

 Navigation

 	
 index

 	
 next |

 	eInvoicing address registry 0.1.0 documentation

Welcome to eInvoicing address registry’s documentation!

Contents:

	Introduction

	Credits

	Background
	Populus

	Installation
	Preface

	Setting up - OSX

	Setting up - Ubuntu Linux 14.04

	Usage
	Working on a local private testnet

	Tieke / CSV import

	Interacting with web browser

	Running automated test suite

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eInvoicing address registry 0.1.0 documentation

 [https://pypi.python.org/pypi/eireg]
 [https://travis-ci.org/miohtama/eireg][image: Documentation Status]
 [https://eireg.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/miohtama/eireg/]
Introduction

This project is a blockchain based e-invoicing address registry.

	EInvoicingRegistry smart contract in Solidity language [https://github.com/nordledger/eireg/blob/master/contracts/EInvoicingRegistry.sol]

	Python based automated test suite [https://github.com/nordledger/eireg/tree/master/tests]

	HTML + JavaScript based interactive demo [https://github.com/nordledger/eireg/tree/master/html]

	Free software: MIT license

	Documentation: https://eireg.readthedocs.io.

See also React based more complete front end

	Company self service portal project on Github [https://github.com/nordledger/companyselfservice]

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

 Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eInvoicing address registry 0.1.0 documentation

Background

Populus

Populus [http://populus.readthedocs.io/] is a tool for the Ethereum blockchain and smart contract management. The project uses Populus internally. Populus is a Python based suite for

	Running arbitrary Ethereum chains (mainnet, testnet, private testnet)

	Running test suites against Solidity smart contracts

 Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eInvoicing address registry 0.1.0 documentation

Installation

Preface

Instructions are written in OSX and Linux in mind.

Experience needed

	Basic command line usage

	Basic Github usage

	Basic GNU make usage

Setting up - OSX

Packages needed

	Populus native dependencies [http://populus.readthedocs.io/en/latest/quickstart.html]

Get Solidity compiler. For OSX:

Install solcjs using npm (JavaScript port of solc)
sudo npm install -g solc

Symlink solcjs as solc, so that Populus finds it as default solc command
sudo ln -s `which solcjs` /usr/local/bin/solc

Clone this repository from Github.

Python 3.x required. See installing Python [https://www.python.org/downloads/].

python3.5 --version
Python 3.5.2

Create virtualenv for Python package management in the project root folder (same as where setup.py is):

python3.5 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Setting up - Ubuntu Linux 14.04

Install dependencies:

sudo add-apt-repository ppa:fkrull/deadsnakes
sudo apt-get update
sudo apt-get install -y python3.5 python3.5-dev
sudo apt install -y git build-essential python3-setuptools libssl-dev

Install Go Ethereum [https://github.com/ethereum/go-ethereum/wiki/Installation-Instructions-for-Ubuntu]:

sudo apt-get install software-properties-common
sudo add-apt-repository -y ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install -y ethereum solc

Then:

git clone git@github.com:nordledger/eireg.git
cd eireg
python3.5 -m venv --without-pip venv
source venv/bin/activate
curl https://bootstrap.pypa.io/get-pip.py | python
pip install -r requirements.txt
pip install -e .

 Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	eInvoicing address registry 0.1.0 documentation

Usage

	Working on a local private testnet

	Tieke / CSV import

	Interacting with web browser

	Running automated test suite

Working on a local private testnet

See a local private chain starts:

make run-local-test-chain

Abort with CTRL-C when it starts to generate DAG.

Copy in a custom keyfile for the coinbase account, so that we have the same deterministic coinbase account id for all runs:

cp keyfiles/UTC--2016-11-08T16-15-25.205056382Z--27d1755735abaf6cefb2299d18458b1091bb2c7b chains/local_test/keystore/

Start a local private chain again and mine some ETH for a while (1 minute):

make run-local-test-chain

Abort with CTRL-C.

First we deploy a version of the contract on local chain managed by Populus.

make deploy-local

You will get deployment details:

Transaction Mined
=================
Tx Hash : 0x3557ed87c7eb517c0e9c69dd15ba7d5c4064ce8d9b40caee40f3522fe6357a73
Address : 0xb52fc9040759e04b793cbb094dc64ee051377c4c
Gas Provided : 362249
Gas Used : 262249

Write down the deployed contract Address field. It varies across deployments.

This will take ~60 seconds. The default coinbase account is 0x27d1755735abaf6cefb2299d18458b1091bb2c7b. It is configured in populus.ini.

Tieke / CSV import

Get Tieke electronic invoicing registry data dump as CSV.

Use import-tieke-csv tool to import existing records to a given smart contract address:

import-tieke-csv sample.csv local_test 0xb52fc9040759e04b793cbb094dc64ee051377c4c

Note

The local chain must not be running, but it is managed by this command.

Note

The tool lacks parallelism and is extremely slow at the moment.

Interacting with web browser

A simple interactive HTML demo is provided to interact with the contract.

Start geth deamon running a local chain. This is the same chain where we deployed the smart contract earlier:

make run-local-test-chain

It will start to mine transactions on your local computer.

In another terminal start a local development web server:

make run-web-server

Point your browser to:

http://localhost:8000

The demo directly interacts with Ethereum node over JSON-RPC protocol using web3.js [https://github.com/ethereum/web3.js/] library.

Fill in Contract address based on prior populus deploy command and Connect to contract.

Running automated test suite

To run test suite:

 Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	eInvoicing address registry 0.1.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/miohtama/eireg/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

eInvoicing address registry could always use more documentation, whether as part of the
official eInvoicing address registry docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/miohtama/eireg/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up eireg for local development.

	Fork the eireg repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/eireg.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv eireg
$ cd eireg/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 eireg tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/miohtama/eireg/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_eireg

 Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	eInvoicing address registry 0.1.0 documentation

Index

 Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

history.html

 Navigation

 		
 index

 		eInvoicing address registry 0.1.0 documentation »

History

0.1.0 (2016-11-08)

		First release on PyPI.

 © Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

authors.html

 Navigation

 		
 index

 		eInvoicing address registry 0.1.0 documentation »

Credits

Development Lead

		Mikko Ohtamaa <mikko@nordledger.com>

Contributors

None yet. Why not be the first?

 © Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		eInvoicing address registry 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Mikko Ohtamaa.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

