

 Navigation

 	
 index

 	
 next |

 	ekmmeters 0.1.0 documentation

EKM Serial Push API

	Introduction

	Examples

	Unit Tests

	Meter Class

	V3Meter Class

	V4Meter Class

	SerialPort Class

	MeterObserver Class

	MeterDB Class

	Logs and Exceptions

	Constants

Index and Search

	Index

	Search Page

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

Introduction

Getting Started

For most users, the most effective way to get started is by working through the
examples with a live Omnimeter. Most of what this API does is very straightforward,
and the examples are written to easily adapt.

It is generally quite difficult to come to terms with a new library (and perhaps
a new language) while wrestling with serial connectivity issues. The trial
version of EKM Dash is recommended as a way to easily insure your meters are
properly connected.

The library offers two modes of data access: via dictionaries and via simpler
assign* and extract* calls. Unless you are writing a dedicated device agent
which must handle JSON or XML, the assign and extract methods are strongly
recommended, both for ease of use and readability.

Goals

The purpose of this library is to provide a reliable and flexible interface
to EKM v3 and v4 Omnnimeters. It is written to be compatible with existing
EKM field naming conventions and to be accessible to both the casual user –
who may not know Python well and simply wishes to script his or her meter –
and the experienced user who is creating a device agent for an enterprise
metering solution.

The library is written to completely encapsulate the required constants and
enumerations for meter control, in a form which is friendly to intellisense
style editors and Sphinx documentation. The adopted idiom is simple
classes with static members for each categorically unique value.

PEP 8 Note

An implication of the use of EKM naming is that StudlyCase,
used widely in existing EKM products, is employed in preference to all lower
case function names in PEP 8. Function names keep this vocabulary intact
in camelCase. In a (relatively few) cases, descriptive names or tabular
presentation was held more important than line length, but in every case
the library uses the PyCharm/IntelliJ 120 column lint default.
These were implementation choices for an application-domain library,
and no changes are planned at this time.

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

Examples

All of these examples, and several more, can be found in the examples
subdirectory of the github source.

To get started, you will want to make sure your meter is set up and you
know the name of the port. If in doubt, download a trial copy of EKM Dash and
insure that your meters are connected and talking.

Every example below is surrounded by a few lines of setup and teardown.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	import os # to delete example db before create
import random # to generate example data
import time # to support summarizer sample

from ekmmeters import *

my_port_name = "/dev/ttyS0"
my_meter_address = "300001162"

ekm_set_log(ekm_print_log)
port = SerialPort(my_port_name)

if (port.initPort() == True):
 my_meter = V4Meter(my_meter_address)
 my_meter.attachPort(port)
else:
 print "Cannot open port"
 exit()

Example goes here

port.closePort()

All of the serial commands to the meter return True or False, and log the exceptions. In a long running
agent, there is no user action (or programmatic action) requiring exception data: you can only retry until
it is clear that the port is not talking to a meter. Generally failing calls will fall through a very short
timeout.

Every method making a serial call accepts an optional password parameter (eight
numeric characters in a string). The default, shipped with the meter, is “00000000”. Most systems
urge setting passwords immediately. We don’t recommend that unless it is a feature on a mature
system with a real level of security risk. EKM has no back door into your meter. If you reset and
lose your password, it is gone. All of the examples below omit the password parameter and use the
default.

Read

Both V3 and V4 Omnimeters are read with request(), which always returns a True or False. Request takes
an optional termination flag which forces a “end this conversation” string to be sent to the meter. This flag is only
used inside other serial calls: you can just ignore it and leave the default value of True.

The reads from your Omnimeter are returned with request() on
both V3 and V4 Omnimeters. Omnimeters return data in 255 byte chunks. The supported V3 meter fields come back in one chunk (referred to in the EKM documentation as an A read), and the V4 Omnimeter uses two chunks (referred to as an AB read). The request method is the same on both meter versions.

	1
2
3
4
5
6
7
8

	if my_meter.request():
 my_read_buffer = my_meter.getReadBuffer()

 # you can also traverse the buffer yourself,
 #but this is the simplest way to get it all.

 json_str = my_meter.jsonRender(my_read_buffer)
 print json_str

Save to Database

A simple wrapper for Sqlite is included in the library. It is equally avaliable to
V3 and V4 meter objects. The saved fields are a union of the v3 and v4 protocol, so
additional Omnimeters of either version can be added without changing the table.

If you already have an ORM in place, such as SQLAlchemy, you should define an
appropriate object and load it by traversing the read buffer. But for most
simple cases, the following will suffice.

The method insert() tells the meter object to put the data away in an
instantiated MeterDB.

The default behavior of a MeterDB object is built around portable-as-possible SQL:
one create statement, which should only be called once, two index creates, an insert,
and a drop. In this example we delete the Sqlite database entirely and call create each time.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	os.remove("test.db") # keep our example simple

my_db = SqliteMeterDB("test.db")
my_db.dbCreate()

arbitrary_iterations = 20

for i in range(arbitrary_iterations):
 if my_meter.request():
 my_meter.insert(my_db)

CT Ratio

The CT ratio tells the meter how to scale the input from an inductive pickup.
It can be set on both V3 and V4 Omnimeters. Allowed values are shown under CTRatio.

The CT ratio is set with the method setCTRatio().
The field CT_Ratio is returned in every read request.

	1
2
3
4

	if my_meter.setCTRatio(CTRatio.Amps_800):
 if my_meter.request():
 ct_str = my_meter.getField(Field.CT_Ratio)
 print "CT is " + ct_str

Max Demand Period

The max demand period is a value in the set MaxDemandPeriod.
The value can be set on both V3 and V4 omnimeters, and it is written with the
method setMaxDemandPeriod(). The field Max_Demand_Period is
returned in every read request.

	1
2
3
4
5
6
7
8
9

	if my_meter.setMaxDemandPeriod(MaxDemandPeriod.At_15_Minutes):
 if my_meter.request():
 mdp_str = my_meter.getField(Field.Max_Demand_Period)
 if mdp_str == str(MaxDemandPeriod.At_15_Minutes):
 print "15 Minutes"
 if mdp_str == str(MaxDemandPeriod.At_30_Minutes):
 print "30 Minutes"
 if mdp_str == str(MaxDemandPeriod.At_60_Minutes):
 print "60 Minutes"

Max Demand Reset Interval

In addition to setting the period for max demand, on V4 Omnimeters you can set an interval to
force a reset.

Max demand reset interval is written using setMaxDemandResetInterval(), which
can return True or False. It accepts values in the set MaxDemandResetInterval.

	1
2

	if my_meter.setMaxDemandResetInterval(MaxDemandResetInterval.Daily):
 print "Success"

Max Demand Reset Now

On both V3 and V4 Omnimeters, you can force an immediate reset with setMaxDemandResetNow().

	1
2

	if my_meter.setMaxDemandResetNow():
 print "Success"

Pulse Output Ratio

On V4 Omnimeters, the pulse output ratio is set using setPulseOutputRatio(), which
can return True or False. The value must be in the set PulseOutput.
The field Pulse_Output_Ratio is is returned in every read request.

	1
2
3
4

	if my_meter.setPulseOutputRatio(PulseOutput.Ratio_5):
 if my_meter.request():
 po_str = my_meter.getField(Field.Pulse_Output_Ratio)
 print po_str

Pulse Input Ratio

On V4 Omnimeters, the pulse input ratios is set using setPulseInputRatio(), which
can return True or False.

Each of the three pulse lines has an integer input ratio (how many times you
must close the pulse circuit to register one pulse). The fields Pulse_Ratio_1, Pulse_Ratio_2 and
Pulse_Ratio_3 are returned with every read request. The example below shows line one being set.

	1
2
3
4

	if my_meter.setPulseInputRatio(Pulse.Ln1, 55):
 if my_meter.request():
 pr_str = my_meter.getField(Field.Pulse_Ratio_1)
 print pr_str

Set Relay

On V4 Omnimeters, the relays toggle using the method setRelay(), which
can return True or False.

The V4 Omnimeter has 2 relays, which can hold permanently or for a requested
duration. The interval limits are in RelayInterval, the relay to
select in Relay, and the requested state in RelayState.

If hold-and-stay value is the zero interval. Using the hold constant, Min or 0
will switch the default state on or off (RelayState).

	1
2
3
4
5
6

	if my_meter.setRelay(RelayInterval.Hold,
 Relay.Relay1,
 RelayState.RelayOpen):

 if my_meter.setRelay(2, Relay.Relay1, RelayState.RelayClose):
 print "Complete"

Set Meter Time

On both V3 and V4 Omnimeters, meter time, which is used by the meter to calculate and store time of use tariffs,
is set using the method setTime(), and returns True or False.
The Meter_Time field is returned with every request. The method splitEkmDate()
(which takes an integer) will break the date out into constituent parts.

In practice, it is quite difficult to corrupt the meter time, but if it becomes invalid,
a request can return a ‘?’ in one of the field positions. In that case your cast to int
will throw a ValueException.

EKM meter time is stored in a proprietary year-first format requiring day of week.
The API will strip off the century and calculate day of week for you.

Note the meter time is not the same as the timestamp at read, which every agent should
capture. Your computer clock, which is calibrated to a time service, is more accurate. The
API does not make any assumptions about how you will use Meter_Time, what time
zones to employ, or the desirability of periodic corrections (though you can use this library
to do all those things).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	yy = 2023
mm = 11
dd = 22
hh = 15
min = 39
ss = 2

if (my_meter.setTime(yy, mm, dd, hh, min, ss)):
 if my_meter.request():
 time_str = my_meter.getField(Field.Meter_Time)
 dt = my_meter.splitEkmDate(int(time_str))
 print (str(dt.mm) + "-" +
 str(dt.dd) + "-" +
 str(dt.yy) + " " +
 str(dt.hh).zfill(2) + ":" +
 str(dt.minutes).zfill(2) + ":" +
 str(dt.ss).zfill(2))
 else:
 print "Request failed."
else:
 print "Set time failed."

Zero Resettable

The V4 fields Resettable_Rev_kWh_Tot and Resettable_kWh_Tot are zeroed with
function setZeroResettableKWH(), which returns True or False.

	1
2
3
4

	if my_meter.setZeroResettableKWH():
 if my_meter.request():
 print my_meter.getField(Field.Resettable_Rev_kWh_Tot)
 print my_meter.getField(Field.Resettable_kWh_Tot)

Season Schedules

On both V3 and V4 Omnimeters, there are eight schedules, each with four tariff periods. Schedules can be
assigned to seasons, with each season defined by a start day and month.

The season definitions are set with setSeasonSchedules(),
which returns True or False. setSeasonSchedules()
can use an internal meter buffer or a passed dictionary. Using the internal
buffer and assignSeasonSchedule() is the simplest approach.

While you can pass an int, using Seasons and Schedules
for the parameters is strongly recommended.

	1
2
3
4
5
6
7

	my_meter.assignSeasonSchedule(Seasons.Season_1, 1, 1, Schedules.Schedule_1)
my_meter.assignSeasonSchedule(Seasons.Season_2, 3, 21, Schedules.Schedule_2)
my_meter.assignSeasonSchedule(Seasons.Season_3, 6, 20, Schedules.Schedule_3)
my_meter.assignSeasonSchedule(Seasons.Season_4, 9, 21, Schedules.Schedule_8)

if my_meter.setSeasonSchedules():
 print "Success"

The method assignSeasonSchedule() will return False if the values are
out of bounds (though this was omitted from the example above for simplicity).

You can also populate the season schedule using a dictionary, which simplifies
loading a meter from passed JSON.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	param_buf = OrderedDict()
param_buf["Season_1_Start_Month"] = 1
param_buf["Season_1_Start_Day"] = 1
param_buf["Season_1_Schedule"] = 1
param_buf["Season_2_Start_Month"] = 3
param_buf["Season_2_Start_Day"] = 21
param_buf["Season_2_Schedule"] = 2
param_buf["Season_3_Start_Month"] = 6
param_buf["Season_3_Start_Day"] = 20
param_buf["Season_3_Schedule"] = 3
param_buf["Season_4_Start_Month"] = 9
param_buf["Season_4_Start_Day"] = 21
param_buf["Season_4_Schedule"] = 4

if my_meter.setSeasonSchedules(param_buf):
 print "Completed"

Set Schedule Tariffs

On both V3 and V4 Omnimeters, a schedule is defined by up to four tariff periods, each
with a start hour and minute. The meter will manage up to eight schedules.

Schedules are set one at a time via setScheduleTariffs(),
returning True or False. The simplest way to set up the call is with
assignSeasonSchedule(), which writes to the meter object
internal buffer. The sets Schedules and Tariffs are
provided for readability and convenience.

The following example creates one schedule with tariffs beginning at
midnight (rate = 1), 5:30 am (rate = 2), noon (rate = 3), and 5:30 pm (rate 1).

	1
2
3
4
5
6
7

	my_meter.assignScheduleTariff(Schedules.Schedule_1, Tariffs.Tariff_1, 0,0,1)
my_meter.assignScheduleTariff(Schedules.Schedule_1, Tariffs.Tariff_2, 5,30,2)
my_meter.assignScheduleTariff(Schedules.Schedule_1, Tariffs.Tariff_3, 12,0,3)
my_meter.assignScheduleTariff(Schedules.Schedule_1, Tariffs.Tariff_4, 17,30,1)

if (my_meter.setScheduleTariffs()):
 print "Success"

Note that assignSeasonSchedule() should be tested for False in
a production deployment.

You can also use the range(Extents.<name>) iterator to define all the schedules at once. The test
below sets the first tariff and then steps hour and minute for the next three.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	for schedule in range(Extents.Schedules):
 # create a random time and rate for the schedule
 min_start = random.randint(0,49)
 hr_start = random.randint(0,19)
 rate_start = random.randint(1,7)
 increment = 0
 for tariff in range(Extents.Tariffs):
 increment += 1
 my_meter.assignScheduleTariff(schedule, tariff,
 hr_start + increment,
 min_start + increment,
 rate_start + increment)
 my_meter.setScheduleTariffs()

If you are defining a schedule via JSON or XML, you can set the tariffs with a dictionary:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	param_buf = OrderedDict()
param_buf["Schedule"] = 0
param_buf["Hour_1"] = 1
param_buf["Min_1"] = 11
param_buf["Rate_1"] = 1
param_buf["Hour_2"] = 2
param_buf["Min_2"] = 21
param_buf["Rate_2"] = 2
param_buf["Hour_3"] = 3
param_buf["Min_3"] = 31
param_buf["Rate_3"] = 3
param_buf["Hour_4"] = 4
param_buf["Min_4"] = 41
param_buf["Rate_4"] = 4

if my_meter.setScheduleTariffs(param_buf):
 print "Success"

Holiday Dates

On both V3 and V4 Omnimeters, a list of up to 20 holidays can be set to use a
single schedule (which applies the relevant time of use tariffs to your holidays).
The list of holiday dates is written with setHolidayDates(), which
returns True or False.

Because the holiday list is relatively long, it is the only block without a set of
helper constants: if you use assignHolidayDate() directly,
the holiday is described by an integer from 0 to 19.

A more common use case will see all holidays stored and set at once. The
range(Extents.Holidays) idiom can be used to fill the holiday table:

	1
2
3
4
5
6

	for holiday in range(Extents.Holidays):
 day = random.randint(1,28)
 mon = random.randint(1,12)
 my_meter.assignHolidayDate(holiday, mon, day)

my_meter.setHolidayDates()

As with the other settings commands, a dictionary can be passed to setHolidayDates()
for JSON and XML support.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	param_buf = OrderedDict()
param_buf["Holiday_1_Month"] = 1
param_buf["Holiday_1_Day"] = 1
param_buf["Holiday_2_Month"] = 2
param_buf["Holiday_2_Day"] = 3
param_buf["Holiday_3_Month"] = 4
param_buf["Holiday_3_Day"] = 4
param_buf["Holiday_4_Month"] = 4
param_buf["Holiday_4_Day"] = 5
param_buf["Holiday_5_Month"] = 5
param_buf["Holiday_5_Day"] = 4
param_buf["Holiday_6_Month"] = 0
param_buf["Holiday_6_Day"] = 0
param_buf["Holiday_7_Month"] = 0
param_buf["Holiday_7_Day"] = 0
param_buf["Holiday_8_Month"] = 0
param_buf["Holiday_8_Day"] = 0
param_buf["Holiday_9_Month"] = 0
param_buf["Holiday_9_Day"] = 0
param_buf["Holiday_10_Month"] = 0
param_buf["Holiday_10_Day"] = 0
param_buf["Holiday_11_Month"] = 0
param_buf["Holiday_11_Day"] = 0
param_buf["Holiday_12_Month"] = 0
param_buf["Holiday_12_Day"] = 0
param_buf["Holiday_13_Month"] = 0
param_buf["Holiday_13_Day"] = 0
param_buf["Holiday_14_Month"] = 0
param_buf["Holiday_14_Day"] = 0
param_buf["Holiday_15_Month"] = 0
param_buf["Holiday_15_Day"] = 0
param_buf["Holiday_16_Month"] = 0
param_buf["Holiday_16_Day"] = 0
param_buf["Holiday_17_Month"] = 0
param_buf["Holiday_17_Day"] = 0
param_buf["Holiday_18_Month"] = 0
param_buf["Holiday_18_Day"] = 0
param_buf["Holiday_19_Month"] = 0
param_buf["Holiday_19_Day"] = 0
param_buf["Holiday_20_Month"] = 1
param_buf["Holiday_20_Day"] = 9

if my_meter.setHolidayDates(param_buf):
 print "Set holiday dates success."

LCD Display

A V4 Omnimeter alternates through up to 40 display items. There are 42
possible display fields, defined in LCDItems.

The simplest way to set display items is with the setLCDCmd() call,
which takes a list of LCDItems and returns True or False.

	1
2
3

	lcd_items = [LCDItems.RMS_Volts_Ln_1, LCDItems.Line_Freq]
if my_meter.setLCDCmd(lcd_items):
 print "Meter should now show Line 1 Volts and Frequency."

While most meter commands with more than a few of parameters use
a dictionary to organize the data (simplifying serialization over the wire),
the LCD display items are a single list of 40 integers. A JSON or XML call
populated by integer codes is not a good thing. You can translate the name
of any value in LCDItems to a corresponding integer
with lcdString().

	1
2
3
4
5

	lcd_items = [my_meter.lcdString("RMS_Volts_Ln_1"),
 my_meter.lcdString("Line_Freq")]

if my_meter.setLCDCmd(lcd_items):
 print "Meter should now show Line 1 Volts and Frequency."

Read Settings

The tariff data used by the Omnimeter (both V3 and V4) amounts to a small relational database, compressed
into fixed length lists. There are up to eight schedules, each schedule can track up to
four tariff periods in each day, and schedules can be assigned to holidays, weekends, and
seasons. The running kWh and reverse kWh for each tariff period is returned with every read,
and can be requested for each of the last six recorded months.

The simplest way get the data is all at once, with readSettings(), which
returns True or False. As it combines 5 read commands, readSettings() takes
longer than most other API calls.

The data is easy to get but harder to walk. If you do not want to manage offsets and position,
you can use the “for <item> in range(Extents.<items>” iteration style, below. Since the lists on
the meter are always the same length, you can use the code below as it is, and put your own
storage or send function at the bottom of each loop.

We start by reading all the settings tables out the meter object buffers.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	if my_meter.readSettings():

 # print header line
 print("Schedule".ljust(15) + "Tariff".ljust(15) +
 "Date".ljust(10) + "Rate".ljust(15))

 # There are eight schedules and four tariffs to traverse. We can
 # safely get indices for extractScheduleTariff -- which returns a
 # single tariff as a tuple -- using the idiom
 # of range(Extents.<item_type>)

 for schedule in range(Extents.Schedules):

 for tariff in range(Extents.Tariffs):

 schedule_tariff = my_meter.extractScheduleTariff(schedule, tariff)

 # and now we can print the returned tuple in a line
 print (("Schedule_" + schedule_tariff.Schedule).ljust(15) +
 ("kWh_Tariff_" + schedule_tariff.Tariff).ljust(15) +
 (schedule_tariff.Hour+":"+
 schedule_tariff.Min).ljust(10) +
 (schedule_tariff.Rate.ljust(15)))

Continuing the traversal of data returned from readSettings(), we get per month data:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# print header line
print("Month".ljust(7) + "kWh_Tariff_1".ljust(14) + "kWh_Tariff_2".ljust(14) +
 "kWh_Tariff_3".ljust(14) + "kWh_Tariff_4".ljust(14) +
 "kWh_Tot".ljust(10) + "Rev_kWh_Tariff_1".ljust(18) +
 "Rev_kWh_Tariff_2".ljust(18) + "Rev_kWh_Tariff_3".ljust(18) +
 "Rev_kWh_Tariff_4".ljust(18) + "Rev_kWh_Tot".ljust(11))

traverse the provided six months:
for month in range(Extents.Months):

 # extract the data for each month
 md = my_meter.extractMonthTariff(month)

 # and print the line
 print(md.Month.ljust(7) + md.kWh_Tariff_1.ljust(14) +
 md.kWh_Tariff_2.ljust(14) + md.kWh_Tariff_3.ljust(14) +
 md.kWh_Tariff_4.ljust(14) + md.kWh_Tot.ljust(10) +
 md.Rev_kWh_Tariff_1.ljust(18) + md.Rev_kWh_Tariff_2.ljust(18) +
 md.Rev_kWh_Tariff_3.ljust(18) + md.Rev_kWh_Tariff_4.ljust(18) +
 md.Rev_kWh_Tot.ljust(10))

And continue to list the 20 holidays and their assigned schedule, plus the assigned
weekend schedule.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# print the header
print("Holiday".ljust(12) + "Date".ljust(20))

traverse the defined holidays
for holiday in range(Extents.Holidays):

 # get the tuple ffor each individual holiday
 holidaydate = my_meter.extractHolidayDate(holiday)

 # and print the line
 print(("Holiday_" + holidaydate.Holiday).ljust(12) +
 (holidaydate.Month + "-" + holidaydate.Day).ljust(20))

 # the schedules assigned to the above holidays, and to weekends
 holiday_weekend_schedules = my_meter.extractHolidayWeekendSchedules()
 print "Holiday schedule = " + holiday_weekend_schedules.Holiday
 print "Weekend schedule = " + holiday_weekend_schedules.Weekend

Without the print statements – assuming you are just pulling the meter data
out into your own storage or display, and you can write my_save_tariff(),
my_save_month(), my_save_holidays() and my_save_holiday_weekend() functions –
the extraction traversal is much shorter. (Please note that unlike every
other example on this page, the code below isn’t runnable — the my_save functions
are just placeholders for your own database writes or display calls).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 for schedule in range(Extents.Schedules):
 for tariff in range(Extents.Tariffs):
 my_tariff_tuple = my_meter.extractScheduleTariff(schedule, tariff)
 my_save_tariff(my_tariff_tuple) # handle the tupe printed above

 for month in range(Extents.Months):
 my_months_tuple = my_meter.extractMonthTariff(month)
 my_save_month(my_months_tuple) # handle the tuple printed above

for holiday in range(Extents.Holidays):
 holidaydate = my_meter.extractHolidayDate(holiday)
 my_save_holidays(holidaydate.Month, holidaydate.Day)

 holiday_weekend_schedules = my_meter.extractHolidayWeekendSchedules()
 my_save_holiday_weekend(holiday_weekend_schedules.Holiday,
 holiday_weekend_schedules.Weekend)

By writing four functions to bridge to your own storage or display, you can put away
all the non-request meter data fairly simply. Getting the bufffers directly
as dictionaries requires individual handling of all repeating fields, and appropriate
handling of both schedule blocks and both month blocks stored on the meter. The following
example will print all the fields handled by the traversals above, using directly
requested buffers.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	if my_meter.readSettings():

 months_fwd_blk = my_meter.getMonthsBuffer(ReadMonths.kWh)
 months_rev_blk = my_meter.getMonthsBuffer(ReadMonths.kWhReverse)
 sched_1 = my_meter.getSchedulesBuffer(ReadSchedules.Schedules_1_To_4)
 sched_2 = my_meter.getSchedulesBuffer(ReadSchedules.Schedules_5_To_8)
 holiday_blk = my_meter.getHolidayDatesBuffer()

 print my_meter.jsonRender(months_fwd_blk)
 print my_meter.jsonRender(months_rev_blk)
 print my_meter.jsonRender(sched_1)
 print my_meter.jsonRender(sched_2)
 print my_meter.jsonRender(holiday_blk)

The readSettings() function itself breaks out to readScheduleTariffs(),
readMonthTariffs() and readHolidayDates().
If you take this approach you will need to call readMonthTariffs() twice, with ReadMonths.kWh
and ReadMonths.kWhReverse, and call readScheduleTariffs() twice as well,
with parameters ReadSchedules.Schedules_1_To_4 and ReadSchedules.Schedules_5_To_8.

Meter Observer

This library is intended for programmers at all levels. Most users seeking to summarize their data or generate
notifications can do so simply in the main polling loop. However, sometimes only an observer pattern will do.
This is a very simple implementation and easily learned, but nothing in this example is necessary for mastery of
the API.

Each meter object has a chain of 0 to n observer objects. When a request is issued, the meter calls the
subclassed update() method of every observer object registered in its chain. All observer objects descend
from MeterObserver, and require an override of the Update method and constructor.

Given that most applications will poll tightly on Meter::request(), why would you do it this way? An observer pattern
might be appropriate if you are planning on doing a lot of work with the data for each read over an array of meters,
and want to keep the initial and read handling results in a single class If you are writing a set of utilities,
subclassing MeterObserver can be convenient. The update method is exception wrapped: a failure in your override
will not block the next read.

All of that said, the right way is the course the way which is simplest and clearest for your project.

Using the examples set_notify.py and set_summarize.py (from the github source) is the most approachable
way to explore the pattern. All the required code is below, but it may be more rewarding to
run from and modify the already typed examples.

We start by moddifying the skeleton we set up at the beginning of this page. with a request loop at the bottom
of the file, right before closing the serial port. It is a simple count limited request loop, and is useful when
building software against this library.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	ekm_set_log(ekm_no_log) # comment out to restore

poll_reads = 120 # counts to iterate
print "Starting " + str(poll_reads) + " read poll."
read_cnt = 0 # read attempts
fail_cnt = 0 # consecutive failed reads
while (read_cnt < poll_reads):
 read_cnt += 1
 if not my_meter.request():
 fail_cnt += 1
 if fail_cnt > 3:
 print ">3 consecutive fails. Please check connection and restart"
 exit()
else:
 fail_cnt = 0

The notification observer example requires that your meter have pulse input line one hooked up, if only as two wires
you can close. To create a notification observer, start by subclassing MeterObserver immediately before the snippet
above. The constructor sets a startup test condition and initializes the last pulse count used for comparison.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	class ANotifyObserver(MeterObserver):

 def __init__(self):

 super(ANotifyObserver, self).__init__()
 self.m_startup = True
 self.m_last_pulse_cnt = 0

 def Update(self, def_buf):

 pulse_cnt = def_buf[Field.Pulse_Cnt_1][MeterData.NativeValue]

 if self.m_startup:
 self.m_last_pulse_cnt = pulse_cnt
 self.m_startup = False
 else:
 if self.m_last_pulse_cnt < pulse_cnt:
 self.doNotify()
 self.m_last_pulse_cnt = pulse_cnt

 def doNotify(self):
 print "Bells! Alarms! Do that again!"

Note that our Update() override gets the numeric value directly, using MeterData.NativeValue. It could as easily
return MeterData.StringValue, and cast. The first update() sets the initial comparison value. Subsequent
update() calls compare the pulse count and check to see if there is a change. The doNotify() method
is our triggered event, and can of course do anything Python can.

And finally – right before dropping into our poll loop, we instantiate our subclassed MeterObserver, and register it in the
meter’s observer chain. We also put the pulse count on the LCD, and set the input ratio to one so every time we close
the pulse input, we fire our event.

	1
2
3
4
5

	my_observer = ANotifyObserver()
my_meter.registerObserver(my_observer)

my_meter.setLCDCmd([LCDItems.Pulse_Cn_1])
my_meter.setPulseInputRatio(Pulse.Ln1, 1)

This example is found in full in the github examples directory for ekmmeters, as set_notify.py.
A second example, set_summarize.py, provides a MeterObserver which keeps a voltage
summary over an arbitrary number of seconds, passed in the constructor. While slightly longer than the example above,
it does not require wiring the meter pulse inputs.

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

Unit Tests

A very basic unit test framwork is avaliable in the Github project directory. It represents
the minimal level of compliance for check-in.

To use the unit tests, you must update unittest.ini with your installed V3 and V4
meter addresses. Both are required. The serial port name is OS appropriate. If you are
using an FTDI dongle, list ports to see what appears on insertion.

The unit tests also parameterize whether each serial commmand should pause after
completion, and for how long. The default is 100ms, and you should not need to change
it. Keep in mind your command is being sent as part of a series of 9600 baud exchanges
and the meter processor is quite slow: 100ms to insure serial buffer and interrupt handling
completes is a very small relative price. In a well behaved serial driver in a flawless
environment, this number is not necessary. If it is useful, the fact will likely
only show up on repeated serial runs, where the meter is putting the most stress
it can on the UART and any oddness in the combination of drivers and hardware
will show up. At the 100ms default, the unit tests complete in about 2 minues and 45
seconnds, most of which is blocking exchanges with the meter. At 50ms, the time
drops to about 2 minutes and ten seconds. In most cases this is neither a necessary
or desirable optimization target.

If you are learning the library, you will find very good coverage of library
functionality in the examples, and example code is an adaptation appropriate skeleton.
Unit test logic is built around unittests2, which provides the framework for execution
and largely dictates the pattern of error and port handling.

If you do choose to run the unit tests, you will need the ConifigParser, random
and unittest2 packages.

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

Meter Class

The Meter class is the base class for V3Meter and V4Meter. It is never called directly. It encapsulates
the next data to send, the last data read, and all of the possible serial commands.

	
class ekmmeters.Meter(meter_address='000000000000')

	Abstract base class. Encapuslates serial operations and buffers.

	
initParamLists()

	Initialize all short in-object send buffers to zero.

	
getReadBuffer()

	Required override to fetch the read serial block.

	Returns:	Every supported field (A or A+B, includes all fields)

	Return type:	SerialBlock

	
request(send_terminator=False)

	Required override, issue A or A+B reads and square up buffers.

	Parameters:	send_terminator (bool) – Send termination string at end of read.

	Returns:	True on successful read.

	Return type:	bool

	
serialPostEnd()

	Required override, issue termination string to port.

	
setMaxDemandPeriod(period, password='00000000')

	Serial call to set max demand period.

	Parameters:	
	period (int) – : as int.

	password (str) – Optional password.

	Returns:	True on completion with ACK.

	Return type:	bool

	
setMaxDemandResetInterval(interval, password='00000000')

	Serial call to set max demand interval.

	Parameters:	
	interval (int) – MaxDemandResetInterval as int.

	password (str) – Optional password.

	Returns:	True on completion with ACK.

	Return type:	bool

	
setMeterPassword(new_pwd, pwd='00000000')

	Serial Call to set meter password. USE WITH CAUTION.

	Parameters:	
	new_pwd (str) – 8 digit numeric password to set

	pwd (str) – Old 8 digit numeric password.

	Returns:	True on completion with ACK.

	Return type:	bool

	
jsonRender(def_buf)

	Translate the passed serial block into string only JSON.

	Parameters:	def_buf (SerialBlock) – Any SerialBlock object.

	Returns:	JSON rendering of meter record.

	Return type:	str

	
splitEkmDate(dateint)

	Break out a date from Omnimeter read.

Note a corrupt date will raise an exception when you
convert it to int to hand to this method.

	Parameters:	dateint (int) – Omnimeter datetime as int.

	Returns:	Named tuple which breaks out as followws:

	yy
	Last 2 digits of year

	mm
	Month 1-12

	dd
	Day 1-31

	weekday
	Zero based weekday

	hh
	Hour 0-23

	minutes
	Minutes 0-59

	ss
	Seconds 0-59

	Return type:	tuple

	
getMeterAddress()

	Getter for meter object 12 character address.

	Returns:	12 character address on front of meter

	Return type:	str

	
registerObserver(observer)

	Place an observer in the meter update() chain.

	Parameters:	observer (MeterObserver) – Subclassed MeterObserver.

	
unregisterObserver(observer)

	Remove an observer from the meter update() chain.

	Parameters:	observer (MeterObserver) – Subclassed MeterObserver.

	
getSchedulesBuffer(period_group)

	Return the requested tariff schedule SerialBlock for meter.

	Parameters:	period_group (int) – A ReadSchedules value.

	Returns:	The requested tariff schedules for meter.

	Return type:	SerialBlock

	
getHolidayDatesBuffer()

	Get the meter SerialBlock for holiday dates.

	
getMonthsBuffer(direction)

	Get the months tariff SerialBlock for meter.

	Parameters:	direction (int) – A ReadMonths value.

	Returns:	Requested months tariffs buffer.

	Return type:	SerialBlock

	
setMaxDemandResetNow(password='00000000')

	Serial call zero max demand (Dash Now button)

	Parameters:	password (str) – Optional password

	Returns:	True on completion with ACK.

	Return type:	bool

	
setTime(yy, mm, dd, hh, minutes, ss, password='00000000')

	Serial set time with day of week calculation.

	Parameters:	
	yy (int) – Last two digits of year.

	mm (int) – Month 1-12.

	dd (int) – Day 1-31

	hh (int) – Hour 0 to 23.

	minutes (int) – Minutes 0 to 59.

	ss (int) – Seconds 0 to 59.

	password (str) – Optional password.

	Returns:	True on completion and ACK.

	Return type:	bool

	
setCTRatio(new_ct, password='00000000')

	Serial call to set CT ratio for attached inductive pickup.

	Parameters:	
	new_ct (int) – A CTRatio value, a legal amperage setting.

	password (str) – Optional password.

	Returns:	True on completion with ACK.

	Return type:	bool

	
assignScheduleTariff(schedule, tariff, hour, minute, rate)

	Assign one schedule tariff period to meter bufffer.

	Parameters:	
	schedule (int) – A Schedules value or in range(Extents.Schedules).

	tariff (int) – Tariffs value or in range(Extents.Tariffs).

	hour (int) – Hour from 0-23.

	minute (int) – Minute from 0-59.

	rate (int) – Rate value.

	Returns:	True on completed assignment.

	Return type:	bool

	
setScheduleTariffs(cmd_dict=None, password='00000000')

	Serial call to set tariff periodds for a schedule.

	Parameters:	
	cmd_dict (dict) – Optional passed command dictionary.

	password (str) – Optional password.

	Returns:	True on completion and ACK.

	Return type:	bool

	
assignSeasonSchedule(season, month, day, schedule)

	Define a single season and assign a schedule

	Parameters:	
	season (int) – A Seasons value or in range(Extent.Seasons).

	month (int) – Month 1-12.

	day (int) – Day 1-31.

	schedule (int) – A LCDItems value or in range(Extent.Schedules).

	Returns:	True on completion and ACK.

	Return type:	bool

	
setSeasonSchedules(cmd_dict=None, password='00000000')

	Serial command to set seasons table.

If no dictionary is passed, the meter object buffer is used.

	Parameters:	
	cmd_dict (dict) – Optional dictionary of season schedules.

	password (str) – Optional password

	Returns:	True on completion and ACK.

	Return type:	bool

	
assignHolidayDate(holiday, month, day)

	Set a singe holiday day and month in object buffer.

There is no class style enum for holidays.

	Parameters:	
	holiday (int) – 0-19 or range(Extents.Holidays).

	month (int) – Month 1-12.

	day (int) – Day 1-31

	Returns:	True on completion.

	Return type:	bool

	
setHolidayDates(cmd_dict=None, password='00000000')

	Serial call to set holiday list.

If a buffer dictionary is not supplied, the method will use
the class object buffer populated with assignHolidayDate.

	Parameters:	
	cmd_dict (dict) – Optional dictionary of holidays.

	password (str) – Optional password.

	Returns:	True on completion.

	Return type:	bool

	
setWeekendHolidaySchedules(new_wknd, new_hldy, password='00000000')

	Serial call to set weekend and holiday Schedules.

	Parameters:	
	new_wknd (int) – Schedules value to assign.

	new_hldy (int) – Schedules value to assign.

	password (str) – Optional password..

	Returns:	True on completion and ACK.

	Return type:	bool

	
readScheduleTariffs(tableset)

	Serial call to read schedule tariffs buffer

	Parameters:	tableset (int) – ReadSchedules buffer to return.

	Returns:	True on completion and ACK.

	Return type:	bool

	
extractScheduleTariff(schedule, tariff)

	Read a single schedule tariff from meter object buffer.

	Parameters:	
	schedule (int) – A Schedules value or in range(Extent.Schedules).

	tariff (int) – A Tariffs value or in range(Extent.Tariffs).

	Returns:	True on completion.

	Return type:	bool

	
readMonthTariffs(months_type)

	Serial call to read month tariffs block into meter object buffer.

	Parameters:	months_type (int) – A ReadMonths value.

	Returns:	True on completion.

	Return type:	bool

	
extractMonthTariff(month)

	Extract the tariff for a single month from the meter object buffer.

	Parameters:	month (int) – A Months value or range(Extents.Months).

	Returns:	The eight tariff period totals for month. The return tuple breaks out as follows:

	kWh_Tariff_1
	kWh for tariff period 1 over month.

	kWh_Tariff_2
	kWh for tariff period 2 over month

	kWh_Tariff_3
	kWh for tariff period 3 over month

	kWh_Tariff_4
	kWh for tariff period 4 over month

	kWh_Tot
	Total kWh over requested month

	Rev_kWh_Tariff_1
	Rev kWh for tariff period 1 over month

	Rev_kWh_Tariff_3
	Rev kWh for tariff period 2 over month

	Rev_kWh_Tariff_3
	Rev kWh for tariff period 3 over month

	Rev_kWh_Tariff_4
	Rev kWh for tariff period 4 over month

	Rev_kWh_Tot
	Total Rev kWh over requested month

	Return type:	tuple

	
readHolidayDates()

	Serial call to read holiday dates into meter object buffer.

	Returns:	True on completion.

	Return type:	bool

	
extractHolidayDate(setting_holiday)

	Read a single holiday date from meter buffer.

	Parameters:	setting_holiday (int) – Holiday from 0-19 or in range(Extents.Holidays)

	Returns:	Holiday tuple, elements are strings.

	Holiday
	Holiday 0-19 as string

	Day
	Day 1-31 as string

	Month
	Monty 1-12 as string

	Return type:	tuple

	
extractHolidayWeekendSchedules()

	extract holiday and weekend Schedule from meter object buffer.

	Returns:	Holiday and weekend Schedule values, as strings.

	Holiday
	Schedule as string

	Weekend
	Schedule as string

	Return type:	tuple

	
readSettings()

	Recommended call to read all meter settings at once.

	Returns:	True if all subsequent serial calls completed with ACK.

	Return type:	bool

	
readCmdMsg()

	Getter for message set by last command.

	Returns:	Last set message, if exists.

	Return type:	str

	
clearCmdMsg()

	Zero out the command message result hint string

SerialBlock Class

Serial block is a simple subclass of OrderedDictionary. The subclassing is primarily cautionary.

	
class ekmmeters.SerialBlock

	Simple subclass of collections.OrderedDict.

Key is a Field and value is MeterData indexed array.

The MeterData points to one of the following:

	SizeValue
	Integer. Equivalent to struct char[SizeValue]

	TypeValue
	A FieldType value.

	ScaleValue
	A ScaleType value.

	StringValue
	Printable, scaled and formatted content.

	NativeValue
	Converted, scaled value of field native type.

	CalculatedFlag
	If True, not part of serial read, calculated.

	EventFlag
	If True, state value

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

V3Meter Class

	
class ekmmeters.V3Meter(meter_address='000000000000')

	Subclass of Meter and interface to v3 meters.

	
attachPort(serial_port)

	Attach required SerialPort.

	Parameters:	serial_port (SerialPort) – Serial port object, does not need to be initialized.

	
request(send_terminator=False)

	Required request() override for v3 and standard method to read meter.

	Parameters:	send_terminator (bool) – Send termination string at end of read.

	Returns:	CRC request flag result from most recent read

	Return type:	bool

	
getReadBuffer()

	Return SerialBlock for last read.

Appropriate for conversion to JSON or other extraction.

	Returns:	A read.

	Return type:	SerialBlock

	
insert(meter_db)

	Insert to MeterDB subclass.

Please note MeterDB subclassing is only for simplest-case.

	Parameters:	meter_db (MeterDB) – Instance of subclass of MeterDB.

	
getField(fld_name)

	Return Field content, scaled and formatted.

	Parameters:	fld_name (str) – A Field value which is on your meter.

	Returns:	String value (scaled if numeric) for the field.

	Return type:	str

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

V4Meter Class

	
class ekmmeters.V4Meter(meter_address='000000000000')

	Commands and buffers for V4 Omnnimeter.

	
attachPort(serial_port)

	Required override to attach the port to the meter.

	Parameters:	serial_port (SerialPort) – Declared serial port. Does not need to be initialized.

	
request(send_terminator=False)

	Combined A and B read for V4 meter.

	Parameters:	send_terminator (bool) – Send termination string at end of read.

	Returns:	True on completion.

	Return type:	bool

	
requestA()

	Issue an A read on V4 meter.

	Returns:	True if CRC match at end of call.

	Return type:	bool

	
getReadBuffer()

	Return the read buffer containing A and B reads.

Appropriate for JSON conversion or other processing in an agent.

	Returns:	A SerialBlock containing both A and B reads.

	Return type:	SerialBlock

	
getField(fld_name)

	Return Field content, scaled and formatted.

	Parameters:	fld_name (str) – A :class:~ekmmeters.Field value which is on your meter.

	Returns:	String value (scaled if numeric) for the field.

	Return type:	str

	
lcdString(item_str)

	Translate a string to corresponding LCD field integer

	Parameters:	item_str (str) – String identical to LcdItems entry.

	Returns:	LcdItems integer or 0 if not found.

	Return type:	int

	
setLCDCmd(display_list, password='00000000')

	Single call wrapper for LCD set.”

Wraps setLcd() and associated init and add methods.

	Parameters:	
	display_list (list) – List composed of LCDItems

	password (str) – Optional password.

	Returns:	Passthrough from setLcd()

	Return type:	bool

	
setRelay(seconds, relay, status, password='00000000')

	Serial call to set relay.

	Parameters:	
	seconds (int) – Seconds to hold, ero is hold forever. See RelayInterval.

	relay (int) – Selected relay, see Relay.

	status (int) – Status to set, see RelayState

	password (str) – Optional password

	Returns:	True on completion and ACK.

	Return type:	bool

	
setPulseInputRatio(line_in, new_cnst, password='00000000')

	Serial call to set pulse input ratio on a line.

	Parameters:	
	line_in (int) – Member of Pulse

	new_cnst (int) – New pulse input ratio

	password (str) – Optional password

Returns:

	
setZeroResettableKWH(password='00000000')

	Serial call to zero resettable kWh registers.

	Parameters:	password (str) – Optional password.

	Returns:	True on completion and ACK.

	Return type:	bool

	
setPulseOutputRatio(new_pout, password='00000000')

	Serial call to set pulse output ratio.

	Parameters:	
	new_pout (int) – Legal output, member of PulseOutput .

	password (str) – Optional password

	Returns:	True on completion and ACK

	Return type:	bool

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

SerialPort Class

	
class ekmmeters.SerialPort(ttyport, baudrate=9600, force_wait=0.1)

	Wrapper for serial port commands.

It should only be necessary to create one SerialPort per real port.

Object construction sets the class variables. The port is opened with
initPort(), and any serial exceptions will thrown at that point.

The standard serial settings for v3 and v4 EKM meters are 9600 baud,
7 bits, 1 stop bit, no parity. The baud rate may be reset but all timings
and test in this library are at 9600 baud. Bits, stop and parity may not
be changed.

	
initPort()

	Required initialization call, wraps pyserial constructor.

	
getName()

	Getter for serial port name

	Returns:	name of serial port (ex: ‘COM3’, ‘/dev/ttyS0’)

	Return type:	string

	
closePort()

	Passthrough for pyserial port close().

	
write(output)

	Passthrough for pyserial Serial.write().

	Parameters:	output (str) – Block to write to port

	
setPollingValues(max_waits, wait_sleep)

	Optional polling loop control

	Parameters:	
	max_waits (int) – waits

	wait_sleep (int) – ms per wait

	
getResponse(context='')

	Poll for finished block or first byte ACK.
:param context: internal serial call context.

	Returns:	Response, implict cast from byte array.

	Return type:	string

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

MeterObserver Class

	
class ekmmeters.MeterObserver

	Unenforced abstract base class for implementations of the observer pattern.

To use, you must override the constructor and update().

	
update(definition_buffer)

	Called by attached Meter on every request().

	Parameters:	definition_buffer (SerialBlock) – SerialBlock for request

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

MeterDB Class

The MeterDb and SqliteMeterDB classes are designed as a helper for the simplest
use case: read a meter and save the measurements. A SQL Server descendant class
for Iron Python can also be found in the examples.

If you are using this library to write data to an existing program with an ORM
such as SQLAlchemy, do not use these classes: extract the data and load to an appropriate object.

Most users of MeterDB will employ an existing subclass (like SqliteMeterDB). Overriding MeterDB is
specifically for simple use cases, where overriding between one and five queries (create, insert,
drop, and 2 index creates) is more approachable than setting up or learning an ORM.

	
class ekmmeters.MeterDB(connection_string)

	Base class for single-table reads database abstraction.

	
setConnectString(connection_string)

	Setter for connection string.
:param connection_string: Connection string.

	
mapTypeToSql(fld_type='None', fld_len=0)

	Translate FieldType to portable SQL Type. Override if needful.
:param fld_type: FieldType in serial block.
:type fld_type: int
:param fld_len: Binary length in serial block

	Returns:	Portable SQL type and length where appropriate.

	Return type:	string

	
fillCreate(qry_str)

	Return query portion below CREATE.
:param qry_str: String as built.

	Returns:	Passed string with fields appended.

	Return type:	string

	
sqlCreate()

	Reasonably portable SQL CREATE for defined fields.
:returns: Portable as possible SQL Create for all-reads table.

	Return type:	string

	
sqlInsert(def_buf, raw_a, raw_b)

	Reasonably portable SQL INSERT for from combined read buffer.
:param def_buf: Database only serial block of all fields.
:type def_buf: SerialBlock
:param raw_a: Raw A read as hex string.
:type raw_a: str
:param raw_b: Raw B read (if exists, otherwise empty) as hex string.

	Returns:	SQL insert for passed read buffer

	Return type:	str

	
sqlIdxMeterTime()

	Reasonably portable Meter_Address and Time_Stamp index SQL create.
:returns: SQL CREATE INDEX statement.

	Return type:	str

	
sqlIdxMeter()

	Reasonably portable Meter_Address index SQL create.
:returns: SQL CREATE INDEX statement.

	Return type:	str

	
sqlDrop()

	Reasonably portable drop of reads table.
:returns: SQL DROP TABLE statement.

	Return type:	str

	
dbInsert(def_buf, raw_a, raw_b)

	Call overridden dbExec() with built insert statement.
:param def_buf: Block of read buffer fields to write.
:type def_buf: SerialBlock
:param raw_a: Hex string of raw A read.
:type raw_a: str
:param raw_b: Hex string of raw B read or empty.

	
dbCreate()

	Call overridden dbExec() with built create statement.

	
dbDropReads()

	Call overridden dbExec() with build drop statement.

	
dbExec(query_str)

	Required override for MeterDB subclass, run a query.
:param query_str: SQL Query to run.

	
class ekmmeters.SqliteMeterDB(connection_string='default.db')

	MeterDB subclass for simple sqlite database

	
dbExec(query_str)

	Required override of dbExec() from MeterDB(), run query.
:param query_str: query to run

	
renderJsonReadsSince(timestamp, meter)

	Simple since Time_Stamp query returned as JSON records.

	Parameters:	
	timestamp (int) – Epoch time in seconds.

	meter (str) – 12 character meter address to query

	Returns:	JSON rendered read records.

	Return type:	str

	
renderRawJsonReadsSince(timestamp, meter)

	Simple Time_Stamp query returned as JSON, with raw hex string fields.

	Parameters:	
	timestamp (int) – Epoch time in seconds.

	meter (str) – 12 character meter address to query

	Returns:	JSON rendered read records including raw hex fields.

	Return type:	str

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ekmmeters 0.1.0 documentation

Logs and Exceptions

Logging

The ekmmeters module uses module level logging via predefined callback. It is off by default.

Simple print logging is turned on with:

ekm_set_log(ekm_print_log)

We strongly recommend leaving this on while getting started.

The logging is turned off with:

ekm_set_log(ekm_no_log)

You can send the output to file or syslog or other destination with a
custom callback. A custom callback must be of the form:

def my_logging_function(string_out):
 # simplest case: print or log
 print(string_out)

The callback is set – exactly as above – via set_log(function_name):

set_log(my_logging_function)

Exceptions

Every logging and exception system suggests its own strategy. In this library,
serial sets and reads, which rely on a connected meter, will
trap exceptions broadly, return False, and log the result. Most other methods
will simply allow exceptions to percolate up, for best handling by the
caller without reinterpretation.

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	
 previous |

 	ekmmeters 0.1.0 documentation

Constants

Every protocol has a range of irreduible and necessary values. This library
uses a simple static class variable, in the approximate style of the C++
enum, to encapsulate and describe the full set of required values.

Settings

Values used primarily (but not exclusively) for serial settings parameters.

	
class ekmmeters.MaxDemandResetInterval

	As passed in setMaxDemandResetInterval(). V4 Omnimeters.

	Off
	0

	Monthly
	1

	Weekly
	2

	Daily
	3

	Hourly
	4

	
class ekmmeters.MaxDemandPeriod

	As passed in setMaxDemandPeriod(). V3 and V4 Omnimeters.

	At_15_Minutes
	1

	At_30_Minutes
	2

	At_60_Minutes
	3

	
class ekmmeters.LCDItems

	As passed in addLcdItem(). V4 Omnimeters.

	kWh_Tot
	1

	Rev_kWh_Tot
	2

	RMS_Volts_Ln_1
	3

	RMS_Volts_Ln_2
	4

	RMS_Volts_Ln_3
	5

	Amps_Ln_1
	6

	Amps_Ln_2
	7

	Amps_Ln_3
	8

	RMS_Watts_Ln_1
	9

	RMS_Watts_Ln_2
	10

	RMS_Watts_Ln_3
	11

	RMS_Watts_Tot
	12

	Power_Factor_Ln_1
	13

	Power_Factor_Ln_2
	14

	Power_Factor_Ln_3
	15

	kWh_Tariff_1
	16

	kWh_Tariff_2
	17

	kWh_Tariff_3
	18

	kWh_Tariff_4
	19

	Rev_kWh_Tariff_1
	20

	Rev_kWh_Tariff_2
	21

	Rev_kWh_Tariff_3
	22

	Rev_kWh_Tariff_4
	23

	Reactive_Pwr_Ln_1
	24

	Reactive_Pwr_Ln_2
	25

	Reactive_Pwr_Ln_3
	26

	Reactive_Pwr_Tot
	27

	Line_Freq
	28

	Pulse_Cnt_1
	29

	Pulse_Cnt_2
	30

	Pulse_Cnt_3
	31

	kWh_Ln_1
	32

	Rev_kWh_Ln_1
	33

	kWh_Ln_2
	34

	Rev_kWh_Ln_2
	35

	kWh_Ln_3
	36

	Rev_kWh_Ln_3
	37

	Reactive_Energy_Tot
	38

	Max_Demand_Rst
	39

	Rev_kWh_Rst
	40

	State_Inputs
	41

	Max_Demand
	42

	
class ekmmeters.CTRatio

	As passed in setCTRatio(). V3 and V4 Omnimeters.

	Amps_100
	100

	Amps_200
	200

	Amps_400
	400

	Amps_600
	600

	Amps_800
	800

	Amps_1000
	1000

	Amps_1200
	1200

	Amps_1500
	1500

	Amps_2000
	2000

	Amps_3000
	3000

	Amps_4000
	4000

	Amps_5000
	5000

	
class ekmmeters.Pulse

	As passed to setPulseInputRatio(). V4 Omnimeters.

Simple constant to clarify call.

	In1
	1

	In2
	2

	In3
	3

	
class ekmmeters.PulseOutput

	As passed to setPulseOutputRatio(). V4 Omnimeters.

	Ratio_1
	Ratio_40

	Ratio_2
	Ratio_50

	Ratio_4
	Ratio_80

	Ratio_5
	Ratio_100

	Ratio_8
	Ratio_200

	Ratio_10
	Ratio_400

	Ratio_16
	Ratio_800

	Ratio_20
	Ratio_1600

	Ratio_25
	

	
class ekmmeters.Relay

	Relay specified in setRelay(). V4 Omnimeters.

	Relay1
	OUT1 on V4 Meter

	Relay2
	OUT2 on V4 Meter

	
class ekmmeters.RelayState

	Relay state in setRelay(). V4 Omnimeters.

	RelayOpen
	0

	RelayClosed
	1

	
class ekmmeters.RelayInterval

	Relay interval in setRelay(). V4 Omnimeters.

	Max
	9999 seconds

	Min
	0, parameter limit

	Hold
	0 (lock relay state)

Serial Block

Values established when a SerialBlock is initialized.

	
class ekmmeters.MeterData

	Each SerialBlock value is an array with these offsets. All Omnimeter versions.

	SizeValue
	0

	TypeValue
	1

	ScaleValue
	2

	StringValue
	3

	NativeValue
	4

	CalculatedFlag
	5

	EventFlag
	6

	
class ekmmeters.Field

	Union of all V3A and V4AB Fields Returned.

Use these values to directy get read data with
Meter::getField() or in directy traversal of
SerialBlock.

	Meter_Address
	12 character Mfr ID’

	Time_Stamp
	Epoch in ms at read

	Model
	Meter model

	Firmware
	Meter firmware

	kWh_Tot
	Meter power total

	kWh_Tariff_1
	Power in timeslot 1

	kWh_Tariff_2
	Power in timeslot 2

	kWh_Tariff_3
	Power in timeslot 3

	kWh_Tariff_4
	Power in timeslot 4

	Rev_kWh_Tot
	Meter rev. total

	Rev_kWh_Tariff_1
	Rev power in timeslot 1

	Rev_kWh_Tariff_2
	Rev power in timeslot 2

	Rev_kWh_Tariff_3
	Rev power in timeslot 3

	Rev_kWh_Tariff_4
	Rev power in timeslot 4

	RMS_Volts_Ln_1
	Volts line 1

	RMS_Volts_Ln_2
	Volts line 2

	RMS_Volts_Ln_3
	Volts line 3

	Amps_Ln_1
	Current line 1

	Amps_Ln_2
	Current line 2

	Amps_Ln_3
	Current line 3

	RMS_Watts_Ln_1
	Instantaneous watts line 1

	RMS_Watts_Ln_2
	Instantaneous watts line 2

	RMS_Watts_Ln_3
	Instantaneous watts line 3

	RMS_Watts_Tot
	Instantaneous watts 1 + 2 + 3

	Cos_Theta_Ln_1
	Prefix in CosTheta

	Cos_Theta_Ln_2
	Prefix in CosTheta

	Cos_Theta_Ln_3
	Prefix in CosTheta

	Max_Demand
	Demand in period

	Max_Demand_Period
	MaxDemandPeriod

	Meter_Time
	setTime() and splitEkmDate()

	CT_Ratio
	setCTRatio

	Pulse_Cnt_1
	Pulse Count Line 1

	Pulse_Cnt_2
	Pulse Count Line 2

	Pulse_Cnt_3
	Pulse Count Line 3

	Pulse_Ratio_1
	setPulseInputRatio()

	Pulse_Ratio_2
	setPulseInputRatio()

	Pulse_Ratio_3
	setPulseInputRatio()

	State_Inputs’
	StateIn

	Power_Factor_Ln_1
	EKM Power Factor

	Power_Factor_Ln_2
	EKM Power Factor

	Power_Factor_Ln_3
	EKM Power Factor

	Reactive_Energy_Tot
	Total VAR

	kWh_Ln_1
	Line 1 power

	kWh_Ln_2
	Line 2 power

	kWh_Ln_3
	Line 3 power

	Rev_kWh_Ln_1
	Line 1 reverse power

	Rev_kWh_Ln_2
	Line 2 reverse power

	Rev_kWh_Ln_3
	Line 3 revers power

	Resettable_kWh_Tot
	setZeroResettableKWH()

	Resettable_Rev_kWh_Tot
	setZeroResettableKWH()

	Reactive_Pwr_Ln_1
	VAR Line 1

	Reactive_Pwr_Ln_2
	VAR Line 2

	Reactive_Pwr_Ln_3
	VAR Line 3

	Reactive_Pwr_Tot
	VAR Total

	Line_Freq
	Freq. Hz.

	State_Watts_Dir
	DirectionFlag

	State_Out
	StateOut

	kWh_Scale
	ScaleKWH

	RMS_Watts_Max_Demand
	Power peak in period

	Pulse_Output_Ratio
	PulseOutput

	Net_Calc_Watts_Ln_1
	RMS_Watts with Direction

	Net_Calc_Watts_Ln_2
	RMS_Watts with Direction

	Net_Calc_Watts_Ln_3
	RMS_Watts with Direction

	Net_Calc_Watts_Tot
	RMS_Watts with Direction

	Status_A
	Reserved diagnostic.

	Status_B
	Reserved diagnostic.

	Status_C
	Reserved diagnostic.

Power_Factor is the only power factor measurement supported by
upstring EKM products. The original Cos Theta value
is provided as an API-only feature.

	
class ekmmeters.ScaleType

	Scale type defined in SerialBlock. V4 Omnimeters.

These values are set when a field is defined a SerialBlock.
A Div10 or Div100 results in immediate scaling, otherwise
the scaling is perfformed per the value in Field.kWh_Scale
as described in ScaleKWH.

	KWH
	ScaleKWH

	No
	Do not scale

	Div10
	Scale 10^-1

	Div100
	Scale 10^-2

	
class ekmmeters.FieldType

	Every SerialBlock element has a field type. V3 and V4 Omnimeters.

Data arrives as ascii. Field type determines disposition.
The destination type is Python.

	NoType
	Not type assigned, invalid

	Hex
	Implicit hex string

	Int
	Implicit int

	Float
	Implicit float

	String
	Leave as string, terminate

	PowerFactor
	EKM L or C prefixed pf

Meter

Values used to select meter object buffers to operate on. V4 and V3 Omnimeters.

	
class ekmmeters.ReadSchedules

	For readScheduleTariffs() and getSchedulesBuffer(). V3 and V4.

	Schedules_1_To_4
	1st 4 blocks tariffs and schedules

	Schedules_5_To_8
	2nd 4 blocks tariffs and schedules

	
class ekmmeters.ReadMonths

	As passed to readMonthTariffs() and getMonthsBuffer(). V3 and V4.

Use to select the forward or reverse six month tariff data.

	kWh
	Select forward month tariff data

	kWhReverse
	Select reverse month tariff data

Data

Values which only appear in a read. V4 Omnimeters.

	
class ekmmeters.DirectionFlag

	On V4, State_Watts_Dir mask shows RMS_Watts direction on line 1-3.

The Direction flag is used to generate Calc_Net_Watts field on every
read. Each word in constant is the direction of the corresponding at
the moment of read. Ex ForwardReverseForward means RMS_Watts lines one
and three are positive, and line two is negtive.

	ForwardForwardForward
	1

	ForwardForwardReverse
	2

	ForwardReverseForward
	3

	ReverseForwardForward
	4

	ForwardReverseReverse
	5

	ReverseForwardReverse
	6

	ReverseReverseForward
	7

	ReverseReverseReverse
	8

	
class ekmmeters.ScaleKWH

	Scaling or kWh values controlled by Fields.kWh. V4 Omnimeters.

If MeterData.ScaleValue is ScaleType.KWH, Fields.kWh_Scale one of these.

	NoScale
	0
	no scaling

	Scale10
	1
	scale 10^-1

	Scale100
	2
	scale 10^-2

	EmptyScale
	-1
	Reserved

	
class ekmmeters.StateIn

	State of each pulse line at time of read. V4 Omnimeters.

	HighHighHigh
	0

	HighHighLow
	1

	HighLowHigh
	2

	HighLowLow
	3

	LowHighHigh
	4

	LowHighLow
	5

	LowLowHigh
	6

	LowLowLow
	7

	
class ekmmeters.StateOut

	Pulse output state at time of read. V4 Omnimeters.

	OffOff
	1

	OffOn
	2

	OnOff
	3

	OnOn
	4

Traversal

Values primarily (but not exclusively) used for extraction from or assignment
to serial buffers. V3 and V4 Omnimeters.

	
class ekmmeters.Extents

	Traversal extents to use with for range(Extent) idiom. V3 and V4 Omnimeters.

Use of range(Extent.Entity) as an iterator insures safe
assignnment without off by one errors.

	Seasons
	4

	Holidays
	20

	Tariffs
	4

	Schedules
	8

	Months
	6

	
class ekmmeters.Seasons

	As passed to assignSeasonSchedule(). V3 and V4 Omnimeters.

assign* methods use a zero based index for seasons.
You may set a season using one of these constants
or fill and iterate over range(Extents.Seaons).

	Season_1
	0

	Season_2
	1

	Season_3
	2

	Season_4
	3

	
class ekmmeters.Months

	As passed to extractMonthTariff(). V3 and V4 Omnimeters.

	Month_1
	0

	Month_2
	1

	Month_3
	2

	Month_4
	3

	Month_5
	4

	Month_6
	5

	
class ekmmeters.Tariffs

	As passed to assignScheduleTariff(). V3 and V4 Omnimeters.

	Tariff_1
	0

	Tariff_2
	1

	Tariff_3
	2

	Tariff_4
	3

	
class ekmmeters.Schedules

	Allowed schedules. V3 and V4 Omnimeters.

Schedules on the meter are zero based, these apply to most passed
schedule parameters.

	Schedule_1
	0

	Schedule_2
	1

	Schedule_3
	2

	Schedule_4
	3

	Schedule_5
	4

	Schedule_6
	5

	Schedule_7
	6

	Schedule_8
	7

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 Navigation

 	
 index

 	ekmmeters 0.1.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	assignHolidayDate() (ekmmeters.Meter method)

 	assignScheduleTariff() (ekmmeters.Meter method)

 	

 	assignSeasonSchedule() (ekmmeters.Meter method)

 	attachPort() (ekmmeters.V3Meter method)

 	

 	(ekmmeters.V4Meter method)

C

 	

 	clearCmdMsg() (ekmmeters.Meter method)

 	closePort() (ekmmeters.SerialPort method)

 	

 	CTRatio (class in ekmmeters)

D

 	

 	dbCreate() (ekmmeters.MeterDB method)

 	dbDropReads() (ekmmeters.MeterDB method)

 	dbExec() (ekmmeters.MeterDB method)

 	

 	(ekmmeters.SqliteMeterDB method)

 	

 	dbInsert() (ekmmeters.MeterDB method)

 	DirectionFlag (class in ekmmeters)

E

 	

 	Extents (class in ekmmeters)

 	extractHolidayDate() (ekmmeters.Meter method)

 	extractHolidayWeekendSchedules() (ekmmeters.Meter method)

 	

 	extractMonthTariff() (ekmmeters.Meter method)

 	extractScheduleTariff() (ekmmeters.Meter method)

F

 	

 	Field (class in ekmmeters)

 	FieldType (class in ekmmeters)

 	

 	fillCreate() (ekmmeters.MeterDB method)

G

 	

 	getField() (ekmmeters.V3Meter method)

 	

 	(ekmmeters.V4Meter method)

 	getHolidayDatesBuffer() (ekmmeters.Meter method)

 	getMeterAddress() (ekmmeters.Meter method)

 	getMonthsBuffer() (ekmmeters.Meter method)

 	

 	getName() (ekmmeters.SerialPort method)

 	getReadBuffer() (ekmmeters.Meter method)

 	

 	(ekmmeters.V3Meter method)

 	(ekmmeters.V4Meter method)

 	getResponse() (ekmmeters.SerialPort method)

 	getSchedulesBuffer() (ekmmeters.Meter method)

I

 	

 	initParamLists() (ekmmeters.Meter method)

 	initPort() (ekmmeters.SerialPort method)

 	

 	insert() (ekmmeters.V3Meter method)

J

 	

 	jsonRender() (ekmmeters.Meter method)

L

 	

 	LCDItems (class in ekmmeters)

 	

 	lcdString() (ekmmeters.V4Meter method)

M

 	

 	mapTypeToSql() (ekmmeters.MeterDB method)

 	MaxDemandPeriod (class in ekmmeters)

 	MaxDemandResetInterval (class in ekmmeters)

 	Meter (class in ekmmeters)

 	

 	MeterData (class in ekmmeters)

 	MeterDB (class in ekmmeters)

 	MeterObserver (class in ekmmeters)

 	Months (class in ekmmeters)

P

 	

 	Pulse (class in ekmmeters)

 	

 	PulseOutput (class in ekmmeters)

R

 	

 	readCmdMsg() (ekmmeters.Meter method)

 	readHolidayDates() (ekmmeters.Meter method)

 	ReadMonths (class in ekmmeters)

 	readMonthTariffs() (ekmmeters.Meter method)

 	ReadSchedules (class in ekmmeters)

 	readScheduleTariffs() (ekmmeters.Meter method)

 	readSettings() (ekmmeters.Meter method)

 	registerObserver() (ekmmeters.Meter method)

 	

 	Relay (class in ekmmeters)

 	RelayInterval (class in ekmmeters)

 	RelayState (class in ekmmeters)

 	renderJsonReadsSince() (ekmmeters.SqliteMeterDB method)

 	renderRawJsonReadsSince() (ekmmeters.SqliteMeterDB method)

 	request() (ekmmeters.Meter method)

 	

 	(ekmmeters.V3Meter method)

 	(ekmmeters.V4Meter method)

 	requestA() (ekmmeters.V4Meter method)

S

 	

 	ScaleKWH (class in ekmmeters)

 	ScaleType (class in ekmmeters)

 	Schedules (class in ekmmeters)

 	Seasons (class in ekmmeters)

 	SerialBlock (class in ekmmeters)

 	SerialPort (class in ekmmeters)

 	serialPostEnd() (ekmmeters.Meter method)

 	setConnectString() (ekmmeters.MeterDB method)

 	setCTRatio() (ekmmeters.Meter method)

 	setHolidayDates() (ekmmeters.Meter method)

 	setLCDCmd() (ekmmeters.V4Meter method)

 	setMaxDemandPeriod() (ekmmeters.Meter method)

 	setMaxDemandResetInterval() (ekmmeters.Meter method)

 	setMaxDemandResetNow() (ekmmeters.Meter method)

 	setMeterPassword() (ekmmeters.Meter method)

 	setPollingValues() (ekmmeters.SerialPort method)

 	setPulseInputRatio() (ekmmeters.V4Meter method)

 	

 	setPulseOutputRatio() (ekmmeters.V4Meter method)

 	setRelay() (ekmmeters.V4Meter method)

 	setScheduleTariffs() (ekmmeters.Meter method)

 	setSeasonSchedules() (ekmmeters.Meter method)

 	setTime() (ekmmeters.Meter method)

 	setWeekendHolidaySchedules() (ekmmeters.Meter method)

 	setZeroResettableKWH() (ekmmeters.V4Meter method)

 	splitEkmDate() (ekmmeters.Meter method)

 	sqlCreate() (ekmmeters.MeterDB method)

 	sqlDrop() (ekmmeters.MeterDB method)

 	sqlIdxMeter() (ekmmeters.MeterDB method)

 	sqlIdxMeterTime() (ekmmeters.MeterDB method)

 	sqlInsert() (ekmmeters.MeterDB method)

 	SqliteMeterDB (class in ekmmeters)

 	StateIn (class in ekmmeters)

 	StateOut (class in ekmmeters)

T

 	

 	Tariffs (class in ekmmeters)

U

 	

 	unregisterObserver() (ekmmeters.Meter method)

 	

 	update() (ekmmeters.MeterObserver method)

V

 	

 	V3Meter (class in ekmmeters)

 	

 	V4Meter (class in ekmmeters)

W

 	

 	write() (ekmmeters.SerialPort method)

 Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

search.html

 Navigation

 		
 index

 		ekmmeters 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, EKM Metering.
 Last updated on Apr 08, 2016.

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

