin has its own section. E.g.:

[backups]
archive_format = bztar
restore_message = This world is about to be restored to an earlier state.
restore_delay = 5
max_storage_size = 30
exclude_paths = logs
 mods

Some plugins allow you to override global options for each world. Please take
a look at the documentation of the Plugins for further information.

server.conf

The server.conf allows you to adjust some properties of the internal
EMSM server wrapper classes. Usually, it should not be necessary to edit this
configuration file, but some times you have to.

Examples

	You want to adjust the java heap size:

[vanilla 1.8]
You can use these placeholders in the start_command:
* {server_exe}
start_command = java -Xmx3G -jar {server_exe}

	You want to use the latest server version, but the EMSM contains an old
url:

[vanilla 1.8]
url = https://...

Make sure to update the server after changing the configuration:

$ minecraft -s "vanilla 1.8" server --update

You can override some options for each world, like the start_command.
This can be used to grant different worlds different amounts of memory.
You will learn how to do this in the next section.

*.world.conf

Note

This is only the EMSM configuration for the world. You still have to
edit the server.properties file in the world’s directory.

Each world managed by the EMSM has its own configuration .world.conf
file in conf/. We will now add the world morpheus:

$ # In the conf/ directory:
$ touch morpheus.world.conf

This file is empty at the moment. On the next run of the EMSM, it will detect
the configuration file and fill it with default values:

$ minecraft -W worlds --status

When you look into morpheus.world.conf, you can find the world
section:

[world]
stop_timeout = 10
stop_message = The world is going to be stopped.
stop_delay = 10
server = vanilla 1.11

	stop_timeout

The maximum time, waited until the world stopped after sending the
stop command.

	stop_message

This message is printed before sending the stop command to the world.

	stop_delay

The time between the sending the stop_message and the stop command.
If stop_delay and stop_timeout are both 10, the stop takes
at least 10 seconds and at maximum 20.

	server

The name of the minecraft server that should power this world.

Run minecraft server --list to get a list of all supported minecraft
server. If your server is not listed, you can create a new plugin, which
provides a server wrapper.

You can overridde some global plugin and server options for each world:

[server:vanilla 1.11]
start_command = java -Xmx1G -jar {server_exe} nogui

[plugin:backups]
max_storage_size = 10
exclude_paths = logs
 mods

The configuration section for a server is the server name, prefixed with
server: and the section for a plugin is the plugin’s name, prefixed with
plugin:.

Please note, that you only overridde the configuration for a specific server,
not the current server of the world:

Has no effect, because the world is configured to use "vanilla 1.11",
and not "bungeecord".
[server:bungeecord]
start_command = echo "Hallo"

Check out the Plugins documentation, if you want to know more about their
configuration.

Example

This configuration file contains the configuration for the world
#
morpheus
#
This file can be used to override global configuration values in
the *server.conf* and *emsm.conf* configuration files.
#
[world]
stop_timeout = int
stop_message = string
stop_delay = int
server = a server in server.conf
#
Custom options for the backups plugin:
#
[plugin:backups]
archive_format = bztar
max_storage_size = 30
#
Custom options for the vanilla 1.8 server:
#
[server:vanilla 1.8]
start_command = java -Xms512m -Xmx1G -jar {server_exe} nogui
#

[world]
stop_timeout = 10
stop_delay = 5
stop_message = The server is going down.
 Hope to see you soon.
server = vanilla 1.11

[plugin:backups]
max_storage_size = 10
archive_format = zip
exclude_paths = logs
 mods
 crash-reports

[plugin:initd]
enable = yes

First steps

There are some common arguments and run types you should know:

	The help argument:

$ minecraft -h
$ minecraft worlds -h
$ minecraft server -h
$ minecraft backups -h
...

	The long-help argument:

$ minecraft worlds --long-help
$ minecraft backups --long-help
...

Each plugin provides its own arguments, similar to git. There are only a few
global arguments to unify the interface:

	Select all worlds:

$ minecraft -W [plugin ...]
$ minecraft --all-worlds [plugin ...]

	Select world by world:

$ minecraft -w foo -w bar [plugin ...]
$ minecraft --world foo --world bar [plugin ...]

	Select all server software:

$ minecraft -S [plugin ...]
$ minecraft --all-server [plugin ...]

	Select server by server:

$ minecraft -s vanilla -s bukkit [plugin ...]
$ minecraft --server vanilla --server bukkit [plugin ...]

Common tasks

	Start all worlds:

$ minecraft -W worlds --start
$ minecraft --all-worlds worlds --start

Note

Please note, that the first start of a world may fail, if the eula
has not been accepted.

	Restart one world:

$ minecraft -w foo worlds --restart
$ minecraft --world foo worlds --restart
$ minecraft -w foo worlds --force-restart

	Stop all worlds:

$ minecraft -W worlds --stop
$ minecraft --all-worlds worlds --stop

	Server update:

$ minecraft -S server --update
$ minecraft -s "vanilla 1.8" server --update
$ minecraft --server "vanilla 1.8" server --update

Make sure to read the next section for more information about server updates.

Updates

From time to time, the EMSM receives some updates. Especially the server
database and the server download urls. So how can you update the EMSM?

Server updates

Note

Some servers need to be built or don’t work out the box, which may cause problems with the
privilege downgrade of EMSM. In those cases you can either replace the server jars in the
server directory manually or you may try to execute the update command directly as
minecraft user:

$ su -i --shell=/bin/bash minecraft
$ minecraft -s "spigot latest" server --update

	seealso

	issue 68 [https://github.com/benediktschmitt/emsm/issues/68]

The server software is usually updated faster than the EMSM database.
But don’t worry, you can often use the latest server software with the EMSM.

Let’s assume, the minecraft server 1.8 received a patch from mojang and you
want to use it:

	Edit the server.conf configuration file:

[vanilla 1.8]
Setting the url here, will overwrite the value in the EMSM database.
url = https://s3.amazonaws.com/Minecraft.Download/versions/1.8.1/minecraft_server.1.8.1.jar

	Update the server with the server plugin:

$ minecraft -s "vanilla 1.8" server --update

If the update fails, the old server software will be restored and nothing
changed.

Please take a look at the server configuration and the
server plugin for more information.

EMSM updates

The EMSM is a Python package and you can simply update it using pip:

$ pip3 install --upgrade emsm

Since the instance folder is not touched by this command, there is no need for
a backup before an update anymore.

If the EMSM does not work as expected after the update, take a look at the
Changelog or create an
issue [https://github.com/benediktschmitt/emsm/issues].

Upgrade

If the major version number changes, you should take a look at the
Changelog first. There will be an upgrade guide and additional
information.

Plugins

	emsm.plugins.backups

	emsm.plugins.emsm

	emsm.plugins.guard

	emsm.plugins.hellodolly

	emsm.plugins.initd

	emsm.plugins.plugins

	emsm.plugins.server

	emsm.plugins.worlds

What are EMSM plugins?

The EMSM plugins work as frontend for the EMSM and automate minecraft server
tasks.

How to write a plugin

It’s very easy to create your own plugin.

	Read the hellodolly tutorial for a quick introduction.

	If you want to know more and you’re fit in Python, I suggest you read the
source code of the EMSM for a full overview. I guess this will not take more
than 1h of your time. Simply start with the __init__.py module
and follow the calls.

emsm.plugins.backups

About

Extends the EMSM by a backup manager.

Download

You can find the latest version of this plugin in the EMSM
GitHub repository [https://github.com/benediktschmitt/emsm].

Configuration

main.conf

[backups]
archive_format = bztar
restore_message = This world is about to be ressetted to an earlier state.
restore_delay = 5
max_storage_size = 30
backup_logs = yes
exclude_paths =

archive_format

Is the name of the archive format used to create the backups. This string has
to be listed in shutil.get_archive_formats(). Usually, there should be at
least zip or tar available.

restore_message

Is send to the world’s chat before restoring the world.

restore_delay

Seconds between sending the restore_message to the chat and starting
the restore.

max_storage_size

Maximum number of backups in the storage folder, before older backups
will be removed.

backup_logs

If yes, the log files are included into the backup, otherwise not.

exclude_paths

If given, these glob() [https://docs.python.org/3/library/glob.html#glob.glob] like paths in a world folder are not
included into the backup.

Use one line for a path.

See also

shutil.ignore_patterns() [https://docs.python.org/3/library/shutil.html#shutil.ignore_patterns]

*.world.conf

Some global configuration options can be overridden for each world:

	archive_format

	max_storage_size

	backup_logs

	exclude_paths

In a *.world.conf configuration file
[plugin:backups]
max_storage_size = 10
exclude_paths = logs
 banned-ips.json
 crash-reports

Arguments

Note

All arguments will only affect the worlds selected with –world or
–all-world

	
--list

	Lists all available backups.

	
--create

	Creates a new backup.

	
--restore PATH

	Restores the world with the backup from the given BACKUP_PATH.

	
--restore-latest

	Restores, if available, the latest backup of the world.

	
--restore-menu

	Opens a menu, where the user can select which backup he wants to restore.

Cron

You should create a cronjob to create daily backups:

m h dom mon dow user command
Creates a backup of all worlds everyday at 2:00h
0 2 * * * root minecraft -W backups --create

Backup archive structure

A typical backup archive has this structure:

o
|- world_conf.json # The EMSM configuration of the world
|- world # the minecraft world
 |- server.log
 |- server.properties
 |- ...

Changelog

EMSM v3

	changed package structure and dropped support for EMSM v2 backups.

EMSM v5

	the world’s dedicated configuration file is now saved, instead of
the world’s configuration section. This also means, that we can not restore
the configuration of backups created with EMSM v3. The worlds can still be
restored.

emsm.plugins.emsm

About

Provides information about the EMSM itself, like the version and simplifies the
EMSM update.

Download

You can find the latest version of this plugin in the EMSM
GitHub repository [https://github.com/benediktschmitt/emsm].

Arguments

	
--version

	Shows the current EMSM version number.

	
--license

	Shows the EMSM license.

Changelog

	EMSM 5.0.3b0

Removed the –check-update action. Using pip to check for updates
is more reliable and the preferred way:

$ pip3 list -o | grep emsm

	https://github.com/benediktschmitt/emsm/issues/67

	https://github.com/benediktschmitt/emsm/issues/69

emsm.plugins.guard

About

Monitors selected worlds (–world, -w, -W) and reacts on issues.

Download

You can find the latest version of this plugin in the EMSM
GitHub repository [https://github.com/benediktschmitt/emsm].

Configuration

Since EMSM version 3.2.2-beta, this plugin requires no more configuration.
The command line arguments allow you to adjust the guard for each world.

Arguments

When invoked all worlds selected with the global EMSM commands -W or -w
are checked.

	
--error-action {none, stop, restart}

	Defines how the guard handles a world in trouble.

Note

Per default, all tests will be performed. If you don’t want to run all
tests, you can pass the tests, which should be performed as command
line arguments.

	
--test-status

	Check if the world is online.

	
--test-log

	Check if the logs contain an error.

	
--test-port

	Check if the world is reachable.

	
--output-format {console, text}

	Defines the output format.

text is suitable for sending the guard output via email.

	
--output-only-new-warnings

	If an error with the world has been detected in the previous run, the
warning for this world will be suppressed.

Cron

This plugin is made for cron (therefore it does not print much):

m h dom mon dow user command
Runs the guard every 5 minutes for all worlds
*/5 * * * * root minecraft -W guard --output-only-new-warnings --output-format text

Runs the guard every 5 minutes for the world *foo*.
*/5 * * * * root minecraft -w foo guard --output-only-new-warnings --output-format text

Changelog

3.0.0-beta

	Removed configuration options that were dedicated to enable the guard
for selected worlds.

	The new guard simply monitors all worlds selected with the -W
or -w argument.

3.2.2-beta

	removed configuration options

	added port check again

	added different output formats

emsm.plugins.hellodolly

About

This plugins works as a tutorial. It’s inspired by the wordpress plugin
Hello Dolly [https://wordpress.org/plugins/hello-dolly/].

Code and Download

You can find the latest version of hello_dolly on the EMSM GitHub
GitHub repository [https://github.com/benediktschmitt/emsm/blob/master/plugins/plugins.py].

#!/usr/bin/env python3

The MIT License (MIT)
#
Copyright (c) 2014-2018 <see AUTHORS.txt>
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

"""
About

This plugins works as a tutorial. It's inspired by the wordpress plugin
`Hello Dolly <https://wordpress.org/plugins/hello-dolly/>`_.

Code and Download

You can find the latest version of *hello_dolly* on the EMSM GitHub
`GitHub repository <https://github.com/benediktschmitt/emsm/blob/master/plugins/plugins.py>`_.

..
 By the way, this is a comment block in reST.

 The next line is a little hack. Unfortunetly, sphinx does not find
 "hellodolly.py" when this docstring is included with autodoc. So this does
 not work:

 .. literalinclude:: hellodolly.py

 The next line is actually a small hack. When the documentation is
 built, this module is included from
 ``EMSM_ROOT/docs/source/plugins/``, but the module is in
 ``EMSM_ROOT/plugins/```.

.. literalinclude:: ../../../emsm/plugins/hellodolly.py

Installation

We want to distribute our plugin because we think it brings so much joy
to all players. So let's create a small package.

This is usually done with the :mod:`plugins.plugins` plugin:

.. code-block:: bash

 $ foo@bar: ls
 hellodolly.py ...
 $ foo@bar: plugin.py --source hellodolly.py
 $ foo@bar: ls
 hellodolly.py hellodolly.tar.bz2 ...

The compressed package archive should now be in your working directory.

Usage

.. code-block:: bash

 $ foo@bar: # Will print only one row:
 $ foo@bar: minecraft -W hellodolly

 $ foo@bar: # Prints 5 rows or less, if the configuration value is smaller:
 $ foo@bar: minecraft -W hellodolly --rows 5

Documentation

Acutally, EMSM uses sphinx *autodoc* feature to create the documentation for
the plugins. So what, you see here is the docstring of the ``hellodolly.py``
module.
"""

Modules
--

std
import os
import random

third party
import termcolor

local
import emsm
from emsm.core.base_plugin import BasePlugin

Data
--

This variable helps the EMSM to find the actual plugin class in this module.
PLUGIN = "HelloDolly"

These are the well-known hello dolly lyrics.
LYRICS = """Hello, Dolly
Well, hello, Dolly
It's so nice to have you back where you belong
You're lookin' swell, Dolly
I can tell, Dolly
You're still glowin', you're still crowin'
You're still goin' strong
We feel the room swayin'
While the band's playin'
One of your old favourite songs from way back when
So, take her wrap, fellas
Find her an empty lap, fellas
Dolly'll never go away again
Hello, Dolly
Well, hello, Dolly
It's so nice to have you back where you belong
You're lookin' swell, Dolly
I can tell, Dolly
You're still glowin', you're still crowin'
You're still goin' strong
We feel the room swayin'
While the band's playin'
One of your old favourite songs from way back when
Golly, gee, fellas
Find her a vacant knee, fellas
Dolly'll never go away
Dolly'll never go away
Dolly'll never go away again"""

Classes
--

class HelloDolly(BasePlugin):

 # We don't need to wait for other plugins, so we don't care
 # about the init priority. If you want that your plugin is initialised
 # earlier than others, make this value smaller.
 INIT_PRIORITY = 0

 # Also, we don't care about if the finish method of our plugin is called
 # early or late. The *finish* method of plugins with a smaller
 # *FINISH_PRIORITY* is called earlier.
 FINISH_PRIORITY = 0

 # At the moment, there is no direct url to the latest version of this
 # plugin.
 # In the future, the plugin manager could use this url to detect new
 # versions of your plugin and will download them automatically.
 DOWNLOAD_URL = None

 # The last compatible version of the EMSM.
 VERSION = "6.0.0-beta"

 # The EMSM automatically uses the DESCRIPTION variable to set up the
 # *--long-help* argument parser argument.
 #
 # We ususally use here the module's docstring. Note, that ``__doc__``
 # does not interfere with the HelloDolly docstring ``HelloDolly.__doc__``
 # since the HelloDolly class has no docstring.
 DESCRIPTION = __doc__

 def __init__(self, application, name):
 """
 """
 # We need to init the BasePlugin. This is necessary, so that we can
 # safely access:
 #
 # * self.global_conf()
 # * self.argparser()
 # * ...
 BasePlugin.__init__(self, application, name)

 # The configuration and argument parser are set up in own methods
 # for readability.
 self._setup_conf()
 self._setup_argparser()
 return None

 def _setup_conf(self):
 """
 Sets the global configuration up. (The ``hellodolly`` section in
 :file:`main.conf`)
 """
 # Get the configuration dictionary for this plugin.
 conf = self.global_conf()

 # This is an example of the hellodolly configuration section in the
 # main.conf configuration file:
 #
 # [hellodolly]
 # max_rows = 5
 #

 self._max_rows = conf.getint("max_rows", 5)
 conf["max_rows"] = str(self._max_rows)
 return None

 def _setup_argparser(self):
 """
 Sets the argument parser up.
 """
 # Get the plugin's argument parser.
 parser = self.argparser()

 parser.description = (
 "Demonstrates the implementation of a plugin. Inspired by the "
 "wordpress plugin \"Hello, Dolly\"."
)

 # Note, that we prefix the *dest* value, since all arguments share
 # the same namespace.
 parser.add_argument(
 "--rows", "-r",
 action = "store",
 dest = "hellodolly_rows",
 type = int,
 default = 1,
 metavar = "ROWS",
 help = "The number of lines that will be printed."
)
 return None

 def _uninstall(self):
 """
 If you created data not stored in ``data_dir()`` or used also the
 worlds.conf or *server.conf* configuration files, you should ask the
 user here, if he wants to remove these files and settings too.

 Note the difference between ``_uninstall()`` and ``uninstall()``.
 """
 # Your uninstallation stuff here
 # ...
 return None

 def run(self, args):
 """
 Writes lines of our lyrics into the chats of the selected worlds.

 Parameters:
 * args
 Is a namespace that contains the parsed arguements.
 """
 # Get the number of lines we want to print and make sure, that
 # the number is not greater then the max_rows configuration value.
 rows = args.hellodolly_rows
 if rows > self._max_rows:
 rows = self._max_rows
 if rows < 0:
 rows = 0

 # Run hellodolly for each world, which has been selected with
 # *-w* or *-W* per command line.
 # We sort the worlds by their names, to process them in alphabetical
 # order.
 worlds = self.app().worlds().get_selected()
 worlds.sort(key = lambda w: w.name())

 for world in worlds:
 self.be_poetic(world, rows)
 return None

 def get_lyrics(self, num_rows):
 """
 Returns rows of the hello dolly lyrics.

 Parameters:
 * num_rows
 The number of rows, that should be extracted from the
 lyrics.
 """
 global LYRICS
 lyrics = LYRICS

 # Get *num_rows* lines of the lyrics.
 lyrics = lyrics.split("\n")
 if num_rows > len(lyrics):
 return lyrics
 else:
 a = random.randint(0, len(lyrics) - num_rows)
 lyrics = lyrics[a:a+num_rows]
 return lyrics

 def be_poetic(self, world, num_rows):
 """
 Writes the *lyrics* to the chat of all running, selected worlds.
 """
 lyrics = self.get_lyrics(num_rows)

 # We follow the inofficial EMSM style guide and print the
 # world name in cyan.
 print(termcolor.colored("{}:".format(world.name()), "cyan"))
 if world.is_offline():
 print("\t", termcolor.colored("error:", "red"), "world is offline")
 else:
 for row in lyrics:
 world.send_command("say {}".format(row))
 print("\t", "world has been visited")
 return None

 def finish(self):
 """
 This method is always called, when the EMSM is about to finish.
 It should be used for clean up or background stuff.
 """
 return None

Installation

We want to distribute our plugin because we think it brings so much joy
to all players. So let’s create a small package.

This is usually done with the plugins.plugins plugin:

$ foo@bar: ls
hellodolly.py ...
$ foo@bar: plugin.py --source hellodolly.py
$ foo@bar: ls
hellodolly.py hellodolly.tar.bz2 ...

The compressed package archive should now be in your working directory.

Usage

$ foo@bar: # Will print only one row:
$ foo@bar: minecraft -W hellodolly

$ foo@bar: # Prints 5 rows or less, if the configuration value is smaller:
$ foo@bar: minecraft -W hellodolly --rows 5

Documentation

Acutally, EMSM uses sphinx autodoc feature to create the documentation for
the plugins. So what, you see here is the docstring of the hellodolly.py
module.

emsm.plugins.initd

About

Works as interface between the linux initd service and the EMSM.

Download

You can find the latest version of this plugin in the EMSM
GitHub repository [https://github.com/benediktschmitt/emsm].

Installation

You can use this plugin with initd or systemd.

initd (/etc/init.d/)

You only have to create the init.d script /etc/init.d/minecraft:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	#!/bin/bash
BEGIN INIT INFO
Provides: EMSM - extendable minecraft server manager
Required-Start: $remote_fs $syslog $network
Required-Stop: $remote_fs $syslog $network
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Starts and stops your minecraft worlds.
END INIT INFO

EMSM=`which minecraft`
PLUGIN=initd

test -x $EMSM || exit 0

case "$1" in
 start)
 $EMSM $PLUGIN --start
 ;;
 stop)
 $EMSM $PLUGIN --stop
 ;;
 restart)
 $EMSM $PLUGIN --restart
 ;;
 status)
 $EMSM $PLUGIN --status
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|status}" >&2
 exit 1
 ;;
esac

$ sudo chmod +x /etc/init.d/minecraft
$ sudo update-rc.d minecraft defaults
$ sudo update-rc.d minecraft enable

systemd (/etc/systemd/system/minecraft.service)

You only have to create the /etc/systemd/system/minecraft.service file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	[Unit]
Description=Extendable Minecraft Server Manager (EMSM)
Requires=network.target
After=network.target

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/bin/minecraft initd --start
ExecStop=/usr/bin/minecraft initd --stop
ExecReload=/usr/bin/minecraft initd --restart

[Install]
WantedBy=multi-user.target

$ sudo systemctl daemon-reload
$ sudo systemctl enable minecraft.service

Configuration

*.worlds.conf

[plugin:initd]
enable = yes

enable

If yes, the autostart/-stop is enabled.

Arguments

	
--start

	Starts all worlds, where initd has been enabled in the
*.world.conf configuration file.

	
--stop

	Stops all worlds, where initd is enabled.
Note, that this will always force the stop of the world, since the
process is killed anyway during system shutdown.

	
--restart

	Forces the restart of all worlds, for which initd has been enabled.

	
--status

	Prints the status (online/offline) for each initd enabled world.

Exit code

The exit code is set to:

	0 if no error occured.

	2 if an error occured.

Changelog

EMSM v5

	initd must now be enabled in the plugin:initd configuration
section of the *.world.conf configuration file.

In v4 (worlds.conf):

[morpheus]
enable_initd = yes

In v5 (morpheus.world.conf):

[plugin:initd]
enable = yes

emsm.plugins.plugins

About

This is a package manager for EMSM plugins. Uninstall and install plugins with
this plugin.

This plugin works only with valid packages and plugins that store its data in
the dedicated paths.

Download

You can find the latest version of this plugin in the EMSM
GitHub repository [https://github.com/benediktschmitt/emsm].

Arguments

	
--install ARCHIVE

	Installs an new plugin from the archive. If a plugin with the same name
already exists, the installation will fail.

	
--remove PLUGIN

	Removes the plugin from the EMSM. Please make sure, that no other plugin
depends on this one.

	
--list

	Lists all loaded plugins.

Package structure

The archive that contains the plugin should have the following structure:

|- foo.tar.bz2
 |- plugin.py
 |- data
 |- bar.txt
 |- bar.csv
 |- ...

During the installation, the path names will be changed to:

|- EMSM_ROOT
 |- plugins
 |- foo.py <= plugin.py
 |-plugins_data
 |- foo <= data
 |- bar.txt
 |- bar.csv
 |- ...

Builder

This plugin comes with an EMSM independent building script for new plugins.
This means, that you can call this script without having the EMSM environment.

Arguments

	
--create TARGET

	

	
--source FILE

	

	
--data DIRECTORY

	

	
--help, -h

	

Example

Build the plugin foo, that comes with a data directory:

$ plugin.py --create build/foo --source dev/foo.py --data dev/foo_data
$ ls build
... foo.tar.bz2 ...

emsm.plugins.server

About

This plugin provides a user interface for the server wrapper. It can handle
the server files and their configuration parameters easily.

Download

You can find the latest version of this plugin in the EMSM
GitHub repository [https://github.com/benediktschmitt/emsm].

Configuration

[server]
update_message = The server is going down for an update.
 Come back soon.

update_message

Message sent to a world before stopping the world due to an server
update.

Arguments

Note

Make sure to select the server via -s, --server.

	
--usage

	Prints the names of the worlds, powered by a server.

	
--list

	Prints the names of all server supported by the EMSM.

	
--update

	Updates the server software.

emsm.plugins.worlds

About

This plugin provides a user interface for the server wrapper. It handles
the server files and their configuration parameters easily.

Download

You can find the latest version of this plugin in the EMSM
GitHub repository [https://github.com/benediktschmitt/emsm].

Configuration

[worlds]
default_log_start = 0
default_log_limit = 10
open_console_delay = 1
send_command_timeout = 10

default_log_start

Is the first line of the log, that is printed. Can be overwritten by a
command line argument.

default_log_limit

Is the default number of log lines, that is printed at once. This
value can be overwritten by a command line argument too.

open_console_delay

Time between printing the WARNING and opening the console.

send_command_timeout

Maximum time waited for the response of the minecraft server,
if the --verbose-send command is used.

Arguments

	
--address

	Prints the binding (ip, port) of the world.

	
--configuration

	Prints the section of the world in the worlds.conf.

	
--directory

	Prints the directory path that contains the world.

	
--log

	Prints the log.

	
--log-start LINE

	The first line of the log that is printed. If ‘-10’ (with quotes!), the
10th last line will be the first line that is printed.

	
--log-limit LINES

	Limits the number of printed lines.

	
--pid

	Prints the PID of the screen session that runs the server.

	
--status

	Prints the status of the world (online or offline).

	
--send CMD

	Sends the command to the world.

Note

Escaping commands with spaces

If you want to send a command like say Hello players!, you have to
escape it.

minecraft -W worlds --send 'say Hello players!'

	
--verbose-send CMD

	Sends the command to the server and prints the echo in the logfiles.

	
--console

	Opens the server console.

	
--start

	Starts the world

	
--stop

	
Warning

Stopping the world not using the dedicated commands, will not
call the event dispatcher and may cause bugs.

Stops the world

	
--force-stop

	Like –stop, but kill the processes if the world is still online
after the smooth stop.

	
--kill

	
Warning

Using this command can cause data loss.

Kills the process of the world.

	
--restart

	Restarts the world. If the world is offline, the world will be started.

	
--force-restart

	Like –restart, but forces the stop of the world if necessary.

	
--uninstall

	Removes the world and its configuration.

Examples

Start all worlds:
$ minecraft -W worlds --start

Send a command to the server and print the console output:
$ minecraft -W worlds --verbose-send list
$ minecraft -W worlds --verbose-send '"say Use more TNT!"'

Print the log of the world *foo*:
$ minecraft -w foo worlds --log
$ minecraft -w foo worlds --log-start '-20'
$ minecraft -w foo worlds --log-limit 5
$ minecraft -w foo worlds --log-start '-50' --log-limit 10

Open the console of a running world
$ minecraft -w bar worlds --console

...

API

	emsm.core.application

	emsm.core.argparse_

	emsm.core.base_plugin

	emsm.core.conf

	emsm.core.license_

	emsm.core.logging_

	emsm.core.paths

	emsm.core.plugins

	emsm.core.server

	emsm.core.version

	emsm.core.worlds

If you want to know, how the EMSM works, you are probably faster by reading
the source code than this API documentation. The code is written to be read
by other persons and quite easy to understand. Since the EMSM does not use
threads, you can simply follow the function calls, starting in
__init__.py. I guess it won’t last longer than 1.5 hours to read and
understand how the EMSM works.

About the depencies

The EMSM depends on some tools and Python packages.

One of them (the most important) is
screen [https://www.gnu.org/software/screen/manual/screen.html], which is
used to run the minecraft worlds in the background.

We also depend on some Python packages, which are all available via PyPi.

emsm.core.application

	
exception emsm.core.application.ApplicationException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for all exceptions in this module.

	
exception emsm.core.application.WrongUserError(required_user)

	Bases: emsm.core.application.ApplicationException

Raised if the EMSM is executed by the wrong user.

	
class emsm.core.application.Application(instance_dir)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class manages the initialisation and the complete run process
of the EMSM.

An EMSM application should be executed in a code structure similar to this
one:

app = Application()
try:
 app.setup()
 app.run()
except Exception as err:
 app.handle_exception()
 raise
finally:
 exit(app.finish())

	
argparser()

	Returns the EMSM ArgumentParser, that is
used internally.

	
conf()

	Returns the used Configuration instance.

	
exit_code()

	Returns the exit code of the application.

See also

set_exit_code()

	
finish()

	Performs some clean up and background stuff.

	Returns

	exit_code()

Note

Do not mix this method up with the
emsm.core.plugins.PluginManager.finish() method. These are not
related.

See also

	run()

	exit_code()

	
handle_exception()

	Checks sys.exc_info() [https://docs.python.org/3/library/sys.html#sys.exc_info] if there is currently an uncaught exception
and logs it.

	
paths()

	Returns the used Pathsystem instance.

	
plugins()

	Returns the used PluginManager instance.

	
run()

	Runs the plugins.

See also

	emsm.core.plugins.PluginManager.run()

	emsm.core.plugins.PluginManager.finish()

	
server()

	Returns the used ServerManager instance.

	
set_exit_code(code)

	Sets the exit code to code. This is the exit code, that is used for
the Python exit() function.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if code is not an int.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if code < 0.

See also

	exit_code()

	exit()

	
setup()

	Initialises all components of the EMSM.

This method will block, until the EMSM filelock could be acquired or
the configuration timeout value is reached.

	
worlds()

	Returns the used WorldManager instance.

emsm.core.argparse_

This module contains the ArgumentParser class which wraps a
Python argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] for the EMSM.

	
class emsm.core.argparse_.LongHelpAction(option_strings, description=None, dest='==SUPPRESS==', default='==SUPPRESS==')

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Prints the description using less (if available) and exists.

	
class emsm.core.argparse_.ArgumentParser(app)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wraps an argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] instance.

This class handles the root EMSM argument parser. The root parser
only has a few global EMSM commands like -w, -s. Each plugin has
its own subparser:

$ foo@bar: minecraft [emsm args] (plugin_name) [plugin args]

Example:

Call the *worlds* plugin with the world *foo* as target.
$ foo@bar: minecraft -w foo worlds --status

	
argparser()

	Returns the wrapped argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] instance.

	
args(cache=True)

	Parses (if not yet done) the command line arguments and returns a
namespace object that contains the result.

	Parameters

	cache (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, and the arguments have already been parsed, the
result of the previous parse is returned.

See also

	argparse.ArgumentParser.parse_args() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args]

	
plugin_parser(plugin_name)

	Returns the subparser for the plugin with the name plugin_name.

	
setup()

	Adds the global EMSM arguments to the root argument parser.

This method has to be called, when the
WorldManager and
ServerManager have been loaded, since we
require the names of the available worlds and server.

emsm.core.base_plugin

	
class emsm.core.base_plugin.BasePlugin(app, name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is the base class for all plugins.

If you want to know, how to implement your own plugin, you should also
take a look at the plugins.hellodolly plugin.

	
DESCRIPTION = ''

	This string is displayed when the --long-help argument is used.

	
DOWNLOAD_URL = ''

	The plugin package can be downloaded from this url.

See also

	emsm.plugins.plugins package manager

	
FINISH_PRIORITY = 0

	Integer with the finish priority of the plugin.
A higher value results in a later call of the finish method.

	
HIDDEN = False

	If True, the plugin has no argparser() and can therefore
not be invoked from the command line.

	
INIT_PRIORITY = 0

	Integer with the init priority of the plugin.
A higher value results in a later initialisation.

	
VERSION = '0.0.0'

	The last version number of the EMSM version that worked correctly
with that plugin.

	
app()

	Returns the parent EMSM Application
that owns this plugin.

	
argparser()

	Returns the argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] that is used by this
plugin.

If HIDDEN is True, None is returned, since the plugin
has no argument parser.

See also

	emsm.core.argparse_.ArgumentParser.plugin_parser()

	
conf()

	Returns a dictionary like object that contains the configuration
of the plugin.

Deprecated since version 4.0.16-beta: This method has been replaced by global_conf() to clarify
the difference to world_conf().

	
data_dir(create=True)

	Returns the directory that contains all data created by the plugin
to manage its EMSM job.

	Parameters

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – If the directory does not exist, it will be created.

See also

	emsm.core.paths.Pathsystem.plugin_data_dir()

	
finish()

	Called when the EMSM application is about to finish. This method can
be used for background jobs or clean up stuff.

Subclass:

	You may override this method.

See also

	emsm.core.plugins.PluginManager.finish()

	
global_conf()

	Returns a dictionary like object, that contains the global
configuration of the plugin (plugins.conf).

	Seealso

	world_conf()

	
name()

	Returns the name of the plugin.

	
plugin_uninstalled = <blinker.base.NamedSignal object at 0x7f06f222ddd8; 'plugin_uninstalled'>

	Signal, that is emitted, when a plugin has been uninstalled.

	
run(args)

	The main method of the plugin. This method is called if the plugin
has been invoked by the command line arguments.

	Params argparse.Namespace args

	is an argparse.Namespace instance that contains the values
of the parsed command line arguments.

Subclass:

	You may override this method.

See also

	argparser()

	emsm.core.argparse_.ArgumentParser.args()

	emsm.core.plugins.PluginManager.run()

	
uninstall()

	Called when the plugin should be uninstalled. This method
is interactive and requires the user to confirm if and which
data should be removed.

The BasePlugin removes:

	the plugin module (the .py file in plugins)

	the plugin data directory

	the plugin configuration

Subclass:

Subclasses should override the _uninstall() method.

Signals:

	plugin_uninstalled

See also

	data_dir()

	conf()

	_uninstall()

	
world_conf(world)

	Returns a dictionary like object, that contains the world specific
configuration of the plugin (foo.world.conf).

	Seealso

	global_conf()

	Parameters

	world – The WorldWrapper of the world or the world’s name (str).

emsm.core.conf

	
class emsm.core.conf.ConfigParser(path)

	Bases: configparser.ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser]

Extends the standard Python configparser.ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser] by some
useful methods.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the configuration file. This file is used, when you call
read() or write().

	
epilog()

	Returns a comment, which is written at the begin of a configuration
file.

	
path()

	Returns the path of the configuration file.

	
read()

	Reads the configuration from path().

	
remove()

	Removes the configuration file from the file system.

	
write()

	Writes the configuration into path().

	
class emsm.core.conf.MainConfiguration(path)

	Bases: emsm.core.conf.ConfigParser

Handles the main.conf configuration file.

This file includes the configuration for the EMSM Application and the
plugins.

The EMSM owns the [emsm] section and each plugin has its own section
with the plugin name.

[emsm]
user = minecraft
timeout = 0
screenrc =

[backups]
include_server = ...
...

	
epilog()

	Returns a comment, which is written at the begin of a configuration
file.

	
class emsm.core.conf.ServerConfiguration(path)

	Bases: emsm.core.conf.ConfigParser

Handles the server.conf configuration file, which allows the user
to overwrite the default EMSM settings for a server wrapper like
the url or the start command.

See also

	emsm.core.server.BaseServerWrapper.conf()

	emsm.core.conf.WorldConfiguration()

	
epilog()

	Returns a comment, which is written at the begin of a configuration
file.

	
class emsm.core.conf.WorldConfiguration(path)

	Bases: emsm.core.conf.ConfigParser

Handles a configuration file for one world and allows the user
to set custom configuration values for each plugin, server and
the EMSM.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
epilog()

	Returns a comment, which is written at the begin of a configuration
file.

	
class emsm.core.conf.Configuration(app)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manages all configuration files of an EMSM application
object.

See also

	emsm.core.application.Application.conf()

	emsm.core.paths.Pathsystem.conf_dir()

	
list_worlds()

	Returns a list with the names of all worlds, for which a configuration
file has been found.

	
main()

	Returns the MainConfiguration.

	
read()

	Reads all configration files.

	
server()

	Returns the ServerConfiguration.

	
world(name)

	Returns the WorldConfiguration for the world with the name
name and None, if there is not such a world.

	
worlds()

	Returns a list with all WorldConfiguration objects.

	
write()

	Saves all configuration values.

emsm.core.license_

	
emsm.core.license_.LICENSE = 'The MIT License (MIT)\n\nCopyright (c) 2014-2018 <see AUTHORS.txt>\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'

	The EMSM license

emsm.core.logging_

	
class emsm.core.logging_.Logger(app)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Sets the root logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] up.

The EMSM logger queues all log records until the emsm.log can be
acquired without side effects. This is the case, when the
Application acquired the file lock.
The queued records are then pushed to the emsm.log.

The EMSM logging stategy requires, that each module uses its own
logger instance:

>>> import logging
>>> log = logging.getLogger(__file__)

	
setup()

	Opens the emsm.log and pushes all queued log recods to the log
file.

Hint

This method requires that the Application aquired the file lock.

emsm.core.paths

	
class emsm.core.paths.Pathsystem(instance_dir)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manages the paths to the different files and directories of the
application.

The EMSM distinguishes two primary folders:
The instance folder, where the worlds, server, configuration and plugins
of the user are placed. The instance folder can actually be considered to
be the working directory of the EMSM.
On the other side is the EMSM installation directory. The emsm directory.
This directory is usually placed in Python’s third party library folder
(site-packages) and contains the EMSM core application and the core plugins.

	emsm directory:

|- emsm
 |- core
 |- lib
 |- ...
 |- __init__.py
 |- application.py
 |- argparse_.py
 |- base_plugin.py
 |- ...
 |- plugins
 |- __init__.py
 |- backups.py
 |- emsm.py
 |- guard.py
 |- ...
 |- __init__.py

	instance folder:

|- instance # usually /opt/minecraft
 |- conf # the emsm configuration files
 |- main.conf
 |- server.conf
 |- worlds.conf
 |- plugins # the user's plugins.
 |- __init__.py
 |- myawesomeplugin.py
 |- ...
 |- plugins_data # data generated or needed by the plugins
 |- backups
 |- emsm
 |- guard
 |- ...
 |- myawesomeplugin
 |- ...
 |- server # the server executables
 |- minecraft_server.jar
 |- craftbukkit.jar
 |- ...
 |- worlds # the data of the worlds (minecraft map, ...)
 |- foo
 |- server.properties
 |- ...
 |- bar
 |- server.properties
 |- ...
 |- logs
 |- emsm.log
 |- emsm.log.1
 |- ...
 |- minecraft.py

	
conf()

	Contains the configuration files of the EMSM. Not the configuration
for the minecraft worlds. These are still located in the world folder.

The directory contains the main.conf, server.conf and
worlds.conf file.

The directory is located in the instance folder.

	
create()

	Creates the folders used by the EMSM Application.

This method should only be called, after the EMSM downgraded it’s
priviliges.

	
emsm()

	Returns the path to the emsm installation directory. This folder
is usually located in Python’s site-packages directory.

	
emsm_core()

	Returns the path to the emsm.core directory.

	
emsm_plugins()

	Returns the path to the emsm.plugins directory. The directory contains
the core plugins like worlds, server, backups, …

	
instance()

	The instance folder contains all data generated by the EMSM
application and the minecraft worlds.

	
logs()

	Contains the EMSM log files.

Note, that this is NOT the log directory of the minecraft server.

	
plugin_data(plugin_name)

	This directory contains all data of the plugin with the name
plugin_name.

The directory is a subfolder of plugins_data().

	
plugins()

	Contains all user plugins and plugin packages.

The directory is located in the instance folder.

See also

emsm_plugins()

	
plugins_data()

	The directory that contains the data generated or used by all plugins.

The directory is located in the instance folder.

See also

plugin_data`()

	
server()

	This directory contains all server executables specified in
the server.conf configuration file.

The directory is located in the instance folder.

See also

server_()

	
server_(server_name)

	This directory contains the server software for the server with the
name server_name.

The directory is located in the server() folder.

Todo

	Try to find better names for server and server_. They are hard
to distinguish.

	
world(world_name)

	This directory contains the data generated by the minecraft server
which powers the world world_name.
It contains among others those files:

	server.properties

	ops.json

	whitelist.json

Furthermore, it is a child of worlds().

	
worlds()

	Contains for each world in worlds.conf one folder that contains
the data generated by the minecraft server.

The directory is located in the instance folder.

See also

world()

emsm.core.plugins

	
exception emsm.core.plugins.PluginException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for all exceptions in this module.

	
exception emsm.core.plugins.PluginImplementationError(plugin, msg)

	Bases: emsm.core.plugins.PluginException

Raised if a plugin is not correct implemented.

	
exception emsm.core.plugins.PluginOutdatedError(plugin)

	Bases: emsm.core.plugins.PluginException

Raised if the version of the plugin is not compatible with
the EMSM version.

See also

	http://semver.org/

	
class emsm.core.plugins.PluginManager(app)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Loads and manages all plugins.

If you want to write a plugin and search for the docs, take a look at the
hellodolly plugin.

See also

	BasePlugin

	
finish()

	Calls finish() for each loaded
plugin.

	
get_all_plugins()

	Returns all currently loaded plugin instances.

See also

	get_plugin_names()

	get_plugin()

	
get_module(plugin_name)

	Returns the Python module object that contains the plugin with the
name plugin_name or None if there is no plugin with that name.

	
get_plugin(plugin_name)

	Returns the instance of the plugin with the name plugin_name that is
currently loaded and used by the EMSM.

	
get_plugin_names()

	Returns the names of all loaded plugins.

	
get_plugin_type(plugin_name)

	Returns the plugin class for the plugin with the name plugin_name or
None, if there is no plugin with that name.

	
import_from_directory(directory)

	Imports all Python modules in the directory.

Files that do not contain a valid EMSM plugin, are ignored. You can
check the log files to see which plugins have been ignored.

See also

	import_plugin()

	
import_plugin(path)

	Loads the plugin located at path.

Note

The path is no longer added to sys.path (EMSM Vers. >= 3).

	Raises

	
	PluginOutdatedError – when the plugin is outdated.

	PluginImplementationError – when the plugin is not correct implemented.

See also

	_plugin_is_outdated()

	
init_plugins()

	Creates a plugin instance for each loaded plugin class.

When you call this method multiple times, only plugins that have
not been initialised already, will be initialised.

	
plugin_is_available(plugin_name)

	Returns True, if the plugin with the name plugin_name is
available.

	
remove_plugin(plugin_name, call_finish=False)

	Unloads the plugin with the name plugin_name.

	Parameters

	
	plugin_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the plugin that should be unloaded.

	call_finish (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, the finish()
method of the plugin is called, before it is unloaded.

	
run()

	Calls run() of the plugin that
has been selected by the command line arguments.

See also

	emsm.core.argparse_.ArgumentParser.args()

	
setup()

	Imports all plugins from the application’s plugin directory.

See also

	emsm.core.paths.Pathsystem.plugins()

	emsm.core.paths.Pathsystem.emsm_plugins()

emsm.core.server

	
exception emsm.core.server.ServerError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for all exceptions in this module.

	
exception emsm.core.server.ServerInstallationFailure(server, msg=None)

	Bases: emsm.core.server.ServerError

Raised if a server installation failed.

	
exception emsm.core.server.ServerStatusError(server, status, msg='')

	Bases: emsm.core.server.ServerError

Raised if the server should be online/offline
for an action but is offline/online.

	
exception emsm.core.server.ServerIsOnlineError(server, msg='')

	Bases: emsm.core.server.ServerStatusError

Raised if the server is online but should be offline.

	
exception emsm.core.server.ServerIsOfflineError(server, msg='')

	Bases: emsm.core.server.ServerStatusError

Raised if the server is offline but should be online.

	
class emsm.core.server.BaseServerWrapper(app)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wraps a minecraft server (executable), NOT a world.

The BaseServerWrapper is initialized using the options in the
server.conf configuration file.

	Parameters

	app (emsm.core.application.Application) – The parent EMSM application

	
conf()

	Returns the configuration section in the server.conf configuration
file.

	
default_start_cmd()

	ABSTRACT

Returns the bash command string, that must be executed, to start the
server.

If there are paths in the returned command, they must be absolute.

	
default_url()

	ABSTRACT

The URL where the server executable can be downloaded from.

	
directory()

	Absolute path to the directory which contains all server software.

	
exe_path()

	ABSTRACT

Absolute path to the server executable. This file is usually located
in directory().

	
install()

	ABSTRACT

Installs the server by downloading it to server(). If the
server is already installed, nothing should happen.

This method is called during the EMSM start phase if
is_installed() returns False.

	Raises

	ServerInstallationFailure –
	when the installation failed.

	
is_installed()

	True if the executable has been downloaded and exists, otherwise
False.

Per default, this method only checks if the directory() is empty
or not. It can be overridden for a more detailed check.

	
is_online()

	Returns True if at least one world is currently running with
this server.

	
log_error_re()

	ABSTRACT

Returns a regex, that matches every line with a severe (critical)
error.
A severe error means, that the server does not run correct and needs
to be restarted.

	
log_path(self)

	ABSTRACT

Returns the path of the server log file of a world.

If a relative path is returned, the base path is the world
directory.

	
log_start_re()

	ABSTRACT

Returns a regex, that matches the first line in the log file,
after a server restart.

	
classmethod name()

	ABSTRACT

The unique name of the server.

Example:

"vanilla 1.8"

	
reinstall()

	Tries to reinstall the server. If the reinstallation fails, the
old server() is restored and everything is like before.

	Raises

	
	ServerInstallationFailure –
	when the installation failed.

	ServerIsOnlineError –
	when a world powered by this server software is online.

	
start_cmd(world=None)

	Returns the value for start_command in conf() if available
and the default_start_cmd() otherwise.

	Parameters

	world (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of an EMSM world. The start command can be overridden
for each world. We will look for a custom start command in the
worlds configuration file first.

	
translate_command(cmd)

	ABSTRACT

Translates the vanilla server command cmd to a command with the same
meaning, but which can be understood by the server.

Example:

>>> # A BungeeCoord wrapper would do this:
>>> bungeecord.translate_command("stop")
"end"
>>> bungeecord.translate_command("say Hello World!")
"alert Hello World!"

	
url()

	Returns the url in conf(), if available. Otherwise the value
of default_url().

	
world_address(world)

	ABSTRACT

Returns the address (ip, port) which is binded by the world.
(None, None) should be returned, if the binding can not be retrieved.

If the server is binded to all ip addresses, return the emtpy string
"" for the ip address.

The port should be returned as integer. If it can not be retrieved,
return None.

	
class emsm.core.server.ServerManager(app)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manages all server wrappers, owned by an EMSM application.

The ServerManager helps to avoid double instances of the same server
wrapper.

	
add(server_class)

	Makes the server_class visible to this manager. The class
must implement all abstract methods of BaseServerWrapper or
unexpected errors may occure.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if server_class does not inherit BaseServerWrapper

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if another wrapper with the name() of
server_class has already been registered.

	
get(servername)

	Returns the ServerWrapper with the name servername and
None, if there is not such a server.

	
get_all()

	Returns a list with all loaded ServerWrapper.

	
get_by_pred(pred=None)

	Almost equal to:

>>> filter(pred, ServerManager.get_all())
...

	
get_names()

	Returns a list with the names of all server.

	
get_selected()

	Returns all server that have been selected per command line argument.

emsm.core.version

	
emsm.core.version.VERSION = '6.0.3b0'

	The version of the EMSM.

Take a look at http://semver.org for more information.

emsm.core.worlds

	
exception emsm.core.worlds.WorldError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for all other exceptions in this module.

	
exception emsm.core.worlds.WorldStatusError(world, is_online)

	Bases: emsm.core.worlds.WorldError

Raised, if a task can not be done because of the
current status of the world (online or not online).

	
exception emsm.core.worlds.WorldIsOnlineError(world)

	Bases: emsm.core.worlds.WorldStatusError

Raised if a world is online but should be offline.

	
exception emsm.core.worlds.WorldIsOfflineError(world)

	Bases: emsm.core.worlds.WorldStatusError

Raised if a world is offline but should be online.

	
exception emsm.core.worlds.WorldStartFailed(world)

	Bases: emsm.core.worlds.WorldError

Raised if the world start failed.

	
exception emsm.core.worlds.WorldStopFailed(world)

	Bases: emsm.core.worlds.WorldError

Raised if the world stop failed.

	
exception emsm.core.worlds.WorldCommandTimeout(world='')

	Bases: emsm.core.worlds.WorldError

Raised, when the server did not react in x seconds.

	
class emsm.core.worlds.WorldWrapper(app, name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides methods to handle a minecraft world like
start(), stop(), restart(), …

The WorldWrapper is initialised using the configuration options in the
section with the name name in the server.conf configuration
file.

	
address()

	Returns the binding (ip, port) of the world. If those values can not
be retrieved, (None, None) is returned.

	
conf()

	The configuration section of this world in the name.world.conf
configuration file:

.. code-block:: ini

morpheus.world.conf
[world]
server = vanilla 1.8

See also

	WorldConfiguration

	
directory()

	Returns the directory that contains all world data generated by the
minecraft server.

If the world is run by the mojang minecraft server, this directory
contains the server.properties, whitelist.json, …
files.

	
install()

	Creates the directory of the world.

See also

	meth:directory

	
is_installed()

	Returns True if the directory() of the world exists,
otherwise False.

See also

	directory()

	install()

	uninstall()

	
is_offline()

	Returns True if the world is currently not running.

	
is_online()

	Returns True if the world is currently running.

	
kill_processes()

	Kills all processes with a pid in pids().

Signals:

	world_about_to_stop

	world_stopped

	world_stop_failed

	Raises

	WorldStopFailed – if the process could not be killed.

See also

	pids()

	
latest_log()

	Returns the log of the world since the last start. If the
logfile does not exist, an empty string will be returned.

	
name()

	The name of the world.

This is the name of the configuration section in worlds.conf and
the folder name in the worlds directory.

	
open_console()

	Opens all screen sessions whichs pid is in pids().

	Raises

	WorldIsOfflineError – if the world is offline.

	
pids()

	Returns a list with the pids of the screen sessions with the name
screen_name().

	
restart(force_restart=False, stop_args=None)

	Restarts the server.

	Parameters

	
	force_restart (bool [https://docs.python.org/3/library/functions.html#bool]) – Forces the stop of the server by calling kill_processes`() if
necessary.

	stop_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If provided, these values are passed to stop().

Signals:

	world_about_to_stop

	world_stopped

	world_stop_failed

	world_about_to_start

	world_started

	world_start_failed

	Raises

	
	WorldStopFailed – if the world could not be stopped.

	WorldStartFailed – if the world could not be restarted.

See also

	stop()

	start()

	
screen_name()

	Returns the name of the screen sessions that run the server of this
world.

	
send_command(server_cmd)

	Sends the given command to all screen sessions with the world’s screen
name.

	Raises

	WorldIsOfflineError – if the world is offline.

Warning

There is no guarantee, that the server reacted to the command.

	
send_command_get_output(server_cmd, timeout=10, poll_intervall=0.2)

	Like send_commmand() but checks every poll_intervall
seconds, if content has been added to the logfile and returns the
change. If no change could be detected after timeout seconds,
an error will be raised.

	Raises

	
	WorldIsOfflineError – if the world is offline.

	WorldCommandTimeout – if the world did not react within timeout seconds.

	
server()

	The ServerWrapper for the server that runs
this world.

	
set_server(server)

	Changes the server that runs this world. The world has to be offline.

	Parameters

	server (emsm.core.server.ServerWrapper) – The new server

	:raises WorldIsOnlineError*

	if the world is online.

	
start(wait_check_time=0.1)

	Starts the world if the world is offline. If the world is already
online, nothing happens.

Signals:

	world_about_to_start

	world_started

	world_start_failed

	Parameters

	wait_check_time (float [https://docs.python.org/3/library/functions.html#float]) – Time waited, before checking if the server actually started.

	Raises

	WorldStartFailed – if the world could not be started.

	
stop(force_stop=False, message=None, delay=None, timeout=None)

	Stops the server.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Send to the world before the stop() command is executed.

	delay (float [https://docs.python.org/3/library/functions.html#float]) – Time in seconds that is waited between seding the message
and executing the :meth`stop` command.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Maximum time in seconds waited for the server stop after
executing the stop() command.

	force_stop (bool [https://docs.python.org/3/library/functions.html#bool]) – If true and the server could not be stopped,
kill_processes() is called.

Signals:

	world_about_to_stop

	world_stopped

	world_stop_failed

	Raises

	WorldStopFailed – if the world could not be stopped.

See also

	kill_processes()

	is_offline()

	
uninstall()

	Stops the world and removes the world directory.

See also

	kill_processes()

	directory()

	
world_about_to_start = <blinker.base.NamedSignal object at 0x7f06f21cbf60; 'world_about_to_start'>

	Signal, that is emitted when a world is about to start.

	
world_about_to_stop = <blinker.base.NamedSignal object at 0x7f06f21dc048; 'world_about_to_stop'>

	Signal, that is emitted when a world is about to be stopped.

	
world_start_failed = <blinker.base.NamedSignal object at 0x7f06f21cbfd0; 'world_start_failed'>

	Signal, that is emitted when a world could not be started.

	
world_started = <blinker.base.NamedSignal object at 0x7f06f21cbf98; 'world_started'>

	Signal, that is emitted when a world has been started.

	
world_stop_failed = <blinker.base.NamedSignal object at 0x7f06f21dc0b8; 'world_stop_failed'>

	Signal, that is emitted when a world could not be stopped.

	
world_stopped = <blinker.base.NamedSignal object at 0x7f06f21dc080; 'world_stopped'>

	Signal, that is emitted when a world has been stopped.

	
world_uninstalled = <blinker.base.NamedSignal object at 0x7f06f21cbf28; 'world_uninstalled'>

	Signal, that is emitted when a world has been uninstalled.

	
worldpath_to_ospath(rel_path)

	Converts rel_path, that is relative to the root directory of the
minecraft world, into the absolute path of the operating system.

Example:

>>> # I assume the EMSM root is: "/home/minecraft"
>>> foo.name()
"foo"
>>> foo.worldpath_to_ospath("server.properties")
"/opt/minecraft/worlds/foo/server.properties"

See also

	directory()

	
class emsm.core.worlds.WorldManager(app)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Works as a container for the WorldWrapper instances.

	
get(worldname)

	Returns the WorldWrapper for the world with the name
worldname or None if there is no world with that name.

	
get_all()

	Returns a list with all loaded worlds.

	
get_by_pred(pred=None)

	Filters the worlds using the predicate pred.

Example:

>>> # All running worlds
>>> wm.get_by_pred(lambda w: w.is_online())
...

See also

	get_all()

	
get_names()

	Returns a list with the names of all worlds.

	
get_selected()

	Returns all worlds that have been selected per command line argument.

See also

	emsm.core.argparse_.ArgumentParser.args()

	
load_worlds()

	Loads all worlds declared in the worlds.conf configuration
file.

See also

	WorldsConfiguration

Changelog

This log contains only the changes beginning with version 3.1.1-beta.

	6.0.2-beta

	Added Spigot versions 1.8, 1.9, 1.10, 1.11, 1.12, 1.13 and latest.
(issue #80 [https://github.com/benediktschmitt/emsm/issues/80])

	6.0.1-beta

	Added Vanilla 1.13

	6.0.0-beta

	Removed the {server_dir} placeholder introduced in version 4.0.5-beta
because there was no consistent or simple way of handling the quoting.
Specify the absolute path if you wish to use the start_command configuration
option.

	5.0.8-beta

	Update minecraft forge 1.6 url

	Minor bug fix

	5.0.0-beta

	The worlds.conf configuration file has been replaced with a
configuration file for each world.

Upgrading is easy: For each world in worlds.conf, create a
configuration file name.world.conf in the configuration
directory:

The morpheus section in worlds.conf:

[morpheus]
server = vanilla 1.11
enable_initd = yes
stop_timeout = 10

becomes the morpheus.world.conf configuration file, with the
content:

[world]
server = vanilla 1.11
stop_timeout = 10

[plugin:initd]
enable = yes

	Custom plugins still work, if you update the VERSION
attribute.

	changed The enable_initd option has been replaced with a new
option enable in the plugin:initd configuration section
(checkout the documentation of the initd plugin
for more information).

	added You can now overridde the server start_command for each
world.

	added The backups plugin has now an exclude
options, which allows you to exclude world directories from the backup.
(issue #58 [https://github.com/benediktschmitt/emsm/issues/58])

	added Some backups options can be overridden for each world.

	added emsm.core.base_plugin.BasePlugin.world_conf()

	added emsm.core.base_plugin.BasePlugin.global_conf()

	deprecated emsm.core.base_plugin.BasePlugin.conf(),
use global_conf() instead.

	4.0.13-beta

	fixed The start command option nogui of the forge server

	4.0.12-beta

	fixed issue #35 [https://github.com/benediktschmitt/emsm/issues/35]

	fixed The start command option nogui of the vanilla server

	4.0.5-beta

	The server executables are now always placed in a subdirectory of
INSTANCE_ROOT/server/.

	removed emsm.core.server.BaseServerWrapper.server()

	added emsm.core.server.BaseServerWrapper.directory()

	added emsm.core.server.BaseServerWrapper.exe_path()

	The start_command in the server.conf accepts due to the
changes above now these placeholders:

	{server_exe} Points to the server executable

	{server_dir} Points to the directory which contains all
server software.

	added* emsm.core.paths.Pathsystem.server_()

	4.0.0-beta

	changed The EMSM is now a valid Python package available via PyPi.

	cleaned the documentation

	EMSM upgrade from version 3 beta:

	Install the EMSM package

$ sudo pip3 install emsm

	Remove obsolete folders and files:

$ rm README.md
$ rm LICENSE.md
$ rm minecraft.py
$ rm .gitignore

$ rm -rf .git/
$ rm -rf docs/
$ rm -rf emsm

You probably want to keep your own plugins. So modify the
command to delete only the EMSM plugins (worlds, server, ...).
$ rm -r plugins/*

	Create the minecraft.py file:

#!/usr/bin/env python3

import emsm

Make sure, the instance folder is correct.
emsm.run(instance_dir = "/opt/minecraft")

$ chmod +x /opt/minecraft/minecraft.py
$ chown minecraft:minecraft /opt/minecraft/minecraft.py

	3.1.1-beta

	added emsm.core.server.BaseServerWrapper.world_address() method

	added emsm.core.server.BaseServerWrapper.log_error_re() method

	added termcolor as Python requirement

	added colorama as Python requirement

	added pyyaml as Python requirement

	added wait_check_time parameter to
emsm.core.worlds.WorldWrapper.start()

	updated the console output: the output is now sorted, colored and
consistent

	updated emsm.plugins.guard plugin (big rework, take a look)

Contribute

[image: _images/octocat_small.png]
This project needs your help! Please help to improve this application and
fork the repository on GitHub. [https://github.com/benediktschmitt/emsm]

Bug reports

When you found a bug, please create a
bug report [https://github.com/benediktschmitt/emsm/issues].

If you know how to fix the bug, you’re welcome to send a pull request.

Code

If you like the EMSM and want to contribute to the code, then do it :)

Note, that commits should never go directly to the master branch.

Plugins

You wrote a new plugin and want to share it? Great! Write me about it on
GitHub and I will add it to the plugins list.

To simplify the usage by other users, you could prepare your plugin:

	Choose a short and unique name for your plugin.

	Create a plugin package, that contains the
source file and data, which comes with your plugin.

	Add a small reST [http://sphinx-doc.org/] docstring to your plugin.
If you don’t know how to do this, you can take a look at the source code
of some other plugins. It’s quite easy.

The documentation should contain at least these sections:

	About (What does your plugin?)

	Download URL

	Configuration

	Arguments

Spelling Mistakes

I guess the source code and this documentation contain a lot of spelling
mistakes. Please help to reduce them.

License

Source Code

Beginning with version 2.0.1-beta, the EMSM is published under the
MIT license:

The MIT License (MIT)

Copyright (c) 2014-2018 <see AUTHORS.txt>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Earlier versions have been released under the
GNU GPLv3 [https://www.gnu.org/licenses/gpl-3.0.txt].

Documentation

The documentation is licensed under a
Creative Commons Attribution-ShareAlike 3.0 Unported License [http://creativecommons.org/licenses/by-sa/3.0/].

About

	Source code: https://github.com/benediktschmitt/emsm

Sources

	Octocat: https://github.com/logos

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 emsm	

 	
 	
 emsm.core.application	

 	
 	
 emsm.core.argparse_	

 	
 	
 emsm.core.base_plugin	

 	
 	
 emsm.core.conf	

 	
 	
 emsm.core.license_	

 	
 	
 emsm.core.logging_	

 	
 	
 emsm.core.paths	

 	
 	
 emsm.core.plugins	

 	
 	
 emsm.core.server	

 	
 	
 emsm.core.version	

 	
 	
 emsm.core.worlds	

 	
 	
 emsm.plugins.backups	

 	
 	
 emsm.plugins.emsm	

 	
 	
 emsm.plugins.guard	

 	
 	
 emsm.plugins.hellodolly	

 	
 	
 emsm.plugins.initd	

 	
 	
 emsm.plugins.plugins	

 	
 	
 emsm.plugins.server	

 	
 	
 emsm.plugins.worlds	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --address

 	command line option

 	
 --configuration

 	command line option

 	
 --console

 	command line option

 	
 --create

 	command line option

 	
 --create TARGET

 	command line option

 	
 --data DIRECTORY

 	command line option

 	
 --directory

 	command line option

 	
 --error-action {none, stop, restart}

 	command line option

 	
 --force-restart

 	command line option

 	
 --force-stop

 	command line option

 	
 --help, -h

 	command line option

 	
 --install ARCHIVE

 	command line option

 	
 --kill

 	command line option

 	
 --license

 	command line option

 	
 --list

 	command line option, [1], [2]

 	
 --log

 	command line option

 	
 --log-limit LINES

 	command line option

 	
 --log-start LINE

 	command line option

 	
 --output-format {console, text}

 	command line option

 	
 --output-only-new-warnings

 	command line option

 	
 	
 --pid

 	command line option

 	
 --remove PLUGIN

 	command line option

 	
 --restart

 	command line option, [1]

 	
 --restore PATH

 	command line option

 	
 --restore-latest

 	command line option

 	
 --restore-menu

 	command line option

 	
 --send CMD

 	command line option

 	
 --source FILE

 	command line option

 	
 --start

 	command line option, [1]

 	
 --status

 	command line option, [1]

 	
 --stop

 	command line option, [1]

 	
 --test-log

 	command line option

 	
 --test-port

 	command line option

 	
 --test-status

 	command line option

 	
 --uninstall

 	command line option

 	
 --update

 	command line option

 	
 --usage

 	command line option

 	
 --verbose-send CMD

 	command line option

 	
 --version

 	command line option

A

 	
 	add() (emsm.core.server.ServerManager method)

 	address() (emsm.core.worlds.WorldWrapper method)

 	app() (emsm.core.base_plugin.BasePlugin method)

 	Application (class in emsm.core.application)

 	ApplicationException

 	
 	argparser() (emsm.core.application.Application method)

 	(emsm.core.argparse_.ArgumentParser method)

 	(emsm.core.base_plugin.BasePlugin method)

 	args() (emsm.core.argparse_.ArgumentParser method)

 	ArgumentParser (class in emsm.core.argparse_)

B

 	
 	BasePlugin (class in emsm.core.base_plugin)

 	
 	BaseServerWrapper (class in emsm.core.server)

C

 	
 	
 command line option

 	--address

 	--configuration

 	--console

 	--create

 	--create TARGET

 	--data DIRECTORY

 	--directory

 	--error-action {none, stop, restart}

 	--force-restart

 	--force-stop

 	--help, -h

 	--install ARCHIVE

 	--kill

 	--license

 	--list, [1], [2]

 	--log

 	--log-limit LINES

 	--log-start LINE

 	--output-format {console, text}

 	--output-only-new-warnings

 	--pid

 	--remove PLUGIN

 	--restart, [1]

 	--restore PATH

 	--restore-latest

 	--restore-menu

 	--send CMD

 	--source FILE

 	--start, [1]

 	--status, [1]

 	--stop, [1]

 	--test-log

 	--test-port

 	--test-status

 	--uninstall

 	--update

 	--usage

 	--verbose-send CMD

 	--version

 	
 	conf() (emsm.core.application.Application method)

 	(emsm.core.base_plugin.BasePlugin method)

 	(emsm.core.paths.Pathsystem method)

 	(emsm.core.server.BaseServerWrapper method)

 	(emsm.core.worlds.WorldWrapper method)

 	ConfigParser (class in emsm.core.conf)

 	Configuration (class in emsm.core.conf)

 	create() (emsm.core.paths.Pathsystem method)

D

 	
 	data_dir() (emsm.core.base_plugin.BasePlugin method)

 	default_start_cmd() (emsm.core.server.BaseServerWrapper method)

 	default_url() (emsm.core.server.BaseServerWrapper method)

 	
 	DESCRIPTION (emsm.core.base_plugin.BasePlugin attribute)

 	directory() (emsm.core.server.BaseServerWrapper method)

 	(emsm.core.worlds.WorldWrapper method)

 	DOWNLOAD_URL (emsm.core.base_plugin.BasePlugin attribute)

E

 	
 	emsm() (emsm.core.paths.Pathsystem method)

 	emsm.core.application (module)

 	emsm.core.argparse_ (module)

 	emsm.core.base_plugin (module)

 	emsm.core.conf (module)

 	emsm.core.license_ (module)

 	emsm.core.logging_ (module)

 	emsm.core.paths (module)

 	emsm.core.plugins (module)

 	emsm.core.server (module)

 	emsm.core.version (module)

 	emsm.core.worlds (module)

 	emsm.plugins.backups (module)

 	emsm.plugins.emsm (module)

 	
 	emsm.plugins.guard (module)

 	emsm.plugins.hellodolly (module)

 	emsm.plugins.initd (module)

 	emsm.plugins.plugins (module)

 	emsm.plugins.server (module)

 	emsm.plugins.worlds (module)

 	emsm_core() (emsm.core.paths.Pathsystem method)

 	emsm_plugins() (emsm.core.paths.Pathsystem method)

 	epilog() (emsm.core.conf.ConfigParser method)

 	(emsm.core.conf.MainConfiguration method)

 	(emsm.core.conf.ServerConfiguration method)

 	(emsm.core.conf.WorldConfiguration method)

 	exe_path() (emsm.core.server.BaseServerWrapper method)

 	exit_code() (emsm.core.application.Application method)

F

 	
 	finish() (emsm.core.application.Application method)

 	(emsm.core.base_plugin.BasePlugin method)

 	(emsm.core.plugins.PluginManager method)

 	
 	FINISH_PRIORITY (emsm.core.base_plugin.BasePlugin attribute)

G

 	
 	get() (emsm.core.server.ServerManager method)

 	(emsm.core.worlds.WorldManager method)

 	get_all() (emsm.core.server.ServerManager method)

 	(emsm.core.worlds.WorldManager method)

 	get_all_plugins() (emsm.core.plugins.PluginManager method)

 	get_by_pred() (emsm.core.server.ServerManager method)

 	(emsm.core.worlds.WorldManager method)

 	get_module() (emsm.core.plugins.PluginManager method)

 	
 	get_names() (emsm.core.server.ServerManager method)

 	(emsm.core.worlds.WorldManager method)

 	get_plugin() (emsm.core.plugins.PluginManager method)

 	get_plugin_names() (emsm.core.plugins.PluginManager method)

 	get_plugin_type() (emsm.core.plugins.PluginManager method)

 	get_selected() (emsm.core.server.ServerManager method)

 	(emsm.core.worlds.WorldManager method)

 	global_conf() (emsm.core.base_plugin.BasePlugin method)

H

 	
 	handle_exception() (emsm.core.application.Application method)

 	
 	HIDDEN (emsm.core.base_plugin.BasePlugin attribute)

I

 	
 	import_from_directory() (emsm.core.plugins.PluginManager method)

 	import_plugin() (emsm.core.plugins.PluginManager method)

 	init_plugins() (emsm.core.plugins.PluginManager method)

 	INIT_PRIORITY (emsm.core.base_plugin.BasePlugin attribute)

 	install() (emsm.core.server.BaseServerWrapper method)

 	(emsm.core.worlds.WorldWrapper method)

 	
 	instance() (emsm.core.paths.Pathsystem method)

 	is_installed() (emsm.core.server.BaseServerWrapper method)

 	(emsm.core.worlds.WorldWrapper method)

 	is_offline() (emsm.core.worlds.WorldWrapper method)

 	is_online() (emsm.core.server.BaseServerWrapper method)

 	(emsm.core.worlds.WorldWrapper method)

K

 	
 	kill_processes() (emsm.core.worlds.WorldWrapper method)

L

 	
 	latest_log() (emsm.core.worlds.WorldWrapper method)

 	LICENSE (in module emsm.core.license_)

 	list_worlds() (emsm.core.conf.Configuration method)

 	load_worlds() (emsm.core.worlds.WorldManager method)

 	log_error_re() (emsm.core.server.BaseServerWrapper method)

 	
 	log_path() (emsm.core.server.BaseServerWrapper method)

 	log_start_re() (emsm.core.server.BaseServerWrapper method)

 	Logger (class in emsm.core.logging_)

 	logs() (emsm.core.paths.Pathsystem method)

 	LongHelpAction (class in emsm.core.argparse_)

M

 	
 	main() (emsm.core.conf.Configuration method)

 	
 	MainConfiguration (class in emsm.core.conf)

N

 	
 	name() (emsm.core.base_plugin.BasePlugin method)

 	(emsm.core.server.BaseServerWrapper class method)

 	(emsm.core.worlds.WorldWrapper method)

O

 	
 	open_console() (emsm.core.worlds.WorldWrapper method)

P

 	
 	path() (emsm.core.conf.ConfigParser method)

 	paths() (emsm.core.application.Application method)

 	Pathsystem (class in emsm.core.paths)

 	pids() (emsm.core.worlds.WorldWrapper method)

 	plugin_data() (emsm.core.paths.Pathsystem method)

 	plugin_is_available() (emsm.core.plugins.PluginManager method)

 	plugin_parser() (emsm.core.argparse_.ArgumentParser method)

 	
 	plugin_uninstalled (emsm.core.base_plugin.BasePlugin attribute)

 	PluginException

 	PluginImplementationError

 	PluginManager (class in emsm.core.plugins)

 	PluginOutdatedError

 	plugins() (emsm.core.application.Application method)

 	(emsm.core.paths.Pathsystem method)

 	plugins_data() (emsm.core.paths.Pathsystem method)

R

 	
 	read() (emsm.core.conf.ConfigParser method)

 	(emsm.core.conf.Configuration method)

 	reinstall() (emsm.core.server.BaseServerWrapper method)

 	remove() (emsm.core.conf.ConfigParser method)

 	
 	remove_plugin() (emsm.core.plugins.PluginManager method)

 	restart() (emsm.core.worlds.WorldWrapper method)

 	run() (emsm.core.application.Application method)

 	(emsm.core.base_plugin.BasePlugin method)

 	(emsm.core.plugins.PluginManager method)

S

 	
 	screen_name() (emsm.core.worlds.WorldWrapper method)

 	send_command() (emsm.core.worlds.WorldWrapper method)

 	send_command_get_output() (emsm.core.worlds.WorldWrapper method)

 	server() (emsm.core.application.Application method)

 	(emsm.core.conf.Configuration method)

 	(emsm.core.paths.Pathsystem method)

 	(emsm.core.worlds.WorldWrapper method)

 	server_() (emsm.core.paths.Pathsystem method)

 	ServerConfiguration (class in emsm.core.conf)

 	ServerError

 	ServerInstallationFailure

 	ServerIsOfflineError

 	
 	ServerIsOnlineError

 	ServerManager (class in emsm.core.server)

 	ServerStatusError

 	set_exit_code() (emsm.core.application.Application method)

 	set_server() (emsm.core.worlds.WorldWrapper method)

 	setup() (emsm.core.application.Application method)

 	(emsm.core.argparse_.ArgumentParser method)

 	(emsm.core.logging_.Logger method)

 	(emsm.core.plugins.PluginManager method)

 	start() (emsm.core.worlds.WorldWrapper method)

 	start_cmd() (emsm.core.server.BaseServerWrapper method)

 	stop() (emsm.core.worlds.WorldWrapper method)

T

 	
 	translate_command() (emsm.core.server.BaseServerWrapper method)

U

 	
 	uninstall() (emsm.core.base_plugin.BasePlugin method)

 	(emsm.core.worlds.WorldWrapper method)

 	
 	url() (emsm.core.server.BaseServerWrapper method)

V

 	
 	VERSION (emsm.core.base_plugin.BasePlugin attribute)

 	(in module emsm.core.version)

W

 	
 	world() (emsm.core.conf.Configuration method)

 	(emsm.core.paths.Pathsystem method)

 	world_about_to_start (emsm.core.worlds.WorldWrapper attribute)

 	world_about_to_stop (emsm.core.worlds.WorldWrapper attribute)

 	world_address() (emsm.core.server.BaseServerWrapper method)

 	world_conf() (emsm.core.base_plugin.BasePlugin method)

 	world_start_failed (emsm.core.worlds.WorldWrapper attribute)

 	world_started (emsm.core.worlds.WorldWrapper attribute)

 	world_stop_failed (emsm.core.worlds.WorldWrapper attribute)

 	world_stopped (emsm.core.worlds.WorldWrapper attribute)

 	world_uninstalled (emsm.core.worlds.WorldWrapper attribute)

 	WorldCommandTimeout

 	WorldConfiguration (class in emsm.core.conf)

 	WorldError

 	
 	WorldIsOfflineError

 	WorldIsOnlineError

 	WorldManager (class in emsm.core.worlds)

 	worldpath_to_ospath() (emsm.core.worlds.WorldWrapper method)

 	worlds() (emsm.core.application.Application method)

 	(emsm.core.conf.Configuration method)

 	(emsm.core.paths.Pathsystem method)

 	WorldStartFailed

 	WorldStatusError

 	WorldStopFailed

 	WorldWrapper (class in emsm.core.worlds)

 	write() (emsm.core.conf.ConfigParser method)

 	(emsm.core.conf.Configuration method)

 	WrongUserError

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/emsm_48x48.png

_static/down.png

_static/emsm.png

_static/file.png

_static/minus.png

_images/octocat_small.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Extendable Minecraft Server Manager’s documentation!

 		
 How to

 		
 Installation

 		
 Troubleshooting

 		
 Configuration

 		
 main.conf

 		
 server.conf

 		
 *.world.conf

 		
 First steps

 		
 Common tasks

 		
 Updates

 		
 Server updates

 		
 EMSM updates

 		
 Upgrade

 		
 Plugins

 		
 emsm.plugins.backups

 		
 About

 		
 Download

 		
 Configuration

 		
 Arguments

 		
 Cron

 		
 Backup archive structure

 		
 Changelog

 		
 emsm.plugins.emsm

 		
 About

 		
 Download

 		
 Arguments

 		
 Changelog

 		
 emsm.plugins.guard

 		
 About

 		
 Download

 		
 Configuration

 		
 Arguments

 		
 Cron

 		
 Changelog

 		
 emsm.plugins.hellodolly

 		
 About

 		
 Code and Download

 		
 Installation

 		
 Usage

 		
 Documentation

 		
 emsm.plugins.initd

 		
 About

 		
 Download

 		
 Installation

 		
 Configuration

 		
 Arguments

 		
 Exit code

 		
 Changelog

 		
 emsm.plugins.plugins

 		
 About

 		
 Download

 		
 Arguments

 		
 Package structure

 		
 Builder

 		
 emsm.plugins.server

 		
 About

 		
 Download

 		
 Configuration

 		
 Arguments

 		
 emsm.plugins.worlds

 		
 About

 		
 Download

 		
 Configuration

 		
 Arguments

 		
 Examples

 		
 What are EMSM plugins?

 		
 How to write a plugin

 		
 API

 		
 emsm.core.application

 		
 emsm.core.argparse_

 		
 emsm.core.base_plugin

 		
 emsm.core.conf

 		
 emsm.core.license_

 		
 emsm.core.logging_

 		
 emsm.core.paths

 		
 emsm.core.plugins

 		
 emsm.core.server

 		
 emsm.core.version

 		
 emsm.core.worlds

 		
 About the depencies

 		
 Changelog

 		
 Contribute

 		
 Bug reports

 		
 Code

 		
 Plugins

 		
 Spelling Mistakes

 		
 License

 		
 Source Code

 		
 Documentation

 		
 About

 		
 Sources

_static/up.png

_static/logo/emsm.png

_static/up-pressed.png

_static/logo/octocat.png

_static/logo/octocat_small.png

_static/logo/emsm_128x128.png

_static/logo/emsm_48x48.png

