

The Egel Language

Contents:

	Introduction

	Installation
	Building from sources

	Using the interpreter

	The Calculus
	Constants

	The nameless pattern-matching abstraction

	Helpful shorthands

	Exceptions and exception handling

	Your First Programs
	Hello World

	Interactive Mode

	Adding namespaces

	Multiple scripts

	Values

	Lists and Tuples
	Lists

	Tuples

	Conway’s Game of Life
	Preamble

	The board

	Printing

	Generations

	A blinker

	Concurrency
	Parallel rewriting

	Parallel Fibonacci

	Processes

	Discussion

	Thanks for helping out!

Indices and tables

	Index

	Search Page

Introduction

Egel is a small scripting language based on untyped eager combinator rewriting. Or,
equivalently, it is an untyped lambda calculus with constants and strict semantics.

It roughly falls into the same category of combinator languages like SASL/KRC and conceptually
predates languages like Miranda, ML or Haskell.

The language is homoiconic and supports symbolic rewriting,
exceptions, namespaces, and concurrency.

Semantically, the implementation is morally equivalent to an eager term rewriter on
a directed acyclic graph with a small twist for performance.

To get a taste of the language an example is shown below.

namespace Fibonacci (
 using System

 def fib =
 [0 -> 1
 | 1 -> 1
 | N -> fib (N - 2) + fib (N - 1)]
)

using Fibonacci

def main = fib 5

The interpreter is implemented in C++. Sources can be downloaded from
Github [https://github.com/egel-lang/].

Installation

The Egel interpreter is a small C++ application and is for the
moment not distributed in binary form. You will need to download
and compile it yourself.

Building from sources

The interpreter is developed on MacOS/Linux system.
You need to have the compiler chains for gcc or llvm, cmake,
and the development files for icu and fmt
installed. Most Linux/Macos package managers will provide that for you.

The sources can be obtained from Github [https://github.com/egel-lang/].

Compilation follows the default cmake scheme, read the README
text in the distribution.

Using the interpreter

The interpreter supports various modes: batch processing, REPL
(read-eval-print-loop), and direct commands.

A number of example scripts are provided in the examples directory.
If you set up your system correctly, you can run any of them
with the command egel example.eg.

user$ egel examples/fib.eg
10946

Tip

The interpreter has a REPL, an interactive mode, but doesn’t
support line editing or completion. I use the console
program rlwrap for that. It should be installed or be
provided by your distribution. To use the interpreter
in interactive mode with line editing run the command
rlwrap egel.

At the prompt of the Egel interpreter you can type small
expressions.

user$ egel
>> 1 + 2
3

However, you’ll likely want more functionality. It is recommended
you always import the prelude and open the necessary namespaces.

>> import "prelude.eg"
>> using System
>> using List
>> foldl (+) 0 {1,2,3}
6

Lastly, you can provide commands directly to the interpreter and
use it as a simple command-line calculator.

user$ egel fib.eg -e "using Fibonnaci;; fib 5"
5

The Calculus

Egel is based upon a small combinator calculus with a limited number
of constructs. Below, that calculus is introduced with small
examples.

Constants

The smallest Egel expression is a constant.

>> 0
0

Multiple constants compose.

>> 1 2 3
(1 2 3)

Egel supports integers, floats, characters and Unicode strings.

>> 'a' 3.14 "Hello!"
('a' 3.14 "Hello!")

You can define your own constant combinators. Constants are lower-case.

>> data one, two, three
>> two
two

The nameless pattern-matching abstraction

The basic work-horse of Egel is the nameless pattern-matching
combinator. Roughly similar to an untyped lambda abstraction,
where variables are uppercase.

>> [X -> X] 5
5

The nameless pattern-matching combinator may consist of multiple
alternatives which pattern match from left to right. You can
mix variables and constants in patterns.

>> [0 -> "zero" | 1 -> "one" | X -> "a lot"] 1
"one"

You can match against multiple values.

>> [X Y -> X - Y] 4 1
3

Caution

Often, you will want to put a space after a - symbol. Can
you guess why? It’s because constants compose, so 2-1 are
the two constants 2 and -1. Make sure to insert the space!

You can define combinators as named abstractions for terms.

>> def id = [X -> X]
>> id "Hi!"
"Hi!"

Definitions may mention themselves, then they are recursive.

>> def fac = [1 -> 1 | N -> N * fac (N - 1)]
>> fac 3
6

Note

If you don’t understand the above definition then try replacing
fac in the term fac 3. Like this, fac 3 = 3 * fac (3 - 1)
= 3 * fac 2 = 3 * 2 * fac 1 = 3 * 2 * 1 = 6. Otherwise,
look up ‘recursion’ on the Internet. Good luck!

Egel refuses to rewrite, or reduce, definitions where none of the
patterns matched.

>> def z = [0 -> 0]
>> z 1
(z 1)

In the example above, the combinator z can only reduce a 0,
when given a 1 as an argument the interpreter refuses to reduce
the term.

Helpful shorthands

With let/in you can bind a variable to a value.

>> let X = 3 in X + 2
5

A condition consists of an if/then/else statement.

>> if 3 < 5 then "smaller" else "larger"
"smaller"

Exceptions and exception handling

Egel supports exceptions, throw any value anywhere.

>> 1 + throw "don't go here"
exception("don't go here")

You can also catch exceptions in a try/catch block. It reduces
the try part, any exception thrown in there will handled by
the provided catch handler.

>> try 1 + throw "don't go here" catch [E -> "caught:" E]
("caught:" "don't go here")

That’s the whole calculus, you can now program in Egel.

Your First Programs

Let’s move on and define some programs. An Egel program
is a collection of scripts driven by a main function.

Hello World

We’ll start with the cannonical example for a new language
“hello world”. Edit the file hello.eg and add the
following content.

def main = "Hello world!"

An Egel script is a text file which may define one main
function.

You can run the example with the Egel interpreter.

user$ egel hello.eg
Hello world!

Interactive Mode

Apart from batch mode, you can also run the intpreter
interactively.

The interpreter starts with a clean slate, you’ll usually
want to start of with a using System directive to access
the built-in combinators.

user$ egel
> using System
> def fac = [0 -> 1 | N * fac (N - 1)]
> fac 5
120

Adding namespaces

Functions live in namespaces. A namespace starts with
a capital letter and names all combinators within the
space. Let’s move on to the venerable Fibonacci.

namespace Fibonacci (

 using System

 def fib =
 [0 -> 1
 | 1 -> 1
 | N -> fib (N - 1) + fib (N - 2)]

)

using Fibonacci

def main = fib 5

Multiple scripts

Of course, you’ll want to use and define small data
structures. That’s easy in Egel, small constants can
function as constructors, although when you become more
advanced you will often just leave them away.

While we’re at it, let’s pretend this is serious business
and split our new application into two files.

Put the following code in the file eval.eg.

namespace Eval (

 using System

 data sum, mul

 def eval =
 [sum X Y -> eval X + eval Y
 | mul X Y -> eval X * eval Y
 | X -> X]

)

And write the following text to main.eg.

import "eval.eg"

using Eval

def main = eval (sum 3 (mul 2 7))

The import directive tells the interpreter where to look.
Running egel main.eg should give 17.

Values

Values are combinator definitions where the body is reduced
then assigned. This serves a two-fold purpose.

For one, often you’ll want to compute a value once and then
reuse it without passing it around explicitly. Secondly,
due to technical reasons all definitions are wrapped in
lambda abstractions you sometimes want to get rid off.

val x = heavy_computation somenumber

def main = (x, x)

Lists and Tuples

Right, so you’ve seen constants, abstractions, and a
means to split programs over files. Any pedantic
scientist can now tell you that’s enough to encode
any program. Maybe that’s correct, maybe not.

Let’s find out.

Lists

Working with lists follows a convention in Egel. They
are constructed with the nil and cons constants
from the System namespace. Of course, you are
free to choose any convention you like, but for now,
we kind-of rely on that programmers will follow
that convention.

You can test that the constants are there in interactive
mode.

>> using System
>> nil
System:nil

Creating a list is trivial.

>> cons 'a' (cons 1 nil)
{'a', 1}

Curly braces are syntactic sugar for lists.

Let’s proceed with defining functions on lists.
A length function is the first we’ll try.

>> def length = [nil -> 0 | cons X XX -> 1 + length XX]
>> length {'a', 1}
2

Egel is untyped, you might make a typo and apply
length to something not a list. Can you guess what will
happen?

>> length 0
(length 0)

The patterns are exhausted therefor the term will fail to
reduce.

Functional programmers adore lists, there’s a lot one
can do with them, if not everything. Egel suplies a number
of convenience routines in the List namespace in the
prelude.

>> import "prelude.eg"
>> using List

I’ll assume that you know some functional programming.
Standardly, we can apply any
function f to any list with the map combinator.

>> map [X -> X + 1] {0,1}
{1, 2}

This documentation is on the Egel language, it’s not
an introduction to functional programming. But did
you get what happened there? map applied [X->X+1]
to both elements of the list {0,1} resulting in
the list {1,2}.

And the important foldl is defined too. It’s a useful
operator but don’t go overboard with it!

>> foldl (+) 0 {1,2,3}
6

foldl will fold a function and a constant over a list,
foldl (+) 0 {1,2,3} = 1 + (2 + (3 + 0)). It’s a summation.

Tuples

Tuples in languages are used to group things. It’s a useful
feature which you don’t always need in Egel since constants
compose. Let’s find out how they work.

Like lists, tuples are syntactic sugar for applying the
tuple constant out of the System namespace to a number
of arguments.

>> (1,"hi")
(System:tuple 1 "hi")

Again, it’s all untyped so we can try to match against
a tuple to find out how many fields it has.

>> def c = [(X,Y) -> 2 | (X,Y,Z) -> 3]
>> c ("what", "a", "night")
3

That’s all for that subject. If you start programming Egel
you’ll find many more useful constructs.

Note

Egel has a concise syntax, so you might easily get confused
between alternatives.

The folowing reduces two arguments. Two patterns, each one variable.

>> [X Y -> X] 0 1
0

And this rewrites two composed constants. One pattern of two variables.

>> [(X Y) -> X] (0 1)
0

And finally, this rewrites a tuple. One pattern using sugar for a tuple.

>> [(X, Y) -> X] (0, 1)
0

Conway’s Game of Life

To showcase that Egel can be used to write real
programs I’ll walk you through an example of
a small Conway’s life application. I’ll assume you
know some functional programming, some territory not
covered yet comes along too.

Conway’s game of life plays on a grid. At any point
a cell on the grid may be dead or alive. Any life
cell with fewer than two, or more than three,
neighbours dies. Any dead cell with exactly three
neighbours comes alive.

Preamble

It’s good practice to start every file with some
comment on what it implements.

####
Conway's Game of Life.
#

Like a lot of languages, single-line
comments start with #.

We’ll rely on combinators defined in prelude.eg and
io.ego. A .ego file is an object file, a binary
on your system.

import "prelude.eg"
import "io.ego"

We’ll open up the different namespaces we need from
those files.

using System
using List
using IO

The board

The board size of the two-dimensional grid is defined
with a constant.

def boardsize = 5

So, now the real programming starts. The grid is implemented
as a stencil. A stencil is a function mapping coordinates to
cells. A cell 0 is dead, any other value means it’s alive.

The empty grid maps all coordinates to dead cells.

def empty = [X Y -> 0]

To insert an alive cell, we update the stencil with a clause
mapping two matching coordinates to an alive cell.

def insert =
 [X Y BOARD ->
 [X0 Y0 -> if and (X0 == X) (Y0 == Y) then 1
 else BOARD X0 Y0]]

To get to all coordinates we map multiple times on the list
{0,..,boardsize-1} to retrieve the pairs {{0 0, 0 1, ..},..}.
Note that we don’t need to tuple explicitly.

def coords =
 let R = fromto 0 (boardsize - 1) in
 [XX YY -> map (\X -> map (\Y -> X Y) YY) XX] R R

Printing

To print, we just apply IO.print for a dead or alive cell.
Though Egel is a mostly pure term rewrite system, combinators loaded may
have side effects.

def printcell =
 [0 -> print ". "
 | _ -> print "* "]

A wildcard pattern _ is used to match against any value.

Printing a board is done by going over all coordinates and printing the
cell for that coordinate.

def printboard =
 [BOARD ->
 foldl [_ XX -> map [(X Y) -> printcell (BOARD X Y)] XX; print "\n"] nop coords]

Note

Though Egel combinators may be side-effecting, they must reduce to a value.
IO:print will print all its arguments but will reduce to the uninformative
value System:nop. Often, with side-effecting calculations these values
are simply discarded. The semicolon separates such statements.

Generations

The neighbour count of a coordinate on a board can be calculated by just
looking around.

def count =
 [BOARD X Y ->
 (BOARD (X - 1) (Y - 1)) + (BOARD (X) (Y - 1)) + (BOARD (X+1) (Y - 1)) +
 (BOARD (X - 1) Y) + (BOARD (X+1) Y) +
 (BOARD (X - 1) (Y+1)) + (BOARD (X) (Y+1)) + (BOARD (X+1) (Y+1))]

The status of the next cell is calculated from whether the current cell
is alive or dead and the number of neighbours.

def next =
 [0 N -> if N == 3 then 1 else 0
 | _ N -> if or (N == 2) (N == 3) then 1 else 0]

A board is updated by applying the above function next to every coordinate
on the board.

def updateboard =
 [BOARD ->
 let XX = map (\(X Y) -> X Y (BOARD X Y) (count BOARD X Y)) (flatten coords) in
 let YY = map (\(X Y C N) -> X Y (next C N)) XX in
 foldr [(X Y 0) BOARD -> BOARD | (X Y _) BOARD -> insert X Y BOARD] empty YY]

A blinker

A blinker consists of three alive cells next to each other.

def blinker =
 (insert 1 2) . (insert 2 2) . (insert 3 2)

We print three generations of a board with a blinker.

def main =
 let GEN0 = blinker empty in
 let GEN1 = updateboard GEN0 in
 let GEN2 = updateboard GEN1 in
 foldl [_ G -> print "generation:\n"; printboard G] nop {GEN0, GEN1, GEN2}

And that wraps it up. A real Egel application.

Concurrency

Because Egel is a term rewrite language, it is trivial
to rewrite terms in parallel. Concurrency is provided
through a parallel combinator and a process abstraction.

Parallel rewriting

If you want to have two computations run in parallel
use the par combinator. It takes two abstractions
to be reduced, applies both of them to a dummy argument,
and returns a tuple containing both results.

>> using System
>> par [_ -> 1 + 2] [_ -> 3 + 4]
(System:tuple 3 7)

Note

The par combinator takes two abstractions because
Egel has strict semantics. If it would have been
just par (1+2) (3+4) the interpreter would have
reduced the arguments to par first, resulting
in the parallel reduction of par 3 7. By wrapping
the computations their evalution is deferred.

We can inspect what arguments are given to the abstractions
of par.

>> using System
>> par [X -> X] [X -> X]
(System:tuple System:nop System:nop)

Hardly interesting.

Of course, you might want to supply arguments to both
terms to be reduced. Then simply wrap them in an abstraction
again.

>> using System
>> [X -> par [_ -> X * 3] [_ -> X + 5]] 4
(System:tuple 12 9)

Parallel Fibonacci

With all what we know now, we can implement parallel
Fibonacci.

import "prelude.eg"

namespace Fibonnaci (
 using System

 def pfib =
 [0 -> 0
 | 1 -> 1
 | X -> [(F0, F1) -> F0 + F1] (par [_ -> pfib (X - 1)] [_-> pfib (X - 2)])]

)

using Fibonnaci
using System

def main = pfib 10

In the recursive alternative of pfib it will start up two
parallel computations, reduce those, after which it will
deconstruct the pair returned and add both components.

Nifty, huh?

Caution

Though morally Egel could support cheap concurrency, the
par combinator is implemented with the C++ thread library,
thus with system threads.

System threads are a bit heavyweight and easy to run out
of. On my machine, I can start upto roughly 20,000 threads.
Go easy on pfib!

Processes

Process abstractions model ‘mealy machines’, for every input provided
an output, and a continuation, is generated. A simple example is
provided below.

> def id = [MSG -> (MSG, id)]
> val i = proc id
> send i "hello"
> recv i
"hello"
> halt i

Note the use of val, reduction before assignment will start one process
on the background. This is a simple example, in most use cases likely in
the continuation a state will be passed around.

Discussion

Egel is a toy language implementing an eager untyped combinator
calculus as a term rewriting system on a directed acyclic graph (DAG)
through lifting C++.

What does that mean? You can easily conclude a number of things
from that although you can discuss those conclusions endlessly.

	Egel is untyped. That means a lot but among others that
it doesn’t scale very well, though
Lisp, Javascript, and Python practitioners might disagree with
that. Types are great, however, for short programs they don’t
matter much, with types you just pay a little for static guarantees.

	Terms are rewritten. Well, that’s likely not a fast language
and although the interpreter gives reasonable performance it indeed
isn’t fast. Though, through Herculean effort, term rewrite systems
can be made performant, I don’t have that much time. However,
the interpreter gives you a pretty robust system and that’s
worth something too.

	It rewrites a DAG. Right, no mutation since that would mean
you could introduce cycles. The interpreter implements some
unsafe extensions which ameliorate that a bit but in principle
you don’t have access to that. The language is Turing complete,
however, you’ll need to be an avid functional programmer.
I hope that going with a DAG will pay off in the distant
future since it trades off global analysis for local
analysis during garbage collection.

	C++. That’s another tradeoff. C++ objects are heavyweight
so you pay again in performance but you get a bit more reliable
system back. The good part is that it is relatively easy
to safely drop C++ functionality into combinators.

In conclusion, Egel is a solution for people who need a
small declarative easily extendable language which effortlessly binds
to C/C++ and who don’t expect to write very large or imperative programs.
It tries to support a niche market.

Apart from that, you can have great fun writing Egel programs
so don’t let any of the above stop you!

Thanks for helping out!

I would like to thank the following people.

Athas@freenode.net for running #proglangdesign and trying to make the interpreter run
on FreeBSD with clang. No luck so far, but that might change!

mahmudov@freenode.net who built the interpreter for the first time on another machine
and added it to the Milis [https://milislinux.org/] Linux distribution.

lijero@freenode.net for wise comments and b_jonas@libera.net for short scripts and
intelligent advise.

The Free Software Foundation (FSF) for their gracious support with access to their
compile farm.

Come visit on channel #egel on irc.freenode.net.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 The Egel Language

 		
 Introduction

 		
 Installation

 		
 Building from sources

 		
 Using the interpreter

 		
 The Calculus

 		
 Constants

 		
 The nameless pattern-matching abstraction

 		
 Helpful shorthands

 		
 Exceptions and exception handling

 		
 Your First Programs

 		
 Hello World

 		
 Interactive Mode

 		
 Adding namespaces

 		
 Multiple scripts

 		
 Values

 		
 Lists and Tuples

 		
 Lists

 		
 Tuples

 		
 Conway’s Game of Life

 		
 Preamble

 		
 The board

 		
 Printing

 		
 Generations

 		
 A blinker

 		
 Concurrency

 		
 Parallel rewriting

 		
 Parallel Fibonacci

 		
 Processes

 		
 Discussion

 		
 Thanks for helping out!

_static/up-pressed.png

_static/up.png

_static/plus.png

