

EmbeddedSystemsBuildScripts

A collection of Bazel build scripts adding support
for avr-gcc and unit testing with the Unity framework.

For Users

	AvrToolchain
	Instantiate the AvrToolchain Repository

	On Platforms and Constraints
	How to define your own platforms

AvrToolchain

The AvrToolchain repository is an external
dependency that is generated automatically
by a repository_rule [https://docs.bazel.build/versions/master/skylark/repository_rules.html] implemented
in @EmbeddedSystemsBuildScripts//AvrToolchain:avr.bzl [https://github.com/es-ude/EmbeddedSystemsBuildScripts/blob/master/AvrToolchain/avr.bzl]. It provides cc_toolchains
for compiling code with the avr-gcc compiler,
for different mcus. Most of the time you will
want to enable the --compile_mode=optimization
flag that already contains gcc flags we
found useful for reducing code size.

Instantiate the AvrToolchain Repository

To depend on the EmbeddedSystemsBuildScripts add this to your WORKSPACE file:

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(
 name = "EmbeddedSystemsBuildScripts",
 strip-prefix = "EmbeddedSystemsBuildScripts-{version}",
 urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/{version}.tar.gz"]
)

replace {version} with the actual version you want to use.
Or use:

http_archive(
 name = "EmbeddedSystemsBuildScripts",
 strip-prefix = "EmbeddedSystemsBuildScripts-master",
 urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/master.tar.gz"]
)

to depend on the current master branch.
Now you can call the repository rule, that will create the necessary avr toolchains
and platforms. Add:

load("@EmbeddedSystemsBuildScripts//AvrToolchain:avr.bzl", "avr_toolchain")

avr_toolchain()

to the WORKSPACE file. The http_archive [https://docs.bazel.build/versions/master/skylark/repository_rules.html] rule has to be called before loading
the create_avr() function.

On Platforms and Constraints

Our code has to be deployable on a range
of 8-bit AVR platforms as well as the
host platforms (this is where your bazel
instance runs). Bazel’s platforms [https://docs.bazel.build/versions/master/platforms.html]
and constraints mechanics allow to
make build decisions depend on different
constraints. The user can then
specify a set of specific constraints
to apply to the current build process
with the help of the platform rule.

Constraints are basically just typed
enumerations and platforms specify
a set of constraints. The type
of a constraint_value is called
constraint_setting.
For every platform at most
one constraint_value for each
constraint_setting may be
specified (ie. your platform may not have
arm and x64_86 as cpu architecture).

The scripts provided by us already
take different constraints into account.
This allows us to write scripts that will
produce correct results without knowing the
exact platform you want to build for.

We already ship some platform definitions
for platforms that we use internally.
You can see a list of these definitions by running:

$ bazel query `(kind:platform, @AvrToolchain//platforms:*)`

To compile for one of these platforms use e.g.:

$ bazel build //:myTarget --platforms @AvrToolchain//platforms:Motherboard

How to define your own platforms

To define your own avr based platform you will
need to specify at least the mcu.
Run:

bazel query 'kind(constraint_value, @AvrToolchain//platforms/mcu:*)'

to retrieve a list of available mcus.
Additionally there is the @AvrToolchain//platforms:avr_common platform
that serves as a parent for all other avr based platforms.
E.g. a new platform definition could look like this:

platform(
 name = "MyPlatform",
 constraint_values = [
 "@AvrToolchain//platforms/mcu:atmega16",
 "@AvrToolchain//platforms/cpu_frequency:8mhz",
],
 parents = ["@AvrToolchain//platforms:avr_common"],
)

To see a list of available constraint settings run:

$ bazel query 'kind(constraint_setting, @AvrToolchain//platforms/...)'

and to see a list of available values for the setting <my_setting> you can run:

$ bazel query 'attr(constraint_setting, <my_setting>, @AvrToolchain//...)'

Index

 nav.xhtml

 Table of Contents

 		
 EmbeddedSystemsBuildScripts

 		
 AvrToolchain

 		
 Instantiate the AvrToolchain Repository

 		
 On Platforms and Constraints

 		
 How to define your own platforms

_static/plus.png

_static/file.png

_static/minus.png

