

Welcome to ectopylasm’s documentation!

Package Contents

	Input and output

	Visualization

	Geometrical shapes

Indices and tables

	Index

	Module Index

	Search Page

ectopylasm

Tools for visualizing and fitting pointcloud data.

[image: _images/ectopylasm.svg]
 [https://travis-ci.org/sundial-pointcloud-geometry/ectopylasm][image: _images/badge.svg]
 [https://codecov.io/gh/sundial-pointcloud-geometry/ectopylasm][image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/sundial-pointcloud-geometry/ectopylasm/master?filepath=notebooks%2FSundial%20surface.ipynb][image: Documentation Status]
 [https://ectopylasm.readthedocs.io/en/latest/?badge=latest]
Installation

The recommended way to install ectopylasm is by using a virtual environment. Using Miniconda, one can get a working environment on Linux with the following commands:

on Linux
conda create -n ectopylasm python=3.7
conda activate ectopylasm
pip install git+https://github.com/sundial-pointcloud-geometry/ectopylasm.git

On macOS, the pptk dependency is only available for Python 3.6, so there one should use:

on macOS
conda create -n ectopylasm python=3.6
conda activate ectopylasm
pip install git+https://github.com/sundial-pointcloud-geometry/ectopylasm.git

To install ectopylasm from a cloned git repo, do:

git clone https://github.com/sundial-pointcloud-geometry/ectopylasm.git
cd ectopylasm
pip install .

Run tests (including coverage) with:

python setup.py test

Contributing

If you want to contribute to the development of ectopylasm,
have a look at the contribution guidelines.

License

Copyright (c) 2019, Humboldt-Universität zu Berlin

Licensed under the MIT License.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the NLeSC/python-template [https://github.com/NLeSC/python-template].

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 ectopylasm	

 	
 	
 ectopylasm.geometry	

 	
 	
 ectopylasm.io	

 	
 	
 ectopylasm.visualize	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	angle_between_two_vectors() (in module ectopylasm.geometry)

 	
 	apex_position() (ectopylasm.geometry.Cone method)

 	axis() (ectopylasm.geometry.Cone method)

C

 	
 	clear() (in module ectopylasm.visualize)

 	Cone (class in ectopylasm.geometry)

 	
 	cone_surface() (in module ectopylasm.geometry)

 	cone_sympy_model() (in module ectopylasm.geometry)

 	ConeRegion (class in ectopylasm.geometry)

D

 	
 	d_from_point() (ectopylasm.geometry.Plane static method)

E

 	
 	ectopylasm.geometry (module)

 	
 	ectopylasm.io (module)

 	ectopylasm.visualize (module)

F

 	
 	filter_points_cone() (in module ectopylasm.geometry)

 	filter_points_plane() (in module ectopylasm.geometry)

 	fit_cone() (in module ectopylasm.geometry)

 	fit_plane() (in module ectopylasm.geometry)

 	
 	from_fit_result() (ectopylasm.geometry.Cone class method)

 	(ectopylasm.geometry.Plane class method)

 	from_point() (ectopylasm.geometry.Plane class method)

 	from_points() (ectopylasm.geometry.Cone class method)

 	(ectopylasm.geometry.Plane class method)

G

 	
 	generate_point() (ectopylasm.geometry.Plane method)

I

 	
 	ipv_plot_df() (in module ectopylasm.visualize)

 	
 	ipv_plot_plydata() (in module ectopylasm.visualize)

L

 	
 	load_plyfile() (in module ectopylasm.io)

N

 	
 	normalize_vector() (in module ectopylasm.geometry)

O

 	
 	opening_angle() (ectopylasm.geometry.Cone method)

P

 	
 	pandas_vertices_from_plyfile() (in module ectopylasm.io)

 	Plane (class in ectopylasm.geometry)

 	plane_surface() (in module ectopylasm.geometry)

 	PlaneSurfaceLimitException

 	PlaneSurfaceNormalException

 	plot() (in module ectopylasm.visualize)

 	plot_cone() (in module ectopylasm.visualize)

 	plot_cone_fit() (in module ectopylasm.visualize)

 	
 	plot_plane() (in module ectopylasm.visualize)

 	plot_plane_fit() (in module ectopylasm.visualize)

 	plot_thick_cone() (in module ectopylasm.visualize)

 	plot_thick_plane() (in module ectopylasm.visualize)

 	Point (class in ectopylasm.geometry)

 	point_distance_to_cone() (in module ectopylasm.geometry)

 	point_distance_to_plane() (in module ectopylasm.geometry)

 	pptk_plot_df() (in module ectopylasm.visualize)

 	pptk_plot_plydata() (in module ectopylasm.visualize)

R

 	
 	random_sample() (in module ectopylasm.visualize)

S

 	
 	show() (in module ectopylasm.visualize)

T

 	
 	thick_cone_base_positions() (in module ectopylasm.geometry)

 	thick_cone_cones() (in module ectopylasm.geometry)

 	
 	thick_plane_planes() (in module ectopylasm.geometry)

 	thick_plane_points() (in module ectopylasm.geometry)

 	to_array() (ectopylasm.geometry.Point method)

V

 	
 	vaex_vertices_from_plyfile() (in module ectopylasm.io)

 	
 	vertex_dict_from_plyfile() (in module ectopylasm.io)

Module geometry

Calculations on shapes and vectors.

	
class ectopylasm.geometry.Cone(height: float, radius: float, rot_x: float = 6.283185307179586, rot_y: float = 6.283185307179586, base_pos: ectopylasm.geometry.Point = Point(x=0, y=0, z=0))

	Bases: object

A cone.

The cone is defined mainly by its height and radius. When the other
parameters are left at their default values, this will produce a cone with
its axis along the z-axis and the center of its circular base at position
(x, y, z) = (0, 0, 0).

Three optional parameters define its location and orientation: two rotation
parameters rot_x and rot_y, giving respectively rotations around the x
and y axes (the x rotation is performed first, then the y rotation) and one
translation parameter called base_pos, which itself is a Point object,
and which moves the position of the circular base of the cone.

	
apex_position()

	Get cone apex position from cone parameters.

	
axis()

	Get the cone’s axis unit vector from its rotation angles (radians).

	
classmethod from_fit_result(fit_result)

	Generate a Cone from fit_result, the output of fit.fit_cone.

	
classmethod from_points(points, **kwargs)

	Generate a Cone by fitting to a set of points.

The set of N point coordinates with shape (3, N) is given by points.

	
opening_angle()

	Twice the opening angle is the maximum angle between directrices.

	
class ectopylasm.geometry.ConeRegion

	Bases: enum.Enum

Class defining three regions in and around cones.

These regions are used in point_distance_to_cone to pass on information
about which kind of region the point is in. This can be used in other
functions (like filter_points_cone).

The three options are:
- perpendicular: the point is at a location where its shortest distance to

the cone surface is perpendicular to that surface

	
	above_apex: the point is somewhere above the apex of the cone, but not

	perpendicular to the surface

	
	below_directrix: the point is not perpendicular to the surface and it is

	below the directrix

	
class ectopylasm.geometry.Plane(a, b, c, d)

	Bases: object

A plane.

The plane is defined by four parameters, a, b, c and d, which form the
plane equation a*x + b*y + c*z + d = 0. Points (x, y, z) for which this
equation applies are points on the plane.

On creation, the input parameters a, b and c are normalized. When seen
as a vector n = (a, b, c), n is the normal vector to the plane,
indicating its direction. This vector is normalized to have length one.

The fourth parameter d relates to the position of the plane in space. It
can be calculated from a known point in the plane (X, Y, Z) as
d = -a*X - b*Y - c*Z, but can also be given directly.

	
static d_from_point(point, normal)

	Calculate d factor in plane equation ax + by + cz + d = 0.

	
classmethod from_fit_result(fit_result)

	Generate a Plane from fit_result, the output of fit.fit_plane.

	
classmethod from_point(a, b, c, point)

	Plane constructor that uses a point on the plane as input instead of d.

	
classmethod from_points(points)

	Generate a Plane by fitting to a set of points.

The set of N point coordinates with shape (3, N) is given by points.

	
generate_point()

	Generate a point in the plane.

Calculate a point in the plane based on d at x,y=0,0 (could be
anywhere); -cz = ax + by + d. If c happens to be zero, try x,z=0,0, and
if b is zero as well, do y,z=0,0.

	
exception ectopylasm.geometry.PlaneSurfaceLimitException

	Bases: RuntimeError

Raised by plane_surface when the given limits are invalid.

	
exception ectopylasm.geometry.PlaneSurfaceNormalException

	Bases: RuntimeError

Raised by plane_surface when the normal is not compatible with the limits.

	
class ectopylasm.geometry.Point(x: float, y: float, z: float)

	Bases: object

A three dimensional point with x, y and z components.

	
to_array()

	Convert to a NumPy array np.array((x, y, z)).

	
ectopylasm.geometry.angle_between_two_vectors(a, b)

	Calculate the angle in radians between two vectors a and b.

Implementation credits to https://stackoverflow.com/a/13849249/1199693.

	
ectopylasm.geometry.cone_surface(cone: ectopylasm.geometry.Cone, n_steps=20)

	Calculate coordinates of the surface of a cone.

cone: a Cone object
n_steps: number of steps in the parametric range used for drawing (more gives a

smoother surface, but may render more slowly)

	
ectopylasm.geometry.cone_sympy_model(cone: ectopylasm.geometry.Cone)

	Convert cone to a sympy based cone model.

Returns the model (first return value) and a dictionary with constituent
symbols.

	
ectopylasm.geometry.filter_points_cone(points_xyz, cone: ectopylasm.geometry.Cone, thickness)

	Select the points that are within the thick cone.

points_xyz: a vector of shape (3, N) representing N points in 3D space
cone: a Cone object
thickness: distance between the two cone surfaces (i.e. their directrices)

	
ectopylasm.geometry.filter_points_plane(points_xyz, plane: ectopylasm.geometry.Plane, plane_thickness)

	Select the points that are within the thick plane.

points_xyz: a vector of shape (3, N) representing N points in 3D space
plane: a Plane object
plane_thickness: the thickness of the plane (the distance between the two

composing planes)

	
ectopylasm.geometry.fit_cone(xyz, initial_guess_cone: ectopylasm.geometry.Cone = None)

	Fit a cone to the point coordinates in xyz.

Dev note: this fit is implemented with scipy instead of symfit. See
https://github.com/tBuLi/symfit/issues/263 for the problem with using
symfit for this one.

	
ectopylasm.geometry.fit_plane(xyz)

	Fit a plane to the point coordinates in xyz.

Dev note: An alternative implementation is possible that omits the f
variable, and thus has one fewer degree of freedom. This means the fit is
easier and maybe more precise. This could be tested. The notebook
req4.1_fit_plane.ipynb in the explore repository
(https://github.com/sundial-pointcloud-geometry/explore) has some notes on
this. The problem with those models where f is just zero and the named
symfit model is created for one of x, y or z instead is that you have to
divide by one of the a, b or c parameters respectively. If one of these
turns out to be zero, symfit will not find a fit. A solution would be
to actually create three models and try another if one of them fails to
converge.

	
ectopylasm.geometry.normalize_vector(vector)

	Input vector divided by its absolute size yields a vector of size 1.

	
ectopylasm.geometry.plane_surface(plane: ectopylasm.geometry.Plane, x_lim=None, y_lim=None, z_lim=None)

	Get plane surface coordinates.

Calculate coordinates of the part of a plane inside a cubical box. Two of
the limited parameters are used to calculate the coordinates in the third
direction.

Note that the first number in the pairs must be smaller than the second!

You only need to provide two pairs of coordinates, so only two of x_lim,
y_lim and z_lim need to be defined. When all three are defined, the
default is to use the x and y pairs. This option to choose is useful when
you have a plane that has a zero normal component in one of the directions.
In that case, you cannot use the limits in that direction, because the
plane coordinates will involve a division by that normal component (which
would give a division by zero error).

plane: a Plane object
x_lim: iterable of the two extrema in the x direction. Default: None.
y_lim: same as x, but for y
z_lim: same as x, but for z
limit_all: see explanation above. Default: False.

	
ectopylasm.geometry.point_distance_to_cone(point, cone: ectopylasm.geometry.Cone, return_extra=False)

	Get distance of point to cone.

Check whether for a point point, the shortest path to the cone is
perpendicular to the cone surface (and if so, return it). If
not, it is either “above” the apex and the shortest path is simply
the line straight to the apex, or it is “below” the base, and the
shortest path is the shortest path to the directrix (the base
circle).

This function returns a second value depending on which of the
three above cases is true for point point. If we’re using the
perpendicular, it is True, if we’re above the apex it is False and
if it is below the base, it is None.

Extra values can be returned to be reused outside the function by
setting return_extra to True.

	
ectopylasm.geometry.point_distance_to_plane(point, plane: ectopylasm.geometry.Plane)

	Get signed distance of point to plane.

The sign of the resulting distance tells you whether the point is in
the same or the opposite direction of the plane normal vector.

point: an iterable of length 3 representing a point in 3D space
plane: a Plane object

	
ectopylasm.geometry.thick_cone_base_positions(cone: ectopylasm.geometry.Cone, thickness)

	Convert cone base position to two thick cone base positions.

Given the cone parameters, return two base positions along the cone axis
that are a certain distance apart, such that the distance between the
cone surfaces (the directrices) is thickness apart.

cone: a Cone object
thickness: distance between the two cone surfaces (i.e. their directrices)

	
ectopylasm.geometry.thick_cone_cones(cone: ectopylasm.geometry.Cone, thickness) → Tuple[ectopylasm.geometry.Cone, ectopylasm.geometry.Cone]

	Convert one Cone to two cones separated by thickness.

Given the cone parameters, return two cones, such that the distance between
the cone surfaces (the directrices) is thickness apart.

cone: a Cone object
thickness: distance between the two cone surfaces (i.e. their directrices)

	
ectopylasm.geometry.thick_plane_planes(plane: ectopylasm.geometry.Plane, thickness)

	Convert plane to two planes separated by thickness.

	
ectopylasm.geometry.thick_plane_points(plane: ectopylasm.geometry.Plane, thickness, plane_point=None)

	Convert plane point to two thick plane points.

Given a Plane and a thickness, return two points along the normal that
are thickness apart. Optionally specify a specific point in the plane.

Module io

Functions for file handling.

	
ectopylasm.io.load_plyfile(filename)

	Load a PLY file.

	
ectopylasm.io.pandas_vertices_from_plyfile(filename)

	Load vertices from plyfile and return as pandas DataFrame.

	
ectopylasm.io.vaex_vertices_from_plyfile(filename)

	Load vertices from plyfile and return as vaex DataFrame.

	
ectopylasm.io.vertex_dict_from_plyfile(filename)

	Load vertices from PLY file and return as dict with x, y, z keys.

To increase loading speed dramatically, this function creates an HDF5 cache
file when loading a PLY file for the first time. When the cache exists (it
has the same path as the PLY file, except for the extension, which is
replaced by “.cache.ecto”), this function will load the data from there
instead of from the PLY file.

Module visualize

Visualization of point cloud data and geometrical shapes.

	
ectopylasm.visualize.clear()

	Call ipyvolume.clear().

	
ectopylasm.visualize.ipv_plot_df(points_df, sample_frac=1, marker='circle_2d', size=0.2, **kwargs)

	Plot vertices in a dataframe using ipyvolume.

	
ectopylasm.visualize.ipv_plot_plydata(plydata, sample_frac=1, marker='circle_2d', **kwargs)

	Plot vertices in a plydata object using ipyvolume.

	
ectopylasm.visualize.plot(data, *args, **kwargs)

	Wraps plotting functions for use in Jupyter notebooks.

Based on the type of data, this function will in turn call the following:

	pandas.DataFrame or vaex.DataFrame: ipv_plot_df.

	geometry.Plane: plot_plane.

	geometry.Cone: plot_cone.

See the documentation of those functions for how to call plot. All
arguments and keyword arguments are passed on to the wrapped functions.

	
ectopylasm.visualize.plot_cone(cone: ectopylasm.geometry.Cone, n_steps=20, **kwargs)

	Draw a cone surface.

cone: a Cone object
n_steps: number of steps in the parametric range used for drawing (more gives a

smoother surface, but may render more slowly)

	
ectopylasm.visualize.plot_cone_fit(fit_result, **kwargs)

	Plot the cone resulting from a cone fit to a point set.

	
ectopylasm.visualize.plot_plane(plane: ectopylasm.geometry.Plane, x_lim=None, y_lim=None, z_lim=None, limit_all=True, **kwargs)

	Draw a plane.

The limited coordinates are called x and z, corresponding to the first and
third components of p and n. The final y coordinate is calculated
based on the equation for a plane.

plane: a Plane object
x_lim [optional]: iterable of the two extrema in the x direction
y_lim [optional]: same as x, but for y
z_lim [optional]: same as x, but for z
limit_all [optional]: make sure that the plane surface plot is bound within

all given limits

	
ectopylasm.visualize.plot_plane_fit(fit_result, **kwargs)

	Plot the plane resulting from a plane fit to a point set.

	
ectopylasm.visualize.plot_thick_cone(cone: ectopylasm.geometry.Cone, thickness, **kwargs)

	Plot two cones separated by a distance thickness.

Parameters: same as plot_cone, plus thickness.

	
ectopylasm.visualize.plot_thick_plane(plane: ectopylasm.geometry.Plane, thickness=0, **kwargs)

	Draw two co-planar planes, separated by a distance thickness.

plane: a central Plane object
thickness: the distance between the two co-planar planes
x_lim [optional]: iterable of the two extrema in the x direction
z_lim [optional]: same as x, but for z
d [optional]: if d is known (in-product of p and n), then this can be

supplied directly; p is disregarded in this case.

	
ectopylasm.visualize.pptk_plot_df(points_df, **kwargs)

	Plot vertices in a dataframe using pptk.

	
ectopylasm.visualize.pptk_plot_plydata(plydata, **kwargs)

	Plot vertices in a plydata object using pptk.

	
ectopylasm.visualize.random_sample(xyz, total, sample_frac)

	Get a random sample from a point cloud.

xyz: array of shape (3, N) representing N points in 3D space
total: number of points in xyz
sample_frac: fraction of the total set that you want to return

	
ectopylasm.visualize.show()

	Call ipyvolume.show().

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to ectopylasm’s documentation!

_static/up-pressed.png

_static/up.png

