

elasticsearch-lua

A simple low level client for elasticsearch written in lua. elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua]
is designed to be in accordance with other official clients for elasticsearch.

All API functions are developed to closely match with the REST API of elasticsearch.
The client is extensible and developers can attach their own plug-ins.

Basic Documentation

	Quickstart
	Installation

	Setting up Client

	Operations

	Wrap up

	Installation
	Using luarocks

	Directly from source

	JSON Arrays and Lua Tables

	Client Configuration
	Host Configuration

	Additional Parameters

	Indexing Documents
	Indexing Single Document

	Indexing Bulk Documents

	Getting Documents
	Getting Single Document

	Getting Multiple Documents

	Searching Documents
	URI Search

	Request Body Search

	Response

	Scan/Scroll Search

	Updating Documents

	Deleting Documents

Additional Documentation

	Namespaces

	Connection

	Selector
	In-Built Selectors

	Custom Selector

	Connection Pool
	In-Built Connection Pools

	Custom Connection Pool

	API Documentation [https://dhavalkapil.com/elasticsearch-lua/docs]

Quickstart

A quick guide for installing and using elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua].

Installation

	Directly using luarocks:

$ luarocks install elasticsearch

	Using elasticsearch as a dependency in your project

	Add elasticsearch in your ‘rockspec’:

dependencies = {
 "elasticsearch"
}

	Install dependencies using luarocks:

$ luarocks install <your_rockspec_file>

Setting up Client

Requiring elasticsearch in source file:

local elasticsearch = require "elasticsearch"

Creating a client:

local client = elasticsearch.client{
 hosts = {
 {
 host = "localhost",
 port = "9200"
 }
 }
}

Note

host and port are optional. In case any parameter is not specified,
host defaults to ‘localhost’ and port defaults to ‘9200’.

Operations

elasticsearch-lua uses Lua tables to pass parameters for any operation. Common keys
include index, type, id and body. Each kind of operation may have
additional parameters. The body itself is a Lua table.

Every operation returns two values

local value1, value2 = client:operation()

The result depends on whether the operation succeeded or failed

	
	Success

	Failure

	value1

	Actual result

	nil

	value2

	HTTP status code

	error message

Indexing Documents

To index a document, you need to pass index, type, id and body
as parameters:

local res, status = client:index{
 index = "my_index",
 type = "my_type",
 id = "my_id",
 body = {
 my_key = "my_value"
 }
}

On success, the response will be returned in res as a Lua table and the
HTTP status code in status. Sample output:

{
 ["_index"] = "my_index",
 ["_type"] = "my_type",
 ["_id"] = "my_id",
 ["created"] = true,
 ["_version"] = 1.0,
 ["_shards"] = {
 ["successful"] = 1.0,
 ["failed"] = 0.0,
 ["total"] = 2.0,
 }
}

Getting Documents

To get a document, you need to pass index, type and id of the
document as parameters:

local res, status = client:get{
 index = "my_index",
 type = "my_type",
 id = "my_id"
}

The following response is returned if the document can be retrieved:

{
 ["_index"] = "my_index",
 ["_type"] = "my_type",
 ["_id"] = "my_id",
 ["found"] = true,
 ["_version"] = 1.0,
 ["_source"] = {
 ["my_key"] = "my_value"
 }
}

Otherwise, if the document is not present or cannot be retrieved,
nil and an error string is returned.

Searching Documents

For searching documents, you can either perform a URI based search(by passing
a q parameter) or a request body search(by passing the search DSL in
body parameter). Searches can be restricted to ‘index’, ‘type’, or even
both, by optionally passing index and type parameters. A sample request
body search:

local res, status = client:search{
 index = "my_index",
 type = "my_type",
 body = {
 query = {
 match = {
 my_key = "my_value"
 }
 }
 }
}

The returned response consists of some metadata(took, timed_out, etc.)
and a hits table. hits.total contains the total number of matches.
hits.hits is a lua array, each entry represents one matching document.

{
 ["took"] = 3.0,
 ["timed_out"] = false,
 ["_shards"] = {
 ["failed"] = 0.0,
 ["total"] = 5.0,
 ["successful"] = 5.0
 },
 ["hits"] = {
 ["total"] = 1.0,
 ["max_score"] = 7.7399282,
 ["hits"] = {
 ["1"] = {
 ["_index"] = "my_index",
 ["_type"] = "my_type",
 ["_id"] = "my_id",
 ["_score"] = 7.7399282,
 ["_source"] = {
 ["my_key"] = "my_param"
 }
 }
 }
 }
}

Deleting Documents

To delete a document, you need to pass index, type, id and body
as parameters:

local res, status = client:delete{
 index = "my_index",
 type = "my_type",
 id = "my_id"
}

On deletion, the following response is returned back:

{
 ["_index"] = "my_index",
 ["_type"] = "my_type",
 ["_id"] = "my_id",
 ["found"] = true,
 ["_version"] = 2.0,
 ["_shards"] = {
 ["failed"] = 0.0,
 ["total"] = 2.0,
 ["successful"] = 1.0,
 }
}

Wrap up

This was just a brief overview of using elasticsearch-lua. The client
functions, the body parameter and the response returned bears resemblance
with the Elasticsearch REST API.

Read the rest of the documentation to know more about the client.

Installation

elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua] has the following requirements:

	Lua 5.1 or higher

There are two ways to install elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua]:

Using luarocks

luarocks [https://luarocks.org/] is the package manager for Lua modules. To install Lua and LuaRocks
luaver [https://dhavalkapil.com/luaver] can be used. You can directly install elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua] using
LuaRocks:

$ luarocks install elasticsearch

The client will be installed and you can require ‘elasticsearch’ anywhere in
your Lua code. If elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua] is a dependency, add it in your rockspec
file:

dependencies = {
 "elasticsearch"
}

Directly from source

elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua] can also be installed directly from the source. However
this is not recommended.

	Clone the repository:

git clone https://github.com/DhavalKapil/elasticsearch-lua.git

	Install the following dependencies:

	luasocket [https://luarocks.org/modules/luarocks/luasocket]

	lua-cjson [https://luarocks.org/modules/luarocks/lua-cjson]

	lunitx [https://luarocks.org/modules/luarocks/lunitx]

Note

lunitx [https://luarocks.org/modules/luarocks/lunitx] is not needed for using the client. You will need to
install it only if you wish to run tests.

	Add the following code to use elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua]:

package.path = package.path .. ";/path/to/elasticsearch-lua/src/?.lua";

local elasticsearch = require "elasticsearch";

JSON Arrays and Lua Tables

Elasticsearch uses JSON API. The request body and the response returned is in
JSON format. elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua] converts JSON to Lua table and vice versa
using the lua-cjson [https://luarocks.org/modules/luarocks/lua-cjson] library. Hence, the user directly works with Lua tables.
The request body passed to the client and the response returned by the client
is a Lua table.

Sample example conversion:

{
 "query": {
 "match": { "content": "quick brown fox" }
 },
 "sort": [
 {
 "time": { "order": "desc" }
 },
 {
 "popularity": { "order": "desc" }
 }
]
}

Note the presence of an array in the above JSON. While creating a
corresponding Lua table, take care to handle arrays using the standard
1-indexable format:

{
 query = {
 match = { content = "quick brown fox" }
 },
 sort = {
 {
 time = { order = "desc" }
 },
 {
 popularity = { order = "desc" }
 }
 }
}

Client Configuration

elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua] was designed to allow users to configure almost all of the
parameters. The standard way of creating and configuring the client is:

local client = elasticsearch.client{
 hosts = {
 -- array of elasticsearch hosts
 {
 protocol = "http",
 host = "localhost",
 port = "9200"
 }
 },
 params = {
 -- additional parameters to configure the client
 pingTimeout = 2,
 logLevel = "warn"
 }
}

Every configuration passed while creating a client is optional. Default
settings are used for configurations that are not provided by the user, as
detailed below.

Host Configuration

A ‘host’ refers to a single node of elasticsearch server. It may or may not
be part of a cluster. Hosts are specified by using the key hosts. It
consists of an array of hosts, wherein each host has 3 parameters:

	protocol : The underlying protocol to be used while communicating with the
host. Defaults to ‘http’. (Presently, the client only supports http)

	host: The domain name or the IP address at which the host is running.
Defaults to ‘localhost’.

	port: The port on which the host is listening. Defaults to ‘9200’.

Additional Parameters

You can also specify some additional parameters to configure the elasticsearch
server. Again, these parameters are optional and have default values.

	Parameter

	Description

	Default

	pingTimeout

	The timeout (in seconds) for any ping or sniff

HTTP request made by the client to the

elasticsearch server

	1

	requestEngine

	The connection request ending to be used. For

more details, see Connection.

	‘LuaSocket’

	selector

	The selector to be used. For more details, see

Selector.

	‘RoundRobinSelector’

	connectionPool

	The connection pool to be used. For more details,

see Connection Pool.

	‘StaticConnectionPool’

	maxRetryCount

	The number of times to retry an HTTP request

before exiting with a TransportError

	5

	logLevel

	The level of the inbuilt console logger. Follows

the convention of log4j: ALL, DEBUG, ERROR,

FATAL, INFO, OFF, TRACE, WARN. (ignores case)

	‘WARN’

Indexing Documents

Elasticsearch accepts documents in the form of JSON. In elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua]
documents are passed as Lua tables. There are several ways to index documents.

Indexing Single Document

To index a document, you need to pass index and type as parameters.
The document to be indexed is passed as a Lua table using the body
parameter. Optionally, you can also provide an id for the document or let
Elasticsearch generate it for you.

local res, status = client:index{
 index = "my_index",
 type = "my_type",
 id = "my_id", -- Optional
 body = {
 my_key = "my_value"
 }
}

You can specify additional parameters such as routing, refresh, etc.
alongside index, type.

local res, status = client:index{
 index = "my_index",
 type = "my_type",
 id = "my_id", -- Optional
 routing = "company_xyz", -- Optional
 body = {
 my_key = "my_value"
 }
}

Refer to the Elasticsearch documentation [https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html] for a complete list of allowed parameters.

Indexing Bulk Documents

Elasticsearch also supports bulk indexing of documents (indexing more than one
document in one HTTP request). It is advised to use the Bulk API if you have
to index many documents together. The client accepts an array of tables. You
have to specify a pair of tables for every document. The first represents
an action(‘index’) in this context and the second represents the body. So
basically the array consists of action, body, action, body, etc. tables.

local res, status = client:bulk{
 body = {
 -- First action
 {
 index = {
 ["_index"] = "my_index1",
 ["_type"] = "my_type1"
 }
 },
 -- First body
 {
 my_key1 = "my_value1",
 },
 -- Second action
 {
 index = {
 ["_index"] = "my_index2",
 ["_type"] = "my_type2"
 }
 },
 -- Second body
 {
 my_key2 = "my_value2",
 }
 }
}

You can also specify a common index or a type separately that would be
used as default in every action.

local res, status = client:bulk{
 index = "my_index",
 body = {
 -- First action
 {
 index = {
 ["_type"] = "my_type1"
 }
 },
 -- First body
 {
 my_key1 = "my_value1",
 },
 -- Second action
 {
 index = {
 ["_type"] = "my_type2"
 }
 },
 -- Second body
 {
 my_key2 = "my_value2",
 }
 }
}

Getting Documents

Like indexing documents, there are several ways to ‘get’ document(s) from
the Elasticsearch server using elasticsearch-lua [https://github.com/DhavalKapil/elasticsearch-lua].

Getting Single Document

To get a single document, provide index, type and id of the
document.

local res, status = client:get{
 index = "my_index",
 type = "my_type",
 id = "my_id"
}

Getting Multiple Documents

Elasticsearch supports getting multiple documents using a single request. It is
advised to use this method in case you want to retrieve multiple documents. You
need to pass an array of Lua tables to the MGET API. Each table represents
details about one document and consists of three fields _index, _type
and _id.

local res, status = client:mget{
 body = {
 docs = {
 -- First document
 {
 ["_index"] = "my_index1",
 ["_type"] = "my_type1",
 ["_id"] = "my_id1"
 },
 -- Second document
 {
 ["_index"] = "my_index2",
 ["_type"] = "my_type2",
 ["_id"] = "my_id2"
 }
 }
 }
}

In case every document has the same index or type, they can be specified
separately instead of passing them in every document table.

local res, status = client:mget{
 index = "my_index",
 type = "my_type",
 body = {
 docs = {
 -- First document
 {
 ["_id"] = "my_id1"
 },
 -- Second document
 {
 ["_id"] = "my_id2"
 }
 }
 }
}

Searching Documents

Search is the primary operation of Elasticsearch. The client supports all kinds
of searches supported by the Elasticsearch REST API. There are two different
ways to search.

URI Search

This kind of search uses a query string, which internally translates to a URI
Search. Only a limited number of search options are available in this kind of
search. However, it can be used for quick and handy searches. The optional
index and type are passed along with q, the search query.

local res, status = client:search{
 index = "my_index", -- Optional
 type = "my_type", -- Optional
 q = "my_key:my_value"
}

This internally transforms to the following ‘curl’ request:

curl -XGET 'http://localhost:9200/my_index/my_type/_search?q=my_key:my_value'

Request Body Search

This kind of search involves a search DSL to be passed as body. All kinds
of searches are possible using mode. Searches can be restricted to ‘index’,
‘type’, or even both, by optionally passing index and type parameters.

local res, status = client:search{
 index = "my_index",
 type = "my_type",
 body = {
 query = {
 match = {
 my_key = "my_value"
 }
 }
 }
}

The client allows all kinds of searches supported by Elasticsearch. Refer to
the official documentation [https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html] of Elasticsearch for details.

Response

The JSON response returned from Elasticsearch is parsed to a Lua table and
returned directly. It consists of some metadata(took, timed_out, etc.)
and a hits table. hits.total contains the total number of matches.
hits.hits is a lua array and each entry represents one matching document.

{
 ["took"] = 3.0,
 ["timed_out"] = false,
 ["_shards"] = {
 ["failed"] = 0.0,
 ["total"] = 5.0,
 ["successful"] = 5.0
 },
 ["hits"] = {
 ["total"] = 1.0,
 ["max_score"] = 7.7399282,
 ["hits"] = {
 ["1"] = {
 ["_index"] = "my_index",
 ["_type"] = "my_type",
 ["_id"] = "my_id",
 ["_score"] = 7.7399282,
 ["_source"] = {
 ["my_key"] = "my_param"
 }
 }
 }
 }
}

Scan/Scroll Search

Elasticsearch provides a scan and scroll search functionality for retrieving a
large number of documents efficiently, without paying the penalty of deep
pagination. It works by first executing a ‘scan’ search. This initiates a
‘scan window’ which will remain open for the duration of the scan. This
allows proper, consistent pagination. After a ‘scan’ search, the ‘scroll’
search is used to fetch paginated results over that window.

Scan Search

A scan search is just a search request with an additional search_type of
scan, scroll and size parameters.

local res, status = client:search{
 index = "my_index",
 type = "my_type",
 search_type = "scan",
 scroll = "30s", -- How long between scroll requests
 size = 50, -- How many results *per shard* you want back
 body = {
 query = {
 match_all = {}
 }
 }
}

The scroll id is returned in the response, which is later used while
‘scrolling’.

local scroll_id = res["_scroll_id"]

Scroll Search

Using the above generated scroll_id, scroll search can be performed
repeatedly till no more results are found. The client exposes a separate
scroll function for this purpose.

while true do
 -- Scroll request
 res, status = client:scroll{
 scroll = "30s",
 scroll_id = scroll_id
 }

 -- If no results obtained, break
 if #res["hits"]["hits"] == 0 then
 break
 end

 --
 -- Handle results
 --

 -- Update scroll_id
 scroll_id = res["_scroll_id"]
end

Note

On every request, a new scroll_id is generated. Always remember to
update it.

Note

The behavior has changed a lot in Elasticsearch 2.1, we don’t have
search_type any more.

Updating Documents

Elasticsearch supports updating documents. index, type and id
parameters are required to be passed. The fields needed to be updated in the
document are passed inside the doc parameter which is inside the body.

local res, status = client:update{
 index = "my_index",
 type = "my_type",
 id = "my_id",
 body = {
 doc = {
 my_key = "new_value",
 my_new_key = "another_value"
 }
 }
}

Deleting Documents

Documents can be deleted by specifying index, type and the id of
the document.

local res, status = client:delete{
 index = "my_index",
 type = "my_type",
 id = "my_id"
}

Namespaces

The client exposes administrative functionalities through ‘namespaces’.

	Namespaces

	Functionality

	indices

	Index related functions such as create, delete, etc.

	nodes

	Nodes related functions such as stats, info, etc.

	cluster

	Cluster related functions such as get and update
settings, stats, etc.

These namespaces are accessible as client.indices, client.nodes and
client.cluster. Sample code for using the namespaces:

-- Creating an index
local res, status = client.indices:create{
 index = "my_index"
}

-- Getting Nodes Stats
local res, status = client.nodes:stats()

-- Getting Cluster Stats
local res, status = client.cluster:stats()

Refer to the API documentation for a complete listing.

Connection

A connection represents the lowest level of bare interaction with the
Elasticsearch server in the form of HTTP requests. The client presently
supports HTTP requests using the LuaSocket [http://w3.impa.br/~diego/software/luasocket/] library.

Each time a request is to be made, the request function is called. However,
support is provided to overload this function. While creating the client,
requestEngine can be passed in params.

local client = elasticsearch.client{
 hosts = {
 {
 host = "localhost",
 port = "9200"
 }
 },
 params = {
 requestEngine = customRequestEngine
 }
}

customRequestEngine should be a Lua function which takes as arguments the
http method, uri, body and timeout. It should return a table response with
keys code, statusCode and body.

-- Makes a request to target server
--
-- @param method The HTTP method to be used
-- @param uri The HTTP URI for the request
-- @param body The body to passed if any
-- @param timeout The timeout(if any) in seconds
--
-- @return table The response returned

function customRequestEngine(method, uri, body, timeout)
 -- Make an HTTP 'method' request to 'uri' with 'body' and 'timeout'
 response.code = -- non nil for a successful request
 response.statusCode = -- HTTP status code returned
 response.body = -- Response body
 return response
end

Selector

The selector is an internal structure used in the client. Given an array of
connections, it chooses a single connection. Some selectors don’t even worry
much about the internals of the connection. There are some in-built selectors
that you can use or you can even write and use your own custom selector.

Note

A selector is called every time a request to the Elasticsearch
server is to be made. The list of all available connections are
passed to the selector.

In-Built Selectors

These selectors are defined inside elasticsearch.selectors module. There are
three of them:

	RoundRobinSelector (Default): The connections are selected in a round robin
fashion. i.e. #1 connection will be chosen on the first request, #2
connection will be chosen on the second request and so on. This ensures a
nearly even load across each node in the cluster.

	StickyRoundRobinSelector: This selector will always return(‘stick’) the same
connection each time, unless a request fails. In that case, it will move on to
the next connection in a round robin fashion. This case is ideal for
persistent connections where a considerable time is spent in opening and
closing connections.

	RandomSelector: This selector returns a random connection from the list
irrespective of whether it is alive or not. It internally uses
math.random function.

To use any particular selector you have to specify it in the parameters while
creating a client. By default, the RoundRobinSelector will be used.

local client = elasticsearch.client{
 hosts = {
 {
 host = "localhost",
 port = "9200"
 }
 },
 params = {
 selector = "StickyRoundRobinSelector"
 -- selector = "RoundRobinSelector"
 -- selector = "RandomSelector"
 }
}

Custom Selector

You can also implement your own custom selector and pass it to the client.
To create a custom selector, extend elasticsearch.selector.Selector and
implement the selectNext function.

-- Requiring the Base Class
local Selector = require "elasticsearch.selector.Selector"

-- Create a custom selector
local CustomSelector = Selector:new()

-- Implement the constructor function
function CustomSelector:new(o)
 o = o or {}
 -- Custom initialization code related to your algorithm
 -- End custom code
 setmetatable(o, self)
 self.__index = self
 return o
end

-- Implement the logic to select and return a single connection from
-- an array of connections
--
-- @param connections A table of connections
-- @return Connection The connection selected

function CustomSelector:selectNext(connections)
 local connection = -- Select a connection
 return connection
end

After creating a custom selector, it needs to be passed as a parameter while
creating a client:

local client = elasticsearch.client{
 params = {
 selector = CustomSelector
 }
}

Note

A string is passed in selector when setting an in-built selector.
Otherwise, an object is passed while setting a custom selector.

Connection Pool

Connection Pool is an internal construct that maintains a list(‘pool’) of
connections to nodes that may be alive or dead. The job of a Connection Pool
is to handle these dead and alive connections and return back an alive
connection to provide the best behavior for the client. In case no alive
connection can be found, a nil is returned. There are some in-built
connection pools that you can use or you can even write and use your own custom
connection pool.

Note

A connection pool is called every time a request to the Elasticsearch
server is to be made. It internally uses the selector to choose a
connection.

In-Built Connection Pools

These connection pools are defined inside elasticsearch.connectionpool module.
There are two of them:

	StaticConnectionPool (Default): The StaticConnectionPool selects a
connection using a selector. It returns the connection if it is alive. If the
connection is dead and a certain time interval has passed, it is tested
again. If it is still dead, another connection is selected using the selector
and the process is repeated. If no alive connection is found, the remaining
dead connections are tested one by one.

	SniffConnectionPool: The SniffConnectionPool iterates the list of
connections and returns the first alive connection found. For dead
connections, it pings again to update its status. Also, after a certain time
interval, it sniffs the existing connections to discover new nodes in the
cluster and update its list of connections.

To use any particular connection pool you have to specify it in the parameters
while creating a client. By default, the StaticConnectionPool will be used.

Custom Connection Pool

You can also implement your own custom connection pool and pass it to the
client. To create a custom connection pool, extend
elasticsearch.connectionpool.ConnectionPool and implement the
nextConnection function.

-- Requiring the Base Class
local ConnectionPool = require "elasticsearch.connectionpool.ConnectionPool"

-- Create a custom connection pool
local CustomConnectionPool = ConnectionPool:new()

-- Implement the constructor function
function CustomConnectionPool:new(o)
 o = o or {}
 -- Custom initialization code related to your algorithm
 -- End custom code
 setmetatable(o, self)
 self.__index = self
 return o
end

-- Implement the logic to return a single connection
--
-- @return Connection The connection selected

function CustomConnectionPool:nextConnection()
 local connection = -- Select a connection
 return connection
end

After creating a custom ConnectionPool, it needs to be passed as a parameter
while creating a client:

local client = elasticsearch.client{
 params = {
 connectionPool = CustomConnectionPool
 }
}

Note

A string is passed in connectionPool when setting an in-built
Connection Pool. Otherwise, an object is passed while setting a
custom Connection Pool.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 elasticsearch-lua

 		
 Quickstart

 		
 Installation

 		
 Setting up Client

 		
 Operations

 		
 Indexing Documents

 		
 Getting Documents

 		
 Searching Documents

 		
 Deleting Documents

 		
 Wrap up

 		
 Installation

 		
 Using luarocks

 		
 Directly from source

 		
 JSON Arrays and Lua Tables

 		
 Client Configuration

 		
 Host Configuration

 		
 Additional Parameters

 		
 Indexing Documents

 		
 Indexing Single Document

 		
 Indexing Bulk Documents

 		
 Getting Documents

 		
 Getting Single Document

 		
 Getting Multiple Documents

 		
 Searching Documents

 		
 URI Search

 		
 Request Body Search

 		
 Response

 		
 Scan/Scroll Search

 		
 Scan Search

 		
 Scroll Search

 		
 Updating Documents

 		
 Deleting Documents

 		
 Namespaces

 		
 Connection

 		
 Selector

 		
 In-Built Selectors

 		
 Custom Selector

 		
 Connection Pool

 		
 In-Built Connection Pools

 		
 Custom Connection Pool

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

